
Machine Learning for Diagnosis of AD and
Prediction of MCI Progression From Brain MRI
Using Brain Anatomical Analysis Using
Diffeomorphic Deformation.

著者 SYAIFULLAH Ali Haidar, SHIINO Akihiko,
KITAHARA Hitoshi, ITOH Ryuta, ISHIDA Manabu,
TANIGAKI Kenji

journal or
publication title

Frontiers in Neurology

volume 11
year 2021-02-05
URL http://hdl.handle.net/10422/00012920

doi: 10.3389/fneur.2020.576029(https://doi.org/10.3389/fneur.2020.576029)

 This is an open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.



ORIGINAL RESEARCH
published: 05 February 2021

doi: 10.3389/fneur.2020.576029

Frontiers in Neurology | www.frontiersin.org 1 February 2021 | Volume 11 | Article 576029

Edited by:

Enzo Grossi,

Villa Santa Maria Scs, Italy

Reviewed by:

Kewei Chen,

Banner Alzheimer’s Institute,

United States

Antonio Giuliano Zippo,

Italian National Research Council, Italy

*Correspondence:

Akihiko Shiino

shiino@belle.shiga-med.ac.jp

Specialty section:

This article was submitted to

Dementia and Neurodegenerative

Diseases,

a section of the journal

Frontiers in Neurology

Received: 25 June 2020

Accepted: 21 December 2020

Published: 05 February 2021

Citation:

Syaifullah AH, Shiino A, Kitahara H,

Ito R, Ishida M and Tanigaki K (2021)

Machine Learning for Diagnosis of AD

and Prediction of MCI Progression

From Brain MRI Using Brain

Anatomical Analysis Using

Diffeomorphic Deformation.

Front. Neurol. 11:576029.

doi: 10.3389/fneur.2020.576029

Machine Learning for Diagnosis of
AD and Prediction of MCI
Progression From Brain MRI Using
Brain Anatomical Analysis Using
Diffeomorphic Deformation
Ali Haidar Syaifullah 1,2, Akihiko Shiino 1*, Hitoshi Kitahara 3, Ryuta Ito 3, Manabu Ishida 4

and Kenji Tanigaki 5 on behalf of Alzheimer’s Disease Neuroimaging Initiative

1Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga, Japan, 2Center for the

Epidemiological Research in Asia (CERA), Shiga University of Medical Science, Shiga, Japan, 3Department of Radiology,

Shiga University of Medical Science, Shiga, Japan, 4Department of Neurology, Shimane University, Shimane, Japan,
5 Research Institute, Shiga Medical Center, Shiga, Japan

Background: With the growing momentum for the adoption of machine learning (ML)

in medical field, it is likely that reliance on ML for imaging will become routine over the

next few years. We have developed a software named BAAD, which uses ML algorithms

for the diagnosis of Alzheimer’s disease (AD) and prediction of mild cognitive impairment

(MCI) progression.

Methods: We constructed an algorithm by combining a support vector machine (SVM)

to classify and a voxel-based morphometry (VBM) to reduce concerned variables. We

grouped progressive MCI and AD as an AD spectrum and trained SVM according

to this classification. We randomly selected half from the total 1,314 subjects of AD

neuroimaging Initiative (ADNI) fromNorth America for SVM training, and the remaining half

were used for validation to fine-tune the model hyperparameters. We created two types

of SVMs, one based solely on the brain structure (SVMst), and the other based on both

the brain structure and Mini-Mental State Examination score (SVMcog). We compared

the model performance with two expert neuroradiologists, and further evaluated it in

test datasets involving 519, 592, 69, and 128 subjects from the Australian Imaging,

Biomarker & Lifestyle Flagship Study of Aging (AIBL), Japanese ADNI, the Minimal Interval

Resonance Imaging in AD (MIDIAD) and the Open Access Series of Imaging Studies

(OASIS), respectively.

Results: BAAD’s SVMs outperformed radiologists for AD diagnosis in a structural

magnetic resonance imaging review. The accuracy of the two radiologists was 57.5 and

70.0%, respectively, whereas, that of the SVMst was 90.5%. The diagnostic accuracy

of the SVMst and SVMcog in the test datasets ranged from 88.0 to 97.1% and 92.5 to

100%, respectively. The prediction accuracy for MCI progression was 83.0% in SVMst

and 85.0% in SVMcog. In the AD spectrum classified by SVMst, 87.1% of the subjects

were Aβ positive according to an AV-45 positron emission tomography. Similarly, among

MCI patients classified for the AD spectrum, 89.5% of the subjects progressed to AD.
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Conclusion: Our ML has shown high performance in AD diagnosis and prediction of

MCI progression. It outperformed expert radiologists, and is expected to provide support

in clinical practice.

Keywords: artificial inteligence, cognitive impairment, Alzheheimer’s disease, machine learning, support vector

