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ABSTRACT 

G. A. J. Macy. Ecological Separation of Mallard (Anas platyrhynchos) and American Black 

Duck (Anas rubripes) in the Adirondack Park of New York State, 118 pages, 6 tables, 14 figures, 

2020. JWM style guide used. 

 

 

The American black duck is a large–bodied native dabbling duck in the northeast United States 

and Canada which has declined > 50% to ~ 500,000 breeding pairs since the 1950s. Concurrently 

mallards have replaced black ducks in Atlantic flyway breeding habitats. I used Bayesian 

statistical modeling to test for differences in mallard and black duck occupancy and productivity 

between and within beaver–modified wetlands and lakes in the Adirondack Park of New York. 

Mallard occupancy was ≥ 6.7% greater than black duck in all habitats surveyed. I further propose 

that mallards may outproduce black ducks in years where wetlands experience negative 

environmental effects such as drought or absence of beaver. I also compared the utility of drones 

to ground observers to survey black ducks, and discovered drones detect black ducks and other 

secretive waterfowl more reliably. However, when considering all ducks present, overall 

detection probability was similar between methods. 

 

Key words: Adirondack Park, American black duck, Anas rubripes, Anas platyrhynchos, 

breeding habitat, mallard, New York, occupancy, time-to-detection 
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CHAPTER 1: INTRODUCTION 

Inherent to the process of speciation is the assumption of niche differentiation. Competitive 

exclusion principle states that when two species experience enough niche overlap, one will 

eventually outcompete the other for their shared resources unless some degree of resource 

partitioning or niche differentiation thereafter develops (Gause 1934). This concept is as widely 

varied as the life histories of the species involved and is difficult to test, but has been 

documented in various ecological systems (Pianka 1972, Bryce et al. 2001). In waterfowl, Gurd 

(2008) suggested sympatric species were not partitioning their shared primary food resources, 

but rather only their secondary food sources (Nudds 1983). Even when two species do not 

directly compete, the presence of one can cause the other to recuse itself from high quality 

patches of habitat or require more energy to defend territories that inevitably will not be spent on 

reproduction or collecting resources (Coulter and Miller 1968, Pianka 1972, Fretwell 1972, 

Merendino et al. 1993, Merendino and Ankney 1994). An example of this was identified by 

Coulter and Miller (1968) who demonstrated that adding mallard nests to islands in Lake 

Champlain appeared to prevent black ducks from initiating nests on the islands, suggesting the 

two species see the other as conspecifics (Seymour 1992, McAuley et al. 1998). Mallards and 

black ducks have some differentiation in diet and feeding habits which English et al. (2020) 

suggested explained the capacity of mallards and black ducks to coexist during winter at the 

Atlantic coast of Canada. Ultimately, some level of niche differentiation is needed between 

mallards and black ducks for them to co–exist (Gause 1934). 

A Century of Black Duck – Mallard Population Dynamics and Interactions 

The American black duck population decreased by approximately half between the 1950s and 

1990s before stabilizing, but remains 22% below the United States Fish and Wildlife Service 
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population goal of 640,000 breeding pairs (USFWS 2011, 2017). As such, black ducks are a 

species of High Priority Greatest Conservation Need in New York (SGCN1; NYSDEC 2015) 

and have species–specific conservation plans for recovery elsewhere in eastern North America 

(USFWS 2011). Concurrent with these changes, mallards colonized portions of the black duck 

range (Heusmann 1991). Hypotheses for decline in black duck abundance include loss and 

modification of breeding and wintering habitat, overharvest, hybridization, and competitive 

exclusion by mallards (Goodwin 1956, Ankney et al. 1987, Longcore et al. 1998, Mank et al. 

2004, Petrie et al. 2012) although decline by hybridization has been recently refuted (Lavretsky 

et al. 2019; 2020).  

Prior to the 1900s, mallards primarily occupied western grasslands and black ducks 

occupied eastern forests in North America (Eaton 1910). Landscape change decreased forested 

wetlands that are often selected by black ducks, favored expansion of the mallard range in 

eastern areas traditionally dominated by black ducks, and, through general homogenization of 

land cover types, increased likelihood of interaction between mallards and black ducks 

(Heusmann 1974, Heusmann 1991, Harrigan 2006, USFWS 2017, Bleau 2018). Game–farm 

mallards have also been actively released by public and private entities for the purpose of sport 

hunting to supplement the wild mallard population in eastern North America (Heusmann 1991). 

In many areas, mallards have replaced black ducks as the primary breeding waterfowl, with 

black ducks primarily continuing to exist during the breeding period in relative isolation from 

mallards in northeastern forested zones of North America (Heusmann 1974, Heusmann 1991, 

Baldassarre 2014). In some areas of the northeastern United States, breeding black ducks 

continue to exist in areas of dense forest with abundant wetland cover and limited human 

encroachment (Petrie et al. 2012, Macy and Straub 2016).  



3 

 

New York’s Adirondack Waterfowl Breeding Grounds 

The Adirondack Park (here–on AP) is the largest publicly protected area in the contiguous 

United States and was designated a World Biosphere Reserve in 1989. The AP provides 

substantial habitat for breeding black ducks with more than 3,000 lakes and abundant beaver–

modified wetlands (Brown and Parsons 1979, Dwyer and Baldassarre 1994, Macy and Straub 

2016). Despite the potential abundance of waterfowl breeding habitat in the AP, few studies have 

estimated the abundance, relative productivity, and occupancy of mallards and black ducks 

within its boundary. Eaton (1910) described the mallard as a transient visitor to New York State, 

with few exceptions breeding in central New York counties. Eaton (1910) described black ducks 

as the most common dabbling duck, specifying its weariness of human disturbance. Benson 

(1968) found the mallard to be a rare visitor to the AP. An extensive study of waterfowl use in 

beaver–modified wetlands during the mid–1970s in the AP indicated they provide nesting and 

brood rearing habitat for black ducks, hooded mergansers, and wood ducks, but not mallards 

(Brown and Parsons 1979). 

