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Abstract

This thesis proposes a method for recommending music items considering listen-
ers’ context information without explicit feedback.

Recently, with the development of communication technology and portable
electronic devices, the way people consume music has changed from hard devices
to online music streaming services. Specifically, users need not buy albums from
traditional brick-and-mortar shops, and play it by CD players or extract song
from CD to a digital player. Instead, they can enjoy music easily regardless of
time and a place by accessing online music streaming services such as Spotify,
Apple Music and Amazon Music. These up-to-date music streaming services
offer thousands of tracks in wide variety of music genres via Internet-accessible
smartphones or tablets.

As a result, a gap of users’ ability to access music items and the volume of
accessible items has been large. In other words, finding appropriate music items
from enormous resources is difficult for users. To solve this problem, recom-
mender systems on music domain have been studied. Except two most common
approaches content-based filtering and collaborative filtering, context information
such as location, time, weather, demographic information and emotional state of
a user plays an important role in the music recommendation domain. On the
other hand, music recommendation domain has another challenge: because of
the way of listening to music and characteristic of music items, explicit feedback
such as rating is not usually available.

Regarding how to use implicit feedback for recommending music items more
effectively, playing count has been used by existing music recommender systems.
On the other hand, the context information has been introduced for music rec-
ommendation by a tensor factorization method. It is regarded as the extended
version of a conventional matrix factorization approach, and can consider context
axis in addition to user and item axes. However, it is difficult to optimize the use
of contexts due to high time complexity. Therefore, the proposed method in this
thesis employs FMs (Factorization Machines), in which the context information
is treated as factors. It is shown that FMs can flexibly consider the interaction of
users, items and context with relatively low time complexity. The result of pre-
liminary experiment shows that using playing count can not improve performance
of FMs. Therefore, proposed method does not use it in the process of matrix fac-
torization, but utilizes Kullback–Leibler divergence of playing count distribution
under each context to select relatively effective and appropriate context before a
music item is to be recommended.

As FMs needs both positive and negative samples, a straightforward approach
uses LEs (listening events), a record of context information when a user listened
a music item, as positive samples, combinations of context information and music
items a user has yet to be experienced are used as negative samples. The problem
of such an approach is the number of negative samples are much larger than that
of positive ones, which causes a problem of time complexity especially when
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training a model by FMs. To reduce the number of negative samples, this thesis
proposes three types of negative sampling methods: Random Sampling, Priority
Popularity Sampling and Top Discount Popularity Sampling.

The effectiveness of the proposed method and the effect of negative sam-
pling methods are evaluated with an offline experiment. The experimental result
on #nowplaying-rs and LFM-1b dataset shows that (1) the proposed method
outperforms wALS (weighted Alternating Least Squares), which is one of pop-
ular music recommendation algorithms based on matrix factorization, (2) it is
also confirmed that performance of recommendation could be improved further
by using appropriate context information, (3) when dataset has lower density,
popularity-based sampling methods (Top Discount Popularity Sampling, Prior-
ity Popularity Sampling) have positive effect on prediction accuracy.

This thesis is organized as follows. Chapter 1 describes background and pur-
pose of research. Chapter 2 summarizes related work, from basis of recommender
systems to use of implicit feedback and context information on music recommen-
dation. The details of the proposed method including negative sampling methods
and how to utilize context information are described in chapter 3. Chapter 4
evaluates proposed context-aware music recommendation method by using two
different datasets. Finally, chapter 5 wraps up the research results and discusses
future direction of the research.
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Chapter 1

Introduction

Recently, with the development of communication technology and portable elec-
tronic devices, the way people consume music has changed from hard devices to
online music streaming services. Specifically, users need not buy albums from
traditional brick-and-mortar shops, and play it by CD players or extract song
from CD to a digital devices. Instead, they can enjoy music easily regardless
of time and place by accessing online music streaming services such as Spotify1,
Apple Music2 and Amazon Music3. These up-to-date music streaming services
offer thousands of tracks in wide variety of music genres via Internet-accessible
smartphones or tablets. The library size of Apple Music, Spotify, and Amazon
Music have exceeded 45, 35, 16 millions tracks on 2018, respectively4.

As a result, a gap between users’ ability to access music items and the volume
of accessible items has been large. In other words, finding appropriate music items
from enormous resources is difficult for users. To help user discover their favorite
music items, recommender systems on music domain have been studied [44] [33]
[35] [43]. As in the case with other domains such as movies, e-commerce and
documents, CF (collaborative filtering) [13] and CBF (content-based filtering)
[15] are the two most common approaches. CF finds users having similar interest
with a target user based on the interaction of users and items to predict ratings.
CBF recommends items to a user based on the description of items and a profile
of the user’s preferences.

Moreover, previous research [34] has shown that context information such
as location, time, weather, demographic information and emotional state of the
user plays an important role in the music recommendation domain. On the other
hand, music domain has different challenges from movie and e-commerce domain:
explicit feedback such as rating is not usually available due to the way of listening
to music and characteristic of music items. Instead, the interaction between users
and items is recorded as a LE (listening event), a record of context information
when a user listened a music item. User feedback is usually derived from LEs

1https://www.spotify.com/jp/
2https://www.apple.com/jp/apple-music/
3https://www.amazon.co.jp/gp/dmusic/promotions/PrimeMusic
4https://www.macobserver.com/news/songs-in-streaming-music-service-libraries/
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implicitly such as total playing count. Therefore, in addition to cold-start [1]
and data sparsity [22] problems which are common regardless of domains, the
above-mentioned two challenges should also be tackled in music domain.

Regarding how to use limited implicit feedback for recommending music items
more effectively, playing count has been used by existing music recommender
systems [26]. On the other hand, the context information has been introduced
for music recommendation by a tensor factorization approach [33]. It is regarded
as the extended version of a conventional matrix factorization approach, and can
consider context axis in addition to user and item axes. However, it is difficult to
optimize the use of contexts due to high time complexity. Therefore, this thesis
employs FMs (Factorization Machines) [46], in which the context information is
treated as factors. It is shown that FMs can flexibly consider the interaction
of users, items, and context with relatively low time complexity. The result of
preliminary experiment conducted by myself showed that using playing count can
not improve performance of FMs. Therefore, this thesis proposes a method that
does not use it in the process of matrix factorization, but utilizes Kullback-Leibler
divergence [53] of playing count distribution under each context to select relatively
effective and appropriate context before a music item is to be recommend.

As FMs needs both positive and negative samples, a straightforward approach
is to use LEs as positive samples, and the combination of context and music items
a user has yet to be experienced are used as negative samples. The problem of
such an approach is that the number of negative samples are much larger than
that of positive ones, which causes a problem of time complexity especially when
training a model by FMs. To reduce the number of negative samples, this thesis
employs three types of negative sampling methods: (1) Random Sampling, (2)
Priority Popularity Sampling (3) and Top Discount Popularity Sampling. Ran-
dom sampling randomly selects music items which are not played by a user under
the same context as actual LEs as negative samples. Furthermore, popularity of
music items is also considered when determining negative samples. This the-
sis investigates two approaches: reducing the probability of selecting a part of
unpopular items as negative samples (Top Discount Popularity Sampling), and
increasing the probability of selecting a part of popular items as negative samples
(Priority Popularity Sampling).

The effectiveness of the proposed method and the effect of negative sam-
pling methods are evaluated with an offline experiment. The experimental result
on dataset #nowplaying-rs [48] that is generated from all tweets with hashtag
#nowplaying posted in 2014 and LFM-1b dataset [49] shows that (1) the pro-
posed method outperforms wALS (weighted Alternating Least Squares), which is
one of popular music recommendation algorithms based on matrix factorization.
(2) it is also confirmed that performance of recommendation could be improved
further by using appropriate context information, (3) when dataset has lower
density, popularity-based sampling methods (Top Discount Popularity Sampling,
Priority Popularity Sampling) have positive effect on prediction accuracy.
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Chapter 2

Related work

2.1 Recommender system

2.1.1 Overview

With development of communication technology and computer-chip industry dur-
ing these 30 years, people can access network more easily and quickly than ever
before. Available devices are not only personal computers, but also wireless and
mobile devices. According to the 2017-2022 white paper of Cisco Systems, Inc.1,
monthly global mobile data traffic will be 77 exabytes(=230gigabytes) by 2022,
and annual traffic will reach almost one zettabyte(=240gigabytes), which is 7
times higher than that in 2017. Unprecedented enormous amount of data has
already caused a problem of information overload [5]. However, people’s infor-
mation processing ability have not changed greatly. Therefore, a gap between
huge volume of data and information processing ability of people has been large.
In other words, users are confused and unable to make a decision when facing
on enormous volume of data. To reduce information overload when searching
the most relevant information from enormous data, as a subset of information
filtering systems, recommender systems have been studied from 1990s [4].