machine, magnetic resonance imaging, ADNI

INTRODUCTION

Approximately 50 million people have dementia worldwide,
with almost 10 million new cases annually. Alzheimer’s disease
(AD) is the most common form of dementia and contributes
to well over 50% of cases. In machine learning (ML), data are
transferred by functions into a high-dimensional mathematical
space to properly form clusters. The number of dimensions
corresponds to the number of concerned variables, and ML
enables the handling of a large number of variables to analyze the
data. In high-dimensional space, it is easier to find a separable
boundary. However, as the dimension increases, the data become
sparse, and more data are needed to obtain an optimal solution.
This is known as the “curse of dimensionality.” In situations
where the amount of available data is limited, it is necessary
to devise an appropriate way to incorporate the configuration
of concerned variables to reduce the number of variables used.
If the data scientist is familiar with the meaning of the dataset
and its numerical features, important variables can be selected
intentionally. An alternative method is using prior operations,
such as voxel-based morphometry (VBM), which normalizes the
brain shape and scales the regional brain volumes by adjusting
for brain size, age, gender, etc. Selecting which ML algorithm
to use is crucial, as each has its own strengths and weaknesses.
For example, when analyzing a large amount of data, deep
learning (DL) often outperforms other alternativeML algorithms
through representation learning and self-optimization. However,
the learning process of DL cannot be fully interpreted; it is
difficult to validate the results, and the preparation of a large
amount of data is a practical challenge. When the data size is
small (∼1,000), a support vector machine (SVM) can perform
well when combined with prior operations such as VBM. As is
often the case with medical image data, if the available data are
small, it is effective to standardize the data by VBM prior to
machine learning. Here, we introduce a software named brain
anatomical analysis using diffeomorphic deformation (BAAD)
that enables image analysis with ML, combining VBM and SVM
for the diagnosis of Alzheimer’s disease (AD) and prediction of
mild cognitive impairment (MCI) progression to AD.

Hippocampal atrophy is one of the diagnostic biomarkers
for AD; however, how do clinicians objectively evaluate it (see
Figure 1). There are several ways to measure the hippocampal
volume including manual delineation, automated techniques,
and qualitative ratings. Several reports have proven that manual
and automated measurements are well-correlated to one another
(1, 2). In this study, we used a software named voxel-
based specific regional analysis system for Alzheimer’s disease
(VSRAD) as an example of an automated technique, which has
been widely used in clinical practice in Japan. The details of

the method are available elsewhere (3). VSRAD has a region of
interest (ROI) in the medial temporal structures, such as the
entorhinal cortex, hippocampus, and amygdala, where atrophy is
common in AD patients. VSRAD presented a z-score of the ROI
by comparing individuals to healthy subjects aged 54–86 years,
with a mean age of 70.4 ± 7.8 years (4). The illustrative case in
Figure 1 is of a 56-year-old woman who began to complain of
subjective memory disturbance after retirement. VSRAD showed
z-scores of 1.25 and 1.47 for the left and right medial temporal
regions, respectively, suggesting mild shrinkage of the regions.

The BAAD software developed in this study (http://www.
shiga-med.ac.jp/~hqbioph/BAAD(English)/BAAD.html) also
uses VBM but includes algorithmic analysis not found in
VSRAD. In the case shown in Figure 1, BAAD shows z-scores
of 2.78 and 3.70 in the left and right hippocampi, respectively.
The reason for the difference in z-scores between VSRAD and
BAAD was partly owing to the differences in VBM procedures
and ROI location, but mainly because of the statistical design.
The mean age of the reference group provided by VSRAD was
approximately 70 years, which is relatively higher than the
subject’s age of 58 years, resulting in underestimation of brain
atrophy of the ROIs. BAAD uses age as a covariate, resulting in
age corrected z-scores of the hippocampi that are more accurate
for the subject’s age. As shown in this example, when assessing
hippocampal atrophy, we may unknowingly compare the size
with that of a subject of approximately 70 years old, which is
common in AD patients. Moreover, the ML in BAAD showed
an AD likelihood score of 0.944 (max = 1), indicating high
probability of AD. This ML predicts AD based on information in
entire brain regions as well as the hippocampus.

MATERIALS AND METHODS

Procedures of VBM and Regional Brain
Volume Evaluation in Each Individual of
BAAD
VBM is a computational morphometric analysis to evaluate
regional brain volume and statistically examine the shape of
the brain, using statistical parametric mapping (SPM) software,
as first proposed by Ashburner et al. (5). The flow of VBM
processing in the BAAD software is shown in Figure 2.
Details of the standard VBM procedure are available elsewhere
(6). The brain is extracted from 3D MR images by skull
striping, segmented into gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF), and warped into Montreal
Neurological Institute (MNI) space. Tissue segmentation and
intensity of non-uniformity (INU) removal are performed using
Computational Anatomy Toolbox (CAT) 12 developed by the
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FIGURE 1 | An illustrative brain MRI of a patient with complainant of memory impairment. A 56-year-old woman. After her retirement, she noticed her forgetfulness.

She soon forgot what she had done and began to ask the same questions over and over. Later, as her symptoms gradually progressed, she was escorted to the

hospital by her family. Her MMSE score was 28 points. The hippocampus is indicated by arrows.

Structural Brain Mapping Group at the University of Jena. This
toolbox is designed to be an extension of the segmentation
in SPM12, and there are several different ways to segment.
The most notable difference is the adoption of an Adaptive
Maximum A Posterior (AMAP) technique which avoids using
prior probability information for tissue probabilities (7). Prior
probabilities are derived from a large number of “normal young”
subjects and are used for Bayesian rules to assign the probability
that each voxel belongs to a given tissue class. The obtained
posterior probabilities are treated as partial volumes in SPM.
This processing causes standardization of the segmented images,
risking the of trimming outliers that may result from pathological

changes of the brain. Therefore, tissue probability maps were
only used for spatial normalization, initial skull stripping,
and initial segmentation estimation. The distribution of signal
intensity in GM may differ between cortical surface and deep
structures, such as the basal ganglia and thalamus. Therefore,
Gaussian segmentation is performed separately in surface and
deep regions. For noise reduction, a spatial-adaptive Non-Local
Means (SANLM) denoising filter (8) and Markov Random Field
(MRF) approach are applied during AMAP segmentation.