More recently, mallards and black ducks have been found sympatric in the AP, and 

studies have not detected competitive exclusion (Dwyer and Baldassarre 1994, Macy and Straub 

2016). Dwyer and Baldassarre (1994) only included palustrine wetlands (excluding palustrine 

needle–leaved) in their sample frame because of the infrequent use of lacustrine wetlands by 

mallards and black ducks in the AP. Macy and Straub (2016) found the two species were 

sympatric, but suggested mallards tolerated recreational activity more than black ducks in lakes 

of the AP. 
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Competition Between Mallards and Black Ducks in the AP 

Droke (2018) detected that New York wintering mallards left for their breeding grounds up to a 

month before sympatric black ducks in some years. If black ducks cede the most favorable 

breeding habitats to earlier arriving mallards (Seymour 1992, Merendino et al. 1993) because 

they recognize them as conspecifics (Petrie et al. 2012); migration timing, nest initiation, and 

tolerance for human activities could be important factors affecting relative changes in 

distributions of breeding mallards and black ducks. Although many researchers have found no 

difference in reproductive parameters between mallards and black ducks (Longcore et al. 1998, 

Maisonneuve et al. 2000, Petrie et al. 2000), Petrie et al. (2012) found that interference 

competition may be occurring where productivity parameters may be similar, but competitive 

exclusion or displacement of black ducks by mallards may be inhibiting breeding altogether 

(Merendino et al. 1993, Merendino and Ankney 1994). The propensity of mallards to tolerate 

anthropogenic environments (Diefenbach and Owen 1989, Macy and Straub 2016) and black 

duck avoidance of mallards and humans (Coulter and Miller 1968, Spencer 1986, Macy and 

Straub 2016) suggests interference competition or competitive exclusion by displacement may be 

contributing to black duck decline given the positive effects lake–nutrient loading has on 

duckling production (Staicer et al. 1994, Longcore et al. 1998).  

Pilot Study 2016–2018 

In contrast to the relatively accessible areas studied in Dwyer and Baldassarre (1994), Staicer et 

al. (1994), and Macy and Straub (2016); remote beaver–modified wetlands are surveyed less 

during contemporary large–scale waterfowl surveys despite the abundance and use of that cover 

type by breeding black ducks in the AP (Brown and Parsons 1979). Few studies have directly 

surveyed these areas to compare mallard and black duck abundance and productivity since 
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Brown and Parsons (1979), in part, because of the logistical challenges of surveying remote 

wetlands.  

As an extension of prior studies (Brown and Parsons 1979, Dwyer and Baldassarre 1994, 

and Macy and Straub 2016), I developed a pilot study in coordination with the New York State 

Department of Environmental Conservation and followed a similar methodology to Brown and 

Parsons (1979) to survey waterfowl in the AP. Our interest for the pilot study was to determine 

the feasibility of deploying a large–spatial scale study to determine use of beaver–modified 

wetlands by black ducks relative to other waterfowl to estimate breeding pair abundance and 

productivity, as well as compare spatial use and productivity of these wetlands between mallards 

and black ducks. Additionally, I investigated a sample of remote and human influenced lakes in 

the AP. For my previous and future study, lakes include open water habits > 12 ha that do not 

rely on beaver modification to remain viable waterfowl habitat.  

Pilot study results suggested the black duck is relatively uncommon across the landscape, 

although black ducks were present and breeding more frequently than mallards on remote 

beaver–modified wetlands in the eastern–central portion of the AP, and less frequently than 

mallards on human influenced lakes. Our pilot study estimates of black duck abundance resulted 

in high variance and a broad confidence interval because of relatively small sample sizes and few 

black ducks were detected on pilot study wetlands. 

Goal and Objectives 

Rarer species often require unique methods for study, therefore I aimed to apply novel field and 

analytical techniques to provide wildlife managers with information that refines and updates 

conservation knowledge of breeding black ducks and local heterospecific waterfowl in the AP. 

Use of a multi–species occupancy model featuring Bayesian analyses and time to detection is 
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useful to generate reliable unbiased estimates of population parameters within a 95% credible 

interval (Kéry and Royle 2008; 2015). I used this statistical framework to 1) assess the 

occupancy and general habitat use of waterfowl in AP beaver–modified wetlands and 2) compare 

beaver–modified wetlands to developed and undeveloped lakes (Staicer et al. 1994, Longcore et 

al. 1998) to test for differences in mallard and black duck occupancy in the context of an 

increasingly developed AP (Holland 2011). These estimates are useful for updating the 

knowledge of AP black duck for their conservation. 

I also used a Bayesian statistical framework in the form of a linear mixed model (Kéry 

2010) to test for differences in mean brood size between mallards and black ducks comparing 

lakes and wetlands to compare productivity in the AP (Petrie et al. 2000). Finally, I explored the 

feasibility and utility of Small Unmanned Aerial Services (SUAS) to survey waterfowl on a 

subset of AP beaver–modified wetlands and compared SUAS survey performance with 

successive traditional ground surveys conducted as part of this larger study frame. I used an N–

mixture model (Kéry 2010) in a Bayesian statistical framework to estimate and compare 

detection probabilities between the ground and aerial surveys, and review black duck–specific 

detection cases to assess SUAS effectiveness and practicality as a survey method for black ducks 

in the AP.  
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CHAPTER 2: FACTORS AFFECTING OCCUPANCY OF A SUITE OF WATERBIRDS 

IN ADIRONDACK WETLANDS, WITH A FOCUS ON MALLARDS AND AMERICAN 

BLACK DUCKS 

ABSTRACT The American black duck is a large–bodied dabbling duck native to the northeast 

United States and Canada which has declined in abundance by > 50% since the 1950s. 

Concurrent with these changes, mallards have replaced black ducks in many Atlantic flyway 

breeding areas. The Adirondack Park (AP) of New York, USA, is a 2.4 million ha matrix of 

deciduous and coniferous forests with thousands of lakes, bogs, wetlands, and cold–water 

riverine systems that provide habitat for breeding black ducks. I tested for differences in 

occupancy among beaver–modified wetlands (n = 181), undeveloped lakes (n = 83) and 

developed lakes (n = 127) for mallards and black ducks in the AP, May −July 2019 −2020. I 

conducted 30 min counts including 7 waterbird species in a multispecies occupancy model for 

mallard and black duck because additional species decreased variance of estimates. I used time–

to–detection to account for detection probability while also allowing for single site visits which 

increased site sample size. I found mallard occupancy was > 6.7% greater than black ducks in all 

combinations of year and strata, with the greatest difference (13.7% ± 0.06 SD) at developed 

lakes. This is a historically significant result as previous studies suggested mallards were rare or 

otherwise sympatric with black ducks. I postulate mallard niche is wider than black ducks in AP 

breeding habitat because mallards use human environments more than black ducks, which 

provides a source population from increasingly developed AP lakes. 