Recommender systems are software tools which recommend suitable item to
a user who is making decision on the basis of information about items or him/her
self [2]. A meaning of items in this context does not only include real products
such as books, music albums, and daily necessities, but also web services such as
travel, online news and social networking services. Moreover, explicitly gathering
the rating given by users in the past and implicitly monitoring users’ behavior
such as songs heard and web sites visited are two methods to obtain information
required for recommendation. Regarding the type of information, demographic
features of users (age, gender and nationality), item content (genre, release date
and other description of item in those content), social (followers, followed and
tweets) and miscellaneous context information (GPS location, time, weather)

1https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-
index-vni/white-paper-c11-741490.html
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could be used in recommender systems [1].
This section describes filtering algorithms used by recommender systems, its

application, and existing problems.

2.1.2 Filtering algorithms

An essential part of recommender systems is how to use aforementioned infor-
mation to filter information (items) by algorithms suitable for target application.
The two most common filter algorithms are CBF (content-based filtering) [15]
[43] and CF (collaborative filtering) [13] [26] [27].

CBF makes recommendation on the basis of content features of items that a
user has bought, visited, watched, listened, or rated higher in the past. Items
similar to those items will be recommended to this user. Figure 2.1 illustrates
CBF, in which user A consumed item 1 in the past, and a recommender system
will recommend item 2 to user A, because item 2 has similar content features to
item 1. For example, in a music streaming service, if a user usually listens jazz
songs, a recommender system will probably recommend jazz songs which is not
discovered by this user yet to him/her.

Figure 2.1: Content-based filtering

CF helps a user to make choices on the basis of the opinions of other users who
have similar interests to this user in the past [13]. Depending on target objects
for calculating similarity, CF can be divided into user-based and item-based one.
The most significant difference of CF from CBF is that domain knowledge and
content features are unnecessary when using CF. Because CF is an opinion-based
filtering algorithm, the similarity between users/items is calculated on the basis
of rating history of users. In the case of user-based CF, as shown in Figure 2.2,
a recommender system judged user A is similar to user B because both of them
consumed item 1 in the past. Therefore, item 2 that was consumed by user A
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will be recommended to user B. Any item can not be recommended to user C
because s/he does not share any items with other users. In the case of item-based
CF, as shown in Figure 2.3, a recommender system judged item 1 is similar to
item 2 because both of them were consumed by user A. Therefore, item 2 will be
recommended to user B who consumed item 1. Item 3 can not be recommended
to any user because it was only consumed by user C.

A rating matrix stores ratings given by users to items. Depending on whether
constructing a model from a rating matrix or not, CF can be classified into
memory-based (nearest-neighbor) and model-based (matrix factorization) one.
Nearest-neighbor technique calculates similar users/items directly from a rating
matrix. Pearson correlation, cosine, adjusted cosine, constrained correlation,
mean squared differences, and Euclidean are the most commonly used similarity
metrics [1].

Matrix factorization models [14] recommend an item to a user on the basis
of latent factors extracted from a rating matrix. These models are known to be
superior to nearest-neighbor methods in many cases [14] [26]. For example, Koren
et al. achieved 10.05% improvement over nearest-neighbor algorithms and won
the Netflix Prize competition1. Matrix factorization models factorize a rating
matrix: both users and items are transformed to a joint latent factor space.
User-item interactions are modeled as inner products of a user and an item in the
transformed space. Details of matrix factorization are described in Sec. 2.2.2.

Figure 2.2: User-based collaborative filtering

In marketing literature, a demographic profile of a user is used by marketers
since the late 1900s [21]. In the field of recommendation, DF (Demographic

1https://www.netflixprize.com/
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Figure 2.3: Item-based collaborative filtering

filtering) [16] refers to the technique for recommending an item to a user on the
basis of the demographic profile of this user (e.g. age, country, nationality, gender,
language, marital status, family size, income, religion, race, occupation, etc). It
assumes that those who have similar personal demographic attributes will have
similar preference. For example, females have more interest in cosmetics than
males, users listen music according to the their age and/or country in general.
As shown in Figure 2.4, user A and B have similar demographic profile. Therefore,
item 1 that was only consumed by user B will be recommended to user A, and
item 2 that was only consumed by user A will be recommended to user B.

Figure 2.4: Demographic filtering
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Knowledge of human/computer interaction also can be utilized in recom-
mender systems. KBF (Knowledge-based filtering) [17] makes recommendation
on the basis of specific queries that were made by a user. KBF collects domain
knowledge as the form of relevant rules about interaction between users and items.
When user A submits a query such as “I want to find an item that looks like a
square,” a recommender system finds an appropriate (i.e. square) item for this
user, as shown in Figure 2.5. Results of recommendation can be improved by a
user feedback given to the recommended items.

Figure 2.5: Knowledge-based filtering

It is claimed that combining different filtering algorithms to constructing a
hybrid recomender system is an effective approach to improve performance of
recommender systems [18]. CF is often combined with CBF [19] and DF [20].

It was shown that using only one of filtering algorithms can not cover all
situations and domains in practice [3]. In other words, appropriate filtering al-
gorithms need to be considered depending on target applications. Joeran et al.
summarized paradigms of news recommendation [8]. It was reported that CBF
is more popular than CF in news recommendation domain. The same result
was reported in research-paper recommendation, which is also document-based
recommendation [7]. In contrast, implicit CF is usually used in music recommen-
dation domain, because it is difficult to utilize content features of music items
directly due to the semantic gap between low-level descriptors and the concepts of
music listeners have [44] [33] [35]. In e-commerce domain, Castro et al. [11] sep-
arated recommendation tasks into LIP (low involvement product, such as books,
albums and films) and HIP (high involvement product, such as appliance, cam-
eras and musical instrument) recommendation task. In the case of LIP, CF is
one of the most widely used algorithms. On the other hand, in the case of HIP,
KBF is used to provide appropriate recommendations because HIP’s click-to-buy
rate is usually lower than that of LIP. On the other hand, CF and CBF may
make duplicated and outdated recommendations in e-commerce domain due to
the lack of purchasing cycles (e.g. weekly, monthly and seasonal), which is also
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called commodity purchase cycle [12]. They proposed a modified CF by consid-
ering both users behaviors and commodity characteristics to make weekly and
seasonal recommendations. Chen et al. claimed that reciprocal social or impres-
sion management issues should be considered in social recommendation domain
[10]: for example, before adding a new friend, a user often considers how the new
friend will be perceived by other friends. They reported that content matching
(similar to CBF) and friend-of-friend (similar to CF) algorithms are often used in
this domain. In tourism recommendation domain, mobility of users is essential,
and recommendation should be done in different moments and places. Therefore,
recommender systems should employ context-aware technique [9].

2.1.3 Problem

Recommender systems have been already applied in multiple domains. However,
some problems still exist and need to be solved.

As noted in Sec. 2.1.2, CF could recommend an item to a user even without
any domain knowledge and content features. However, data sparsity [22] and
cold start problem [1] are unavoidable. Data sparsity problem means that most
of items could not be recommended on the basis of the interaction of users and
items because most of users experienced a limited number or genre of items. Cold
start problem means that when starting up a recommender system, new users and
items do not have interaction and it is difficult to obtain a sufficient amount of
ratings for making reliable recommendation. As shown in figure 2.6, both of user
A and user B consumed item 1. However, user C does not share any item with
others. Therefore, it is difficult to recommend any item to user C. Item 3 is not
consumed by any user. Therefore, it is difficult to recommend it to any users.
Bobadilla et al. [1] classified cold start problem into the new item problem and
the new user problem. Motivating users to rate new items could release the new
item problem. In the case of the new user problem, using additional information
such as demographic and social information of a user, and latent features that
are extracted from items may be effective.

