首都大学東京 令和元年度 特別研究 修士論文

深層学習による月面中央丘クレーターの自動抽出

首都大学東京 システムデザイン研究科 情報科学域

学修番号:18860603 氏名:原 聡志

指導教員:石川博教授

令和2年2月21日

論文要旨

月に存在する大小様々のクレーターの中には、その発生のプロセスや形成後の変動等により、 ある種の「特徴」を有するクレーターが存在している.その「特徴」を有するクレーターの一種 として、「中央丘」という特殊な地形構造を有するクレーター(以下「中央丘クレーター」と呼称) が存在する.この中央丘には、月面表面に存在していながらも、月地殻内部の物質が露出してい るという重要な特性がある.すなわち、中央丘表面の探査によって、周囲の内部地殻の物質を推 定することができるのである.この内部地殻の分析により、クレーター及び中央丘の成因の推定 や、過去の月面の表層環境や地殻変動の過程を推定できることが期待される.

しかし現状,探査地点としての有益性に反し,中央丘クレーターは探査目標としての脚光を浴 びているとは言い難い.その原因として,中央丘クレーターとして知られているクレーターが数 少ないことが挙げられる.この問題を解決する為には,未知中央丘クレーターの発見,ひいては 中央丘クレーターの網羅が必要となる.

しかし,従来の発見方法を用いた中央丘クレーターの網羅は難しい.なぜなら,これまで中央丘 クレーターは専門家による画像の目視,すなわち人力で発見されており,人力でもって月面に存 在する数万件ものクレーターから中央丘クレーターをリストアップしてくることは,時間および 労力を極端に消費してしまう為である.また,中央丘クレーターに定量化された定義はなく,観 測者ごとに中央丘クレーターに対する判断基準のブレが存在する可能性があることも問題である.

そこで本研究では、高速かつ観測者に由来するバイアスのかからない、月全球からの中央丘ク レーターの自動発見手法を提案する.

先述の通り,従来,中央丘クレーターの発見は月面の画像の確認によって行われていたが,月面 の画像は撮影時の月,探査機,および太陽の位置関係によって月面からの反射光や影といった状 況が変化するため,月全球を正確に表現できるデータとは言えない.そこで本研究では,提案手 法を適用する対象データとして,月面の数値標高モデル (Digital Elevation Model, DEM)を用 いる.DEMとは,白黒画像と同様の構造を有する二次元データであり,各ピクセルに画素値では なく標高値を有している.JAXAの月周回衛星「かぐや」のレーザー高度計 (Laser ALTimeter, LALT)より得られたDEM (LALT DEM) およびNASAの月周回衛星「Lunar Reconnaissance Orbiter (LRO) 」のレーザー高度計 (Lunar Orbiter Laser Altimeter, LOLA) より得られた DEM (LOLA DEM) によって, 月全球の表現が可能である.

本研究で提案する中央丘クレーター自動発見手法は,月全球からのクレーターの抽出,抽出さ れたクレーター群における中央丘の有無の判定および分類,という2段階からなる.また,提案手 法においては,DEMデータが二次元画像と同様のデータ構造を有していることに着目し,画像処 理において用いられる深層学習手法のDEMデータに対する適用を試みる.

提案手法の1段階目では、月全球のDEMから、中央丘の有無にかかわらずクレーターを自動抽 出する.自動抽出には、DEMからのクレーター抽出を目的として開発された専用の既存手法と、 深層学習による物体検出手法の2手法を並行して用いる.既存手法は、提唱論文内での検証により 有効性が担保されている反面、小型のクレーターの抽出において必要な計算時間が長く、事実上 大型クレーターのみを対象としなければ全球からのクレーター抽出が実行できない.一方、深層 学習による物体検出手法を用いたクレーター抽出は、専門家による運用および精度検証がなされ ていないが、既存手法より抽出速度が早く、小型のクレーターも対象とした月全球からの抽出が 可能であると期待できる.

提案手法の2段階目では,深層学習の画像分類手法によって,1段階目で抽出された全てのクレー ターから中央丘クレーターを分類する.深層学習での画像分類をするにあたって,分類器を学習 させるための教師データが必要となる.そこで本研究では,既存手法によって抽出された有効性 の担保されているクレーター群を元に教師データを作成し,分類器に学習させる.そして,学習 後の分類器によって,深層学習による物体検出手法によって抽出された,小型クレーターを含む クレーター群の分類を行う.

実験の結果,分類器の検定時精度は95%を超え,その分類器によって約750件が中央丘クレー ターとして抽出された.抽出された中央丘クレーター群に対し専門家による画像の目視確認を 行った結果,最終的に,524件の中央丘クレーターおよび75件の中央丘クレーターと思しきクレー ターが抽出されていることを確認した.前者の内440件,後者の内73件,合計513件は未知の中央 丘クレーターだった.

目次

論文要旨		i
第1章	はじめに	1
第2章	関連研究	5
第3章	提案手法	7
3.1	クレーターの抽出	7
3.2	ラベリング	9
3.3	分類器の学習	10
3.4	分類器による中央丘クレーターの識別	10
第4章	実験結果	12
4.1	データセット	12
4.2	実験環境	13
4.3	パラメータ	13
4.4	分類性能の評価	14
4.5	分類の妥当性の確認	15
4.6	中央丘クレーターの抽出..................................	15
第5章	まとめ	20
謝辞		21
参考文献		22
発表論文		25

第1章

はじめに

月面に大小多数のクレーターが存在することは周知の通りである.このクレーターの中には, その発生のプロセスや形成後の変動等により,ある種の「特徴」を有するクレーターが存在して いる.その「特徴」を有するクレーターの一種として,「中央丘」という特殊な地形構造を有する クレーター (本論では以降「中央丘クレーター」と呼称)が存在する.中央丘とは,図1.1の中央 部のような,クレーター内部に存在する丘状の凸構造物のことである.名称に「中央」とはある ものの,一概にクレーターの中央に存在するものではなく,その存在位置,大きさ,形状,個数に 至るまで,クレーターによって大きな差異がある.多くの中央丘が有しているであろう性質とし て,月地殻内部の物質が表面に露出しているという性質がある.地殻内部への掘削調査等が難し い月面探査において,表面への探査のみで内部物質を把握することのできる可能性のある探査地 点として,中央丘は大きな価値を有している.実際に,中央丘への探査功績として,月の地殻変 動や月面の形成の過程の推測に寄与しているものが存在する.

しかし現状,中央丘探査は盛んに行われてはいない.その原因の一つに,中央丘クレーターと して知られているクレーターが少ないことが挙げられる.即ち,どこにどのような中央丘クレー ターが存在するのかという情報を集積できていないのである.この問題を解決する為には,中央 丘クレーターの網羅,ひいては中央丘クレーターのカタログ化が求められる.

旧来,中央丘クレーターの発見,つまりクレーターにおける中央丘の有無の確認は,専門家によ る画像の目視,即ち人力で行われてきた.しかしこの方法は,月に存在する数万ものクレーター の全てを確認し,中央丘クレーターの網羅的探索を行うには,多大な時間および労力を必要とす ることから現実的ではない.加えて,目視による確認をするにあたり専門性の習熟が必要であり, かつ確認する専門家ごとに判断の基準に偏りが生じる可能性がある.

そこで本研究では、中央丘クレーターの自動発見手法を提案し、本手法の実行結果として中央 丘クレーターカタログを作成する.

中央丘クレーターを目視によって識別する上で基準とされてきたものは中央丘クレーターの

画像であり、その画像情報は中央丘クレーターの形状に由来している.このことから、中央丘ク レーターの構造的特徴を何らかの方法で解析することにより、中央丘クレーターの識別が可能に なるものと考えられる.しかし、月表面を撮影した画像は、撮影時の探査機の位置や太陽の方向 の影響を影などの形で受けている.そのため、画像では月全球を情報の欠損無く十分に表現する ことはできない.対して、数値標高モデル (Digital Elevation Model, DEM) では、画像のよう な情報の欠損が起きていない.そこで本研究では、提案手法を適用する対象データとして、月面 のDEMを用いる.DEMとは、白黒画像と同様の構造を有する二次元データであり、各ピクセル に画素値ではなく標高値を有している.図1.2に、DEMデータの例を示す.縦軸は南北(単位はピ クセル)、横軸は東西(同左)、色は標高(単位はm)を表している.実際に用いるデータは、JAXAの 月周回衛星「かぐや」のレーザー高度計 (Laser ALTimeter, LALT) より得られたDEM (LALT DEM) およびNASAの月周回衛星「Lunar Reconnaissance Orbiter (LRO)」のレーザー高度 計 (Lunar Orbiter Laser Altimeter, LOLA) より得られたDEM (LOLA DEM) であり、これ らの併用によって月全球を大きな歪みなく表現できる.両データは、LALT DEMがDARTS at ISAS/JAXA^{*1}, LOLA DEMがLOLA PDS Data Node^{*2}にて公開されている.