Coordinate transformation from native space to MNI space
was performed using Diffeomorphic Anatomical Registration
Through Exponentiated Lie Algebra (DARTEL) algorithm (9).
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FIGURE 2 | General flow diagram of VBM procedure of the BAAD. Brain is extracted from 3D MR images by skull striping, segmented into gray matter (c1), white

matter (c2), and cerebrospinal fluid (c3), and warped into MNI space (w) using DARTEL algorithm. The change of a voxel volume is converted into a voxel signal by

“modulation” procedure (m). Finally the data are smoothed to obtain smwc (smoothed, modulated, warped, segmented) images.
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FIGURE 3 | Bayesian optimization of “bayesopt” in MATLAB. This figure shows an example of a Bayesian optimization object by using bayesopt to minimize

cross-validation loss. Optimize hyperparameters of a k nearest neighbors (KNN) classifier for the ionosphere data, that is, find KNN hyperparameters that minimize the

cross-validation loss.

This is a type of large deformation diffeomorphic metric
mapping (LDDMM) that allows processing of brains with large
deformations, such as atrophic brains. During the coordinate
transformation, it is necessary to reflect the volume change of the
voxels according to the migration distance of each voxel caused
by the brain deformation. In this transformation procedure, the
change in voxel volume is converted into a voxel signal. The
templates for DARTEL are created from 550 healthy control
subjects of the IXI database.

To reduce the number of feature vectors for the SVM classifier,
BAAD uses multiple sets of adaptive ROIs instead of the voxel-
wise method (10). There are two ways to obtain the values
of the ROI; averaging the values of voxels in the ROI, and
the ROI-wise method using ROI as a unit. Theoretically, the
results of these methods should be the same, but the voxel-wise
method is more susceptible to noise than the ROI-wise method.
Therefore, BAAD adopted the MarsBar toolbox (http://marsbar.
sourceforge.net) to perform ROI-wise analysis using preset ROIs
for automated anatomical labeling (AAL), Brodmann’s atlas, and

the LONI Probabilistic Brain atlas (LPBA40). Each atlas has ROIs
of 108, 118, and 56, respectively. In this process, local volume
was adjusted by total intracranial volume (TIV) and age. We
did not include sex as a covariate, as it was empirically known
that sex differences were offset by TIV. For z-score estimation,
BAAD used subjects over age 50 in the IXI database as a
reference, with age and TIV as confounding factors. Z-scores
were derived from ([control mean] – [individual value])/(control
standard deviation).

ADLS and Hyperparameter Tuning of SVM
We expressed the likelihood of the AD brain as the Alzheimer’s
disease likelihood score (ADLS), which represents the distance
to the separating hyperplane. ADLS is obtained from the
posterior probability function, Pr =

(

Y = k|X = x
)

, where
the probability Y is the class k given that the input variable
X is x. The probability is transformed by a sigmoid function
so that the value is within the range of [0, 1]. The larger
the value, the higher the likelihood of AD. We used radial
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TABLE 1 | Demographic features of the North American ADNI.

ADNI (North America) AD spectrum Non-AD spectrum

AD (359) pMCI (284) sMCI (128)+ NL (543)

Number of subjects 179 180 142 142 64 64 271 272

Age 75.8 ± 7.9 74.8 ± 7.9 74.4 ± 6.9 74.0 ± 7.4 72.7 ± 7.5 72.4 ± 8.1 75.0 ± 5.8 73.5 ± 5.8

Sex (M/F) 106/73 88/92 89/53 82/60 45/19 35/29 139/132 122/150

MMSE 23.2 ± 2.1 23.2 ± 2.0 26.8 ± 1.8 26.9 ± 1.7 27.9 ± 1.6 28.2 ± 1.8 29.0 ± 1.1 29.1 ± 1.2

ApoE* num (%) 22 1 (25.0) 0 0 3 (75.0)

23 10 (11.0) 6 (6.6) 8 (8.8) 67 (73.6)

33 103 (18.1) 85 (15.0) 75 (13.2) 305 (53.7)

24 7 (26.9) 7 (26.9) 5 (19.2) 7 (26.9)

34 159 (34.4) 139 (30.1) 34 (7.4) 130 (28.1)

44 66 (50.4) 47 (35.9) 6 (4.6) 12 (9.2)

ADNI, Alzheimer’s disease neuroimaging Initiative; AD, Alzheimer’s disease; MCI, mild cognitive impairment; pMCI, progressive MCI; sMCI, stable MCI; NL, normal subjects; MMSE,

Mini-Mental State Examination; ApoE, apolipoprotein E.

+, First 260 subjects were selected as sMCI, later 132 subjects were removed because of short observation periods.

*, ApoE was not examined in 13 AD and 19 NL.

Italic numbers are subjects selected for validation.

TABLE 2 | Demographic features of the subjects used in this study.

AIBL JADNI MIRIAD OASIS

Group NL (447) AD (72) NL (165) AD (158) sMCI*(129) pMCI (140) NL (23) AD (46) NL (98) AD (30)

Age 72.4 ± 6.2 73.1 ± 7.9 68.2 ± 5.6 74.1 ± 6.6 72.8 ± 6.0 73.6 ± 5.6 69.7 ± 7.2 69.5 ± 7.0 75.9 ± 9.0 78.0 ± 6.9

sex (M/F) 192/254+ 30/42 78/87 68/90 76/53 59/81 12/11 19/27 26/72 10/20

MMSE 28.7 ± 1.2 20.5 ± 5.6 29.2 ± 1.2 22.5 ± 1.8 26.8 ± 1.9 26.0 ± 1.6 29.5 ± 0.9 17.4 ± 5.8 29.0 ± 1.2 21.2 ± 4.0

AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of Aging; JADNI, Japanese Alzheimer’s disease neuroimaging Initiative; MIRIAD, Minimal Interval Resonance Imaging in

AD; OASIS, Open Access Series of Imaging Studies; MMSE, Mini-Mental State Examination; AD, Alzheimer’s disease; NL, normal subjects; sMCI, stable MCI; pMCI, progressive MCI.