Accuracy-based metric such as precision, recall, F1 and MRR (Mean Recipro-
cal Rank) are most common methods to evaluate performance of a recommender
system. Kaminskas et al. [23] claimed that other aspects of recommender sys-
tems such as diversity, serendipity, novelty and coverage should also be evaluated.
Diversity is defined as dissimilarity of items or the number of item genres in a
recommend list. Serendipity means to find valuable or pleasant items that are
not discovered by oneself. Novelty is similar to serendipity, but it emphasizes
recommending items which are different from what the user has seen before. On
the other hand, high coverage means many available items (i.e. those stored in
DB) can be recommended: higher coverage may benefit both satisfaction of users
and profit of service providers [24].

With success of deep learning in computer vision and natural language pro-
cessing, it has also been employed to recommender systems. However, repro-
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Figure 2.6: Cold start problem

ducibility is known to be a significant problem [6]. Maurizio et al. [6] collected
18 recommendation-related papers, which employed deep learning, from KDD,
SIGIR, TheWebConf and RecSys. It was found that only 7 papers could be
reproduced. Reminding 11 papers did not open their source code and dataset.
Even though a source code is published, it dose not include data pre-processing,
hyper-parameter tuning and exact evaluation procedures. They executed the
experiment of above-mentioned reproducible 7 papers, and compared the results
with user-based and item-based nearest neighbors CF with hyper-parameter tun-
ing. As a result, 6 of 7 reproducible papers could not outperform the nearest
neighbors CF.

2.2 Music recommendation

2.2.1 Overview

In music recommendation, explicit feedback such as rating is not usually available
due to the way of listening to music and characteristic of music items. Instead,
the interaction between users and items is recorded as a LE. Moreover, previous
research [34] has shown that context information such as location, time, weather,
demographic information and emotional state of the user plays an important role
in the music recommendation domain.

On the other hand, the content such as key and temp and signal features of
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music could be described at a lower level with the development of signal pro-
cessing. However, the semantic gap between such low-level descriptors and the
concepts of music listeners still exist [44]. In other words, content objects (e.g.
key, tempo, melody, and harmony of a song) and signal features (e.g. duration,
mode, energy and valence of a song) can not reflect the preference of a user pre-
cisely. For example, a user may not like a song only because the key of this song
is major A or its acousticness is too high. Instead, s/he would be more inclined to
listen a song that makes him/her feel pleasure. It is difficult to precisely represent
these kinds of user preference with signal features. Table 2.1 shows the relation
between signal features, content objects, and human knowledge.

This subsection introduces some related works of music recommendation,
including implicit feedback for recommendation, and recommendation methods
leveraging additional information such as context, social information and lower-
level audio features of music.

Table 2.1: Semantic gap [44]

Human knowledge personal identity, expectations, emotions,
memories, understanding, opinion

Semantic gap

Content object key, tempo, rhythm, genre, melody,
harmony, dyanamics, tags, motion, groove

Signal feature
duration, time, specturm, instrumentalness,
liveness, speechiness, danceability, valence,

loudness, acousticness, mode, energy

2.2.2 Implicit feedback

How to use implicit feedback from users effectively has been a crucial theme for
recommendation regardless of domain [25]. In many cases, the preference of a
user can be expressed as implicit feedback. Therefore, CF approaches, including
memory-based (nearest-neighbor) and model-based (matrix factorization) ones,
are usually used in most cases because implicit feedback usually denotes the exis-
tence/absence of an event, which is typically represented by a densely filled matrix
[14]. This subsection introduces the mathematical definition of related work that
are used implicit feedback, which include nearest-neighbor, wALS (weighted al-
ternating least square), logistic matrix factorization, sampling-based ALS, and
BPR (Bayesian personalized ranking). Table 2.2 shows list of symbols used in
this thesis. Suppose that m users play n songs (music items) and the play counts
are stored in a matrix R.

Regarding nearest-neighbor approaches, similarity metric is essential to find
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Table 2.2: List of symbols used in this thesis

Symbol Description
m Number of users
n Number of items
R Rating matrix, R = (ri,j)m×n ∈ Rm×n

+

P Preference matrix, P = (pi,j)m×n ∈ {0, 1}m×n

C Confidence matrix, C = (ci,j)m×n ∈ Rm×n
+

α hyper-parameter of wALS
f Number of latent factors
k1 Hyper-prameter of Okapi BM25
b Hyper-prameter of Okapi BM25
X User-factor matrix, X ∈ Rm×f

Y Item-factor matrix, Y ∈ Rn×f

βi bias of user i

βj bias of item j

s Number of records in a listening events matrix
t Number of features in a listening events matrix (processed by one-hot encoder)
E Listening events matrix E ∈ {0, 1}s×t

Pr Probability of a song being selected as a negative sample
qi Priority of a sample i

γ Hyper-parameter of top discount popularity sampling, γ ∈ [0, 1]

δ Hyper-parameter of priority popularity sampling, δ ∈ [0, 1]

ϵ Ratio of negative samples

11



similar user/item. Cosine, TF-IDF [30] and Okapi BM25 [31] are common simi-
larity metrics in memory-based implicit CF. Depending on the activity of users,
different people provide different number of implicit feedback from a user is dif-
ferent. Cosine metric could ignore the influence of these individual differences
in terms of the volume of feedback information on inter-user similarity. Cosine
similarity between pairs of users (u1 and u2) can be calculated as follows.

simcos(u1, u2) =

∑
j r1,jr2,j√∑

j r
2
1,j

√∑
j r

2
2,j

, (2.1)

where r1,j is the play history of user u1 for j-th music item. Similarly, cosine
similarity between pairs of items (ii and i2) is calculated as follows.

simcos(i1, i2) =

∑
i ri,1ri,2√∑

i r
2
i,1

√∑
i r

2
i,2

. (2.2)

On the other hand, TF-IDF [30] and Okapi BM25 [31], which are methods
for measuring the importance of a word in a document. It can also be used to
reflect preference of a user. TF-IDF similarity is calculated as follows.

simtfidf(i1, i2) =

∑
y tfidf(i1, uy)tfidf(i2, uy)√∑

y tfidf(i1, uy)2
√∑

y tfidf(i2, uy)2
, (2.3)

where, simtfidf(ix, uy) represents the importance of an item ix for a user uy:

tfidf(ix, uy) = tf(ix, uy) · idf(ix). (2.4)

In this context, tf(ix, uy) represents the normalized frequency of appearance of ix
in the listening history of uy. df(ix) represents the number of users who played
item ix. They are calculated as:

tf(ix, uy) =
ry,x∑
j ry,j

, (2.5)

idf(ix) = log m

df(ix)
. (2.6)

The problem of tf is that, active users would have higher value than others.
It may cause a problem when using TF-IDF similarity. In order to mitigate this
problem, Okapi BM25 [31] can be used to normalize the play counts of each user.
Okapi BM25 similarity is calculated as follows.

simbm25(i1, i2) =

∑
y bm25(i1, uy)bm25(i2, uy)√∑

y bm25(i1, uy)2
√∑

y bm25(i2, uy)2
, (2.7)

bm25(ix, uy) = idf(ix) ·
tf(ix, uy) · (k1 + 1)

tf(ix, uy) + k1 · (1− b+ b · m
∑

j ry,j∑
i,j ri,j

)
, (2.8)
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where
∑

j ry,j∑
i,j ri,j

denotes normalized play counts of user uy over all users. Difference
of tf(·) among users can be adjusted by this term. k1 and b are hyper-parameters
of Okapi BM25.

Regarding matrix factorization-based approaches, Koren et al. proposed a
matrix factorization based CF method called wALS (weighted alternating least
square) for implicit feedback datasets [26]. They consider the decomposition
P = XY T , where P = (pi,j)m×n ∈ {0, 1}m×n, X ∈ Rm×f , and Y ∈ Rn×f ,
as shown in Figure 2.7. f denotes the number of latent factors. As an implicit
feedback such as play count is not as reliable as explicit rating, it is difficult to
make recommendations by solving the same loss function as methods based on
matrix factorization. They introduced a confidence computation to a loss function
based on playing count and considered all missing LEs as negative samples as
shown in Equation (2.9).