中央丘クレーターの構造的特徴の自動的な解析を実現するために、本研究では、月面物性や地 質学への専門性を必要としない、深層学習による分類問題への帰着を提案する.DEMデータの構 造がモノクロ画像データの構造と類似しているため、画像処理の為の深層学習手法をDEMデータ にも適用することができると予想される.

現在,クレーターを自動抽出する既存手法はあるものの,中央丘クレーターのみを抽出する既 存手法はない.他方,深層学習を用いた本研究に関連する画像処理手法としては,画像分類と物 体検出の手法が存在する.深層学習による物体検出手法は画像から特定の物体を抽出できるため, この手法によるDEMからの中央丘クレーターの抽出が可能であると期待される.しかし,既知 の中央丘クレーターの数が少ないことから,深層学習による物体検出器を学習させるための教師 データのアノテーションにおいて,中央丘クレーターを教師データに十分に含ませることが難し い.一方,深層学習による画像分類手法のための教師データは,画像のラベルのみ必要とし,物 体の位置の情報が不要である.よって,クレーター分類のための画像分類手法の教師データ作成 には,数百枚ほどのクレーターを人手で分類するだけでよく,物体検出器学習用教師データ作成 のためのアノテーションに比べ遥かに容易に行うことができる.

そこで、本研究で提案する中央丘クレーター自動発見手法は、月全球からのクレーターの抽出、

 $^{^{*1}}$ DARTS at ISAS/JAXA

http://darts.jaxa.jp

^{*2} LOLA PDS Data Node http://imbrium.mit.edu

図1.1: 中央丘クレーターの一例 (Tychoクレーター)

抽出されたクレーター群における中央丘の有無の判定および分類,という2段階からなる.1段階 目では、月全球のDEMから、中央丘の有無にかかわらずクレーターを自動抽出する.そして、2 段階目で用いる分類器の学習のため、抽出されたクレーターに中央丘の有無に応じたラベルを付 与し、教師データを作成する.2段階目では、作成した教師データによって学習された分類器を用 い、全てのクレーターを中央丘の有無で分類し、中央丘クレーター群のみを抽出する.最終的に は、抽出結果に対して専門家による確認を行い、抽出結果の精度を評価する.また、既知の中央 丘クレーター群との比較から、本手法による成果の網羅性の検証を行う.

本論の構成は次の通りとなる.2章では,本研究及びその中で用いられる手法に関連する研究 について言及する.3章では,本研究における具体的な手法を提案する.4章では,3章での提案 手法に基づいた実験を行い,その結果の分析,考察を行う.5章では,本論のまとめ及び今後の 課題について述べる.

図1.2: DEMデータ

第2章

関連研究

中央丘クレーターの存在およびその研究自体は,数十年前より行われている[1][2].その従来研 究の中で,約100件の中央丘クレーターが既にリストアップされている[3].近年では,中央丘に対 する探査によって,月の地殻変動や月面の形成の過程の推測に寄与した例も存在する[4].

クレーターの網羅に関して,月面には非常に多くのクレーターが存在し,これらを人手で網羅 するには大変な労力を要する.この労力を削減し,より効率的なクレーターの網羅を可能とする ため,従来より様々な手法が考案されてきた[5][6][7][8][9].近年では,山本らが回転ピクセルス ワッピング法[10]によるDEMデータからのクレーター自動抽出手法を開発し,抽出精度,計算速 度等において実用性が高められてきている.

他方,画像識別問題において,機械学習手法が近年盛んに用いられている.その発端となった のが,KrizhevskyらによるConvolutional Neural Network (CNN) [11]の開発である.CNNが画 像識別問題において圧倒的な成績を残して以降,画像識別手法は深層学習,特にCNNを発展させ た手法が主流となっている.主な発展先ネットワークとしては,Krizhevskyらのネットワークを 基本構造はそのままにより多層化した,VGG[12]が開発された.そして,ネットワークにショー トカットの概念を導入することでさらなる多層化に成功した,Residual Network (ResNet) [13] が開発された.現在の画像識別ネットワークはこのResNetを発展させたものが主流であり,代表 的なものとしてはDense Convolutional Network (DenseNet) [14]が挙げられる.

画像識別問題における深層学習技術の発展は、その他の画像処理問題、例えば画像からの物体 検出問題に対する手法にも大きな影響を与えた.物体検出手法にCNNを活用して成果を残した最 初の手法が、Regions with CNN features (R-CNN) [15]である.当時はCNNでの計算に時間を 要する環境だったこともあり、本手法では物体候補を特徴量化する段階にのみCNNを使用し、物 体候補の抽出および特徴量化後の識別は別の既存手法を利用していた.その後、物体候補の抽出 から最終的な識別までの全てを深層学習で行う手法として、Faster R-CNN[16], You Only Look Once (YOLO) [17], Single Shot Detector (SSD) [18] の3手法が開発された.これら3手法は、 精度,計算時間,手法を適用する上での制約といった諸条件により,単純な優劣のつけられない 手法群である.

本研究では、以上のような先行研究を組み合わせることで、DEMからの中央丘クレーターの自動抽出を行う.

第3章

提案手法

本研究では、クレーターの抽出、ラベリングによる教師データ作成、分類器の学習、分類器に よる中央丘クレーターの識別、といった流れで中央丘クレーターの自動抽出を行う.図3.1に、本 手法のフローチャートを示す.まず、RPSD法とSSDでクレーターを抽出する.次に、RPSD法 で抽出されたクレーターをラベリングするし、教師データを作成する.次に、その教師データを 用いて分類器を訓練する.最後に、訓練された分類器を用いて、SSDで抽出されたクレーターを 分類する.

3.1 クレーターの抽出

まず,月面のDEMデータからクレーターの領域のみを抽出する.本研究においては,DEMからのクレーター自動抽出を行う既存手法であるRPSD(RPSW for DTM)法[10]と,深層学習による画像からの物体検出手法であるSSD[18]の2種類を用いる.

3.1.1 RPSD法

RPSD法は、クレーターの「回転中心性」に着目した手法である.回転中心性とは、中心点を回転軸としてクレーターを回転させた時、勾配の大きさおよび向きが回転前と類似したものになるという性質のことである.RPSD法ではまず、回転中心性を示す値を定式化し、DEM上の各点の回転中心性を計算する.そして、回転中心性の高い点をクレーターの中心点の候補として抽出する.抽出された候補点の周囲を確認することでクレーターのリム径、すなわち大きさを計算すると同時に、周辺が一定の条件を満たさなかった候補点はクレーターの中心点ではないと断定する.以上のようにして、全球のDEMデータからクレーターを抽出する.

3.1.2 SSD

SSDは,深層学習を用いた物体検出手法である.入力された画像に対し,画像内に存在する物体の場所,大きさ,その物体がそれぞれのラベルに符合する確率(「確信度」と呼ばれる)を出力

する.

SSDによる検出のためには、まず検出器を学習させる必要がある.学習の際は、アノテーショ ンされた教師データが必要となる.アノテーションとは、画像上に存在している物体の位置、大 きさ、その物体のラベルを、メタデータとして画像に付与することである.SSDは物体の検出に 加え分類も可能な手法であるため、アノテーションの際に「中央丘クレーター」のラベルを付与 すれば、SSDのみでの中央丘クレーターの抽出が可能と考えられる.しかし、所在の判明してい る中央丘クレーターの数が少ないことから、中央丘クレーターラベルが付与されている教師デー タの作成は困難である.よって本研究では、付与するラベルを「クレーター」1つに限定し、人手 でのアノテーションを行なった.

SSDによる検出には、入力画像に対して相対的に小さな物体を検出しづらいという欠点がある. 本研究ではこの欠点を補うため、一度検出器に入力され、クレーター群が検出されたDEMを分割 および拡大し、再び検出器に通す、という処理を再帰的に行った.

3.1.3 RPSD法とSSDの併用

RPSD法は,提唱論文内で精度の検証が行われている信頼性の高い手法である.しかし,抽出対 象のクレーターサイズを小さくするほど計算時間が増加するため,短時間での全球探索が可能な のは大型クレーターを抽出対象とする場合に限られている.一方SSDは,クレーター抽出におけ る正確な精度検証がなされていないものの,RPSD法に対し高速でのクレーター抽出が可能であ ると期待される.既知の中央丘クレーターは直径40km以上の大型クレーターであることから,中 央丘クレーターの多くは大型クレーターであると考えられる.よって,分類器の教師データを作 成する際には大型のクレーターを用いるのが効果的である.しかし,未知の中央丘クレーターを 発見するためには,小型クレーターも分類対象となるべきである.そこで本研究では,教師デー タ作成には大型クレーターを抽出することのできるRPSD法を使用し,被分類データ作成には小 型クレーターの抽出も可能なSSDを使用する.

