
Master’s Thesis

Double Attention-based
Multimodal Neural Machine Translation

with Semantic Image Regions

Yuting Zhao

January 21, 2020

Tokyo Metropolitan University
Graduate School of Systems Design

Department of Computer Science



A Master’s Thesis
submitted to Graduate School of Systems Design,

Tokyo Metropolitan University
in partial fulfillment of the requirements for the degree of

MASTER of ENGINEERING

Yuting Zhao

Thesis Committee:
KOMACHI Mamoru (Supervisor)
YAMAGUCHI Toru (Co-supervisor)
TAKAMA Yasufumi (Co-supervisor)



Double Attention-based
Multimodal Neural Machine Translation

with Semantic Image Regions∗

Yuting Zhao

Abstract

Existing studies on multimodal neural machine translation (MNMT) have mainly fo-
cused on the effect of combining visual and textual modalities to improve translations.
However, it has been suggested that the visual modality is only marginally beneficial.
Conventional visual attention mechanisms have been used to select the visual features
from equally-sized grids generated by convolutional neural networks (CNNs), and may
have had modest effects on aligning the visual concepts associated with textual objects,
because the grid visual features do not capture semantic information. In contrast, we
propose the application of semantic image regions for MNMT by integrating visual
and textual features using two individual attention mechanisms (double attention). We
conducted experiments on the Multi30k dataset and achieved an improvement of 0.5
and 0.9 BLEU points for English→German and English→French translation tasks,
compared with the MNMT with grid visual features.
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1 Introduction

Neural machine translation (NMT) [1, 2] has achieved state-of-the-art translation per-
formance. Recently, many studies [3–5] have been increasingly focusing on incorpo-
rating multimodal contents, particularly images, to improve translations. Hence, re-
searchers in this field have established a shared task called multimodal machine trans-
lation (MMT), which consists of translating a target sentence from a source language
description into another language using information from the image described by the
source sentence.

The first MMT study by [6] demonstrated the potential of improving the translation
quality by using images. To effectively use an image, several subsequent studies [7–9]
incorporated global visual features extracted from the entire image by convolutional
neural networks (CNNs) into a source word sequence or hidden states of a recurrent
neural network (RNN). Furthermore, other studies started using local visual features
in the context of an attention-based NMT. These features were extracted from equally-
sized grids in an image by a CNN. For instance, multimodal attention [10] has been
designed for a mix of text and local visual features. Additionally, double attention
mechanisms [11] have been proposed for text and local visual features, respectively.
Although previous studies improved the use of local visual features and the text modal-
ity, these improvements were moderate. As discussed in [12], these local visual fea-
tures may not be suitable to attention-based NMT, because the attention mechanism
cannot understand complex relationships between textual objects and visual concepts.

Other studies utilized richer local visual features to MNMT such as dense captioning
features [13]. However, their efforts have not convincingly demonstrated that visual
features can improve the translation quality. Caglayan et al. (2019) [14] demonstrated
that, when the textual context is limited, visual features can assist in generating better
translations. MMT models disregard visual features because the quality of the image
features or the way in which they are integrated into the model are not satisfactory.
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Figure 1.1: Overview of our MNMT model.

Therefore, which types of visual features are suitable to MNMT, and how these features
should be integrated into MNMT, still remain open questions.

This paper proposes the integration of semantic image region features into a dou-
ble attention-based NMT architecture. In particular, we combine object detection with
a double attention mechanism to fully exploit visual features for MNMT. As shown
in Figure 1.1, we use the semantic image region features extracted by an object de-
tection model, namely, Faster R-CNN [15]. Compared with the local visual features
extracted from equally-sized grids, we believe that our semantic image region features
contain object attributes and relationships that are important to the source description.
Moreover, we expect that the model would be capable of making selective use of the
extracted semantic image regions when generating a target word. To this end, we in-
tegrate semantic image region features using two attention mechanisms: one for the
semantic image regions and the other one for text.