Figure 2.7: Matrix Factorization

L(xi, yj) =
∑
i,j

ci,j(pi,j − xTi yj)
2 + λ(

∑
i

||xi||2 +
∑
j

||yj ||2), (2.9)

where xi, yj is the latent factors of users and items, pi,j represents the element
of user-item binary matrix representing whether or not a user i played a music
item j.

pi,j =

{
1, ri,j > 1

0, ri,j = 0
, (2.10)

where ri,j denotes the play counts of user i to music item j. ci,j represents the
element of confidence matrix.

cij = 1 + αrij , (2.11)

where α is a hyper-parameter.
In order to mitigate the impact of user and item biases and improve perfor-

mance of wALS, Johnson et al. proposed logistic matrix factorization, a proba-
bilistic model for matrix factorization with implicit feedback [32]. They let li,j
denote the event that user i prefers item j. Probability of this event occurring is
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defined as a logistic function.

p(li,j |xi, yj , βi, βj) =
exp(xiyTj + βi + βj)

1 + exp(xiyTj + βi + βj)
, (2.12)

where βi, βj are user bias and item bias, respectively. The loss function can
be rewrote as a likelihood function of rating matrix R given bias β and factor
matrices X and Y . α is a hyper-parameter that is the same as α in Equation
(2.11).

L(R|X,Y , β) =
∏
i,j

p(li,j |xi, yj , βi, βj)αri,j {1− p(li,j |xi, yj , βi, βj)} . (2.13)

Instead of using all missing ratings as negative samples, various methods that
reduce the number of negative samples have been proposed. Rong et al. [27] pro-
posed sampling-based ALS for implicit feedback recommendation. Their method
considers only a part of missing ratings on the basis of negative sampling. Three
types of sampling approach are proposed: uniform random sampling (all missing
data share the same probability to be sampled as negative), user-oriented sam-
pling (if a user has played more items, item that s/he has not viewed could be
negative), item-oriented sampling (if an item is viewed by fewer users, it may
be a negative sample). These sampling-based approaches approximate the ex-
act solution with much lower computational costs for large scale sparse datasets
than original wALS. Furthermore, a method that dynamically chooses negative
samples from the ranked list of Top-N recommendation produced has been pro-
posed [28]. As another approach to solve negative samples problem, Steffen et al.
[29] have introduced a generic optimization criterion called Bayesian personalized
ranking optimization (BPR-OPT), which is derived from maximum estimator for
optimal personalized ranking. Their proposed method involved pairs of items to
generate a more personalized ranking for each user instead of using all of the
missing ratings as negative samples.

2.2.3 Context information on music recommendation

Marius et al. [34] have classified context information on music domain into user-
related ones (emotional state, demographic information, and activity of user),
environment-related ones (location, current time, weather and noise level) and
multi-media (image of album, lyrics, and review of a song).

Deng et al. [35] have explored user’s emotions in microblogs service for music
recommendation. In accordance with the hypothesis that users have higher sim-
ilarity each other when they played similar music in the same emotional state,
this method utilizes the text of microblogs service to extract users’ emotions at
different granularity levels during different sizes of a time window. Users’ emo-
tion when playing a song is utilized to calculate similarity among users and items.
Wang et. al [36] have enhanced emotion-aware approach by modeling the rela-
tions among user, music, and emotion as an emotion aware graph. Marius et al.
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[37] proposed a method to recommend music items suited for places of interest on
the basis of the auto-tagging and the knowledge of the semantic relations among
items.

Regarding the utilization of multi-media information, Martin et al. [38] pro-
posed a pre-filtering method, which divides users into clusters by the name of
playlists given by user and recommends music items for each user cluster with
nearest-neighbor based CF. However, recommendation accuracy substantially
varies among clusters because size of each cluster is different. To improve the
performance of this approach, they have used the cluster label as one of the fea-
tures of FMs to overcome the drawbacks of dividing user groups in advance by
pre-filtering. This method does not sample any negative LE: instead, they let
a rating equal to 1 when a certain user listened to a certain track in a certain
cluster. For each <user, item, cluster> combination that dose not exist, they let
rating equal to -1.

Schedl and Schnitzer [40] have introduced multiple types of context informa-
tion into hybrid music recommendation. The process of similarity computation
considers genres, styles, instruments, moods from “virtual artist document (i.e.
web pages retrieved for an artist),” rhythmic features of music item, and user
contexts such as timestamp and location.

Regarding different information from context, Alexandros et al. proposed a
high-order SVD using social tagging [41] [42]. Markus et al. [45] introduced the
concept of user mainstreamness to judge whether users prefer music items that are
currently popular or not. When using audio signals for a recommendation, CNN
(convolutional neural network) has been used to extract characteristics affecting
user preference directly from audio signals [43]. This approach tries to reduce
the semantic gap as noted in Section 2.2.1 between low-level descriptors and the
concepts music listeners have.
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Chapter 3

Proposed Method

The details of the proposed context-aware music recommendation method are
described in this Chapter. First, the reason why this thesis employs FMs as well
as how to use it, and an approach for selecting appropriate context information
are described in Sec. 3.1. Three types of negative sampling methods: (1) random
sampling, (2) priority popularity sampling, and (3) top discount popularity are
introduced in Sec. 3.2. Sec. 3.3 describes a method that uses content features
of music items to reduce the semantic gap. Figure 3.1 shows the flowchart of the
proposed method.

Figure 3.1: Flowchart of propose method
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3.1 Context-aware recommendation

This thesis employs FMs [46] to recommend music items, in which users, music
items and users’ context are used as feature variables. FMs can not only learn
the latent factors of users and items like matrix factorization methods, but also
flexibly consider the interaction of users, items, and any other features with
relatively low time complexity.

Table 3.1 shows an example of LEs, records of context information (language
of, period of day, and played date when a user listened a music item. After apply-
ing the processes of label encoding (transform categorical context information to
numerical variable) and one-hot encoding, these LEs can be described by a design
matrix E ∈ {0, 1}s×t, where s, t are the number of LEs and feature variables of
each LE, respectively. Figure 3.2 shows a design matrix. Given e ∈ {0, 1}t as a
LE, which corresponds to a row of Figure 3.2, the model equation for 2-way FMs
(degree d = 2) is defined as Equation (3.1).

Table 3.1: An example of listening events

LE User Item Language Period of a day Date
0 1001 1001 en Afternoon 2014-01-01
1 1001 1004 en Morning 2014-01-01
2 1001 1002 jp Evening 2014-01-01
3 1002 1003 en Evening 2014-01-02
4 1002 1001 es Afternoon 2014-01-02
5 1003 1001 en Morning 2014-01-03
6 1003 1004 es Evening 2014-01-03

r̂(e) := ω0 +
t∑

i=1

ωiei +
t−1∑
i=1

t∑
j=i+1

ω̂i,jeiej , (3.1)

where ei is ith feature variable of LE e, r̂(e) is the prediction value for e. ω0

is the global bias, ωi is the weight of ei. ω̂i,j shows the interaction of ei and ej
with f factors. It can capture all single and pairwise interaction between these
variables. vi,k, vj,k are respectively the latent factors of feature i and j.

ω̂i,j :=

f∑
k=1

vi,kvj,k. (3.2)

It is supposed that a part of context information may not have a positive
effect on recommendations. To optimize the use of contexts, instead of using
all of the existing context information, this thesis proposes a method to select
context information. This method selects context information in according with
the hypothesis that if the difference of users’ preference among each possible
value in a specific context were significant, this context would have a positive
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Figure 3.2: design matrix E

effect on recommendations. The differences are represented as the distance table
of a context feature. Figure 3.3 shows an example of a distance table of the
native language of users. A value of a cell in this table represents the distance
between two popularity distributions of different feature values (languages in the
case of Figure 3.3). Let Di and Dj denote two different popularity distributions
of different feature values xi and xj . The distance of Di and Dj can be calculated
as follows.