3.2 ラベリング

クレーターの抽出が完了後,RPSD法で抽出されたクレーター群に対しラベリングを行い,分 類器学習のための教師データを作成する.本研究で使用したクレーターの抽出手法では,抽出精 度を100%とすることは難しく,クレーターではないデータも抽出される可能性が高い.よって, 教師データ作成の際は,「中央丘クレーター」「非中央丘クレーター」「非クレーター」の3ラベル を設定し,ラベリングを行なった.

3.3 分類器の学習

作成した教師データを用い,中央丘クレーター識別のための分類器を学習させる.本研究では, 分類器にDenseNet[14]を用いた.DenseNetはCNNから発展した画像分類ネットワークであり, 入力画像1枚につきn次元ベクトル (nは分類されるラベルの種類数,本研究の場合は3)が1つ出力 される.このベクトルは成分1つがラベル1つに対応しており,入力画像がそれぞれのラベルに符 合している確率を表している.

一般的に,深層学習による画像分類においては,教師データの増強や正規化を行う.入力画像 の方向が重要でない時は,増強として画像の回転,反転が行われる.クレーターおよび中央丘ク レーターの画像は,反転および回転させてもクレーターおよび中央丘クレーターのように見える. したがって,教師データのクレーターDEMを反転および回転させた時,そのラベルは変化しな い.一方,分類器は,反転および回転させたDEMを元のDEMと別のデータとして扱う.そこで, 学習の前に教師データのDEMを90°,180°,270°回転させたもの,およびそれらを左右反転させ たものを作成し,教師データ数を増加させた.

また,分類器の学習効率化のため,教師データを画素値 (標高値) が0~1の範囲内となるように 正規化した.

3.4 分類器による中央丘クレーターの識別

最後に、学習させた分類器を用いて、SSDによって抽出されたクレーター群を分類、中央丘ク レーターを識別する.

クレーターを分類器に入力する際は、3.3節で教師データに施した処理と同様、正規化を施し、 クレーターDEMを回転および反転させ、それらを全て分類器に入力する.この処理によって、1 枚のクレーターDEMに対し複数の出力を得ることができる.そして、これらの出力の平均値を最 終的な出力結果とすることで、クレーターの向きによって分類結果に外れ値が生じる可能性を低 減している.

3.1.2節に記した通り,SSDでのクレーター抽出の際は,同じ領域を示すDEMを,拡大率を変 えつつ何度も検出器に入力するという処理を行なっている.そのため,分類器によって識別され た中央丘クレーター群の中には,同一のクレーターを表すDEMが複数枚存在している可能性があ る.そこで,識別された中央丘クレーター群を総当たり方式で比較し,SSDでのクレーター抽出 の際に記録しておいた緯度,経度,大きさのメタデータを元にDice係数を計算する.Dice係数は2 つの集合の重なり具合を表す指標であり,本研究においては2つの抽出されたクレーターDEMの

図3.2: Dice係数ヒストグラム

重なり具合を示す.抽出されたクレーターDEM AとBに関するDice係数は,

$$Dice = \frac{2|A \cap B|}{|A| + |B|}$$

として計算される. Dice係数が閾値を超えるようなペアについて,同じクレーターを示している と判断する.本研究では,全てのペアのDice係数をヒストグラム (図3.2) で確認し,度数が増加 し始めた点である0.65を閾値とした.同じクレーターを表すDEMの組を発見した場合,SSDでの クレーター抽出の際に記録しておいた確信度のメタデータを比較し,より確信度の高いもの,つ まりよりクレーターを表している可能性の高いDEMのみを抽出結果に残した.

第4章

実験結果

4.1 データセット

4.1.1 元データ

本研究では、JAXAの月周回衛星「かぐや」のレーザー高度計(Laser ALTimeter, LALT) より得られたDEM(LALT DEM)およびNASAの月周回衛星「Lunar Reconnaissance Orbiter (LRO)」のレーザー高度計(Lunar Orbiter Laser Altimeter, LOLA)より得られたDEM(LOLA DEM)を用いる.LALT DEMは円筒図法によって月面を1枚の二次元平面に投影したデータであ り、高緯度帯になるほど歪みが大きくなってゆく.一方、LOLA DEMは南北極を中心とするステ レオ図法によって月面を2枚の二次元平面に投影したデータであり、低緯度帯になるほど歪みが大 きくなってゆく.また、LOLA DEMは高緯度帯での解像度が高い一方、低緯度帯での解像度は LALT DEMに劣る.よって本研究では、南緯60°~北緯60°の領域についてはLALT DEMを、そ れ以外の領域についてはLOLA DEMを元データとして用いた.

4.1.2 教師データ

分類器を学習させる際の教師データを用意するため、3.1節の通り、RPSD法によって元のDEM データからクレーターを抽出した.本研究では計算時間低減のため、教師データ作成の際のRPSD 法適用対象データはLOLA DEMのみ、つまり北緯90°~60°および南緯90°~60°の領域のみとし た.RPSD法を適用した結果、10,076枚のDEMが抽出され、これらを実験者によって3.2節のよう にラベリングした.

なお,分類器を学習するための教師データには,各ラベルのデータが均等に含まれていること が望ましい.よって,3ラベルの中で最も数の少なかった「中央丘クレーター」ラベルのDEMに 数を揃える形で,他2ラベルのDEMは一部のみを教師データとして抽出した.その際,他2ラベル のデータは,実験者が目視した際に明らかに非中央丘クレーターおよび非クレーターだったもの の中から,無作為に選択して使用した.その後,実験者以外の手による教師データ確認の際にラ ベリングの修正を行った事で各ラベルのデータ数に差が生じ,実験に用いた教師データは「中央 丘クレーター」が306枚,「非中央丘クレーター」が304枚,「非クレーター」が300枚となった.こ のうち,ランダムに選定された各ラベル15枚,計45枚を分類器の評価データとして使用し,残り を教師データとして使用した.学習の際には3.3節のようにデータオーグメンテーションを行った ため,分類器に入力される教師データおよび評価データは各ラベル共に上記枚数の8倍となって いる.

4.1.3 被分類データ

分類器に入力するためのデータ,すなわち被分類データを用意するため,3.1節の通り,SSDに よって月全球のDEMからクレーターを抽出した.SSDを適用した結果,58,605枚のDEMが抽出 された.

4.2 実験環境

本研究における実験は全てUbuntu18.04において, Pythonによる実装によって行った. SSDお よびDenseNetの実装においては深層学習フレームワークのTensorflow[19]を用いた. RPSD法に おけるDEMの処理時間およびSSD, DenseNetの処理時間短縮のため, 実験の際はGPU (NVIDIA GeForce 1080Ti) を使用した.

4.3 パラメータ

RPSD法における各パラメータは、全て元論文のものを使用した.

SSDにおいて,ネットワーク構造のハイパーパラメータは元論文のものを使用した.ただし,検 出対象となる物体はクレーターであるため,その形は正方形に近いと推測される.そこで,SSD 内のアンカーボックスのアスペクト比は,元論文では1:1,1:2,1:3が用いられているのに対し,1:1 および1:2のみとした.

DenseNetのネットワーク構造は、元論文内のDenseNet-121のものを使用した.ただし、入力 画像の大きさは縦横共に512ピクセルであり、全ての入力データは分類器に入力される前にこの大 きさにリサイズされている.学習時には学習率を調整するためAdam[20]を使用し、確率的勾配降 下法[21]によるパラメータの更新を行った.

表4.1: 真陽性, 偽陽性, 偽陰性, 真陰性

		ライ	ベル
		正	負
予測	正	TP (真陽性)	FP (偽陽性)
	負	FN (偽陰性)	TN (真陰性)

表4.2: 「中央丘クレーター」ラベルの真陽性, 偽陽性, 偽陰性, 真陰性

			ラベル
		中央丘クレーター	非中央丘 or 非クレーター
予測	中央丘クレーター	TP (真陽性)	FP (偽陽性)
	非中央丘 or 非クレーター	FN (偽陰性)	TN (真陰性)

4.4 分類性能の評価

4.4.1 評価指標

4.1.2節のデータセットを用いて分類器を学習させ,評価データを用いて分類精度を評価した. 評価指標には,分類器全体の評価値として正解率を,中央丘クレーターに関する精度の評価値と して偽陽性率および偽陰性率を用いた.

正解率は

と定義される.つまり,正解率が高いほど分類性能が良いと言える.

また,偽陽性率および偽陰性率は,表4.1のように真陽性,偽陽性,偽陰性,真陰性を定義すると,

偽陽性率 =
$$\frac{FP}{FP + TN}$$

偽陰性率 = $\frac{FN}{FN + TP}$

と定義される.つまり,偽陽性率および偽陰性率が低いほど分類性能が良いと言える.本研究に おいて「中央丘クレーター」ラベルに関する偽陽性率および偽陰性率を評価する場合,真陽性,偽 陽性,偽陰性,真陰性は表4.2のようになる.