*, Not meeting the criteria being stable for 4years or more.

+, Sex of one subject was unknown in AIBL study.

The pairs in highlighted box are p < 0.001 (t-test).

basis function (RBF) for the SVM kernel, and the values
of parameters were optimized using the Alzheimer’s disease
neuroimaging initiative (ADNI) database. The basic principal of
SVM is explained in the Supplementary Section. For training
and validation, we introduced a spatial-anatomical method by
providing the z-score of the ROIs as a feature vector. Leave-one-
out cross validation was used to obtain unbiased estimates and to
avoid over-fitting in this procedure. A mathematical procedure
was performed using the “fitcsvm” function implemented in
MATLAB R2016b (MathWorks, Natick, Massachusetts, USA).
The sequential minimal optimization (SMO) algorithm and
“bayesopt” were used for the optimization of the parameters
(Figure 3). Finally, the created model was used in the validation
dataset to fine-tune the model hyperparameters by comparing it
to the training dataset. The validation dataset helps to refine the
range of hyperparameters in the model and ultimately provides
an unbiased fitting model on the dataset.

Participants and Data Source
We used ADNI data from three countries; North America (NA-
ADNI), Australia (Australian Imaging, Biomarker & Lifestyle
Flagship Study of Aging AIBL)), and Japan (JADNI). Data

from North America and Australia were extracted from the
LONI Image and DATA Archive (ida.loni.usc.edu). Data from
Japan were extracted from the National Bioscience Database
Center (hum0043.v1). More information about the database
can be found at adni-info.org. The NA-ADNI was launched
in 2003, and started in 2004 as a longitudinal, multicenter
cohort study of healthy elderly and individuals with MCI and
early AD. AIBL and JADNI were launched in 2006 and 2007,
respectively. More information on the diagnostic criteria can
be found on the ADNI web site (http://www.adni-info.org/
Scientists/AboutADNI.aspx).

We selected 1,446 subjects from NA-ADNI database
consisting of 543 cognitively normal (NL), 544 MCI and 359 AD
participants. We classified MCI patients into progressive MCI

(pMCI) and stable MCI (sMCI), depending on the progression
to AD or not. Of the sMCI cases, 132 subjects were excluded

because of the short observation period (<4 years), which will

be discussed in more detail later in the paper. The training set
consisted of 723 randomly selected subjects, and the remaining
723 subjects created the validation set (Table 1). To verify the
generalization capability of the ML, we used a database of 519,
592, 69, and 128 adults over 60 years from the AIBL, JADNI,
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FIGURE 4 | Performance of the SVMs in training and validation set from NA-ADNI. Upper row, results of separation between normal (NL) and Alzheimer’s disease (AD)

of the SVMst and SVMcog. Lower row, results of separation between AD spectrum and non-AD spectrum. Numerical values in the graph indicate area under the

curve (AUC). MCC, Matthews correlation coefficient. The optimal cut-off point was determined by Youden Index.

FIGURE 5 | Performance of the SVMs in several cohorts. The cutoff in ADNI, AIBL, JADNI, and MIRIAD uses the respective optimal values. AIBL, Australian Imaging,

Biomarker & Lifestyle Flagship Study of Aging; JADNI, Japanese ADNI; MIRIAD, Minimal Interval Resonance Imaging in AD; OASIS, Open Access Series of Imaging

Studies. Numerical values in the graph indicate area under the curve (AUC). MCC, Matthews correlation coefficient.
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TABLE 3 | Diagnostic ability for AD/NL by SVMst and SVMcog in several cohorts.

SVMst (0.5) SVMcog (0.5)

Database NA-ADNI AIBL JADNI MIRIAD OASIS NA-ADNI AIBL JADNI MIRIAD OASIS

AD/NL 180/272 72/447 158/165 46/23 30/98 180/272 72/447 158/165 46/23 30/98

AUC (%) 0.9563 0.9535 0.9461 0.9934 0.9371 0.9908 0.9789 0.9930 1.0000 0.9871

Accuracy (%) 88.9 89.2 88.0 94.2 90.6 93.8 92.5 95.3 100.0 93.0

Sensitivity (%) 87.2 94.4 85.1 97.8 96.7 93.3 93.1 95.3 100.0 93.3

Specificity (%) 90.1 88.4 90.8 87.0 88.8 94.1 92.4 95.4 100.0 92.9

PPV (%) 85.3 56.7 90.0 93.8 72.5 91.3 66.3 95.3 100.0 80.0

NPV (%) 91.4 99.0 86.3 95.2 98.9 95.5 98.8 95.4 100.0 97.8

F1 (%) 86.3 70.8 87.5 95.7 82.9 92.3 77.5 95.3 100.0 86.2

MCC (%) 77.0 67.9 76.1 86.9 78.1 87.1 74.6 90.7 100.0 81.9

The numbers in parentheses indicate the cutoff value.

AD, Alzheimer’s disease; NL, Normal subjects; ADNI, Alzheimer’s disease neuroimaging Initiative; NA-ADNI, North American ADNI; AIBL, Australian Imaging, Biomarker & Lifestyle

Flagship Study of Aging; JADNI, Japanese ADNI; MIRIAD, Minimal Interval Resonance Imaging in AD; OASIS, Open Access Series of Imaging Studies. PPV, positive predictive value

(=precision); NPV, negative predictive rate; AUC, area under the curve; MCC, Matthews correlation coefficient.