Dist(Di, Dj) =
1

2
{KL(Di||Dj) + KL(Dj ||Di)} , (3.3)

where KL(Di||Dj) denotes KL-divergence between distribution Di and Dj . It is
calculated as:

KL(Di||Dj) =
∑

xk∈Mi,j

Di(k)logDi(k)

Dj(k)
, (3.4)

where Di(k) and Dj(k) are normalized popularity of k-th music item in distribu-
tion Di and Dj respectively. Mi,j represents a set of music items that relate with
both feature values xi and xj . A music item that relates with only one of the
feature variables will be removed when calculating the distance. For example, it
is observed from Figure 3.3 that users who speak Japanese, French, Dutch and
Indonesian have relatively different preference to other users. From this result,
language could be selected as a context feature.

This thesis employs alternating least squares [47] to learn parameters ω0, ωi

and ω̂i,j of FMs. In the learning process, both positive and negative samples
are necessary. However, only positive samples (LEs) could be obtained directly
when users play music items. Therefore, this thesis considers utilizing negative
sampling to find negative samples for solving this problem.
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Figure 3.3: an example of a distance table of a context

3.2 Negative sampling

Regarding all music items a user has yet to be listened as negative is a naive
method. Although it could be effective in matrix factorization methods such
as wALS [26], the number of negative samples becomes huge, which causes a
problem of time complexity especially when training a model by FMs. To solve
this problem, this thesis selects a part of music items that a user has not yet
listened to as negative samples. This thesis proposes three types of negative
sampling methods, which are compared in the experiment.

Random Sampling this method selects negative samples in according with
the hypothesis that if a music item is not played by a user in some context,
s/he would not be interested in it in that context. When training FMs
model, for each LE, this method selects music item(s) on random from music items
that are not played in this LE and uses it (those) as negative sample(s). The same
values of context information as the LE is added to the context information of
the negative sample(s). The more active users will obtain more negative samples.

Top Discount Popularity Sampling although selecting negative samples
on random is a comparatively fair method, it is supposed that the popularity of a
music item could influence the result of learning FMs. Therefore, in addition to
the hypothesis of Random sampling, this paper adopts another hypothesis that
if a music item is popular, but it not played by a user in some context,
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Table 3.2: An example of negative sample

LE User Item Language Period of a day Date Rating
0 1001 1001 en Afternoon 2014-01-01 1
7 1001 1004 en Afternoon 2014-01-01 0
1 1001 1004 en Morning 2014-01-01 1
8 1001 1002 en Morning 2014-01-01 0
2 1001 1002 jp Evening 2014-01-01 1
9 1001 1001 jp Evening 2014-01-01 0
3 1002 1003 en Evening 2014-01-02 1
10 1002 1004 en Evening 2014-01-02 0
4 1002 1001 es Afternoon 2014-01-02 1
11 1002 1003 es Afternoon 2014-01-02 0
5 1003 1001 en Morning 2014-01-03 1
12 1003 1004 en Morning 2014-01-03 0
6 1003 1004 es Evening 2014-01-03 1
13 1003 1002 es Evening 2014-01-03 0

it would be a negative sample for this users. A sampling method based
on this hypothesis reduces the probability of selecting a part of unpopular items
as negative samples. Probability of a music item i being selected as a negative
sample is defined as:

Pr(i) =

 2
(2−γ)n , popular

1
(2−γ)n , unpopular

, (3.5)

where, γ ∈ [0, 1] is a hyper-parameter to determine whether or not a music item
is popular. Music items in top (1 − γ) ∗ 100 percentage of popularity ranking
list are defined as popular ones. After selecting negative sample(s) for each LE
in accordance with the popularity, the context information is given in the same
manner as Random sampling.

Priority Popularity Sampling Top Discount Popularity Sampling only fo-
cuses on a part of music items and uniformly increases the probability of selecting
them as negative samples. It may influence the result of a recommendation. That
is, a method that can tune the probability of a music item being selected as a
negative sample more flexibly might be preferable. To realize this idea, this thesis
employs a priority sampling method. It has already been utilized in reinforce-
ment learning to sample appropriate experience replay according to TD-error in
the buffer [50]. In the context of this thesis, TD-error is replaced with the popu-
larity of a music item. Probability of a music item i being selected as a negative
sample is defined as:

Pr(i) = qδi∑
k q

δ
k

, (3.6)
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where δ is a hyper-parameter. qi denotes priority of this music item, which can
be calculated as:

qi = 1/rank(i), (3.7)

where rank(i) denotes the popularity ranking of a music item i. In other words,
a music item that is popular has higher priority to be considered as a negative
sample.

As shown in Table 3.2, we set rating r(ei) = 1 for positive samples r(ei) = 0 for
negative samples. The ratio of negative samples are determined by the parameter
ϵ = #Negative samples

#Positive samples . In other words, the proposed method selects ϵ negative
sample(s) for each LE. On the other hand, it is supposed that the attention to a
music item would decrease since its release date. Based on this idea, this paper
changes the size of time window to reduce the sample space of negative samples.

Furthermore, this paper considers both top-N recommendation and rating
prediction task. In top-N recommendation task, a recommendation list that
contains N music items that have higher predicted scores than others is generated
for each LE. The purpose of this task is to recommend appropriate music items
to users. On the other hand, rating prediction task predicts whether or not a
specific music item is played by a user in a specific context.

3.3 Using content features of music items

The preliminary experiment by myself showed the same results as the previous
work described in Sec. 2.2.1: content features of music items are difficult to be
used directly to improve the performance of recommendation. Therefore, these
content features need to be integrated more flexibly. This thesis proposes to use
labels of clusters that are created from user profiling as a feature variable of FMs.
User profiling could be obtained by this user’s play counts of each genre (UGP,
user genre profiling) [51] or mean of each content feature of all music items (UCP,
user content profiling) in playing history of this user. UGP of a genre j in a user
i’s play history is defined as:

UGPi,j =
gi,j
|Mi|

, (3.8)

where Mi is a set of all music items in i’s play history. gi,j represents counts of
genre j in Mi. UCP of a content feature j in a user i’s play history is defined as:

UCPi,j =
si(j)

|Mi|
, (3.9)

where si(j) is the summation of a content feature j’s values of all music items in
Mi.
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Chapter 4

Experiment

This Chapter evaluates proposed context-aware music recommendation method
by using two different datasets. Sec. 4.1 describes the details of these two
datasets, which includes an overview of two datasets, the method of pre-processing,
and an analysis of two datasets. Sec. 4.2 introduces details of experimental
setup. Four evaluation metrics: Mean Percentage Ranking (MPR), Mean Recip-
rocal Ranking (MRR), Root Mean Squared Error, and Accuracy are described
in Sec. 4.3. Sec 4.4 introduces result of experiments: (1) comparing proposed
method with wALS, (2) influence of ratio of negative samples ϵ, (3) performance
of each sampling method, (4) performance of proposed method when adding dif-
ferent context information, and (5) comparing proposed method with using signal
features directly.

4.1 Dataset

4.1.1 Overview

This thesis uses #nowplaying-RS dataset1 and LFM-1b2 to evaluate proposed
method. #nowplaying-RS is extracted from all tweets with hashtag #nowplaying
posted in 2014. Poddar et al. [48] extracted from tweets the name of music items,
artists, and the 6 context features (timestamp, tweet language, user language,
time zone, hashtags, and sentiment) of a user when playing music items. 11
content features (instrumentalness, liveness, speechiness, danceability, valence,
loudness, tempo, acousticness, energy, mode, and key) of these music items are
also obtained from Spotify API3. Table 4.1 shows the description of these contents
features. The number of users, music items, and LEs are 138,781, 346,273, and
11,639,541, respectively.

LFM-1b dataset is presented by Markus [49]. They collected LEs from more
than 120,000 users of Last.fm from 2012 to 2013. Each LE includes user ID,

1http://dbis-nowplaying.uibk.ac.at/#nowplayingrs
2http://www.cp.jku.at/datasets/LFM-1b/
3https://developer.spotify.com/documentation/web-api/
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Table 4.1: Description of content features

Feature Value type Description
key int The overall key of a track
mode int The modality (major or minor) of a track
acousticness float Whether a track is acoustic (range in [0,1])
danceability float How suitable a track is for dancing (range in [0,1])

energy float A perceptual measure of intensity and activity
(range in [0,1])

instrumentalness float Whether a track contains no vocals
(range in [0,1])

liveness float The presence of an audience in the recording
(range in [0,1])

loundness float The overall loudness of a track in decibels (dB)

speechiness float The presence of spoken words in a track
(range in [0,1])

valence float The musical positiveness conveyed by a track
(range in [0,1])

tempo float The overall estimated tempo of a track in
beats per minute (BPM)

music ID, artist ID, demographic and context features of a user (timestamp,
nationality, age and gender). In addition to that, Markus and Bruce created
UGP as introduced in Sec. 3.3, which was calculated on the basis of preference
genre statistics of a user according to artists’ genre (rnb ,rap, electronic, rock,
new age, classical, reggae, blues, country, world, folk, easy listening, jazz, vocal,
children’s, punk, alternative, spoken word, pop, heavy metal) in his/her play
history. Figure 4.1 shows a part of UGP, in which a row represents UGP of
each user. The number of users, music items, and LEs in LFM-1b are 120,332,
32,291,134, and 1,088,161,692, respectively.