表4.3: 分類性能の評価結果

正解率	「中央丘クレーター」ラベルについての偽陽性率	〃についての偽陰性率
96.9%	0.83%	5.8%

4.4.2 評価結果

4.4.1節の指標を用いて分類器の分類性能を評価したところ,指標値は表4.3の通りとなった.結 果としては,高い分類性能を示し,この分類器によって多くの中央丘クレーターの抽出が期待で きる.しかし,疑陰性が0でないため,抽出し損ねる中央丘クレーターが存在する可能性は高い. したがって,提案手法によって,全ての中央丘クレーターの抽出は難しいものの,旧来の人手に よる抽出に比べより容易に,多くの中央丘クレーターの抽出が可能であると言える.

4.5 分類の妥当性の確認

4.4節のように分類精度の数値評価は行ったが,本手法は深層学習分類器が自動で学習してい くことによって分類能力を習得していくため,分類器の分類理由を意図的に設定することができ ない.そこで,分類器が中央丘クレーターの特徴,すなわち中央丘の存在に注目することができ ているかを確認するため,分類における入力画像の寄与領域の可視化を行った.Grad-CAM[22] は,CNNにおける入力画像の分類への寄与領域をヒートマップの形で可視化する手法である. Grad-CAMによって,本研究で使用した分類器における入力画像の寄与領域を可視化したものが 図4.1である.図4.1aは分類器に入力された元DEM,図4.1bは「中央丘クレーター」ラベルに対す る寄与領域,図4.1cは「非中央丘クレーター」ラベルに対する寄与領域を示す.これらを比較する と,図4.1aで確認できる中央丘の領域において,図4.1bでは強く発火しているのに対し,図4.1cで は全く発火していない.よって,本研究で使用した分類器は、分類に際して中央丘の存在に着目 することができていると考えられる.

4.6 中央丘クレーターの抽出

最後に,学習させた分類器によって4.1.3の被分類データを分類し,中央丘クレーターと識別さ れたものを抽出した.

本実験の結果,771件のDEMが中央丘クレーターとして抽出された.実験者が確認したところ, そのうち24枚は明らかにクレーターではないDEM,11枚はDice係数計算時に削除されていなかっ た重複クレーターだった.これ以外の736枚のDEMに対し専門家による確認を行い,最終的な抽

(a) 元DEM

(b) ラベル: 中央丘クレーター

⁽c) ラベル: 非中央丘クレーター

出結果は表4.4のようになった.評価時に比べ分類性能は低下しているが,微妙なものも含め599 件の中央丘クレーターの抽出,特に既存中央丘クレーターの最小直径を下回る直径40km以下のク レーター165件の抽出に成功した.これら599件のクレーターの直径は最大で233.000km,最小で 10.763kmだった.各クレーターのメタデータ(緯度,経度,直径,名称)については,実験の際に 取得した緯度,経度,大きさのメタデータを元に,既存のクレーターカタログ[23]と照らし合わ せ,既存クレーターカタログに記載されている値を引用した.

また,抽出された599件の中央丘クレーターと既知の中央丘クレーター107件との比較結果を表 4.5に示す.結果として,我々は513件の新規中央丘クレーターを発見した.しかし,既知の中央 丘クレーターの約20%は抽出できなかった.よって,発見できなかった未知の中央丘クレーター

図4.1: Grad-CAMによる可視化

		専門家による確認結果			
		中央丘クレーター	恐らく中央丘クレーター	中央丘クレーターでない	
	100 km 以上	69	4	16	
直径	100 km \sim 40 km	290	26	33	
	40 km 以下	165	45	88	
合計		524	75	137	

表4.4: 中央丘クレーター抽出結果

表4.5: 既知の中央丘クレーターとの比較

		本研究で	の抽出結果
		含まれている	含まれていない
既知の	含まれている	86	21
中央丘クレーター	含まれていない	513	

はまだ存在する可能性が高いと考えられる.

最後に、図4.2に既知の中央丘クレーターであり本研究で抽出された中央丘クレーターの例を、 図4.3に既知の中央丘クレーターであり本研究で抽出できなかった中央丘クレーターの例を、図4.4 に本研究で新たに発見した中央丘クレーターの例を示す.図4.2,4.3,4.4aはかぐやの地形カメラ によって撮影された画像であり、図4.4bはDEMから作成した陰影起伏図である.図4.2のように、 はっきりと中央丘が存在しているクレーターは抽出することができる可能性が高い.一方、図4.3 のように、クレーター内に中央丘以外にも地形の凹凸が存在する場合、分類が難しくなる可能性 がある.本研究の成果の1つは、図4.4aのような写真での発見の難しい中央丘クレーターを、図 4.4bのようなDEMの利用によって抽出できたことである.

図4.2: 既知の中央丘クレーターであり本研究で抽出された中央丘クレーターの例 (Robertsonクレーター)

図4.3: 既知の中央丘クレーターであり本研究で抽出できなかった中央丘クレーターの例 (Einstein クレーター)

(a) かぐや地形カメラによる写真

(b) DEMを元に作成した陰影図

図4.4: 本研究で新たに発見した中央丘クレーターの例 (Ctesibiusクレーター)

第5章

まとめ

本研究では、DEMデータの画像的特性を利用し、既存クレーター抽出手法、深層学習による物 体検出手法、深層学習による画像分類手法を複合することによって、中央丘クレーターの自動抽 出およびカタログ化を行った.実験の結果、検定時正解率96.9%の分類器によって771件の中央丘 クレーター候補が抽出された.そのうち599枚が中央丘クレーター、あるいは中央丘クレーターの 可能性が高いものであった.既知の中央丘クレーターの約20%は抽出し損ねており、月全球全て の中央丘クレーターを抽出することはできなかった.599枚のうち513件は新たに発見した中央丘 クレーターであり、その中には写真からは分類できないようなものも存在した.また、寄与領域 の可視化によって、分類器による分類の根拠に妥当性があることが確認できた.

今後の課題としては、本研究において全クレーターの抽出とクレーターの分類という2段階に分割されていた抽出手法を、物体検出手法による1段階に集約することが挙げられる。物体検出器を 学習するためには中央丘クレーターの存在する領域をアノテーションし、多くの教師データを作 成する必要がある.本研究によって既知の中央丘クレーターの数が増加したことによって、この 教師データの作成が容易になると考えられる。

また,上述した深層学習による物体検出以外にも様々な手法によって中央丘クレーターカタロ グが更新され,中央丘探査およびさらなる惑星科学の発展に寄与することが,本研究の発展的な 課題である.

謝辞

本論文の執筆に際しまして、多くの方からご支援とご協力をいただきました.

指導教員の首都大学東京石川博教授には,実験環境の提供をはじめ,様々なご指導,ご支援を をいただきました.宇宙航空研究開発機構宇宙科学研究所山本幸生様,大竹真紀子様をはじめ, 宇宙航空研究開発機構宇宙科学研究所の皆様には,研究テーマの設定から実験データセットの扱い,実験,分析に至るまで幅広く,多大なるご指導,ご助力をいただきました.心より感謝いた します.

本研究を進めるにあたり,様々な面で議論し,ご指摘,ご助力をいただいた首都大学東京 荒木 徹也客員研究員,岡山理科大学 廣田雅治講師に心より感謝いたします.

ゼミなどを通じて,議論やご指摘,研究生活のあり方に至るまで様々なご助力をいただきました首都大学東京石川研究室の皆様に心より感謝いたします.

両親,家族には,学部生より通じて三年間,研究生活を送る上で金銭面,生活面共に支えてい ただきました.心より感謝いたします.

皆様のお力添えがあり、ここに修士論文を完成させることができたことに深く感謝いたします.

令和2年2月21日

参考文献

- Carlton C Allen. Central peaks in lunar craters. The moon, Vol. 12, No. 4, pp. 463–474, 1975.
- [2] W Hale and JW Head. Central peaks in lunar craters-morphology and morphometry. In Lunar and planetary science conference Proceedings, Vol. 10, pp. 2623–2633, 1979.
- [3] Stefanie Tompkins and Carle M Pieters. Mineralogy of the lunar crust: Results from clementine. *Meteoritics & Planetary Science*, Vol. 34, No. 1, pp. 25–41, 1999.
- [4] Tsuneo Matsunaga, Makiko Ohtake, Junichi Haruyama, Yoshiko Ogawa, Ryosuke Nakamura, Yasuhiro Yokota, Tomokatsu Morota, Chikatoshi Honda, Masaya Torii, Masanao Abe, et al. Discoveries on the lithology of lunar crater central peaks by selene spectral profiler. *Geophysical Research Letters*, Vol. 35, No. 23, 2008.
- [5] Yoriko Sawabe, Tsuneo Matsunaga, and Shuichi Rokugawa. Automated detection and classification of lunar craters using multiple approaches. Advances in Space Research, Vol. 37, No. 1, pp. 21–27, 2006.
- [6] Brian D Bue and Tomasz F Stepinski. Machine detection of martian impact craters from digital topography data. *IEEE Transactions on Geoscience and Remote Sensing*, Vol. 45, No. 1, pp. 265–274, 2006.
- [7] S Loncaric, G Salamuniccar, Arne Grumpe, and Christian Wöhler. Automatic detection of lunar craters based on topography reconstruction from chandrayaan-1 m3 imagery. In *Lunar and Planetary Science Conference*, Vol. 42, p. 1454, 2011.
- [8] Shin Sato, Noriaki Asada, Hirohide Demura, and Naru Hirata. Extraction of craters as concentric circle patterns of contours on the lunar digital terrain model. In 2011 IEEE International Geoscience and Remote Sensing Symposium, pp. 503–506. IEEE, 2011.
- [9] TF Stepinski, Wei Ding, and R Vilalta. Detecting impact craters in planetary images using machine learning. In *Intelligent data analysis for real-life applications: theory and* practice, pp. 146–159. IGI Global, 2012.