KEY WORDS Adirondack Park, American black duck, Anas platyrhynchos, Anas rubripes, 

mallard, time–to–detection, multispecies occupancy. 
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Conservation of freshwater wetlands for birds is important for waterfowl and other waterbirds, 

but also to a broad diversity of other species including humans (Gray et al. 2014). Up to 40% of 

the world’s animals and 75% of North American birds use wetlands at some point in their lives 

(Gray et al. 2014). Despite only composing 4% of the earth’s surface (Mitsch and Gosselink 

2000) wetlands offer > 40% of the realized ecosystem services (Costanza et al. 1997). For 

humans, wetlands can clarify and purify groundwater and runoff, contribute to groundwater 

recharge, provide shoreline protection, and help control floodwaters. Wetlands also provide 

breeding habitat for many species of fish, birds, mammals, and other wildlife. Arguably the most 

iconic amongst these species of plants and wildlife are the diversity of waterfowl that depend on 

wetlands for breeding and brood rearing in the warm summer months in North America.

The American black duck (Anas rubripes, hereon black duck) is a large–bodied 

monochromatic duck species native to northeastern North America. The black duck population 

decreased by about 50% between the 1950s and 1990s before stabilizing but remains 22% below 

the United States Fish and Wildlife Service population goal of 640,000 breeding pairs (USFWS 

2011, 2017). As such, black ducks are a species of High Priority Greatest Conservation Need in 

New York (SGCN1; NYSDEC 2015) and have species–specific conservation plans for recovery 

elsewhere in eastern North America (USFWS 2011). Concurrent with these changes, mallards 

(Anas platyrhynchos) colonized portions of the black duck range (Heusmann 1991). Hypotheses 

for decline in black duck abundance include loss and modification of breeding and wintering 

habitat, overharvest, hybridization with mallards, and competitive exclusion by mallards 

(Goodwin 1956, Ankney et al. 1987, Longcore et al. 1998, Mank et al. 2004, Petrie et al. 2012). 

Prior to the 1900s, mallards primarily occupied western grasslands and black ducks 

occupied eastern forests in North America (Eaton 1910). Landscape change decreased the 
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availability of forested wetlands in eastern North America, favored expansion of the mallard 

range eastward, and through general homogenization of land cover, increased likelihood of 

interaction between mallards and black ducks (Heusmann 1974, Heusmann 1991, Harrigan 2006, 

USFWS 2017, Bleau 2018). In many areas, mallards have replaced black ducks as the primary 

breeding waterfowl, generally in a west to east manner. In some areas of the northeastern United 

States, breeding black ducks continue to exist in areas of dense forest with abundant wetland 

cover and limited human presence (Petrie et al. 2012, Macy and Straub 2016).  

The Adirondack Park (AP) located in northern New York state is the largest publicly 

protected area in the contiguous United States and was designated a World Biosphere Reserve in 

1989. The AP provides breeding habitat for waterbirds with > 3,000 lakes and abundant beaver–

modified wetlands (Brown and Parsons 1979, Dwyer and Baldassarre 1994, Macy and Straub 

2016). Despite the potential abundance of waterfowl breeding habitat in the AP, few studies have 

estimated the abundance, relative productivity, and occupancy of mallards and black ducks 

within the AP boundary. In the late 19th and early 20th century, the mallard was a transient visitor 

in New York state and the AP during migration, whereas the black duck was the most common 

dabbling duck (Eaton 1910, Benson 1968). An extensive study of waterfowl use of beaver–

modified (Castor canadensis) wetlands during the mid–1970s in the AP indicated they provide 

nesting and brood rearing habitat for black ducks, hooded mergansers (Lophodytes cucullatus), 

and wood ducks (Aix sponsa), but rarely mallards (Brown and Parsons 1979). More recently, 

mallard and black duck were sympatric in the AP during the breeding season, and studies have 

not detected competitive exclusion (Dwyer and Baldassarre 1994, Macy and Straub 2016). I felt 

it timely to conduct additional assessment of mallard and black duck occupancy because 
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mallards became the most common breeding duck in the northeastern United States and portions 

of southeastern Canada in the past 20 years.  

For mallard and black duck to co–exist in the AP in perpetuity, some level of niche 

differentiation must exist (Mayr 1970, Schoener 1974, Nudds 1983). However, if the mallard 

niche overlaps with that of the black duck and mallards are behaviorally dominant, black ducks 

might be excluded from favorable breeding habitat by mallards (Seymour 1992, Merendino et al. 

1993, Petrie et al. 2012). Therefore migration timing, nest initiation, and tolerance for human 

activities could be important factors governing relative changes in abundance between mallards 

and black ducks. 

Although many researchers have detected no difference in reproductive parameters 

between mallards and black ducks (Longcore et al. 1998, Maisonneuve et al. 2000, Petrie et al. 

2000), Petrie et al. (2012) found that interference competition may be occurring where 

productivity parameters are similar. Possibly, conventional observational studies are not 

detecting competitive exclusion of black ducks from some breeding areas by mallards because it 

is occurring at subtle temporal and spatial scales (Merendino et al. 1993, Merendino and Ankney 

1994, Petrie et al. 2012). Given the ability of mallards to breed in anthropogenic environments 

more readily than black ducks (Diefenbach and Owen 1989, Macy and Straub 2016) and the 

potential for mallard behavioral dominance (Coulter and Miller 1968, Seymour 1992), 

interference competition or competitive exclusion by displacement of breeding black ducks by 

mallards could negatively affect black duck occupancy and productivity. The artificial 

improvement of anthropogenic ecosystems by human–sourced nutrient loading can have positive 

effects on duckling production, potentially further contributing to mallard dominance in regions 

where black ducks breed (Staicer et al. 1994, Longcore et al. 1998). 
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In contrast to the relatively accessible areas studied in Dwyer and Baldassarre (1994), 

Staicer et al. (1994), and Macy and Straub (2016); beaver–modified wetlands are surveyed less 

during contemporary large–scale waterfowl surveys despite their use by breeding black ducks in 

the AP (Brown and Parsons 1979). Few studies have directly surveyed these areas to compare 

mallard and black duck abundance and productivity since Brown and Parsons (1979), in part, 

because of the logistical challenges of accessing these beaver–modified wetlands. Dwyer and 

Baldassarre (1994) only included palustrine wetlands (excluding palustrine needle–leaved) in 

their sample frame because they noted infrequent use of lacustrine wetlands by mallards and 

black ducks. In contrast, Macy and Straub (2016) found the two species were sympatric on 

lacustrine cover types and suggested mallards tolerated recreational activity more favorably than 

black ducks. 