4.1.2 Pre-processing

#nowplaying-rs for avoiding the influence of tweet bots and extremely not ac-
tive users, I removed the users who listened less than 10 and larger than 5000
music items from the #nowplaying-rs. After pre-processing, the number of users,
music items, and LEs in #nowplaying-rs become to 18,946, 22,023, and 1,835,993,
respectively. Timestamp is difficult to be used as a context feature. There-
fore, I generated 4 features from each timestamp: DoW (day of week), Week-
day/Weekend, Hour, PoD (period of day). I did not use hashtags and sentiment
this time because of only a few LEs including them. In addition to those context
features, 8 content features of music items: instrumentalness, liveness, speech-
iness, danceability, valence, tempo, acousticness, and energy, are integrated to
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Figure 4.1: User genre profiling

calculate UCP. To simplify the calculation of UCP, I do not use categorical fea-
tures key and mode. Loudness is not used as well because most of the values are
none. On the other hand, UGP can not be calculated in this dataset because of
lack of genre information.

LFM-1b for LFM-1b, I modified the lower limit of play count of a user
from 10 to 20 because the density of LFM-1b is higher than #nowplaying-rs
significantly. After pre-processing, the number of users, music items, and LEs in
LFM-1b become to 13,658, 139,303, and 40,761,277, respectively. Four features
are generated from timestamp in the same way as #nowplaying-rs. UCP can
not be calculated because signal features of music items are not included in this
dataset. Summary of these two datasets are shown in 4.2.

4.1.3 Data analysis

Figure 4.2 and 4.3 show popularity distribution of music items in #nowplaying-rs
and LFM-1b, respectively. X-axis denotes the Logarithm of played counts and
Y-axis denotes the number of music items. It is observed that popularity distri-
bution in #nowplaying-rs is similar to LFM-1b. Popular music items account for
only a small part of the whole.

On the other hand, activity distribution of users in two datasets are respec-
tively shown in Figure 4.4 and 4.5. X-axis denotes the Logarithm of play counts
of users and Y-axis denotes the number of users. It shows that LFM-1b dataset
contains much more active users than #nowplaying-rs. Whereas most of users in
#nowplaying are not quite active, most of users in LFM-1b have middle activity.

For selecting the appropriate context, I used the method that is noted in Sec-
tion 3.1. Figure 4.6 to 4.9 show results in #nowplaying-rs. ‘all’ denotes overall
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Table 4.2: Summary of datasets after pre-processing
#Nowplaying-rs LFM-1b

#LEs 1,835,993 40,761,277
#user 18,946 13,658
#tracks 22,023 139,303

Timestap context PoD, DoW, Hour,
Weekday/Weekend

PoD, DoW, Hour,
Weekday/Weekend

User context Language and UCP cluster Age, Nationality,
and UGP cluster

Signal features

Instrumentalness,
Liveness, Speechiness,
Danceability, Valence,
Tempo, Acousticness,

Energy

-

Figure 4.2: Popularity distribution of music items in #nowplaying-rs
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Figure 4.3: Popularity distribution of music items in LFM-1b

Figure 4.4: Distribution of users’ activity in #nowplaying-rs
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Figure 4.5: Distribution of users’ activity in LFM-1b

popularity distribution. It is observed in Figure 4.6 that the users who speak
Japanese (ja), French (fr), Italian (it), Dutch (nl) and Indonesian (id) have dif-
ferent preference for other users. As shown in Figure 4.7, Monday to Sunday are
encoded to 0-6. The preference of users in the weekend (5, 6) is slightly different
from weekday (0-4). Figure 4.8 shows that users have different preferences in
the morning and evening. It is observed in Figure 4.9, which column/row corre-
sponds to a cluster. Based on the result of preliminary experiment, the number of
clusters is set to 5. The differences of preference among UCP clusters are larger
than other contexts such as shown in Figure 4.6 to 4.8.

For further observation, Figure 4.10 shows a radar chart of UCP clusters.
Each content feature is normalized to [0, 1]. It is observed that users in cluster
0 prefer to play music items that are more emotional (i.e. higher valence and
danceability) and have more voice (i.e. speechiness). Users in cluster 1 prefer
music items that have relatively higher tempo and energy. Users in cluster 2 do
not represent significant preference. (i.e. all of 8 content features are moderate)
Users in cluster 3 are interested in music items that have higher tempo and energy
than users in cluster 1. Moreover, these music items have higher instrumentalness
and liveness. Users in cluster 4 prefer to play music items that are emotional (i.e.
higher valence and danceability) and have relatively higher acousticness.

Figure 4.11 to 4.15 show results in LFM-1b. It is observed that in Figure
4.11 users who are from Indonesia (id), Ukraine (ua), and Netherlands (nl), have
different preferences for other users. Figure 4.12 shows that the difference among
DoW is fewer than that in #nowplaying-rs. As shown in Figure 4.13, users
have different preferences in the morning and evening, which is also observed in
#nowplaying-rs dataset. Figure 4.14 shows that the preference between young
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Figure 4.6: Distance table of ‘language’ in #nowplaying-rs (en: English, es:
Spanish, pt: Portuguese, ja: Japanese, it: Italian, fr: French, uk:British English,
nl: Dutcdh, de: German, and id : Indonesian)
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Figure 4.7: Distance table of ‘day of week’ in #nowplaying-rs

Figure 4.8: Distance table of ‘period of day’ in #nowplaying-rs
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Figure 4.9: Distance table of ‘UCP cluster’ in #nowplaying-rs

users and the elderly is slightly different. As shown in Figure 4.15, which col-
umn/rows corresponds to a cluster. The number of clusters is set to 5, which
is equal to the number of UCP clusters. The differences of preference among
UGP clusters are larger than other contexts such as shown in Figure 4.11 to 4.14.
Summarizing the above, users in LFM-1b do not represent a more significant
difference than users in #nowplaying-rs.

For further observation, Figure 4.16 shows a radar chart of difference among
each UGP clusters. It is observed that preference genre of users in cluster 0 is
easy listening, folk, country, blues, and pop. Users in cluster 1 prefer “gentle”
songs such as jazz, world, reggae, rap and RnB. Users in cluster 2 prefer “heavy”
songs such as rock and heavy metal. Users in cluster 3 more inclined to listen
to a song that has complicated melody such as electronic, classical and spoken
word. Users in cluster 4 are interested in punk, alternative, and pop.

4.2 Experimental setup

As shown in Figure 4.17, this thesis uses a 5-fold real-life split strategy [52]
based cross-validation to evaluate the performance of baseline method wALS and
proposed methods because it is closer to real situation than usual cross-validation.
The 5-fold real-life split strategy based cross-validation is repeated 5 times, and
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Figure 4.10: Difference among each UCP cluster
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Figure 4.11: Distance table of ‘nationality’ in LFM-1b (us: America, br: Brazil,
pl: Poland, ru: Russia, uk:British, de: German, nl: Netherlands, ua: Ukraine,
and id : Indonesian)
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Figure 4.12: Distance table of ‘day of week’ in LFM-1b

Figure 4.13: Distance table of ‘period of day’ in LFM-1b
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Figure 4.14: Distance table of ‘age’ in LFM-1b

Figure 4.15: Distance table of ‘UGP cluster’ in LFM-1b
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Figure 4.16: Difference among each UGP cluster
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t-test is applied to confirm whether or not a significant difference to wALS is
observed. Used parameters are α = 250, f = 15, λ = 0.05 in #nowplaying-rs
and α = 250, f = 35, λ = 0.05 in LFM-1b for wALS, which are defined with
hyper-parameter tuning.