- [10] Satoru Yamamoto, Tsuneo Matsunaga, Ryosuke Nakamura, Yasuhito Sekine, Naru Hirata, and Yasushi Yamaguchi. An automated method for crater counting using rotational pixel swapping method. *IEEE Transactions on Geoscience and Remote Sensing*, Vol. 55, No. 8, pp. 4384–4397, 2017.
- [11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097–1105, 2012.
- [12] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for largescale image recognition. arXiv preprint arXiv:1409.1556, 2014.
- [13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.
- [14] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In *Proceedings of the IEEE conference on computer* vision and pattern recognition, pp. 4700–4708, 2017.
- [15] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In *Proceedings of the IEEE* conference on computer vision and pattern recognition, pp. 580–587, 2014.
- [16] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards realtime object detection with region proposal networks. In Advances in neural information processing systems, pp. 91–99, 2015.
- [17] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 779–788, 2016.
- [18] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In *European* conference on computer vision, pp. 21–37. Springer, 2016.
- [19] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), pp. 265–283, 2016.
- [20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

- [21] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT'2010, pp. 177–186. Springer, 2010.
- [22] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In *Proceedings of the IEEE International Conference on Computer Vision*, pp. 618–626, 2017.
- [23] L Bandeira, G Salamuniccar, and TM Hare. Global crater catalogues of the moon, mars and phobos. In *Lunar and Planetary Science Conference*, Vol. 45, p. 2088, 2014.

発表論文

学術論文

<u>原 聡志</u>,山本 幸生, 荒木 徹也, 廣田 雅春, 石川 博: かぐや DEM を用いた, 機械学習による中央丘クレーター識別, 宇宙科学情報解析論文誌, Vol. 8, pp. 1-10 (2019.3)

国際会議

 <u>Satoshi Hara</u>, Hiroka Inoue, Mitsuo Yamamoto, Yukio Yamamoto, Makiko Ohtake, Hisashi Otake, Tetsuya Araki, Masaharu Hirota, Hiroshi Ishikawa: "Automatic Extraction of Lunar Central Peak Craters by Deep Learning", Asia Oceania Geosciences Society 2019 (2019.7)

国内研究会

 原 聡志, 井上 博夏, 山本 光生, 山本 幸生, 大竹 真紀子, 大嶽 久志, 荒木 徹也, 廣田 雅春, 石川 博: 深層学習を用いた中央丘クレーター自動抽出, 2018年度宇宙科学情報解析シンポ ジウム (2019.2)

付録

本研究によって作成された中央丘クレーターカタログを記載する.表5.1は確実に中央丘の存在 するクレーターのカタログ,表5.2は中央丘クレーターであると思われるクレーターのカタログで ある.カタログに記載されている情報は、中央丘クレーター個々のLatitude(緯度、負の値は南 緯を示す)、Longitude(経度、東経0°~360°表記)、Diameter(直径)、Name(クレーター名称)であ る.各数値は、Salamuniccarのクレーターカタログ[23]に基づく.

Latitude	Longitude	Diameter	Name
85.200000	204.600000	177.000	Rozhdestvenskiy
82.664062	278.070313	58.000	Sylvester
82.425778	291.300777	19.526	Sylvester-N
82.179687	213.226563	42.000	Rozhdestvenskiy-K
82.101562	249.742188	54.000	Lovelace
81.678125	175.268750	108.052	Plaskett
80.054687	248.132813	56.105	Froelich
77.762500	14.084375	55.000	Scoresby
74.960937	176.648437	63.105	Ricco
74.835937	242.570313	59.843	Merrill
74.490625	289.481250	108.367	Pascal
73.478125	349.884375	51.895	Anaxagoras
72.664062	167.101562	92.000	Karpinskiy
72.178125	327.350000	70.000	Philolaus
70.101562	265.601563	42.948	Lindblad-F
70.100000	121.200000	212.000	Schwarzschild
69.509375	308.834375	59.000	Carpenter
69.085937	121.820312	44.052	Schwarzschild-L
69.054687	158.257812	62.000	Schjellerup
68.335937	203.320313	67.000	Kirkwood
67.695312	186.023438	46.000	Roberts-M
67.500000	355.431250	55.000	Epigenes
67.382812	226.039063	39.000	Stebbins-C
67.210937	236.335938	36.948	Nöther-U
67.037500	66.009375	42.000	Hayn-E
66.773437	254.539063	45.105	Nöther-E

表5.1: 中央丘クレーターカタログ

Latitude	Longitude	Diameter	Name
66.398437	136.570312	32.367	Gamow-U
64.804687	198.585938	137.729	Sommerfeld
64.554687	84.054687	86.052	Hayn
64.351562	217.210938	125.314	Stebbins
63.640625	297.015625	125.891	Pythagoras
63.632812	93.507812	47.000	Bel'kovich-K
63.400000	341.100000	38.000	Fontenelle
62.925000	359.468750	32.000	Timaeus
62.882812	183.617188	111.000	Emden
62.679687	282.351563	35.000	Cleostratus-A
62.570312	265.429688	61.210	Paneth
62.492187	154.835937	48.629	Oberth
62.300000	35.046875	38.052	Democritus
61.768750	50.315625	30.052	Thales
61.164062	233.132813	41.000	Van't-Hoff-F
60.867187	238.289063	61.105	Dyson
59.496093	213.011718	25.000	Birkhoff-Y
58.856250	5.062500	31.000	Archytas
58.664062	196.882813	50.210	Rowland-Y
57.585937	227.179688	46.000	Van't-Hoff-N
57.445312	215.289063	57.052	Birkhoff-K
57.085937	146.789062	66.157	Störmer
56.539062	131.617187	51.052	Volterra
56.492187	175.757812	42.105	Tsinger
55.898437	104.289062	162.000	Compton
55.492187	260.351563	56.000	Cannizzaro
55.257812	165.773437	42.105	D'Alembert-Z
54.679687	233.898438	60.000	Kramers-C
54.554687	183.289063	77.157	Chappell
53.900000	275.553125	110.681	Volta
53.867187	226.992188	38.000	Kramers-U
53.400000	297.159375	39.052	Markov
52.785156	137.042967	18.948	Von-Békésy-F
52.757812	316.507813	39.000	Harpalus
52.695312	204.132813	45.210	Rowland-J
52.148437	140.132812	33.105	Van-Rhijn-T
52.101562	215.882813	126.000	Carnot
51.300000	281.290625	109.000	Repsold
50.246875	17.353125	87.000	Aristoteles
50.132812	259.539063	68.157	Chapman
49.289062	160.273437	69.000	Slipher
49.117187	238.898438	69.000	Sarton
48.762500	325.637500	38.000	Bianchini
47.414062	218.242188	79.000	Esnault-Pelterie
47.132812	243.539063	49.210	Wegener-W
$47\ 007812$	$\perp 267\ 101563$	1772367	McLaughlin

Latitude	Longitude	Diameter	Name
46.804687	239.710938	45.157	Sarton-L
46.737500	121.421875	94.210	Millikan
46.700000	44.400000	87.000	Atlas
46.693750	66.106250	67.000	Mercurius
45.762500	319.800000	38.052	Sharp
45.742187	117.835937	49.000	Millikan-R
45.726562	88.695312	48.895	Boss
45.062500	28.231250	39.000	Bürg
44.945312	230.335938	43.948	Gullstrand
44.386716	251.878904	25.526	Stefan-L
44.300000	16.300000	67.000	Eudoxus
44.031250	71.109375	36.052	Zeno-B
43.664062	93.007812	44.000	Vashakidze
43.664062	238.382813	73.262	Wood
43.390625	137.053125	80.000	Bridgman
43.168750	271.303125	38.052	Bunsen A
42.978125	100.715625	184.000	Fabry
42.839843	66.707029	18.000	Zeno-K
42.007812	205.414063	58.000	Kulik
41.584375	316.521875	40.000	Mairan
41.398437	196.226563	56.843	Schneller
41.320312	252.117188	56.105	Lacchini
40.915625	279.631250	49.000	Lavoisier-E
40.862500	146.615625	118.105	Wiener
40.648437	45.726562	39.000	Cepheus
40.315624	32.954684	27.052	Grove
39.776564	280.260940	25.000	Lavoisier-B
38.851562	208.242188	43.895	Kulik-K
38.800000	47.700000	56.000	Franklin
38.367187	141.789062	106.000	Kurchatov
38.059375	118.678125	75.314	Cantor
37.998045	216.712892	29.108	Klute-W
37.710937	203.148438	46.105	Evershed-C
37.300780	185.019532	24.000	Moore-F
37.179687	168.679687	48.105	Hutton
37.175000	86.562500	48.000	Beals
37.059375	158.206250	63.000	Appleton
36.867187	244.664063	62.052	Petropavlovskiy
36.550782	82.761719	18.000	Gauss-A
36.320312	228.101563	100.895	Charlier
36.023437	79.210937	177.000	Gauss
36.011720	94.566409	17.474	Vestine-A
35.539062	265.382813	116.000	Nernst
35.320312	200.445313	66.000	Evershed
34.648437	162.601562	37.895	Stearns
34.484375	56.653125	83.105	Geminus