Black ducks are relatively uncommon in the AP, although they were present and breeding 

more frequently than mallards in 2016 and 2017 on a small sample of remote beaver–modified 

wetlands in the eastern–central AP, and less frequently than mallards on human influenced lakes 

(NYSDEC unpublished data). Rarer species often require detection corrected methods for study 

(Mackenzie et al. 2005), therefore I used a time to detection model (Garrard et al. 2008) to 

account for imperfect detection probabilities of waterbirds in my study. I incorporated presence–

absence data for multiple waterbird species (Garrard et al. 2013) to precisely estimate occupancy 

probability of mallard and black duck. My aim was to produce estimates able to detect 

differences in occupancy between mallard and black duck among beaver–modified wetlands and 

undeveloped and developed lakes (Kéry and Royle 2015, Halstead et al. 2018). Common 

waterbirds (e.g., Canada goose, common loon) were included in my model to inform occupancy 

by less common species (e.g., black duck) and validate the modeling process by comparing 
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known habitat use patterns of species with results (e.g., I expected common loons [Gavia immer] 

occupancy of open water sites to be greater than other cover types). I also investigated inclusion 

of percentage open water in the survey and percent emergent vegetated shoreline because these 

metrics affect selection of breeding and brood rearing habitat by waterbirds (Kaminski and 

Prince 1981, Staicer et al. 1994, Dyson et al. 2018). These estimates can provide wildlife 

managers with information that refines and updates conservation knowledge of AP breeding 

black ducks and local heterospecific waterfowl. I predicted that mallards would occupy 

developed lakes more than black ducks because mallards tolerate human disturbances. I also 

predicted that black ducks would occupy undeveloped and beaver–modified wetlands more than 

developed lakes because of their reluctance to occupy sites near human disturbances during the 

breeding season.  

METHODS 

Study Area 

The AP is a 2.4 million ha mosaic of private (55%) and public (45%) lands in northern New 

York state, subject to varying degrees of regulation by the Adirondack Park Agency (APA). The 

AP has similar geologic and ecologic conditions to Canada’s boreal forest and its extensive 

forest cover is characterized as a transition between northern hardwoods (maple–beech–birch) 

and northeastern spruce–fir (Bryce et al. 2010). Geology is greatly shaped by glaciation and the 

granite upwelling of the AP mountains, providing numerous lakes, wetlands, bogs, and cold–

water river systems throughout the AP (Bryce et al. 2010). Beaver–modified wetlands typically 

have greater emergent vegetation, cover, and invertebrate productivity (Kirby 1988, Dwyer and 

Baldassarre 1994, Seymour and Jackson 1996) than lakes, and previous AP waterfowl studies 

suggested lake use by waterfowl was limited (Dwyer and Baldassarre 1994). Beaver were 
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increasingly rare in the AP during the mid–20th century, and a 4–year beaver trapping 

moratorium was instituted in some parts of the AP to restore beaver abundance (Parsons and 

Brown 1978). Since that time, beaver abundance has fluctuated but beaver–modified wetlands 

are common throughout the AP (Brown and Parsons 1979). A 2016 – 2018 pilot study began in 

beaver–modified wetlands in the northeastern portion of the AP (n = 22 wetlands), expanded the 

next year to include much of the eastern AP (n = 45), and in 2018 surveys included all ecozones 

of the AP (n = 97; Fig. 2.1). I used the results of this pilot study to select sample sizes, to refine 

my sampling frame, and to determine informative Bayesian priors in subsequent analyses. 

Experimental Design 

I randomly stratified a potential sample (n = 220) of beaver–modified wetlands in 5 ecozones of 

the AP (Edinger et al. 2014) in 2019 (Fig. 2.1) using wetlands from APA wetland shapefile 

attribute tables in combination with the National Agriculture Imagery Program (NAIP) August 

2017 orthographic imagery in ArcGIS version 10.7 (ESRI, Redlands, CA). A power analysis 

(Cohen 1992, Steidl et al. 1997) of 2018 pilot study data indicated that a sample of 181 wetlands 

would be useful for detecting differences in occupancy among breeding waterbirds in the AP. I 

randomly selected proportionate samples of candidate wetlands based on the known available 

beaver–modified wetlands in each ecozone (total n = 220). Selection criteria for wetlands in this 

candidate list also included 1) permanently flooded, open–water, and beaver–modified wetlands 

with cover types of scrub–shrub, forested, emergent, and standing dead trees because they 

provided waterfowl habitat (Diefenbach and Owen 1989), 2) wetlands < 1.6 km from accessible 

hiking trails or logging roads, 3) wetlands not visible from a paved road, and 4) wetlands on 

private lands with conservation easements or on public lands. Sites deemed inaccessible or 

otherwise uninhabitable to waterfowl when surveyed were removed from the sample. 
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I selected a sample of 55 lakes randomly from available AP lakes with access (i.e., public 

boat launches or trail access). I used AP lake bathymetry maps (NYSDEC 2005) to identify my 

candidate set of lakes because they showed public access points and human development, and I 

used this sample frame to include areas on lakes with and without human development. I 

considered lakes with substantial (>20%) littoral zones < 0.6 m deep and some level of human 

presence (e.g., development, campsites) (Macy and Straub 2016) as lacustrine dabbling duck 

habitat based on Staicer et al. (1994). Additionally, I included lakes with water quality data noted 

as mesotrophic or eutrophic (Laxson et al. 2019). Once lakes were selected, I reduced overlap 

between potentially territorial breeding pairs by generating random shoreline points separated by 

> 1.6 km (Dwyer and Baldassarre 1994). 