The sample space of negative items for a LE only includes all music items
that were played before the date of this LE. Selecting unreleased music items as
negative sample is not appropriate. Therefore, release date of music items should
be considered. However, the real release date does not exist in these two datasets.
As alternative for the real release date, I considered the day that a music item
was played as release day of this music item because. For the proposed method,
the ratio of negative samples is set to δ = 3. 8 signal features are used to generate
UCP cluster in #nowplaying-rs as described in Sec. 4.1.2. The number of cluster
of both UCP and UGP is set to 5 as noted in Sec. 4.1.3. The number of positive
(LEs) and negative samples are balanced by bootstrap method [54] to avoid the
imbalance problem. Because negative samples are a kind of virtual LE, they are
not used in evaluation but only used in the process of training models (Figure
4.18) for ensuring the fairness of evaluation.

Figure 4.17: Real-life split strategy based cross-validation

Figure 4.18: Negative samples are not used in evaluation but only used in the
process of training models for ensuring the fairness of evaluation.
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4.3 Evaluation metric

This paper employs MPR and MRR to evaluate the performance of each method
for top-N recommendation task.

MPR =

∑
i,j hi,jranki,j∑

i,j hi,j
, (4.1)

MRR =

∑
i,j hi,j(1/ranki,j)∑

i,j hi,j
, (4.2)

where ranki,j represents the percentile-ranking of a music item j in the recom-
mend list for a user i, hi,j corresponds to r(ei) in Equation (3.1): hi,j = 1 if a
user i actually listened a music item j, otherwise 0. This thesis compares MPR
among each method firstly: smaller MPR indicates better performance of Top-N
recommendation. MRR emphasizes importance of music items that are on top
of a recommendation list. This thesis supposes that larger MRR indicates better
performance when two methods do not have significant difference on MPR.

For rating prediction task, this thesis computes RMSE (Root Mean Squared
Error) and Accuracy between predicted rating r̂i and actual rating ri for a i-th
LE in the test data (TestSet). Testset only includes positive samples as noted in
Section 4.2.

RMSE =

√∑
i∈TestSet (ri − r̂i)

2

|TestSet| , (4.3)

Accuracy =

∑
i∈TestSet Sign(r̂i > 0.5)

|TestSet| , (4.4)

where Sign(x) is a sign function to count the number of correct answers: Sign(x) =
1 if x > 0, otherwise 0. This thesis supposes when predicted rating of a music item
is larger than 0.5, this music item would be recommended. That is, Equation
(4.4) means the percentage of items that are recommended correctly. Smaller
RMSE or larger Accuracy indicate more accurate rating prediction.

4.4 Experimental result

4.4.1 Comparison with wALS

Table 4.3 shows MPR with the p-value among wALS, proposed method (Random
Sampling) and proposed method with contexts (UCP cluster, Language, DoW) in
dataset #nowplaying-rs. The last row of this table shows MPR of each method.
The upper part represents the p-value on MPR between different methods. The
result shows that the proposed methods are more accurate than wALS, and its
performance is improved by introducing context information. Table 4.4 shows
MPR with the p-value among wALS, proposed method (Random Sampling) and
proposed with contexts (UGP cluster, Country) in LFM-1b. It observed that the
result is the same as dataset #nowplaying-rs.
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Table 4.3: MPR and p-values for comparison of proposed and baseline methods
on #nowplaying-rs

wALS Proposed method Proposed method
with Contexts

wALS - 0.000251 1.61505e-12
Proposed method 0.000251 - 0.001160
Proposed method
with Contexts 1.61505e-12 0.001160 -

MPR 0.109136 0.104574 0.100718

Table 4.4: MPR and p-values for comparison of proposed and baseline methods
on LFM-1b

wALS Proposed method Proposed method
with Contexts

wALS - 0.002427 2.38048e-07
Proposed method 0.002427 - 0.016985
Proposed method
with Contexts 2.38048e-07 0.016985 -

MPR 0.093303 0.091478 0.090412

4.4.2 Influence of ϵ

Figure 4.19 and Figure 4.20 show MPR against the ratio ϵ of negative samples
to positive samples in dataset #nowplaying-rs and LFM-1b, respectively. In
#nowplaying, it is observed that setting ϵ larger than 1 can obtain more accurate
results than wALS. Although MPR decreases as ϵ increases, the effect is gradual.
The computation time when ϵ = 2 and 6 are 688(s) and 2142(s) per fold in
cross-validation, respectively. A similar trend was observed in LFM-1b except
ϵ = 1. This means that ϵ should be set by considering the balance between time
complexity and accuracy of recommendation.

4.4.3 Sampling method

Table 4.5 shows Top Discount Popularity Sampling by setting different hyper-
parameter γ from 0.1 to 0.5 in #nowplaying-rs (context information is not used
here). Results show that Top Discount Popularity Sampling could not improve
the performance on RMS. However, MPR (p-value=0.006318) and Accuracy (p-
value=0.046119) could be reduced in the case of γ = 0.1. This means that
considering the popularity of music items when selecting negative samples could
improve the performance of both top-N recommendation and rating prediction
in #nowplaying-rs. Contrary to this, Table 4.6 shows the result in LFM-1b. It
is observed that changing value of γ can not effect any metric. Experiments
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Figure 4.19: Effect ϵ on MPR in #nowplaying-rs

Figure 4.20: Effect ϵ on MPR in LFM-1b
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are not done with γ larger than 0.2 because less difference was observed with
γ = 0, 0.1, 0.2. This means that Top Discount Popularity Sampling has no effect
on a relatively dense dataset such as LFM-1b.

Table 4.5: Comparison of Random Sampling and Top Discount Popularity Sam-
pling in #nowplaying

MPR MRR RMSE Accuracy
Random(γ=0) 0.104362 0.018871 0.148141 0.803160

γ=0.1 0.102920 0.019811 0.148332 0.803342
γ=0.2 0.103830 0.021694 0.149531 0.804147
γ=0.3 0.105374 0.020511 0.149552 0.803634
γ=0.4 0.104366 0.022012 0.150619 0.800669
γ=0.5 0.104818 0.021604 0.152607 0.799405

Table 4.6: Comparison of Random Sampling and Top Discount Popularity Sam-
pling in LFM-1b

MPR MRR RMSE Accuracy
Random(γ=0) 0.091355 0.004466 0.159674 0.805466

γ=0.1 0.090973 0.004471 0.159738 0.806025
γ=0.2 0.091372 0.004504 0.160677 0.804989

For investigating performance of Priority Popularity Sampling, Hyper-parameter
δ is changed from 0.1 to 0.5 (context information is not used here). Results of
#nowplaying-rs and LFM-1b are respectively shown in Table 4.7 and Table 4.8.
It is observed that MPR, RMSE, and Accuracy could not be improved by tuning
hyper-parameter δ in #nowplaying-rs. However, MRR (p-value=0.019364) could
be increased when δ=0.1. This means that using Priority Popularity Sampling to
select negative samples could improve the performance of top-N recommendation
partially in #nowplaying-rs. On the contrary, similar to results on Top Discount
Popularity Sampling, all metrics can not be improved in LFM-1b.

Summarizing the above, when a dataset has lower density, proposed popularity-
based sampling methods (Top Discount Popularity Sampling and Priority Pop-
ularity Sampling) have positive effect on top-N recommendation task. Top Dis-
count Popularity Sampling can also outperform Random Sampling on rating pre-
diction task.

4.4.4 Context information

This subsection investigates the performance of proposed method when adding
different context information. Firstly, MPR when using context information is
compared with the method that does not use any context information (None). For
each context information that can outperform None on MPR, t-test is applied to
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Table 4.7: Comparison of Random Sampling and Priority Popularity Sampling
in #nowplaying

MPR MRR RMSE Accuracy
random(δ=0) 0.104362 0.018871 0.148141 0.80316

δ=0.1 0.103891 0.020854 0.148726 0.803371
δ=0.2 0.104105 0.022304 0.150208 0.803075
δ=0.3 0.104891 0.022180 0.151292 0.800238
δ=0.4 0.104534 0.023440 0.152382 0.798227
δ=0.5 0.105671 0.023558 0.152510 0.799101

Table 4.8: Comparison of Random Sampling and Priority Popularity Sampling
in LFM-1b

MPR MRR RMSE Accuracy
random(δ=0) 0.091355 0.004466 0.159674 0.805466

δ=0.1 0.091398 0.004350 0.160110 0.804711
δ=0.2 0.091319 0.004503 0.160501 0.804410

confirm whether or not significant differences of evaluation metrics are observed.
Furthermore, combinations of context information are also evaluated.