Latitude	Longitude	Diameter	Name
33.900000	1.200000	55.000	Aristillus
33.878906	222.613280	18.000	Sanford-C
33.867187	93.773437	96.000	Vestine
33.816409	188.355469	23.000	Parsons-M
33.570312	180.492188	47.105	Larmor-Z
32.968750	268.584375	126.000	Röntgen
32.253125	167.428125	61.000	Nušl
31.268750	73.568750	84.000	Hahn
31.115625	56.453125	53.157	Burckhardt
30.831250	230.618750	110.262	Kovalevskaya
29.950000	98.634375	104.157	Maxwell
29.429687	119.195312	34.895	Innes-Z
29.362500	167.131250	76.052	Trumpler
29.351562	114.382812	108.105	Seyfert
29.316407	238.066405	26.948	Hatanaka
29.066406	157.707029	29.000	Steno-Q
28.320312	262.898438	87.000	Laue
28.146872	289.076564	25.000	Briggs-B
27.962500	87.446875	38.000	Urey
27.846875	119.325000	42.000	Innes
27.615624	325.715624	17.474	Diophantus
27.585937	55.679687	133.528	Cleomedes
27.523437	117.445312	33.000	Innes-S
27.492187	211.914063	37.000	Joule-T
27.221875	215.831250	96.000	Joule
26.757812	187.867188	99.576	Fitzgerald
26.700000	346.915625	33.000	Timocharis
26.543750	182.921875	41.105	Dante-E
26.476562	89.335937	66.000	Lyapunov
26.468750	290.837500	37.000	Briggs
25.789062	93.429687	164.000	Joliot
25.406250	180.000000	54.000	Dante
24.968750	170.937500	85.000	Freundlich
24.315625	123.015625	52.000	Meggers
24.209375	79.078125	68.000	Plutarch
23.867187	114.335937	33.105	Polzunov-N
23.700000	312.521875	40.000	Aristarchus
23.276564	330.807812	27.000	Euler
23.200000	130.500000	91.000	Vernadskiy
23.121092	223.519531	22.000	Poynting-X
22.365625	86.853125	80.000	Hubble
22.148437	263.523438	84.105	Bell
22.054687	135.164062	60.052	Siedentopf
22.054687	196.679688	71.000	Jackson
21.960937	247.460938	71.105	Comrie-K
21.914062	$184 \ 695313$	74 157	Morse

Latitude	Longitude	Diameter	Name
21.914062	254.742188	87.052	Robertson
21.284375	46.000000	64.000	Macrobius
21.085937	174.835937	49.314	Buys-Ballot
21.078125	293.368750	43.000	Seleucus
20.681639	283.826172	14.763	Struve-L
20.584375	117.815625	79.105	Olcott
20.398437	260.617188	16.000	
18.976562	135.101562	32.895	Siedentopf-M
18.773437	252.179688	63.052	Alter
18.335937	168.429687	48.000	Zernike
18.257812	246.289063	60.210	Ohm
18.246093	53.324217	18.000	Peirce
18.054687	210.617188	169.576	Mach
17.585937	226.460938	128.000	Poynting
17.429687	131.210937	60.000	Gavrilov
17.429687	277.914063	48.895	Balboa-A
17.117187	275.523438	60.000	Dalton
16.668750	271.737500	51.948	Einstein-A
16.341797	312.650388	11.052	Marius-B
16.284375	173.693750	49.000	Anderson-F
15.676564	276.921880	26.526	Vasco-da-Gama-B
15.632812	176.742187	40.210	Virtanen
15.553125	330.806250	33.000	T.Mayer
15.368750	23.621875	43.000	Plinius
15.023437	136.867187	45.000	Hoffmeister
14.945312	163.554687	50.000	Spencer-Jones-W
14.773437	200.320313	61.472	Raimond
14.560940	54.700000	22.948	Picard
14.500000	348.715625	58.000	Eratosthenes
14.453125	9.068750	38.000	Manilius
14.046875	72.531250	39.000	Hansen
13.771875	276.100000	88.686	Vasco-da-Gama
13.200000	287.500000	49.000	Cardanus
13.003125	165.787500	85.000	Spencer-Jones
12.757812	201.320313	33.052	Raimond-K
12.667968	183.574217	27.948	Hayford
12.500000	253.696875	38.948	Pease
12.398437	100.054687	46.210	Ginzel-H
12.368750	173.112500	74.000	Sharonov
12.039062	251.195313	39.052	Butlerov
11.668752	21.746872	24.000	Ross
11.542969	211.574217	26.000	Dirichlet-E
10.492187	214.789063	67.000	Artem'ev
10.457031	156.691405	23.052	Mills-B
10.400000	121.931250	104.000	Ostwald
9.804687	113.085937	84.000	Lobachevskiv

Latitude	Longitude	Diameter	Name
9.617187	339.867188	93.000	Copernicus
8.843750	84.600000	137.000	Neper
8.593750	89.515625	72.000	Jansky
8.339847	171.183591	20.474	Dufay-B
8.117187	282.320313	41.105	Glushko
8.100000	322.000000	31.000	Kepler
7.835937	195.070313	62.948	Lebedinskiy
7.683595	1.355465	22.052	Ukert
7.164062	125.570312	40.105	Ibn-Firnas-E
7.148437	106.898437	62.157	Al-Khwarizmi
7.132812	168.742187	40.105	Dufay-X
6.933593	305.042967	29.000	Reiner
6.820312	176.695312	51.105	Tiselius
6.648437	174.257812	65.105	Valier
6.145316	21.407812	25.526	Arago
5.900000	116.100000	32.000	Katchalsky
5.742187	194.335938	50.052	Lebedinskiy-P
5.084375	293.059375	57.000	Cavalerius
4.875000	120.531250	73.157	King
4.768750	152.037500	45.105	Henderson
4.695312	125.210937	35.052	Zanstra-A
4.570312	146.367187	102.314	Schuster
4.184376	3.600000	25.052	Triesnecker
4.115625	10.468750	44.000	Agrippa
3.804687	184.351563	57.105	Krasovskiy
3.601562	133.101562	65.948	Green
3.585937	170.960937	30.052	Coriolis-Y
3.460937	233.835938	48.790	Hertzsprung-D
3.320312	144.726562	38.105	Schuster-R
3.277345	258.214843	23.000	Lents-C
3.268750	337.184375	42.948	Reinhold
3.207812	327.476564	18.000	Kunowsky
3.053125	168.062500	37.000	Coriolis-W
2.800000	81.031250	54.000	Schubert
2.617187	188.382813	46.000	Krasovskiy-H
2.200000	292.603125	115.000	Hevelius
1.800000	10.200000	34.000	Godin
1.664062	250.929688	48.052	Leuschner
1.210937	80.710937	35.948	Back
0.815625	118.778125	33.157	Ctesibius
-0.667969	231.511719	27.000	Hertzsprung-K
-0.700000	354.123436	24.000	Mösting
-0.832031	120.519532	23.052	Soddy-Q
-1.273437	178.773437	33.157	Lipskiy-V
-1.664062	102.914062	101.843	Saha
-1.773437	± 132.742187	1 39.052	Prager-C