Minimal Interval Resonance Imaging in Alzheimer’s Disease
(MIRIAD), and Open Access Series of Imaging Studies (OASIS)
cross-sectional databases, respectively (Table 2). The MIRIAD
study was designed to investigate the feasibility of using magnetic
resonance imaging (MRI) as an outcome measure in clinical
trials for AD treatment. Details of the study can be found at
the MIRIAD web site (https://www.ucl.ac.uk/drc/research/
methods/minimal-interval-resonance-imaging-alzheimers-
disease-miriad). OASIS provides freely available data and the
details are available elsewhere (11).

Structural MR images of the brain were acquired with 1.5T
(ADNI1, AIBL, JADNI) and 3.0T (ADNI-GO, ADNI2) scanners
from several vendors including Philips Medical Systems, Siemens
and GE healthcare. All images were scanned under the
ADNI protocol conditions with 3D-sagittal plane slices and
magnetization prepared rapid acquisition gradient echo sequence
(MPRAGE) sequence (12). In the case of the GE scanner, the
MPRAGE was used for the ADNI-1 phase, then switched to fast
spoiled gradient echo with an inversion recovery preparation (IR-
FSPGR) sequence for the ADNI-GO and ADNI-2 phases. The
details of the MRI protocol are available elsewhere (13). In the
MIRIAD study, brain structural MR images were acquired using
an IR-FSPGR sequence on a 1.5 T Signa MRI scanner (14). In the
OASIS study, brain structuralMR images were acquired using the
MPRAGE sequence on a 1.5 T Siemens Vision scanner.

Machine Learning for AD Spectrum
MCI is a transitional stage between normal aging and dementia.
It is estimated that between 5 and 20% of people over 65 years
of age have MCI, and the annual rate of progression to AD is
10–15% among persons with amnestic MCI (15). However, it has
become apparent that only 50% convert to AD even in a long-
term follow-up period (16). The 3-year progression rates to AD
were 50 and 49% in prodromal AD meeting the IWG-1 criteria,
and intermediate AD likelihood meeting the NIA-AA criteria,
respectively (17). In this study, using the NA-ADNI database,
52.2% (284) of 544 MCI patients progressed to AD. Of the MCI
patients who converted to AD during follow-up, 87.3% converted

TABLE 4 | Accuracy of AD diagnosis by two neuroradiologists with and without

VSRAD support.

Radiologist 1 Radiologist 2 SVMst

VSRAD assistance before after before after –

Accuracy (%) 57.5 70.0 70.0 73.0 90.5

Sensitivity (%) 55.0 72.0 69.0 67.0 91.0

Specificity (%) 60.0 68.0 71.0 79.0 90.0

PPV (%) 57.9 69.2 70.4 76.1 90.1

NPV (%) 57.1 70.8 69.6 70.5 90.9

F1 (%) 56.4 70.6 69.7 71.3 90.5

MCC (%) 15.0 40.0 40.0 46.3 81.0

The cutoff value of the SVMst was ADLS > 0.5.

PPV, positive predictive value (=precision); NPV, negative predictive rate; AUC, area under

the curve; MCC, Matthews correlation coefficient.

within 1 year, and 95.8% converted within 3 years. Therefore, we
defined sMCI asMCI patients who had not progressed for 4 years
and more. Of the 260 sMCI subjects initially selected, 132 with
<4 years of follow-up were excluded, and of the remaining 128
sMCI subjects, 65 were grouped for training and 63 for evaluation
(Table 1). The observation period for pMCI ranged from 6 to 108
months, with a mean (SD) of 43.0 (23.6) months and a median
of 36 months. The observation period for sMCI ranged from 48
to 120 months, with a mean (SD) of 63.0 (21.8) months and a
median of 60 months.

AD can be conceptualized as a biological and clinical
continuum from the preclinical phase (clinically asymptomatic
subjects with AD pathology) to the clinical phase. Therefore, the
preclinical and clinical phases are a seamless sequence. Diagnosis
of MCI can be accomplished according to prescribed criteria
at the research level, but it may be difficult to implement the
same complex protocols in clinical practice. Therefore, it is better
not to dwell on the distinction between MCI from normal (NL)
or AD. For this reason, we labeled AD and pMCI as being in
the AD spectrum, and NL and sMCI as being in the non-AD
spectrum for SVM learning. We randomly extracted 321 AD
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spectrum (179 AD and 142 pMCI) and 335 non-AD spectrum
images from the NA-ADNI database (271 NL and 64 sMCI)
(Table 1), and used this dataset to train the SVM, named SVMst.
A Mini-Mental State Exam (MMSE) score was added for SVM
learning, named SVMcog, because the assessment of cognitive
ability was important for the diagnosis of dementia. The rest of
322 AD spectrum and 336 non-AD spectrum images were used
as validation set to fine-tune the hyperparameters.

Neuroradiologists
Two neuroradiologists (RI and HK) independently and blindly
reviewed the structural MR images. Both neuroradiologists are
board-certified experts in Japan with more than 20 years of
clinical experience. MR images of 100 AD and 100 NL subjects
were randomly selected from the NA-ADNI database, and any
information other than age and gender of the subjects was not
disclosed to the radiologists. First, 10 AD and 10 NL subjects
were extracted from the sets and used for training. Second, a
few days later, the radiologists were asked to diagnose AD or
NL from the 200 structural images using MRIcron software
(University of Nottingham School of Psychology, Nottingham,
UK; www.mricro.com). Third, after completion of the initial
diagnosis, the radiologists were allowed tomodify their diagnoses
with reference to the results of VSRAD.