Beaver–modified wetlands in my sample frame can be categorized by dominant shoreline 

vegetation as forested, scrub shrub, or emergent, but typically have a combination of all three 

cover types. Most lake points in my sample frame (63%) were forested shoreline with little 

emergent or scrub–shrub vegetation. As such, to ensure beaver–modified wetlands and lakes 

surveyed areas were relatively comparable, I randomly selected one point of each of the 

shoreline types per lake; forested, emergent, and scrub–shrub wetland (n = 210 survey points). I 

discarded and reselected any randomly selected survey that occurred ≤ 1.6 km of an existing 

survey. When all three shoreline types were not available, I surveyed those that were present. For 

lakes > 3 times larger than the suggested maximum home ranges for AP mallards (Dwyer and 

Baldassarre 1994), I increased my sample size proportionally. 

Beaver–modified Wetland Surveys 

Technicians and I surveyed wetlands (n = 187 of 220 candidate wetlands) for 30 min between 

sunrise and sunset from 13 May – 31 July 2019 and 14 May – 27 July 2020, which includes the 
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territory defense, copulation, nesting, and brood–rearing periods in the AP (Dwyer and 

Baldassarre 1994, Baldassarre 2014). During surveys, we recorded the time to first detection of 

each waterfowl species to the nearest minute. Additionally, we recorded the observer’s estimate 

of the percent open water in the survey area, and the percent of shoreline covered by emergent 

vegetation. We conducted surveys spatially among ecozones and temporally by time of day and 

across the sampling season as evenly as reasonably possible. We timed sampling of beaver–

modified wetlands to maintain a relatively equal sample among morning (< 1000 hrs), mid–day 

(1000 to 1500 hrs), and evening (> 1500 hrs).  

Lake Surveys 

In 2019 and 2020, technicians and I surveyed 55 lakes (n = 210 survey points). We surveyed 

using binoculars and various boats anchored at offshore locations and recorded the same data as 

beaver–modified wetlands. We sampled lakes using the temporal and spatial scheme noted for 

beaver–modified wetlands. We recorded the presence or absence of shoreline development in 

lake surveys (i.e., docks, lawns, and human structures) as a categorical value (i.e., developed, or 

not). Covariate data for open water and emergent vegetation were recorded similarly to beaver–

modified wetlands. The survey area from which these covariates were estimated on lakes was 

typically governed by natural features such as shoreline micro–topography (i.e., small 

peninsulas) and fallen trees that obstructed the farthest distance an observer could detect 

waterfowl (~400 m each direction). 

Data Analysis 

I used a static multi–species occupancy modeling framework with time to detection function for 

detection probabilities (Kéry and Royle 2008, 2015). I designated species as a random effect, 

nested within fixed effects for stratum (specified as beaver–modified wetland, undeveloped lake, 
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or developed lake). The species included mallard, black duck, Canada goose (Branta 

canadensis), wood duck, hooded merganser, common merganser (Mergus merganser), and 

common loon which share relatively similar detectability traits (i.e., color, shape, size, 

crepuscular habit) (Garrard et al. 2013, Kéry and Royle 2015). I also included fixed effects of 

categorical year, continuous percentage open water, and continuous percentage emergent 

vegetation in the deterministic part of my occupancy model. I included percentage open water 

and emergent vegetated shoreline because these metrics have been shown to affect selection of 

breeding and brood rearing habitat by waterfowl (Kaminski and Prince 1981, Dyson et al. 2018).  

I fit a single–visit, multispecies time–to–detection occupancy model in JAGS (Just 

Another Gibbs Sampler Version 4.3.0, Plummer 2003) using program R (R Version 4.0.3, 

www.r–project.org, accessed 8/17 2020), and package rjags (rjags Version 4–10, Plummer 2013) 

and created derived variables to compare occupancy of mallards and black ducks among 

treatments. The model structure was: 

zik ~ Bernoulli(ψk) 

dik ~ Bernoulli(ϴik) 

TTDik ~ Exponential(λk) 

ϴik = zik * (TTDik > Tmax) + (1 – zik) 

where zik is the “true occupancy state” at site i for species k given mean occupancy probability 

for species k (ψk), dik is the censoring indicator (1 = no detection, 0 = detection) given the 

probability of censoring at site i for species k (ϴ) which is 0 if the species was detected and 1 

otherwise, TTDik is the observed time to detection given mean detection rate for species k (λk = 

1/mean time to detection) Tmax is the maximum survey time, and TTDik > Tmax = 1 if true and 0 
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if false. I modeled detection rate as a function of covariates using a log–link function, with a 

random effect of species k on the intercept of detection rate (αλ) as: 

Log (λk) = αλk 

αλk ~ Normal (µαλ, ταλ) 

ταλ ~ 1/σαλ
2 

With the following vague priors for the hyperparameters: 

µαλ ~ Normal (0, 0.001) 

σαλ ~ Uniform (0, 100) 

The derived mean time to detection is specified as: 

TTDk = 1 / λk 

and the derived mean probability of detection is specified as: 

�̅�k = 1 – exp (–λk * Tmax) 

where �̅�k = the mean detection probability for species k.  

I modeled occupancy probability as a logit–linear function of covariates and random effects of 

species on the intercept (αψ) and regression coefficients (β) as follows : 

logit (ψik) = αψk + βstrat2k * Strat2YN + βstrat3k * Strat3YN +  

βyeark * Year + βOWk * OW + βEmk * Em 

where Strat2YN is a dummy variable for the fixed effect of undeveloped lake stratum, Strat3YN 

is a dummy variable for the developed lake stratum, Year is a dummy variable for 2020, OW is a 

continuous variable for percent unvegetated open water in the site, and Em is a continuous 

variable for the percent of shoreline dominated by emergent vegetation at survey sites.  

The random effects for the intercept and beta parameters (i.e., regression parameter ) for species 

k was specified as: 



23 

 

ψk ~ Normal (µψ, τψ) 

τψ ~ 1/σψ
2 

With the following vague priors for the hyperparameters: 

µψ ~ Normal (0, 0.001) 

σψ ~ Uniform (0, 100) 

I created derived differences between occupancy (DDO) parameter estimates. I 

interpreted DDO estimates not overlapping 0 as a significant difference in occupancy probability 

between the two species of interest at 95% CI (Kéry 2010). I assumed that beta parameter 

estimates with 95% CI distributions for other fixed effects that did not overlap 0 to be significant 

(Kéry 2010). I derived mean occupancy estimates and 95% CI distributions among stratum for 

the 7 waterbird species in my study.  