Latitude	Longitude	Diameter	Name
-1.806250	78.221875	31.948	Van Vleck
-1.900000	68.000000	50.948	Maclaurin
-1.914062	137.804687	41.105	Glazenap
-1.960937	155.117187	78.105	Schliemann
-2.653125	165.562500	50.000	Dewar
-3.320312	114.742187	61.000	Vesalius
-3.820312	251.539063	35.948	Grachev
-3.984376	5.845316	30.000	Horrocks
-4.039062	105.632812	50.105	Saha-J
-4.226562	101.882812	49.948	Saha-N
-4.261717	138.449218	22.631	Pannekoek-T
-4.464844	351.378905	23.526	Lalande
-4.507812	315.676564	20.000	Flamsteed
-4.515625	93.215625	50.000	Hirayama-Y
-5.054687	212.882813	51.105	Timiryazev
-5.331250	16.653125	37.262	Taylor
-5.456250	186.753125	92.210	Icarus
-5.612500	164.771875	70.000	Stratton
-5.700000	357.900000	40.000	Herschel
-5.757812	150.210937	129.419	Chaplygin
-5.946875	276.606250	89.000	Schlüter
-6.820312	134.367187	54.157	Ten-Bruggencate-Y
-6.980468	130.636718	28.526	Love-H
-7.753125	71.753125	38.000	Von Behring
-8.000000	5.715625	33.157	Halley
-8.253125	94.900000	39.000	Hirayama-K(Balzac)
-8.476562	202.617188	56.105	Korolev-M
-8.804687	184.492188	96.000	Amici-U
-8.900000	61.100000	127.000	Langrenus
-9.054687	109.148437	37.895	Pasteur-D
-9.179687	191.445313	72.262	
-9.443750	145.131250	73.948	Marconi
-9.695312	161.679687	160.000	Keeler
-9.868750	90.931250	52.052	Brunner
-9.992187	221.117188	52.000	Wan-Hoo(Van-Gu)
-10.168750	78.500000	32.105	La-Pérouse-E
-10.415625	166.975000	165.000	Heaviside
-10.637500	67.215625	42.000	Barkla
-10.700000	76.315625	77.948	La Pérouse
-10.800000	70.600000	49.000	Kapteyn
-11.054684	29.753128	27.474	Mädler
-11.273437	4.007812	130.109	Albategnius
-11.400000	26.306250	103.367	Theophilus
-11.462500	123.890625	69.105	Danjon
-11.893750	187.437500	37.105	Amici-N
-12.000000	2.568750	44.000	Klein

Latitude	Longitude	Diameter	Name
-12.178125	128.537500	49.105	Shirakatsi
-12.492187	299.507813	41.052	Sirsalis
-12.960937	256.570313	64.105	Lowell
-13.328125	151.956250	70.000	Beijerinck
-13.367187	135.929687	42.000	Chauvenet-Q
-13.398437	357.226563	110.843	Alphonsus
-13.773437	185.273438	35.105	McKellar-U
-14.320312	180.242188	64.895	Racah
-14.337500	230.815625	86.000	Ioffe
-14.396875	158.421875	35.895	Geiger
-14.537500	266.121875	55.000	Maunder
-14.570312	217.304688	45.157	Paschen-S
-14.700000	64.546875	84.000	Lamé
-15.178125	45.925000	76.000	Colombo
-15.546875	320.190625	33.000	Gassendi-A
-15.600000	71.046875	39.000	Kapteyn-B
-15.731250	189.121875	49.105	McKellar
-15.867187	121.570312	44.052	Delporte
-16.046875	355.500000	39.948	Alpetragius
-16.215625	40.000000	33.000	Bohnenberger
-16.351562	173.132812	131.210	Aitken
-16.570312	112.304687	47.105	Hilbert-E
-16.578125	79.384375	55.000	Behaim
-17.434375	213.184375	53.472	Lodygin
-17.646872	8.492188	27.105	Airy-B
-17.900000	108.309375	162.371	Hilbert
-17.914062	96.179687	127.000	Sklodowska
-18.210937	200.539063	36.000	Wilsing-W
-18.278125	358.068750	95.052	Arzachel
-18.415625	84.300000	79.790	Gibbs
-18.523437	207.070313	33.948	Wilsing-C
-18.531250	1.215625	29.105	Parrot-C
-18.717180	26.807812	15.052	Beaumont-B
-19.437500	89.825000	53.000	Schorr
-20.304687	157.414062	78.105	Cyrano
-20.414062	129.132812	185.000	Tsiolkovskiy
-20.962500	44.000000	64.000	Santbech
-21.351562	33.132812	112.000	Fracastorius
-21.823436	30.876564	27.052	Fracastorius-D
-22.273437	191.179688	42.052	Sniadecki
-22.632812	281.601563	49.000	Eichstadt
-22.784375	155.178125	38.000	Barbier-U
-22.893750	184.806250	122.210	Orlov-Y
-22.945312	163.429687	80.157	Paracelsus
-23.101562	92.085937	131.100	Curie
-23.332030	117.597658	30.000	Izsak

Latitude	Longitude	Diameter	Name
-23.351562	143.210937	106.786	Levi-Civita
-23.367187	219.007813	43.105	Murakami
-23.462496	338.029692	21.474	Bullialdus-B
-23.546875	300.990625	40.105	Henry-Frères
-23.800000	157.931250	63.157	Barbier
-23.868750	56.706250	57.000	Wrottesley
-24.242187	233.664063	53.105	Gerasimovich-R
-24.601562	205.132813	73.000	Plummer
-24.804687	226.945313	53.157	Von-Der-Pahlen
-24.835937	161.867187	63.948	Paracelsus-P
-25.144530	190.894530	29.526	Rumford-A
-25.162500	254.812500	34.105	Golitsyn
-25.164062	46.492187	44.000	Borda
-25.414062	60.492187	176.629	Petavius
-25.728125	128.265625	75.052	Waterman
-25.825000	184.937500	72.472	Orlov
-26.304687	205.476563	39.105	Plummer-M
-26.400000	68.400000	39.000	Palitzsch-B
-26.492187	222.929688	36.105	Das
-27.000000	80.900000	189.000	Humboldt
-27.193750	109.118750	84.000	Scaliger
-27.210937	231.960938	35.000	Von-Der-Pahlen-H
-27.400000	172.200000	233.000	Van-De-Graaff
-27.632812	151.179687	38.000	Holetschek
-28.000000	3.300000	70.000	Werner
-28.031250	332.200000	48.000	Campanus
-28.210937	209.570313	67.052	Barringer
-28.289062	48.898437	32.105	Reichenbach-A
-28.515625	124.262500	38.000	Neujmin-P
-28.726562	166.851562	52.052	Zelinskiy
-28.784375	190.184375	61.000	Rumford
-29.117187	147.882812	73.738	Holetschek-R
-29.300000	55.700000	82.000	Snellius
-29.320312	145.773437	40.157	Pavlov-G
-29.700000	32.153125	87.000	Piccolomini
-30.117187	174.023437	82.000	Birkeland
-30.600000	5.200000	79.000	Aliacensis
-30.831250	27.715625	41.052	Rothmann
-31.346875	39.900000	50.000	Neander
-31.710937	129.820312	42.157	Lampland-R
-31.976562	141.820312	92.952	Pavlov-M
-32.117187	187.039063	32.000	Oppenheimer-V
-32.246093	311.449216	19.579	Palmieri-A
-32.346875	24.837500	51.105	Lindenau
-32.415625	352.200000	33.000	Hell
-32.431250	219.721875	53.105	Kleymenov

Latitude	Longitude	Diameter	Name
-32.500000	54.200000	74.000	Stevinus
-32.726562	14.164062	45.052	Goodacre
-32.742187	113.570312	59.314	Milne-K
-33.179687	203.820313	51.948	Dryden
-33.300000	222.906250	35.052	Chebyshev-U
-33.542967	226.019533	23.000	Chebyshev-V
-33.803125	126.025000	92.358	Bolyai
-33.820312	227.242188	178.000	Chebyshev
-34.445312	13.398437	82.262	Gemma Frisius
-34.493750	32.015625	43.000	Stiborius
-35.101562	119.273437	51.581	Pizzetti
-35.851562	231.101563	91.000	Langmuir
-36.746875	254.943750	36.000	Steklov
-36.820312	217.445313	30.210	Lovell
-36.915625	358.615625	33.052	Lexell-A
-37.100000	47.200000	70.000	Rheita
-37.621092	208.605465	27.526	Borman-V
-37.914062	185.148438	87.000	Davisson
-38.085937	126.632812	33.000	Coblentz
-39.070312	206.945313	35.000	Chaffee-F
-39.085937	211.820313	48.105	Borman
-39.105469	157.394529	25.526	Lundmark-F
-39.761718	202.496093	19.474	Chaffee-S
-40.409375	43.393750	85.105	Metius
-40.585937	226.429688	99.367	Buffon
-40.757812	191.304688	83.000	Maksutov
-40.941409	329.683593	24.631	Epimenides
-41.644531	212.878906	16.474	D-Brown
-41.828125	13.937500	114.000	Maurolycus
-42.021875	95.946875	74.790	Jenner
-42.300000	136.593750	147.681	Roche
-42.304687	182.335938	74.843	Finsen
-42.306250	271.290625	36.000	Graff
-42.570312	220.492188	65.000	Leavitt-Z
-42.789062	84.414062	57.000	Hamilton
-42.837500	41.859375	78.000	Fabricius
-43.290625	348.790625	83.996	Tycho
-43.340625	71.425000	34.105	Oken-A
-43.476562	127.570312	59.948	Carver
-43.531250	51.784375	44.105	Young-D
-43.759375	119.978125	104.000	Van-Der-Waals
-44.273437	213.679688	36.000	
-44.664062	176.210937	170.524	Von Kármán
-44.789062	219.992188	66.000	Leavitt
-44.820312	137.335937	96.319	Pauli
-44.835937	200.976563	39.948	White
		= = •	· · · · · · · · · · · · · · · · · · ·