The main contributions of this study are as follows:

• We verified that the translation quality can significantly be improved by leverag-
ing semantic image regions.

• We integrated semantic image regions into a double attention-based MNMT,
which resulted in the improvement of translation performance above the base-
lines.

2



• We carried out a detailed analysis to identify the advantages and shortcomings
of the proposed model.
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2 Related Work

From the first shared task at WMT 2016,∗ many MMT studies have been conducted.
Existing studies have fused either global or local visual image features into MMT.

2.1 Global visual features

Calixto and Liu [9] incorporated global visual features into source sentence vectors
and encoder/decoder hidden states. As for the best system in WMT 2017,† Caglayan
et al. [16] proposed different methods to incorporate global visual features based on
attention-based NMT such as initial encoder/decoder hidden states using element-wise
multiplication. Delbrouck and Dupont [17] proposed a variation of the conditional
gated recurrent unit decoder, which receives the global visual features as input. Al-
though their results surpassed the performance of the NMT baseline, the visual fea-
tures of an entire image are complex and non-specific, so that the effect of the image
is not fully exerted.

2.2 Local visual features

2.2.1 Grid visual features

Fukui et al. [18] applied multimodal compact bilinear pooling to combine the grid
visual features and text vectors, but their model does not convincingly surpass a text-
only NMT baseline. Caglayan et al. [19] integrated local visual features extracted by
ResNet-50 [20] and source text vectors into an NMT decoder using shared transfor-
mation. They reported that the results obtained by their method did not surpass the

∗http://www.statmt.org/wmt16/multimodal-task.html
†http://www.statmt.org/wmt17/multimodal-task.html
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results obtained by text-only NMT. Caglayan, Barrault, and Bougares [10] proposed
a multimodal attention mechanism based on [19]. They integrated two modalities by
computing the multimodal context vector, wherein the local visual features were ex-
tracted by the ResNet-50. Because the grid regions do not contain semantic visual
features, the multimodal attention mechanism can not capture useful information with
grid visual features.

Therefore, instead of multimodal attention, Calixto, Liu, and Campbell [11] pro-
posed two individual attention mechanisms focusing on two modalities. Similarly,
Libovický and Helcl [21] proposed two attention strategies that can be applied to all
hidden layers or context vectors of each modality. But they still used grid visual fea-
tures. Elliott et al. [22] considered the quality of learning visually grounded represen-
tations, but they only selected three methods to extract the grid features, and there is
not much improvement between the three methods. Caglayan et al. [16] integrated a
text context vector and visual context vectors extracted by grid visual features to gen-
erate a multimodal context vector. Their results did not surpass those of the baseline
NMT for the English–German task.

Helcl et al. [23] set an additional attention sub-layer after the self-attention based
on the Transformer architecture, and integrated grid visual features extracted by a pre-
trained CNN. Caglayan et al. [24] enhanced the multimodal attention into the filtered
attention, which filters out grid regions irrelevant to translation and focuses on the most
important part of the grid visual features. They made efforts to integrate a stronger
attention function, but the considered regions were still grid visual features.

2.2.2 Image region visual features

Huang et al. [8] extracted global visual features from entire images using a CNN and
four regional bounding boxes from an image by an R-CNN.‡ They integrated the fea-
tures into the beginning or end of the encoder hidden states. Because the global visual
features were unable to provide extra supplementary information, they achieved slight
improvement above the attention-based NMT.

Toyama et al. [25] proposed a transformation to mix global visual feature vectors
and object-level visual feature vectors extracted by a Fast R-CNN.§ They incorporated

‡https://github.com/rbgirshick/rcnn
§https://github.com/rbgirshick/fast-rcnn
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multiple image features into the encoder as the head of the source sequence and tar-
get sequence. Their model does not benefit from the object-level regions because the
integration method cannot adequately handle visual feature sequences. Delbrouck,
Dupont, and Seddati [13] used two types of visual features, which had been extracted
by ResNet-50, and DenseCap¶. They integrated the features into their multimodal em-
beddings and found that the regional visual features (extracted by DenseCap) resulted
in improved translations. However, they did not clarify whether the improvement in
the regional visual features was brought by the multimodal embeddings or the attention
model.