Amyloid Positron Emission Tomography
(PET)
Amyloid PET images were obtained from different PET scanners,
manufactured by GE, Siemens, and Philips. The dynamic 3D
acquisition method was used, consisting of 4 frames of a 5-min
scan during 30∼60min interval after the intravenous injection
of 370 MBq (∼10 mCi) of 18F-AV-45 (florbetapir). To define
four cortical gray matter regions (frontal, anterior/posterior
cingulate, lateral parietal, lateral temporal), brain MRI for
each subject was segmented and parcellated with FreeSurfer
(version 5.3.0). The standardized uptake value ratio (SUVR) was
calculated by creating a conventional (non-weighted) average
across the four main cortical regions and was normalized by
the entire cerebellum reference region. Data were downloaded
from the LONI web site (https://ida.loni.usc.edu/login.jsp). The
SUVR cutoff value was defined above 1.11 according to the
recommendation of UC Berkeley (18).

Statistical Analyses
Kaplan-Meier and other statistical analyses were performed
with JMP R© software (version 14.3, SAS Institute, Cary, NC).
The receiver operating characteristic (ROC) curve was used
to evaluate the ability of the model for classifying disease. To
obtain maximum potential effectiveness, optimal cut-off point
was determined by Youden Index. The equations of accuracy,
sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), F1, and Matthews correlation coefficient
(MCC) are available elsewhere (19, 20). MCC is the geometric
mean of the regression coefficients of the problem and its dual,
and is robust against imbalanced classes. A significance level was
set at p < 0.05.

TABLE 5 | Prediction of MCI conversion.

NA-ADNI NA-ADNI* JADNI*

SVMst SVMcog VSRAD SVMst SVMcog SVMst SVMcog

AUC 0.9064 0.9019 0.7407 0.9400 0.9632 0.9240 0.9697

Accuracy (%) 83.0 85.0 62.1 87.2 90.6 86.4 91.2

Sensitivity (%) 81.7 83.8 54.2 81.7 83.8 81.0 86.0

Specificity (%) 85.9 87.5 79.7 90.1 94.1 90.8 95.4

PPV 92.8 93.7 85.6 81.1 88.1 87.5 93.7

NPV 67.9 70.9 44.0 90.4 91.8 85.7 89.5

F1 86.9 88.5 66.4 81.4 85.9 84.1 89.7

MCC 64.1 67.9 31.6 71.6 78.9 72.5 82.3

The subjects of the NA-ADNI were selected as validation set.

The cut-off values of SVMst and SVMcog were set as ADLS > 0.5.

*, discrimination between pMCI and cognitively normal subject.

PPV, positive predictive value (=precision); NPV, negative predictive rate; AUC, area under

the curve; MCC, Matthews correlation coefficient.

RESULTS

AD-NL Classification by BAAD ML
The results of the ML performance for AD diagnosis in the NA-
ADNI (training and validation set, see Table 1) are shown in
Figure 4. We showed the ROC curves and the AUC to illustrate
the performance of the algorithm. The values for diagnostic
accuracy were obtained according to the optimal cutoff value
derived from Youden’s index. Both SVMst and SVMcog showed
very high accuracy for AD/NL or spectrums of AD/non-AD
classification. The hyper-parameters of SVMs appear to be
adequately optimized because the area under the curve (AUC)
value did not change drastically in the validation set.

The performance of the SVMs in other databases (test
datasets, see Table 2) is shown in Figure 5. The classification
accuracy for SVMst was approximately 90%. The diagnostic
accuracy of the SVMcog became higher than that of SVMst by
using the MMSE score, maintaining 95% in all databases. The
performance was recalculated with the cuttoff value of ADLS >

0.5 because the optimal cut-off value for AD diagnosis of ADLS in
the NA-ADNI database was 0.48, and the results are summarized
in Table 3. The classification accuracy was ranged from 88.0 to
94.2% and 92.5 to 100% for SVMst and SVMcog, respectively.

The diagnostic accuracy of the two radiologists who reviewed
200 subjects selected from the NA-ADNI database was 57.5 and
70.0%, which was lower than the SVMst at 90.5% (Table 4). After
disclosing the results of z-value of VSRAD, the accuracy of the
radiologists improved to 70.0 and 73.0%, still far short of the
SVMst accuracy (90.5%). The kappa coefficient, an index of the
degree of concordance between the two radiologists was as low as
0.35 (p= 0.710, McNemar test) without VSRAD, but it improved
to 0.56 after referring to VSRAD (p= 0.016, McNemar test).

Prediction of MCI Progression
To assess the ability of the ML to predict MCI progression, we
analyzed data from 142 pMCI and 64 sMCI subjects from theNA-
ADNI validation set, and the results are summarized in Table 5.
The cutoff values were set ADLS > 0.5 for SVMs. The prediction
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TABLE 6 | Prediction for disease progression at each examination timing before onset.