Latitude	Longitude	Diameter	Name
_44 978125	16 784375	82.000	Barocius
-45 676564	33 323/36	23 526	Lockver-C
-46 421875	67 787500	61.000	Poiroscius
-40.421075	263 575000	40.000	Bydborg
46 710027	52 148437	32.000	Mallet B
-40.710937	6 621975	74.000	Liestus
-47.240023	152 402187	40.105	Crosso C
-47.445512	265 000625	26.000	Cuthniele
-47.795750	200.990020	30.000	Alden
-48.001302	162.023436	67.000	Trans alsia
-48.032812	142.554087	07.371	1 seraskiy
-48.726562	250.179688	138.000	Mendel
-49.226562	68.710937	44.000	Brisbane
-49.600000	338.200000	157.000	Longomontanus
-50.039062	353.679688	157.991	Maginus
-50.632812	30.617187	79.157	Pitiscus
-50.972657	212.128906	20.000	Cori-G
-50.976562	159.210937	88.000	Hopmann
-51.035153	285.730469	27.105	Inghirami-G
-51.929687	113.273437	55.000	Cassegrain
-52.289062	42.164062	45.105	Rosenberger-C
-52.933593	335.847657	28.526	Longomontanus-A
-52.987500	20.215625	39.000	Baco-A
-53.007812	3.729692	29.000	Lilius-B
-53.300000	38.753125	83.314	Vlacq
-53.320312	177.867187	56.052	Boyle
-53.914062	190.601563	91.000	Bose
-54.200000	357.900000	26.948	Deluc-H
-54.632812	6.210937	61.000	Lilius
-55.054687	51.601562	76.000	Biela
-55.316407	252.574218	22.526	Lippmann-E
-55.431250	43.100000	90.262	Rosenberger
-55.507812	245.679688	160.000	Lippmann
-55.565625	203.525000	45.948	Stoney
-56.162500	349.853125	50.052	Porter
-56.392188	357.568752	26.052	Deluc-D
-56.825000	11.400000	68.000	Jacobi
-57.090625	238.543750	37.948	Lippmann-R
-57.593750	43.056250	48.105	Rosenberger-D
-58.210937	225.898438	108.157	Fizeau
-58.746875	66.000000	91.000	Pontécoulant
-59.527345	159.769532	25.526	Poincaré-Q
-59.554687	141.460937	80.576	Prandtl
-59.582029	257.097661	25.052	De-Roy-N
-59.707029	326.441404	28.052	Scheiner-B
-60.209375	40.209375	43.000	Nearch-A
-60.893744	23.900000	26.526	Mutus-R

Latitude	Longitude	Diameter	Name
-60.900000	5.300000	70.000	Zach
-61.179687	347.695313	48.000	Rutherfurd
-61.400000	309.418750	64.000	Zucchius
-61.771875	64.253125	39.948	Pontécoulant-J
-61.820312	203.210938	34.948	Lemaître-S
-62.804687	249.070313	90.000	Petzval
-63.257812	217.476563	53.052	Eijkman
-63.429687	314.929688	71.000	Bettinus
-63.492187	185.039063	47.105	Cabannes-Q
-63.762500	4.653125	41.000	Curtius-B
-63.800000	338.271875	103.734	Blancanus
-64.537500	11.437500	56.000	Pentland
-64.914062	162.429687	84.000	Lyman
-65.242187	271.570313	167.000	Hausen
-65.414062	215.929688	41.157	Crommelin-C
-66.179687	128.304687	37.948	Grotrian
-66.378125	54.081250	43.157	Helmholtz-D
-67.153125	4.368750	95.000	Curtius
-67.492187	212.101563	91.157	Crommelin
-68.507812	65.210937	100.633	Helmholtz
-68.896875	90.606250	51.000	Wexler
-69.039062	251.445313	68.000	Doerfel
-69.476562	187.226563	139.210	Antoniadi
-69.773437	239.570313	30.105	Doerfel-S
-70.445312	197.851563	113.000	Numerov
-70.600000	354.200000	111.000	Moretus
-74.148437	91.804687	82.052	Hale
-74.553125	352.700000	70.000	Short
-75.200000	226.400000	190.000	Zeeman
-75.417968	53.089852	30.000	Boguslawsky-F
-76.700000	24.821875	82.157	Schomberger
-76.929687	196.289063	57.000	De Forest
-78.275000	59.909375	110.943	Demonax
-78.617187	23.523437	31.000	Schomberger-A
-79.581250	275.100000	154.686	Drygalski
-82.289062	305.695313	59.105	Cabeus-B
-83.996093	118.480457	28.000	Idel'son-L
-84 550000	85 600000	101.000	Amundsen

Latitude	Longitude	Diameter	Name
81.052616	95.591740	107.790	Nansen
77.785155	289.207024	23.000	Poncelet-D
72.285156	352.972656	18.000	Anaxagoras-A
70.585932	3.823436	26.579	Barrow-A
65.362500	145.128125	113.838	Gamow
57.398437	170.054687	83.786	
48.957031	158.722651	25.052	Slipher-S
46.945312	184.273438	62.948	Perkin
46.809375	39.240625	69.000	Hercules
46.542969	128.910156	27.579	Segers-H
45.339844	49.535155	22.000	Atlas-A
44.207030	270.191408	18.474	Bunsen-C
43.933592	127.503905	24.631	Segers-N
42.025000	105.075000	37.000	Fabry-H
41.945312	231.195313	60.157	Perrine-S
41.476562	258.648438	38.105	Bragg-H
38.623436	321.207812	16.000	Mairan-A
36.946872	286.807812	28.000	Lavoisier-A
36.222656	134.699219	26.000	Nijland-A
35.789062	122.960937	54.105	Kidinnu
33.631250	190.093750	31.948	Parsons-L
32.085937	253.820313	64.210	Winlock-M
31.507812	175.429687	37.052	Shayn-H
30.945312	85.039062	22.895	
28.964843	250.714843	17.052	Parenago-Z
28.648437	104.554687	34.000	
28.306250	52.784375	43.000	Tralles
28.007812	182.898438	52.105	Dante-C
18.284375	118.615625	35.052	Olcott-L
16.284376	15.945316	26.000	Menelaus
13.980470	312.357034	10.763	Marius-C
4.992187	111.242187	40.210	Firsov-V
3.662500	155.706250	46.948	Henderson-G
2.695312	135.367187	61.000	Hartmann
1.132812	113.039062	36.000	Buisson-Y
-0.617187	101.726562	35.895	Saha-W
-1.773437	190.476563	57.105	Congreve-Q
-1.931250	17.421875	51.000	Delambre
-5.917964	57.792968	27.579	Atwood
-8.007812	83.121880	30.000	Kästner-S
-9.882812	128.851562	90.367	Perepelkin
-10.753906	214.902343	28.579	Mechnikov-F
-12.887500	79.731250	94.000	Ansgarius
-13.507812	207.601563	52.105	Galois-A

表5.2: 中央丘クレーターと思われるクレーターのカタログ

Latitude	Longitude	Diameter	Name
-14.148437	111.882812	54.000	Khvol'son
-15.878905	107.769532	24.684	Hilbert-Y
-16.215625	18.968750	39.000	Tacitus
-17.384375	225.306250	40.105	Strömgren-X
-17.531250	147.515625	90.000	Isaev
-19.215625	47.584375	36.000	Monge
-21.000000	11.900000	42.000	Abenezra
-26.737500	100.668750	68.262	Titius
-29.378120	43.900000	26.526	Reichenbach-C
-33.947267	118.302733	14.000	Pizzetti-W
-35.695312	235.023438	114.410	Brouwer
-37.284376	356.584376	21.579	Lexell-B
-37.437500	244.025000	136.262	Blackett
-38.492187	113.664062	47.052	Bjerknes
-42.289062	115.445312	35.000	Pogson-F
-43.207812	239.557828	18.000	Stetson-N
-43.527342	297.660157	16.000	Schickard-H
-44.768750	277.965625	55.000	Baade
-45.606250	207.625000	18.895	
-47.988281	186.496095	17.421	Alder-E
-51.015625	19.115625	67.105	Baco
-51.506250	252.803125	58.000	Mendel-J
-52.847646	258.660159	29.052	Chadwick
-53.632812	201.226563	12.000	
-56.214843	173.449217	25.579	Hess-M
-56.808589	118.355467	28.000	Kimura
-66.289062	227.726563	38.052	Dawson-D
-66.792969	40.105467	19.579	Mutus-W
-67.457030	290.386719	16.948	Bailly-F
-74.695312	269.054688	70.314	Boltzmann
-89.674798	128.923562	20.373	