For the best system in WMT 2018,‖ different types of visual features have been
used in [26], such as the scene type, action type, and object type. They integrated these
features into the transformer architecture using multimodal settings. However, they
found that the visual features only exerted a minor effect in their system. Anderson et
al. [27] proposed a bottom-up model, which calculates attention at the level of image
regions. This model was used in visual question answering and image captioning tasks.

¶https://github.com/jcjohnson/densecap
‖http://www.statmt.org/wmt18/multimodal-task.html
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3 Faster R-CNN

Faster region-based convolutional neural network (Faster R-CNN [15]) is a model that
performs object detection as shown in Figure 3.1. The following steps are adopted in
a Faster R-CNN model:

• The model processes an image from a dataset with a convolutional neural net-
work (CNN) to generate a feature map on the last convolutional layer.

• The generated feature map is processed by a separately trained network, called
the region proposal network (RPN), that outputs regions of interest (RoIs).

• The RoIs from RPN are processed by a region of interest pooling (RoI pooling)
layer and several fully connected (FC) layers to output object classes and refined
bounding box coordinates.

Visual
Genome

Dataset

img

CNN

feature
map

RoIs

ResNet-
101

RoI 
Pooling

Regression

Classification

Generate
Anchors

FC

RPN

Figure 3.1: The architecture of Faster R-CNN.
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3.1 Convolutional neural network (CNN)

We take an image as input and pass it to a CNN which generates a feature map for that
image. The CNN is generally composed of convolutional layers, pooling layers and the
last layer which is a FC layer that will be used for an specific task like classification
or detection. Many pre-trained models are developed to directly use them without
training, like VGG19, ResNet50 and ResNet101 [20].

3.2 Region proposal network (RPN)

The RPN is a small neural network that generates proposals for objects. It slides on the
generated feature map from the last convolutional layer and finds all possible bounding
boxes where objects can be located. In other words, the RPN ranks region boxes
(called anchors) and proposes the ones most likely containing objects. The output of
this network is a list of bounding boxes including the likely positions of objects. These
are called RoIs.

3.3 Region of interest pooling (RoI pooling)

A RoI pooling layer is used to rescale all the RoIs into the same size. The FC layer
always expects the same input size, but input RoIs to the FC layer may have different
sizes. The function of the RoI pooling is to perform max pooling over inputs of variable
sizes into a fixed length output. In this stage, the RoI pooling extracts object feature
vectors which correspond to the RoIs. The vectors are used as semantic image region
features with the dimension of 2048.

3.4 Prediction

At the end of the model, for every RoI, the model uses another FC layer to decide
whether it belongs to one of the target classes and to refine the coordinates of bounding
boxes.
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4 MNMT with Semantic Image
Regions

In Figure 4.1, our model comprises three parts: the source-sentence side, source-image
side, and decoder. Inspired by [11], we integrated the visual features using an inde-
pendent attention mechanism. From the source sentence X = (x1, x2, x3, · · ·, xn)
to the target sentence Y = (y1, y2, y3, · · ·, ym), the image-attention mechanism fo-
cuses on all semantic image regions to calculate the image context vector zt, while
the text-attention mechanism computes the text context vector ct. The decoder uses
a conditional gated recurrent unit (cGRU)∗ with attention mechanisms to generate the
current hidden state st and target word yt.

At time step t, first, a hidden state proposal ŝt is computed in cGRU, as presented
below, and then used to calculate the image context vector zt and text context vector
ct.

ξ̂t = σ(WξEY [yt−1] + Uξst−1)
γ̂t = σ(WγEY [yt−1] + Uγst−1)
s̈t = tanh (WEY [yt−1] + γ̂t � (Ust−1))
ŝt = (1− ξ̂t)� s̈t + ξ̂t � st−1

(4.1)

whereWξ, Uξ,Wγ , Uγ ,W , and U are training parameters; EY is the target word vector.