I originally used presence/absence data from only mallards and black ducks, however this 

model never converged for some parameters (i.e., Gelman–Rubin statistic > 1.1), even when 

allowed to run > 3.5 million iterations. As such, data for the 5 additional species were included. 

These additional data further reduced the variance around estimates of time to detection and 

detection probability for mallards and black ducks by < 31%, but had little effect on estimates of 

occupancy or variance around occupancy. Some species had < 40 detections (e.g., black ducks 

and common mergansers), and as a result even simple categorical covariates I included in the 

time to detection model made convergence difficult. As such, I did not include covariates in the 

time to detection part of the model, excluding a random effect for species. 

RESULTS 

Common loons (0.68 ± 0.11 SD, 0.22 ± 0.04 SD), mallards (0.18 ± 0.06 SD, 0.09 ± 0.02 SD), 

and common mergansers (0.06 ± 0.03 SD, 0.056 ± 0.019 SD) had the highest occupancy 
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probabilities in developed and undeveloped lakes, respectively (Table 2.1, Fig 2.2). Occupancy 

probability for the remaining species in developed and undeveloped lakes was < 0.05, with the 

lowest probability approaching 0 for hooded mergansers (0.001 ± 0.001 SD) in developed lakes 

(Table 2.1). Wetlands were occupied similarly by mallards (0.14 ± 0.02 SD), wood ducks (0.15 ± 

0.02 SD), and hooded mergansers (0.14 ± 0.02 SD). Wetlands were occupied to a lesser degree, 

similarly by black ducks (0.051 ± 0.013 SD), common mergansers (0.047 ± 0.012 SD), and 

Canada goose (0.048 ± 0.012 SD). The lowest wetland occupancy was the common loon (0.028 

± 0.010 SD). 

Mallards and black ducks overlapped 95% CIs for occupancy probability in some strata 

(Fig 2.2) but by < 25%. Mean occupancy probability for mallards was ≥ 6.7% greater than black 

ducks for all years and treatments (Table 2.1). Within–species DDO estimates suggested that 

mallard occupancy probability was 8.7% ± 4.1 SD lower in undeveloped lakes than developed 

lakes (Fig 2.3). All other within–species DDO estimates crossed 0 by small margins. Mallard and 

black duck occupancy were greater in wetlands and developed lakes than undeveloped lakes (Fig 

2.3).  

For Canada geese, mallards, and black ducks, the random effect was above the 

multispecies mean in developed lake environments relative to wetlands (Fig 2.4a). Wood duck 

occupancy was negatively associated with undeveloped lakes (Fig 2.4a) and developed lakes 

(Fig 2.4b) relative to wetlands. Wood duck occupancy was positively related with increasing 

percentage of emergent wetland vegetation (Fig 2.5b, Fig 2.6). Hooded merganser occupancy 

also was negatively associated with developed lakes (Fig 2.4a) and undeveloped lakes (Fig 2.4b) 

relative to wetlands, but did not show the same affinity for emergent vegetation as wood ducks 

(Fig 2.5b). For common loons, I detected that occupancy was positively influenced developed 
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lakes (Fig 2.4a) and percentage open water (Fig 2.5a, Fig 2.6). Wood duck and hooded 

merganser occupancy had a negative relationship with developed lakes (Fig 2.4a). I found the 

beta parameter estimates for the effect of year were mildly variable amongst species and largely 

insignificant, however I left year in the model to account for interannual variation not otherwise 

modeled (Fig 2.5c). 

Mean probability of detection ranged from 0.87 ± .052 SD for hooded merganser to 0.98 

± .02 SD for Canada goose (Table 2.2). Mean time to detection for those species was 14.7 ± 2.97 

min and 7.7 ± 1.80 min, respectively. Detection probabilities and mean times to detection for 

mallards (p = 0.932, TTD = 11.1 min) and black ducks (p = 0.909, TTD = 12.4 min) were similar 

(Table 2.2), and derived tests for differences in TTD and p between these species were never 

found to be significant in any combination of model covariates or effects I tested.  

DISCUSSION 

My approach using a multi–species model with a time–to–detection probability function was 

effective for generating occupancy estimates with relatively good credibility for waterbirds in the 

AP despite few detections for some species. This method enabled me to meet my goal of 

increasing precision of estimates and detecting differences in occupancy between mallards and 

black ducks within and among habitat types. Results from the suite of five other waterbirds also 

provided validation that the ecological relationships detected for mallards and black ducks were 

likely biologically realistic. Hooded mergansers and wood ducks selected beaver–modified 

wetlands (Baldassarre 2014) and common loons and common mergansers occupied lakes or open 

water wetlands (McIntyre 1994, Mehner 2012, Spilman et al. 2014). The more generalist 

waterfowl species (i.e., Canada geese, black ducks, and mallards) occupied all study habitat 

types to a greater degree than wetland obligates (e.g., wood ducks, hooded mergansers) or 
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piscivorous waterbirds (e.g., common loons, common merganser). Longer–term (i.e., additional 

years) datasets might allow for enough detections of black ducks to remove non–focal species 

from analysis, however they were especially useful to include in this analysis with only 2 years 

of detection data. Their inclusion is also useful for monitoring and managing populations of 

more than one species simultaneously. 

Overall, occupancy was greater for mallards than black ducks in beaver–modified 

wetlands and lakes, which differs from prior findings in the AP that showed mallards were either 

rare or sympatric with black ducks in wetlands (Benson 1968, Brown and Parsons 1979, Dwyer 

and Baldassarre 1994), and in lakes (Macy and Straub 2016). Further, the difference in 

occupancy between mallards and black ducks was greater at developed lakes than other habitat 

types in my study, suggesting that human development of historically remote lakes could enable 

replacement of black ducks by mallards (Lehikoinen et al. 2016). Mallards need not be dominant 

or exclude other waterfowl from habitats to affect breeding black ducks, they simply need to fill 

niches that could be similarly used by black ducks during the breeding season (Coulter and 

Miller 1968, Petrie et al. 2012). In addition, the potential for mallards to be behaviorally 

dominant (Coulter and Miller 1968, Seymour 1992) and exploit greater niche space than black 

ducks could further provide an advantage to mallards (Diefenbach and Owen 1989, Lillie and 

Evrard 1994, Maisonneuve et al. 2006). In contrast to prior studies in the AP (Benson 1968, 

