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Vibhor Jain 

 
 

ABSTRACT 

When one is in transit, different kinds of non-stationary noises may arise.  Moreover, 

in different countries non-stationary noise intensity levels may vary significantly from 

location to location.  For example, in a market in India the intensity of noise will be much 

higher than that found in a market in the United States.  Currently, however, artificial 

intelligence (AI) -driven headsets are trained on a generic noise-related dataset that is used 

to filter out noise.  To address these types of challenges, techniques are presented herein 

that support an AI-based, state of the art, intelligent, and interactive algorithm that will 

detect current headset location based on a geolocation tag and invoke the appropriate 

specialized purposely-built pre-trained flows to cancel or suppress noise.   

 

 

DETAILED DESCRIPTION 

Background noise is annoying, and it occurs everywhere.  Such noise becomes most 

awkward when one is in transit and either speaking over a phone or listening to music.  

During an important call while in transit, for example, the listeners on the other end of the 

call may encounter difficulties in listening to the speaker if the speaker travels by public 

transport or passes through crowded places such as, for example, a market, a bus terminus, 

a railway station, an airport, etc. 

Currently most headphones either come with Active Noise Control (ANC) to 

reduce the ambient noise or have a multimicrophone driven noise suppression mechanism. 

Costlier headsets are normally equipped with soundproofing or a digital signal processor 

(DSP) driven noise separator or suppressor (e.g., single microphone). 

With the advent of AI, deep neural networks (DNN) have been designed to more 

effectively suppress noise (using software).  Such an approach employs training to identify 

stationary and non-stationary noises that are to be filtered. 
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When one is in transit, different kinds of non-stationary noises may arise.  Moreover, 

in different countries the intensity level of non-stationary noise may vary significantly from 

location to location.  For example, in a market in India the intensity of noise will be much 

higher than that found in a market in the United States.  Similarly, a public transport in a 

third world country will produce more noise than that in any first world country where a 

transport may have, for example, soundproofing means.   

Presently, all of the AI driven headsets are trained on a generic noise related dataset 

to filter out noise (outbound and inbound) from a human voice.  However, in a multi-party 

call involving participants from multiple countries, the effectiveness of such headsets is 

reduced if some of the participants are in transit and passing through noisy locations.  Those 

headsets do not work satisfactorily in all the countries while travelling by public transport 

or passing through crowded and noisy places.  Most of the headset users in the densely 

populated countries (such as, for example, India, Pakistan, Egypt, Sri Lanka, Nepal, etc.) 

face this problem while taking a call or listening to music in transit. 

As noted previously, different kinds of non-stationary noises may come along with 

primary speech or sound while in transit.  In different countries, the intensity level of the 

non-stationary noise may vary significantly from location to location even for the same 

location type.  Hence, a generic noise suppression or cancellation algorithm in the headset 

will not be completely effective in filtering out noise from the speech or sound when the 

users are employing it in crowded public places like, for example, a market, a railway 

station, a bus terminus, an airport, etc. or within public transport like, for example, a bus, 

a train, a metro-rail, a tram, etc.  A more advanced, interactive, and intelligent noise 

suppression or cancellation algorithm is needed in order to accurately filter out the noise 

in those situations.  

To address the types of challenges that were described above, techniques are 

presented herein that employ two core principles: 

1. Identifying the location (e.g., geolocation) of a headset and classifying the type 

of location (e.g., place, transport, etc.). 

2. Applying an intelligent algorithm to decide the most appropriate degree of noise 

suppression or cancellation (such as, for example, masking) as per the location 

and location type. 
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It is quite obvious that the instant problem falls into an interactive class and, 

therefore, reinforcement learning (RL) is the best fit, which will use the location of the 

headset as the environment parameter to decide noise filtration strategy accordingly. 

Under aspects of the techniques presented herein the algorithm, which was referred 

to above, may be characterized as comprising, possibly among other things, the following 

elements: 

 Data preparation steps. 

 Training phases. 

 Runtime flow. 

Each of these elements will be described in the narrative and the illustrations that 

follow. 

A first element, comprising various data preparation steps, may include, possibly 

among other things, the following steps: 

 Pre-classifying the types of location based on different noise characteristics 

and intensity of noise levels (e.g., high, medium, low for environments like 

a market, a stadium, a railway station, a bus terminus, an airport, a bus, a 

train, a shuttle, a place of worship, etc.). 

 Pre-classifying the countries (and, optionally, the most important cities in a 

country) as per environmental noise levels (e.g., collected over a 

predetermined period of time). 

 For every group of countries, based on a geolocation tag pre-locate all of 

the location types (and surrounding areas up to a certain limit) depending 

upon different levels of environmental noise, the process includes creating 

a normal distribution of the noise dataset along with mean, median, or mode 

(whatever makes sense) and a standard deviation (e.g., on the basis of day 

by day, or day of the week, etc.) for every location type in every group of 

countries.  These values will aid in creating the synthetic noisy sound from 

the country-location type-noise matrix for training and validation purposes. 