4.1 Source-sentence side

The source sentence side comprises a bi-directional GRU encoder and “soft" attention
mechanism [28]. Given a source sentenceX = (x1, x2, x3, · · ·, xn), the encoder updates

∗https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf
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Figure 4.1: Our model of double attention-based MNMT with semantic image regions.

the forward GRU hidden states by reading x from left to right, generates the forward
annotation vectors (

−→
h1,
−→
h2,
−→
h3, · · ·,

−→
hn), and finally updates the backward GRU with the

annotation vectors (
←−
h1,
←−
h2,
←−
h3, · · ·,

←−
hn). By concatenating the forward and backward

vectors hi = [−→hi ;
←−
hi ], every hi encodes the entire sentence while focusing on the xi

word, and all words in a sentence are denoted as C = (h1, h2, · · ·, hn). At each time
step t, the text context vector ct is generated as follows:

etext
t,i = (V text)Ttanh(U textŝt +W texthi)
αtext
t,i = softmax(etext

t,i )

ct =
n∑
i=1

αtext
t,i hi

(4.2)

where V text, U text, and W text are training parameters; etext
t,i is the attention energy;

αtext
t,i is the attention weight matrix of the source sentence.
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Figure 4.2: Comparing between (a) coarse grids and (b) semantic image regions.

4.2 Source-image side

In this part, we discuss the integration of semantic image regions into MNMT using an
image attention mechanism.

4.2.1 Semantic image region feature extraction

As shown in Figure 4.2, instead of extracting equally-sized grid features using CNNs,
we extract semantic image region features using object detection. This study applied
the Faster R-CNN in conjunction with the ResNet-101 CNN pre-trained on Visual
Genome [29] to extract 100 semantic image region features from each image. Each
semantic image region feature is a vector r with a dimension of 2048, and all of these
features in an image are denoted as R = (r1, r2, r3, · · ·, r100).

4.2.2 Image-attention mechanism

The image-attention mechanism is also a type of “soft" attention. This mechanism
focuses on 100 semantic image region feature vectors at every time step and computes
the image context vector zt.

First, we calculate the attention energy eimg
t,p , which is an attention model that scores

the degree of output matching between the inputs around position p and the output at

11
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position t, as follows:

eimg
t,p = (V img)Ttanh(U imgŝt +W imgrp) (4.3)

where V img, U img, and W img are training parameters. Then the weight matrix αimg
t,p of

each rp is computed as follows:

αimg
t,p = softmax(eimg

t,p ) (4.4)

(4.5)

At each time step, the image-attention mechanism dynamically focuses on the semantic
image region features and computes the image context vector zt, as follows:

zt = βt
100∑
p=1

αimg
t,p rp (4.6)

For zt, at each decoding time step t, a gating scalar βt ∈ [0, 1] [28] is used to adjust the
proportion of the image context vector according to the previous hidden state of the
decoder st−1.

βt = σ(Wβst−1 + bβ) (4.7)

where Wβ and bβ are training parameters.

4.3 Decoder

At each time step t of the decoder, the new hidden state st is computed in cGRU, as
follows:

ξt = σ(W text
ξ ct +W img

ξ zt + Ūξŝt)
γt = σ(W text

γ ct +W img
γ zt + Ūγ ŝt)

s̄t = tanh (W textct +W imgzt + γt � (Ū ŝt))
st = (1− ξt)� s̄t + ξt � ŝt

(4.8)

where W text
ξ , W img

ξ , Ūξ, W text
γ , W img

γ , Ūγ , W text, W img, and Ū are model parameters;
ξt and γt are the output of the update/reset gates; s̄t is the proposed updated hidden
state.