Brown and Parsons 1979, Dwyer and Baldassarre 1994, Macy and Straub 2016), I was able to 

identify differences between mallard and black duck occupancy for all combinations of year and 

habitat type. This is historically important because prior AP waterfowl studies suggested few 

examples of breeding AP mallards, and other ducks like hooded merganser, black duck, and 

wood duck were the most common breeding waterfowl for the last century (Eaton 1910, Benson 
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1968, Brown and Parsons 1979, Edinger et al. 2014). By the 1980’s, mallards still had not 

colonized the AP as a substantial breeding participant (Brown and Parsons 1979, Heusmann 

1991) despite their appearance in surrounding valleys. Just 15 years later, mallards and black 

ducks were sympatric with similar pair ratios and densities per km2
 in the western AP (Dwyer 

and Baldassarre 1994). My results suggest mallards are now more common than black ducks in 

the AP, and that greater use of developed lakes by mallards may provide an advantage relative to 

black ducks. 

Compared to available prior AP waterfowl studies, my study samples sizes were 

substantially greater and spatially representative of the AP boundary. I did not include other 

ecosystems used by waterfowl in the AP, such as expansive geologically formed wetland basins 

and riverine areas, because of their difficulty in access and logistics of my sampling scheme. 

Despite their omission, some inference can be shared between riverine and geological wetlands 

and my study sites because their aquatic ecology and seasonal phenology are similar. Dwyer and 

Baldassarre (1994) determined that lakes were infrequently used by mallards and black ducks (< 

5%), whereas I detected that developed lakes were the most occupied habitat type by black 

ducks, mallards, Canada geese, common loons, and common mergansers more so than 

undeveloped lakes. Further, the largest well–developed lake in the Dwyer and Baldassarre (1994) 

study area was a known mallard breeding site in my study.  

Greater occupancy of developed lakes in my study may suggest a change in habitat 

quality between AP wetlands and lakes (Lehikoinen 2016). Further, dominance in sister–taxa can 

take decades to manifest into replacement of one species by the other after a period of sympatry 

(Mayr 1970, Nudds 1983) and this replacement can be habitat niche specific (Schoener 1974, 

Barnes and Nudds 1991). Despite the potential changes in lake occupancy in the 25 years since 
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Dwyer and Baldassarre (1994), wetlands were still important to mallards and black ducks, and 

were used similarly to developed lake sites. Even though vegetation is generally considered 

important for breeding and brood rearing for waterfowl (Kaminski and Price 1981, Staicer et al. 

1994, Dyson et al. 2018) mallards and black ducks may still be meeting their nutritional needs in 

AP developed areas (Staicer et al. 1994), while potentially exploiting other advantages of human 

development (i.e., feeding of bread, shelter under porches and boat houses, lawns as a food 

source, predator avoidance). The general pattern of occupancy within mallards and black ducks 

was similar, indicating substantial niche overlap (Maisonneuve et al. 2006) and the only 

difference I found was greater mallard occupancy of undeveloped than developed lake sites. This 

largely agrees with previous findings that suggest mallards are more readily exploiting human 

influenced habitats (Morton 1998, Osborne et al. 2010, Macy and Straub 2016, Bleau 2018), and 

that black ducks generally avoid areas visible to human development (Diefenbach and Owen 

1989, Macy and Straub 2016, Bleau 2018).  

Invertebrates on breeding grounds are important to mallards and black ducks because 

they are the primary protein source for clutch formation and duckling growth (Krapu 1980, 

Reinecke and Owen 1981, Longcore et al. 2006, Baldassarre 2014). Prior studies have linked 

water chemistry with invertebrate density (i.e., phosphorous and PH), brood density (Staicer et 

al. 1994, Longcore et al. 2006), and brood size (Longcore et al. 1998). Over–eutrophication of 

wetlands from nutrients and climate warming trends has been suggested as a benefit to mallards 

while at the same time a deleterious effect on wetland obligate waterbirds that prefer specific 

successional stages (Lehikoinen 2016). Mallard success as a breeding generalist relative to other 

waterfowl species is supported by my occupancy results and in literature elsewhere (Lillie and 

Evrard 1994, Baldassarre 2014, Lehikoinen 2016). 
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The recent and increased pace of AP lakeshore development (~850 new building permits 

each year) has continued without strict standards for shoreline property lot–size despite the 1971 

formation of the APA, which was aimed at regulating natural resource exploitation in the AP 

(Holland 2011). The latent (e.g., phosphorous) and unpredictable (e.g., nitrogen) effects of septic 

system effluent on littoral nutrient loading (Dennis 1986, Rakhimbekova et al. 2021) could have 

substantial long–term effects on AP littoral ecology (Laxson et al. 2019). Localized 

eutrophication paced by lakeshore development could partially explain the temporal series of 

studies cataloging colonization of the AP by mallards (Eaton 1910, Benson 1968, Brown and 

Parsons 1979, Dwyer and Baldassarre 1994) and, in this study, indications of an ongoing 

displacement or replacement of black ducks by mallards. Prior studies indicated that brood 

densities (Staicer et al. 1994) of black ducks were greater on human influenced lakes.  

 In the context of Lavretsky et al.’s (2019; 2020) findings, game–farm mallards may be 

exploiting developed habitats to a greater degree than black ducks because of innate behavioral 

patterns. Tolerance for human activity has been suggested as inherited from captive reared Old–

World mallards (Heusmann 1983, 1991, Hepp et al. 1998, Lavretsky et al. 2020), and my results 

suggest developed lakes are occupied by AP mallards more than black ducks. My results also 

indicate the current niche of AP mallards is much larger than that of black ducks, and that their 

niches overlap in traditional AP black duck breeding habitats (Benson 1968, Brown and Parsons 

1979, Dwyer and Baldassarre 1994). This dynamic further establishes the possibility that 

developed lakes, with stable anthropogenic water levels and dependable food supply (i.e., human 

handouts and nutrient loading), may serve as a source for mallard population growth relative to 

wetlands more traditionally used by black ducks (Brown and Parsons 1979, Holt 1985, Pulliam 

1988). Wetlands might be a population sink in years when environmental variables such as 
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weather or beaver extirpation (Brown and Parsons 1979, Holt 1985, Pulliam 1988) reduce the 

availability or quality of beaver–modified wetlands as breeding habitats. This could be further 

complicated in years when lake–ice thickness and delayed ice–out dates temporarily prohibit 

initiation of nesting on lakes relative to wetlands. Examination of the anthropogenic exploitative 

nature of mallards in similar boreal ecosystems in Finland suggests the Old–World mallard 

(Lavretsky et al. 2019) is capable of outcompeting sympatric wetland obligate waterfowl using 

oligotrophic lakes as a key resource (Lehikoinen 2016).  