Time to SVMst (cutoff = 0.5) AV-45 (cutoff = 1.11)

Conversion 1 year 2 year 3 year 4 year 1 year 2 year 3 year 4 year overall

pMCI/sMCI 106/128 94/128 48/128 24/128 34/63 28/63 18/63 5/63 85/63

AUC 0.9208 0.9135 0.8667 0.9020 0.8340 0.8220 0.8474 0.7619 0.8287

Accuracy (%) 86.3 83.8 81.3 84.9 71.1 70.3 67.9 61.8 78.4

Sensitivity (%) 85.8 79.8 66.7 75.0 91.2 92.9 94.4 100.0 91.8

Specificity (%) 86.7 86.7 86.7 86.7 60.3 60.3 60.3 58.7 60.3

PPV 84.3 81.5 65.3 51.4 55.4 51.0 40.5 16.1 75.7

NPV 88.1 85.4 87.4 94.9 92.7 95.0 97.4 100.0 84.4

F1 (%) 85.0 80.6 66.0 61.0 68.9 65.8 56.7 27.8 83.0

MCC (%) 72.5 66.7 53.0 53.5 49.7 49.4 45.6 30.8 56.0

The numbers in parentheses indicate the cutoff value.

PPV, positive predictive value (= precision); NPV, negative predictive rate; AUC, area under the curve; MCC, Matthews correlation coefficient.

accuracy was 85.4% in SVMst and 87.9% in SVMcog. We also
investigated the SVM performance in JADNI. Unfortunately,
none of the sMCI met our criteria due to the short follow-up
period, therefore, we substituted NL for sMCI. The accuracy of
SVMst and SVMcog for classification between normal and pMCI
in JADNI were 86.4 and 91.2%, respectively. Since these results
were comparable with the accuracy of the results obtained as
a reference from NA-ADNI, it was speculated that these SVMs
were also useful in JADNI to predict MCI progression.

We assessed the predictive accuracy of the MCI progression
by SVMst in the NA-ADNI database for each timing of MRI
examinations before the onset of AD and compared it to the
predictive accuracy of AV-45 PET (Table 6). As expected, the
accuracy of SVMst decreased as the time to onset increased, but
the decrease appeared to be small. In this model, the number
of cases of sMCI was fixed and the number of cases of pMCI
decreased with time to onset. This created a class imbalance,
and accuracy was no longer a reliable measure. Therefore, we
focused on the values of MCC. The MCC in SVMst worsened
with duration but was better than the AV-45 PET at all times up
to the onset. The MCC values in SVMst showed a relatively large
decrease between 2 and 3 years prior to the onset. The predictive
ability of amyloid PET was not expected to be significantly
affected by time because Aβ deposition occurs earlier than brain
atrophy. However, contrary to our expectations, the MCC in AV-
45 decreased with increasing time to onset, with relatively large
decreases between 3 and 4 years prior to the onset.

AD Likelihood Score and Brain Aβ

Deposition
The relationship between ADLS and Aβ deposition was
investigated in 771 subjects from an AV-45 PET study because Aβ

is one of the important molecular targets for disease modifying
therapies (DMT). When classified as positive (ADLS > 0.5) by
SVMst, 87.1% of the subjects were Aβ positive (SUVR > 1.11)
(Figure 6). In SVMst-positive cases, the percentage of pMCI (n
= 103) of the Aβ-positive MCIs (n = 113) was 91.2%, or 92.8%
of all pMCI (n = 111). In addition, 8 of 11 (72.7%) SVMst-
positive MCI patients progressed to AD, even though they were

AV-45 negative. For SVMst-negative, 47.1% of the subjects were
Aβ positive, and pMCI (n = 15) accounted for 23.8% of the total
MCI (n= 63).When restricted to Aβ-negativeMCIs (n= 57), the
percentage of pMCI (n= 6) was 10.5%. These results suggest that
there is a strong association between Aβ accumulation and brain
atrophy in AD-like patterns. Note that 11.7% patients clinically
diagnosed with AD were Aβ negative. These patients may later
become Aβ positive, or if not, this indicates the difficulty of AD
clinical diagnosis.

DISCUSSION

This study showed that the proposed BAAD software provides a
useful opportunity to address the diagnosis of AD and prediction
of the disease progression in MCI patients. A strict classification
between MCI and AD is not always necessary in daily medical
care; therefore, the SVM was trained by grouping pMCI and
AD as the AD spectrum. Subjects assigned to the AD spectrum
by the ML are at high risk of having AD pathology, even if
their cognitive decline is not significant. Furthermore, by using
the MMSE score, SVMcog classified AD and NL at accuracies
ranging from 93.8 to 100% in the test databases. In the SVMst-
positive cases, 111 of 124 MCIs (89.5%) progressed to AD,
113 (91.1%) were Aβ positive on AV-45 PET, and 103 (91.2%)
progressed to AD. Interestingly, for MCI patients with negative
AV-45, 72.7% progressed to AD if the SVMst classified them as
being in the AD spectrum. It is debatable whether any patient
who has AD pathology is suitable for DMT. However, it is helpful
to predict patients at high risk of AD progression to facilitate
more disease-specific examinations such as amyloid or tau PET,
depending on the target of DMT.

It requires some consideration to apply the proposed model
to clinical use because the subjects in the ADNI database
have already been selected and simplified by excluding other
types of dementia. For example, we need to be aware that the
ML is not designed to distinguish AD from other types of
dementia. In clinical practice, AD is not diagnosed by MRI
alone, rather it is used to exclude brain infarction, tumors,
infection, hydrocephalus, and other diseases. If there is any
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FIGURE 6 | Constitution of diagnosis and amyloid beta deposition in groups classified by SVMst. This figure indicates that SVMst can predict impending dementia with

Aβ deposition. AD, Alzheimer’s disease; MCI, mild cognitive impairment; pMCI, progressive MCI; sMCI, stable MCI (at least more than 4 years); NL, normal subjects.

doubt, regional cerebral blood flow (CBF) imaging by single
photon emission computed tomography (SPECT) has diagnostic
value, particularly in differentiating AD from frontotemporal
dementia (21, 22). Dopamine transporter (DAT) imaging is a
useful tool to diagnose parkinsonism and its related disorders
if dementia with Lewy bodies (DLB) or a mixture pathology of
DLB is suspected. Metaiodobenzylguanidine (MIBG) myocardial
scintigraphy is a widely accepted tool for differentiating
Parkinson’s disease from other Parkinson-related disorders.
In addition to neuroimaging, physical and neuropsychological
examinations are also important to check a subject’s cognitive and
physical mobility level. If a subject is suspected to be cognitively
impaired, further examination will be performed to identify
which cognition domain is impaired.