12



Finally, the conditional probability of generating a target word p(yt|yt−1, st, C,R) is
computed by a nonlinear, potentially multi-layered function, as follows:

softmax(Lotanh(Lsst + Lcct + Lzzt + LwEY [yt−1])) (4.9)

where Lo, Ls, Lc, Lz, and Lw are training parameters.

13



5 Experiments

5.1 Dataset

We conducted experiments for the English→German (En→De) and English→French
(En→Fr) tasks using the Multi30k dataset [30]. The dataset contains 29k training and
1,014 validation images. For testing, we used the 2016 testset, which contains 1,000
images. Each image was paired with image descriptions expressed by both the original
English sentences and the sentences translated into multiple languages.

For preprocessing, we lowercased and tokenized the English, German, and French
descriptions with the scripts in the Moses SMT Toolkit.∗ Subsequently, we converted
the space-separated tokens into subword units using the byte pair encoding (BPE)
model.†

5.2 Settings

5.2.1 Ours

We integrated the semantic image regions by modifying the double attention model
of [11]. In the source-sentence, we reused the original implementation. In the source-
image, we modified the image attention mechanism to focus on 100 semantic image
region features with a dimension of 2048 at each time step. The parameter settings
were consistent with the baseline doubly-attentive MNMT model, wherein we set the
hidden state dimension of the 2-layer GRU encoder and 2-layer cGRU decoder to 500,
source word embedding dimension to 500, batch size to 40, beam size to 5, text dropout
to 0.3, and image region dropout to 0.5. We trained the model using stochastic gradient

∗https://github.com/moses-smt/mosesdecoder
†https://github.com/rsennrich/subword-nmt
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descent with ADADELTA [31] and a learning rate of 0.002, for 25 epochs. Finally,
after both the validation perplexity and accuracy converged, we selected the converged
model for testing.

5.2.2 Baseline doubly-attentive MNM

We trained a doubly-attentive MNMT model‡ as a baseline. For the text side, the imple-
mentation was based on OpenNMT model.§ For the image side, attention was applied
to the visual features extracted from 14×14 image grids by CNNs. For the image fea-
ture extraction, we compared three pre-trained CNN methods: VGG-19, ResNet-50,
and ResNet-101.

5.2.3 Baseline OpenNMT

We trained a text-only attentive NMT model using OpenNMT as the other baseline.
The model was trained on En→De and En→Fr, wherein only the textual part of
Multi30k was used. The model comprised a 2-layer bidirectional GRU encoder and
2-layer cGRU decoder with attention.

We used the original implementations and ensured the parameters were consistent
with our model.

5.3 Evaluation

We evaluated the quality of the translation according to the BLEU [32] and METEOR
[33] metrics. We trained all models (baselines and proposed model) three times and
calculated the BLEU and METEOR scores. Based on the calculation results, we report
the mean and standard deviation over three runs.

Moreover, we report the statistical significance with bootstrap resampling [34] using
the merger of three test translation results. We defined the threshold for the statistical
significance test as 0.01, and report only if the p-value was less than the threshold.

‡https://github.com/iacercalixto/MultimodalNMT
§https://github.com/OpenNMT/OpenNMT-py
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6 Results

In Table 6.1, we present the results for the OpenNMT, doubly-attentive MNMT [11],
our model and Caglayan et al. [16] on Multi30k dataset.

Comparing the baselines, the doubly-attentive MNMT outperformed OpenNMT by
1.8 BLEU points and 1.7 METEOR points for En→De, and by 0.7 BLEU points and
0.3 METEOR points for En→Fr. Because there did not exist a big difference amongst
the three image feature extraction methods for the doubly-attentive MNMT model, we
only used ResNet-101 in our model.

Compared with the OpenNMT baseline, the proposed model improved the BLEU
scores by 2.3 points and METEOR scores by 2.1 points for En→De. Additionally,
it improved the BLEU scores by 1.6 points and the METEOR scores by 1.1 points
for En→Fr. The results obtained by this study are significantly better than the results
obtained by the baseline for both tasks with a p-value < 0.01.