 Creating RL training datasets containing the noise suppression or 

cancellation strategies for the entries in the above datasets. 
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The strategies can be purposely-built pre-trained flows (or already available entities 

such as, for example, Krisp or BabbleLabs application programming interfaces (APIs)) 

which must have the knowledge of the above variations of location based noises and 

capability to properly filter them (for, as an example, a location-type and environmental-

noise-group-of-country based AI noise masking model). Various steps associated with this 

flow are depicted in Figure 1, below. 

 

 

Figure 1: Illustrative Data Preparation Steps 

 

For the second element involving training phases, there are two primary models in 

the proposed RL-based workflow along with enhanced noise masking agents (AI model / 

available capable 3rd party APIs).  One model will be of a multi-label supervised type, 

which will work as the environment to guide the actual RL model in recommending the 

most appropriate noise filtration strategy. Another model (internally two DNN models, also 

known as Double Deep Q-Learning model or Double DQN) will be of RL type, which will 

interact with the Environment model to decide the best noise suppression/cancellation 

strategy that will yield the maximum reward.  Figures 2A and 2B, below, illustrate example 

details associated with a DQN architecture. 
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Figure 2A: Illustrative DQN Architecture 

 

 

Figure 2B: Illustrative DQN Paradigm of Figure 2A 
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The models will be trained on their respective datasets.  Optionally, there may as 

well be additional purposely-built AI models (existing models need to be enhanced) which 

will be trained on the previously described environmental-noise-group-of-country specific 

various location-type based noises and corresponding clean sound or speech.  It should be 

noted that the difference is that earlier though the training data used to contain various 

kinds of non-stationary noises, country and respective location based noise characteristics 

were not emphasized.  Hence, the models could not effectively learn the variations of 

noises from country to country even for the same location types. 

The purposely-built pre-trained flows (including any optional AI models or already 

available entities such as, for example, Krisp or BabbleLabs APIs) must be enhanced to 

learn the previously described variations of noise based on location and environmental-

noise-group-of-country.  There must be dedicated flows or APIs corresponding to each 

environmental-noise-group-of-country.  The RL-based noise filtration strategy 

recommendation flow will then select the most appropriate pre-trained flow with the help 

of the environmental model in order to filter out the noise from the speech or sound.  The 

proposed sample training flows are illustrated in Figure 3 and 4, below. 

 

 

Figure 3: Illustrative Training Flow Steps 
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Figure 4: Illustrative Training Flow Steps 

 
For the third element encompassing a runtime flow, headsets will be equipped with 

a geolocation tracker and the proposed RL-based noise filtration strategy recommender.  

The proposed sample runtime flow has been illustrated in Figure 5, below.  For the 

purposely-built pre-trained noise filtration flows, there may be two hosting options: 

 Option-1: For a cloud based calling solution, the purposely-built pre-trained 

noise filtration flows will be hosted in the media server on the cloud for 

maximum scalability. 

 Option-2: For all kinds of calling solutions (e.g., cloud, hybrid, on-premise, etc.) 

the headsets need to be equipped with the appropriate environmental-noise-

group-of-country specific purposely-built pre-trained noise filtration flows. The 

headsets may be provisioned accordingly from, for example, a vendor’s cloud 

environment based on the location of the user. 

 
The runtime flow may include identifying the current location (via geolocation 

tagging) of the headset, which will be used to classify the type of location (e.g., place or 

transport) along with the environmental noise group of the country.  Additional information 

(such as, for example, the day of the week) may optionally be provided for more 

sophisticated and intelligent noise filtration. 
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Based on the collected and compiled location data, the pretrained RL model, with 

the help of pretrained environmental model, will recommend the best noise suppression or 

cancellation strategy that will yield the maximum reward.  The recommended strategy 

specific purposely-built pre-trained noise filtration flow may be activated (either in the 

headset or on the cloud) to filter out the noise from both inbound or outbound sound/speech. 

 

Figure 5: Illustrative Overall Flow Steps 

 
An illustration of elements of the overall solution architecture, employing aspects 

of the techniques presented herein, is depicted in Figure 6, below. 

 

Figure 6: Overall Solution Architecture 
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Of interest and note in connection with the techniques that are presented herein, are 

that, earlier though the training data used to contain various kinds of non-stationary noises, 

country and respective location based noise characteristics were not emphasized.  Thus, 

the models could not effectively learn the variations of noises from country to country even 

for the same location types.  Under aspects of the techniques presented herein, the 

previously described purposely-built pre-trained flows (including any optional AI models 

or already available entities such as, for example, Krisp or BabbleLabs APIs) must be 

enhanced to learn those variations of noise based on location and environmental-noise-

group-of-country.  There must be dedicated flows or APIs corresponding to each 

environmental-noise-group-of-country. 