The BAAD ML outperformed radiologists in the diagnostic
accuracy of AD for reviewing structural MRI. VSRAD reduced
inconsistency between the two radiologists and improved the
diagnostic accuracy. However, the mean diagnostic accuracy of
the radiologists was 71.5% even with the support of VSRAD,
whereas that of SVMst was 90.5%. The reason for this is that
VSRAD relies only on the volume of the medial temporal
structures, whereas the SVMst integrates the information from
many ROIs covering the entire brain. Age correction for VBM
statistics is also a strength of BAAD, as shown for an illustrative
case in Figure 1. The use of ML is beneficial in clinical practice
because it is impractical to conduct detailed neuropsychiatric
tests on all patients, as they take a long time and may cause
suffering. For patients who are apparently demented based on
their history of illness, a simple cognitive test such as an MMSE
would be sufficient and a detailed cognitive assessment could be
omitted. In addition to the brain structure, SVMcog supports AD
diagnosis using an MMSE score to reach maximum diagnostic
accuracy. VBM may reduce the need for glucose PET or CBF
SPECT because the pattern of tau uptake on PET imaging

appears to be well-matched with regional patterns of atrophy and
hypometabolism, or hypoperfusion, across typical and atypical
AD patients (23).

In our model, all MR images were preprocessed by VBM to
standardize and simplify the features. Specifically, this included
ensuring a unified brain shape, converting the volume into signal
intensity, and adjusting the brain volume according to TIV
and age. Furthermore, the number of features was reduced by
using ROIs instead of individual voxels. Unlike other organs,
the brain forms a neuronal network and functional localization,
and tau pathology of AD are believed to propagate along the
neural network (24). We adopted structural parcellations such
as the AAL and Brodmann area, which are commonly used in
functional MRI studies. These atlases were expected to reflect the
unit of the neuronal network to some extent. Multiple atlases
were used because regional redundancy or overlapping among
ROIs facilitated optimal weight distribution of features during
machine learning, supposedly compensating for the discrepancy
between anatomical and functional boundaries. There is no
doubt that extracting and integrating the information frommany
parcellated regions at once by surveying the entire brain is
beyond human ability.

A recent study of longitudinal tau PET showed that Aβ

accumulation promotes tau pathology, and the tau accumulation
rate was increased in the entorhinal, fusiform, inferior and
middle temporal, temporal pole, retrosplenial, and the posterior
cingulate cortices in the early stage of the disease. In cognitively
impaired individuals, tau accumulation was found in all regions,
but higher rates were in the inferior temporal, superior
orbitofrontal, basal frontal (olfactory and gyrus rectus), and
middle occipital cortices (25). The study also found that
pathological tau accumulation continues in previously involved
regions, that is, tau accumulation is uniform throughout the
brain and tau does not accumulate in one region at a time or in
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a start-stop fashion. The rate of tau accumulation is associated
with cerebral atrophy (26), somorphological analysis of the entire
brain, such as VBM, allows inference of the distribution of tau
lesions. In this sense, it can be said that the VBM has a certain
“T” element of the ATN system (27) by examining the pathology
of tau indirectly, though not specifically molecularly. It should
be considered that there are other factors besides tau pathology,
such as TDP-43 and ischemia, that contribute to cerebral atrophy,
and that not all development of tau lesions is associated with Aβ,
but this is beyond the scope of this study.

There are several limitations to this study. First, as is often
pointed out in studies using the ADNI database, patients with
non-AD dementia are carefully excluded in advance. Therefore,
the clinical validity of the AD diagnosis by the model in this
study is limited when patients are screened out for other forms of
dementia. Second, the definition of sMCI in our study depends
on the follow-up period of the study. For example, some patients
with MCI may eventually progress to AD if they have a longer
follow-up period. Therefore, it is not recommended to use this
ML for long-term preventive treatment. It is not possible to
accommodate the non-amnestic type because the MCI patients
are weighted to the amnestic type in the ADNI study. Third,
once the brain structure of the subject is shared by both the
training and test datasets, it becomes difficult to articulate model
overfitting. We confirmed the performance of the ML on several
untrained databases, but this was limited to the case of AD
diagnostics. The accuracy of the pMCI prediction in JADNI was
the result of replacing sMCI with NL; therefore, a future goal is to
accumulate observed data on sMCI over a long period.

CONCLUSION

For a patient with memory disturbance or suspected dementia,
it is expected that the proposed ML may support clinicians to
diagnose or predict the progression to AD, while the possibility
of dementia other than AD should always be kept in mind.
For patients with clinically suspected AD, the SVMcog supports
AD diagnosis with 95% accuracy, based on MRI and MMSE.
Approximately 90% of MCI patients were Aβ-positive when
classified as AD spectrum by SVMst. Therefore, these patients
should be closely monitored for 3 years or more. Molecular PET
examinations will be considered for DMT applications in the

future. Currently, there are no codified indicators to accurately
predict pathological progression in the prodromal stages owing
to the contradictory results regarding the concentration of CSF
biomarker proteins (28). Based on the results of this study,
our model may facilitate molecular PET for memory loss and
dementia patients.
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