Compared with the doubly-attentive MNMT (ResNet-101) baseline, the proposed
model improved the BLEU scores by 0.5 points and the METEOR scores by 0.4 points
for En→De. Additionally, it improved the BLEU scores by 0.9 points and the ME-
TEOR scores by 0.8 points for En→Fr. Moreover, the results are significantly better
than the baseline results with a p-value < 0.01.

For comparison with [16], we report their results for the text-only NMT baseline,
grid-based MNMT method and global-based MNMT method. With the grid-based
method, their results failed to surpass the text-only NMT baseline for En→De with
regard to both metrics, and surpassed the text-only NMT baseline by 1.0 BLEU points
and 0.8 METEOR points for En→Fr. With the global-based method, their results
surpassed the text-only NMT baseline by 0.7 BLEU points and 0.2 METEOR points
for En→De, and by 2 BLEU points and 1.6 METEOR points for En→Fr.

For En→De, their global-based method achieved higher scores than our model. In
terms of relative improvement compared with the text-only NMT baseline, their re-

16



sults improved the BLEU score by 1.8% and METEOR score by 0.3%. In contrast,
our model improved the BLEU score by 6.6% and METEOR score by 3.9%. For
En→Fr, our results surpassed their results with regard to both methods. In terms of
improvement compared with the text-only NMT baseline, their results improved the
BLEU score by 1.9% and METEOR score by 1.1% with the grid-based method and
improved the BLEU score by 3.8% and METEOR score by 2.3% with the global-based
method. Our model improved the BLEU score by 2.8% and METEOR score by 1.5%.

Hence, when using local visual features, our model achieves the best improvement
compared with previous methods. However, the improvement achieved by our model
does not surpass the improvement achieved by their global-based method.

17

yasufumi
Highlight
I think it is not good to close the thesis saying negative things about the proposed method.



En→De En→Fr

Model BLEU METEOR BLEU METEOR

OpenNMT (text-only) 34.7±0.3 53.2±0.4 56.6±0.1 72.1±0.1

Calixto et al. [11] (VGG-19) 36.4±0.2 55.0±0.1 57.4±0.4 72.4±0.4
Calixto et al. [11] (ResNet-50) 36.5±0.2 54.9±0.4 57.5±0.4 72.6±0.4
Calixto et al. [11] (ResNet-101) 36.5±0.3 54.9±0.3 57.3±0.2 72.4±0.2

Ours 37.0±0.1† 55.3±0.2 58.2±0.5†‡ 73.2±0.2
vs. OpenNMT (↑ 2.3) (↑ 2.1) (↑ 1.6) (↑ 1.1)
vs. Calixto et al. [11] (↑ 0.5) (↑ 0.4) (↑ 0.8) (↑ 0.9)

Caglayan et al. [16] (text-only) 38.1±0.8 57.3±0.5 52.5±0.3 69.6±0.1
Caglayan et al. [16] (grid) 37.0±0.8 57.0±0.3 53.5±0.8 70.4±0.6
Caglayan et al. [16] (global) 38.8±0.5 57.5±0.2 54.5±0.8 71.2±0.4

Table 6.1: BLEU and METEOR scores for different models on the En→De and
En→Fr 2016 testset of Multi30k. All scores are averages of three runs.
We present the results using the mean and the standard deviation. † and ‡
indicate that the result is significantly better than OpenNMT and double-
attentive MNMT [11] (ResNet-101) at p-value < 0.01, respectively. Addi-
tionally, we report the best results of using grid and global visual features
on Multi30k dataset according to [16], which is the state-of-the-art system
for En→De translation on this dataset.
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7 Analysis

7.1 Pairwise evaluation of translations

We investigated 50 examples from the En→Fr task to evaluate our model in detail. We
compared the translations of our model with the baselines to identify improvement or
deterioration in the translation. Then we categorized all examples into five types: 1)
those whose translation performance were better than both baselines; 2) those whose
translation performance were better than the doubly-attentive MNMT (ResNet-101)
baseline; 3) those whose translation performance were better than the OpenNMT base-
line; 4) those whose translation performance did not change; 5) those whose translation
performance deteriorated. We counted the number and proportion of all types.