In general, the RL approach's problem is that it has an associated exploration cost, 

and the initial learning of the environment could degrade the overall user experience.  

Additionally, different country based location specific noise characteristics complicate the 

scenarios further.  However, under aspects of the techniques presented herein the algorithm 

that was described and illustrated above along with the purposely-built pre-trained flows 

help to suppress the initial exploration cost. 

Further, for real time noise filtration, the latency must be minimal.  Hence, cloud 

based noise filtration is an obvious choice for the maximum scalability and performance in 

concurrent voice stream processing.  Alternatively, as discussed above in the runtime flow 

element, environmental-noise-group-of-country specific purposely-built pre-trained noise 

filtration models can be pushed to the headset from the cloud for minimum latency.  

However, this may warrant very lightweight and highly optimized AI-based noise filters 

due to hardware limitations in the headset. 

The usage of Krisp or BabbleLabs APIs to filter noise is also an option. However, 

cloud-based media handling is the most suitable hosting option for the same.  Further, the 

APIs may need to be enhanced to learn the previously described variations of noise based 

on location and environmental-noise-group-of-country. 

If existing AI-based noise filtration mechanisms, instead of the techniques that have 

been presented herein, are employed to solve the problems that were discussed above, the 

models need to be trained on the different country based location specific noise 

characteristics for the accurate suppression or cancellation of the noise from the sound or 
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speech (inbound and outbound).  It will complicate the model architecture and increase 

their size, which in turn will demand more processing power and memory from the hosting 

platform.  Obviously, those models cannot be hosted in the headset due to its limited 

capability.  A cloud approach is the only solution in that case which may increase the 

latency.  The overall dataset will also be quite complicated.  Aspects of the techniques 

presented herein have demonstrated the flexibility in this regard where the purposely-built 

noise filter models can be optimized for each environmental-noise-group-of-country and 

thus can be accommodated in the headset in addition to cloud.  Further, the training dataset 

can also be simplified due to a limited scope. 

Additionally, the total number of purposely-built pre-trained flows should be 

optimum for better model or flow management purposes.  As described above, this step is 

optional since existing Krisp or BabbleLabs APIs may be used as the purposely-built pre-

trained flows.  Otherwise, the following algorithm may be followed to create the dataset, 

which will help to decide the optimum number of specialized purposely-built pre-trained 

flows: 

 
1. Determine the types of location based on the different intensity of noise 

levels and noise characteristics. 

2. As per environmental noise levels, classify the countries into multiple 

noise-groups (e.g., high, moderately high, moderate, low, etc.). 

3. For every noise-group of countries, create the noise level dataset for 

different types of locations (see #1 above). 

4. For every noise-group of countries: 

A. Create different noise bands based on noise characteristics obtained 

from the noise level dataset and attach the location types with them.  

Every noise-group should contain at the most four such noise bands. 

B. Create a training dataset corresponding to every noise band in every 

noise group by capturing and synthesizing relevant noises for that band 

(in the context of relevant location types). 

C. Create a specialized AI model for every noise band and train the same 

on the training data. 
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5. Thus for all the noise-group of countries at the most there can be approximately 

16 to 20 specialized purposely-built pre-trained flows which will be trained on 

handling varieties of noises in different locations around the world. 

6. There can be some commonalities among a few noise bands belonging to 

various noise-group of countries.  With proper exploratory data analysis (EDA) 

one can further optimize them and thus in turn the total number of specialized 

purposely-built pre-trained flows will be optimized as well. 

 

The above approach will aid in developing a complete and moreover intelligent and 

specialized noise suppression or cancellation mechanism that can handle any kind of 

unwanted noise across the globe. 

As described previously, in different countries around the world non-stationary 

noise intensity levels vary significantly from location to location, whereas current AI-

driven headsets are trained on a generic noise related dataset to filter out noise.  It is well 

known that acoustic data is highly nonlinear, not quite smooth, and speech processing is 

quite complicated from an AI algorithm efficiency perspective. Even after employing 

manifold learning, the data manifold remains complicated in case of acoustic dataset.  

Hence, if one focuses on using location specific noise data from across the globe for the 

most efficient noise handling purpose by a generic model, the model will become quite 

complicated and may not be that efficient.  However, through aspects of the techniques 

presented herein the specialized purposely-built models will be trained on the proposed 

noise band of data (which ought to contain a huge dataset of good varieties in that band) 

which can be managed (e.g., high dimension to low dimension conversion) very easily 

using manifold learning and the models will definitely outperform the existing generic 

model or flow. 

In summary, techniques have been presented that support an AI based, state of the 

art, intelligent, and interactive algorithm that will detect current headset location based on 

a geolocation tag and invoke the appropriate specialized purposely-built pre-trained flows 

to cancel or suppress noise. 
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