Table 4.9 shows the result of recommendations after adding a single context
in #nowplaying-rs. It is observed that MPR of DoW, PoD, Language, and UCP
cluster outperform None. The significant difference in RMSE and Accuracy are
observed in these four contexts. The significant difference in MPR is only ob-
served when using Language and UCP cluster. Form this result, the performance
of each context can be ranked as: UCP > Lang > PoD > DoW. The same ten-
dency is observed in the distance table described in Sec. 4.1.3. The hypothesis
noted in Sec. 3.1: if the difference of users’ preference among each possible value
in a specific context were significant, this context would have a positive effect
on recommendations, is verified in dataset #nowplaying-rs. This means that
context information that has larger differences among possible values tends to
have more positive effect on both top-N recommendation and rating prediction
in #nowplaying-rs.

To improve the effect of UCP clusters further, Lang, PoD, and DoW are
combined with UCP. Table 4.10 shows that MPR can be reduced when combining
UCP with other context. Significant difference of MPR is observed in UCP +
Lang + PoD and UCP + Lang + PoD + DoW. However, difference between of
UCP + Lang + PoD and UCP + Lang + PoD + DoW is not significant on all
metrics. It means that UCP + Lang + PoD is a more efficient combination.

In the case of LFM-1b, Table 4.11 shows that using UGP clusters can improve
performance on MPR. However, significant difference in MPR are not observed
when using any context information. The performance of each context can be
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Table 4.9: Performance of a single context in #nowplaying
MPR MRR RMSE Accuracy

None 0.104362 0.018871 0.148141 0.803160
DoW 0.103748 0.019976 0.136077 0.824848

Is weekday 0.105202 0.018840 0.137105 0.824624
Hour 0.106610 0.018068 0.141158 0.815884
PoD 0.104370 0.020581 0.135286 0.825979

Language 0.104246 0.017990 0.137477 0.821102
UCP 0.102236 0.018978 0.133388 0.828536

Table 4.10: Performance of multiple context in #nowplaying

MPR MRR RMSE Accuracy
UCP 0.102236 0.018978 0.133388 0.828536

UCP + Lang 0.101648 0.018852 0.135147 0.823150
UCP + Lang + PoD 0.100212 0.019355 0.136219 0.822895
UCP + Lang + DoW 0.100984 0.018925 0.133922 0.826638

UCP + Lang + PoD + DoW 0.099829 0.019011 0.135616 0.822533

ranked as: UGP > Country > PoD > DoW > Age. The same tendency is
observed in the distance table described in Sec. 4.1.3 except for Age.

Table 4.11: Performance of single context in LFM-1b
MPR MRR RMSE Accuracy

None 0.091355 0.004466 0.159674 0.805466
Age 0.092033 0.004317 0.158702 0.806177

Country 0.091560 0.004421 0.157233 0.808695
PoD 0.091977 0.004391 0.158082 0.807534
DoW 0.092011 0.004452 0.158475 0.807032
UGP 0.091140 0.004353 0.157800 0.808116

Table 4.12 shows the result when using multiple contexts. It is observed
that combining Country with UGP can improve performance further on MPR.
Significant difference on MPR is observed (p-value=0.016985) between None and
UGP + Country.

These results mean that (1) performance of a single context has the same
tendency as the distance table, (2) combining multiple contexts can improve
performance of recommendation, and (3) using context can only bring limited
improvements in the case of a dense dataset.

42



Table 4.12: Performance of multiple context in LFM-1b
MPR MRR RMSE Accuracy

None 0.091355 0.004466 0.159674 0.805466
UGP + Country 0.090364 0.004370 0.156623 0.809781

Country + Age 0.091402 0.004359 0.157609 0.807607
UGP + Country + Age 0.090574 0.004372 0.157034 0.809520

4.4.5 Content features of music items

Table 4.13 shows the comparison between UCP and signal features of music di-
rectly. “overall” represents that combining all signal features that are used in
generating UCP. It is observed that using some signal features of music items
(instrumentalness, liveness, danceability, valence, acousticness, mode, and en-
ergy) could improve RMSE and Accuracy. However, none of them could improve
MPR. Combining all signal features is not effective as well: it can not outperform
None on any metric. On the other hand, UCP could improve MPR, RMSE and
Accuracy. This result indicates that considering UCP of a user as a context could
improve the performance of both top-N recommendation and rating prediction.

Table 4.13: Performance of UCP
MPR MRR RMSE Accuracy

None 0.104362 0.018871 0.148141 0.803160
instrumentalness 0.109320 0.018943 0.142889 0.810220

liveness 0.104577 0.019000 0.138641 0.819866
speechiness 0.104671 0.019884 0.144179 0.808337
danceability 0.104026 0.020009 0.135582 0.825495

valence 0.104342 0.018399 0.135105 0.825640
tempo 0.193850 0.005062 0.209721 0.694052

acousticness 0.104289 0.019034 0.137100 0.819904
energy 0.106400 0.018468 0.139753 0.821302
overall 0.223682 0.002967 0.212018 0.669973
UCP 0.102236 0.018978 0.131457 0.828536

To find an appropriate number of UCP clusters, I changed the number of
clusters to 3, 5, 8, 10, 15, and 20. The result is shown in Figure 4.21, in which
the shadow indicates standard deviation. Although the standard deviation is not
small, this result indicates that the number of UCP clusters should be set to 5
for dataset #nowplaying.

43



Figure 4.21: Effect number of UGP cluster on MPR
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Chapter 5

Conclusion

This thesis proposed a method for recommending music items considering listen-
ers’ context information without explicit feedback.

This thesis employs FMs, in which the context information is treated as fac-
tors. Kullback-Leibler divergence of playing count distribution under each con-
text was utilized to select relatively effective and appropriate context before a
music item is recommended. UCP/UGP clusters were proposed to integrate sig-
nal features of music items.

FMs needs both positive and negative samples to learn their parameters. Us-
ing combination of context and music items a user has yet to be experienced as
negative samples is a straightforward approach. However, large negative samples
may cause a problem of time complexity. To reduce the number of negative sam-
ples, this thesis employs three types of negative sampling methods: (1) Random
Sampling, (2) Top Discount Popularity Sampling, and (3) Priority Popularity
Sampling. Random sampling randomly selects music items that are not played
by a user under the same context as actual LEs as negative samples. Top Dis-
count Popularity Sampling reduces the probability of selecting a part of unpopular
items as negative samples. Priority Popularity Sampling can tune the probability
of a music item being selected as a negative sample more flexibly depending on
popularity.

The effectiveness of the proposed method and the effect of negative sampling
methods were evaluated with dataset #nowplaying-rs and LFM-1b dataset. Eval-
uation metrics MPR and MRR were used to evaluated performance of proposed
method on top-N recommendation. For rating prediction task, RMSE and Accu-
racy were used. Result of experiment showed that the proposed method outper-
formed wALS, which is one of popular music recommendation algorithms based
on matrix factorization. When dataset has lower density, proposed popularity-
based sampling methods have positive effect on prediction accuracy. It is found
that negative sample ratio of proposed method should be set by considering the
balance between time complexity and accuracy of recommendation. It was also
confirmed that performance of recommendation could be improved further by
using appropriate context information. Using UCP clusters was effective to uti-
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lize signal features of music items. Moreover, the distance table was proposed to
select appropriate context in advance.

In future work, an online experiment could be considered to investigate per-
formance of the proposed method further. A negative sampling method could
also be improved when a dataset has higher density.

Proposed methods can improve the accuracy of previous research wALS by
considering context information, using negative sampling, and integrating signal
features of music items. In the future, the proposed method as well as the finding
about useful context information and negative sampling methods are expected
to contribute to the improvement of existing online music streaming services by
recommending more appropriate music items to users to reduce their information
retrieval costs.
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