In Table 7.1, we can see that in nearly half of the examples, the translation perfor-
mance is better than at least one baseline. Moreover, amongst a total of 50 examples,
14 examples are better than the doubly-attentive MNMT (ResNet-101) baseline and
just two examples of local deterioration were found compared with the baselines.

7.2 Qualitative analysis

In Figure 7.1, we chose four examples to analyze our model in detail. The first two
rows explain the advantages of our model, while the last two rows explain the short-
comings.

At each time step, the semantic image region is shown with deep or shallow trans-
parency in the image, according to its assigned attention weight. As the weight in-
creases, the image region becomes more transparent. Considering the number of 100
bounding boxes in one image and the overlapping areas, we visualized the top five
weighted semantic image regions. The most weighted image region is indicated by the
blue lines, and the target word generated at that time step is indicated by the red text
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Better than both MNMT/NMT baselines 8 (16%)
Better than MNMT baseline 6 (12%)
Better than NMT baseline 10 (20%)
No change 24 (48%)
Deteriorated 2 (4%)

Table 7.1: The amount and proportion of each type of examples in all investigated
examples.

along with the bounding box. Then, we analyzed whether the semantic image regions
had a positive or negative effect at the time step when the target word was generated.

7.2.1 Advantages

In the first row, we can see that our model is better at translating the verb “grabbing"
compared with both baselines. For the text-only OpenNMT, the translation of the word
“grabbing” is incorrect. In English it is translated as “strolling with.” The doubly-
attentive MNMT (ResNet-101) translated “grab” into “agrippe,” which failed to trans-
form the verb into the present participle form. In contrast, although the reference is
“saisissant” and our model generated “agrippant," the two words are synonyms. Our
approach improved the translation performance both in terms of meaning and verb de-
formation, owing to the semantic image regions. We visualized the consecutive time
steps of generating the word “agrippant” in context. Along with the generation of
“agrippant,” the attention focused on the image region where the action was being
performed, and thus captured the state of the action at that moment.

In the second row, the noun “terrier” could not be translated by the baselines. This
word means “a lively little dog” in English. As we can see, when the target word
“terrier” was generated in our model, the attented semantic image region at that time
step provided the exact object-level visual feature to the translation.
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a man in a blue coat grabbing a young boy’s shoulder .Source (En)

Reference (Fr)

NMT

MNMT

Ours

un homme en manteau bleu se baladant avec (strolling with) l’s épaule d’s un jeune garçon .

un homme en manteau bleu agrippe (grab) l’s épaule d’s un jeune garçon .

un homme en manteau bleu agrippant (grabbing) l’s épaule d’s un jeune garçon .

un homme en manteau bleu saisissant l’s épaule d's un jeune garçon .

un terrier de boston court sur l's herbe verdoyante devant une clôture blanche .

Source (En)

Reference (Fr)

NMT

MNMT

Ours

un garde (guard) de boston court sur l's herbe souple devant une clôture blanche .

un croreur (croror) court sur l's herbe verte devant une clôture blanche .

un terrier (terrier) de boston terrier court sur l's herbe verte devant une clôture blanche .

a boston terrier is running on lush green grass in front of a white fence .

un petit enfant avec un t-shirt bleu et blanc tenant joyeusement un alligator en plastique jaune .

Source (En)

Reference (Fr)

NMT

MNMT

Ours

un petit enfant vêtu d's un t-shirt bleu et blanc 
brandissant (brandishing) une bouteille (bottle) en plastique jaune .

un petit enfant vêtu d's un t-shirt bleu et blanc 
tenant (holding) un fusil (rifle) en plastique jaune .

un petit enfant vêtu d's un t-shirt bleu et blanc 
met (put) joyeusement (happily) une forme (shape) en plastique jaune .

a small child wearing a blue and white t-shirt happily holding a yellow plastic alligator .

des hommes jouant au volleyball , avec un joueur ratant le ballon mais avec les mains toujours en l's air .

Source (En)

Reference (Fr)

NMT

MNMT

Ours

des hommes jouant au volleyball , un joueur à l's attraper , mais les autres mains ayant toujours dans les airs .

des hommes jouant au volley-ball , avec un joueur qui le regarde dans les airs (in the air) .

des hommes jouant au volleyball , avec un joueur qui passer le ballon mais les mains du vol (of the flight).

 men playing volleyball , with one player missing the ball but hands still in the air .

terrier

agri@@ p@@ pant

met joyeusement forme

du vol

Figure 7.1: Translations from the baselines and our model for comparison. We high-
light the words that distinguish the results. Blue words are marked for
better translation and red words are marked for worse translation. We also
visualize the semantic image regions that the words attend to.

7.2.2 Shortcomings

The example in the third row reflects improvement and deficiency. Both baselines
lack the sentence components of the adverbial “happily.” In contrast, our model trans-
lated “happily” into “joyeusement,” which is a better translation than both baselines.
However, according to the image, the semantic image region with the largest attention
weight did not carry the facial expression of a boy.

Although the maximum weight of the semantic image region was not accurately
assigned, other heavily weighted semantic image regions, which contain the object
attributes, may assist the translation. There may be two reasons for this: the function
of the attention mechanism is not sufficiently effective, or there exists an excessive
amount of semantic image regions.

On the other hand, for the generation of the word “holding” and “alligator,” the most
weighted semantic image regions were not closely attended to. There was a slight
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deviation between the image regions and semantics. Owing to the inaccuracy of the
image region that was drawn upon the object, the semantic feature was not adequately
extracted. This indicates that the lack of specificity in the visual feature quality can
diminish the detail of the information being conveyed.

In the last row, we presented one of the two examples with local deterioration. The
“air” is correctly translated by baselines. However, our model translated “in the air”
into “du vol (of the flight).” We observed that the transparent semantic image regions
with the five top weights in the image were very scattered and unconnected. Amongst
them, none of the semantic image regions matched the feature of “air." We speculate
that the word “air” is difficult to interpret depending on visual features. On the other
hand, our model translated it into “vol (flight),” which is close to another meaning of
the polysemous “air," not something else.

7.2.3 Summary

In our model, the improvement of translation performance benefits from semantic im-
age regions. The semantic image region visual features include the object, object at-
tributes, and scene understanding, may assist the model in performing a better transla-
tion on the verb, noun, adverb and so on.

On the other hand, our model also has some problems:

• In some cases, although the translation performance improved, the image at-
tention mechanism did not assign the maximum weight to the most appropriate
semantic image region.

• When the object attributes cannot be specifically represented by image regions,
incorrect visual features conveyed by the semantic image regions may interfere
with the translation performance.

• If the image attention mechanism leads to the wrong focused semantic image
region, it will bring negative effects on translation performance.

In our investigation, we did not identify any clear examples of successful disam-
biguation. In contrast, there is one example of detrimental results upon disambigua-
tion. If the semantic image regions did not have good coverage of the semantic features
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or the image attention mechanism worked poorly, the disambiguation of polysemous
words would not only fail, but ambiguous translation would also take place.
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8 Conclusion

The thesis proposed a model that integrates semantic image regions with two individual
attention mechanisms. We achieved significantly improved translation performance
above two baselines, and verified that this improvement mainly benefited from the
semantic image regions. Additionally, we analyzed the advantages and shortcomings
of our model by comparing examples and visualization of semantic image regions. In
the future, we plan to use much finer visual information such as instance semantic
segmentation to improve the quality of visual features. In addition, as English entity
and image region alignment has been manually annotated to the Multi30k dataset, we
plan to use it as supervision to improve accuracy of the attention mechanism.
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