Future studies investigating relationships between AP mallards and black ducks should 

focus on duckling productivity among habitats, relationships between breeding season 

parameters and nutrient loading in developed lakes versus undeveloped lakes and attempt to 

identify if a source–population effect from human development is benefitting mallards relative to 

black ducks (Holt 1985, Pulliam 1988). My results suggest lakefront development currently 

plays an important role as AP waterfowl breeding habitat.  

MANAGEMENT IMPLICATIONS 

My model demonstrates that a multispecies occupancy framework can be useful to generate 

estimates for relatively uncommon species such as black ducks in the AP, while also providing 

valuable occupancy estimates for sympatric species. If an aim of waterfowl managers is to 

sustain breeding black ducks in the AP, I propose the human–mallard interface in AP habitats 

will need to be discussed and the effects potentially mitigated. I also suggest that managers could 

apply harvest strategies to reduce the abundance of hybrid swarm, game farm × wild mallards in 

eastern North America with the aim of reducing competition with native black ducks for 

breeding habitat. The highly similar occupancy of habitats of these two species in the AP will 

likely foster a competitive release on breeding black ducks (Lavretsky et al. 2020). I suspect the 
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subsequent back–replacement of mallards by black ducks in AP breeding habitats would follow 

because these two species occupy similar niches and treat each other as conspecifics (Petrie et al. 

2012). Furthermore, the AP is a single stratum in the Atlantic Flyway Breeding Waterfowl 

Population Survey (Heusmann and Sauer 1997, 2000) with substantial variance around 

population estimates. My study sites and analysis framework offer managers a unique 

opportunity to accessibly monitor long–term trends in the populations of mallards, black ducks 

and other waterbirds in a semi–boreal ecosystem like those in the core breeding area of black 

ducks in Canada. 

Given the nuanced differences of how each species reacts to disturbance, dealing with the 

interface of lakefront development and these two species will be a necessary component in the 

management of Adirondack waterfowl and the retention of the AP black duck. Curtailing 

lakefront development is likely severely unpopular with local municipalities and has proven to 

be the target of lobbying from development protagonists in the past. This lobbying effort was 

done to great effect at the time, and despite the ongoing formation of a regulatory agency 

intended to mitigate over–exploitation of AP natural resources (Holland 2011). Tackling nutrient 

loading may seem more attractive than reclassifying land use, however legacy phosphorous and 

the removal of nitrogen from septic effluent is widely considered impossible or ineffective to 

mitigate. Regardless, a necessary first step for expanding APA regulation in any of these areas 

will be to quantify the scale and impact of development in AP habitats. 
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Table 2.1 Mean, SD, and quantiles of estimates of occupancy probability for 7 species of 

waterbirds from 2019 to 2020 in wetland sites, undeveloped lake sites, and developed lake sites 

in the Adirondack Park of New York, USA. SD is the standard deviation of the mean, q2.5, and 

q97.5 are their quantile estimates. Difference between q2.5 and q97.5 are the 95% credible 

interval for the specified estimate. 

   Estimates 

Stratum Species  Mean SD q2.5 q97.5 

Wetland American black duck  0.051 0.013 0.029 0.080 

 Mallard  0.142 0.021 0.103 0.187 

 Canada goose  0.048 0.012 0.027 0.075 

 Wood duck  0.154 0.024 0.111 0.204 

 Hooded merganser  0.139 0.023 0.098 0.189 

 Common loon  0.028 0.010 0.012 0.050 

 Common merganser  0.047 0.012 0.026 0.073 

Undeveloped lake American black duck  0.020 0.011 0.005 0.047 

 Mallard  0.087 0.023 0.048 0.136 

 Canada goose  0.019 0.010 0.004 0.044 

 Wood duck  0.043 0.017 0.016 0.082 

 Hooded merganser  0.011 0.009 0.001 0.033 

 Common loon  0.223 0.038 0.153 0.300 

 Common merganser  0.056 0.019 0.026 0.099 

Developed lake American black duck  0.035 0.024 0.007 0.096 

 Mallard  0.175 0.056 0.084 0.299 
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 Canada goose  0.050 0.032 0.010 0.133 

 Wood duck  0.011 0.007 0.003 0.028 

 Hooded merganser  0.001 0.001 0.000 0.004 

 Common loon  0.683 0.106 0.452 0.862 

 Common merganser  0.061 0.034 0.017 0.149 
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Table 2.2 Mean time–to–detection (TTD) and mean probability of detection (p) variance 

statistics for 7 species of waterbirds from 2019 to 2020 in wetland sites, undeveloped lake sites, 

and developed lake sites in the Adirondack Park of New York, USA. SD is the standard 

deviation of the mean, q2.5, and q97.5 are their respectively named quantile estimates. 

Difference between q2.5 and q97.5 are the 95% credible interval for the specified estimate. 

   Estimate  

Parameter Species  Mean SD q2.5 q97.5 

TTD American black duck  12.42 2.32 8.68 18.08 

 Mallard  11.11 1.41 8.81 14.45 

 Canada goose  7.75 1.80 5.15 12.06 

 Wood duck  13.02 2.25 9.56 18.31 

 Hooded merganser  14.77 2.97 10.12 20.76 

 Common loon  11.42 1.66 8.60 15.58 

 Common merganser  12.37 2.29 8.80 17.70 

p American black duck  0.909 0.040 0.810 0.968 

 Mallard  0.932 0.023 0.875 0.967 

 Canada goose  0.976 0.021 0.917 0.997 

 Wood duck  0.899 0.039 0.806 0.957 

 Hooded merganser  0.869 0.052 0.764 0.948 

 Common loon  0.927 0.028 0.854 0.970 

 Common merganser  0.910 0.039 0.816 0.967 
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Figure 2.1. Map of beaver–modified wetland and lake surveys in the Adirondack Park (AP) of 

northern New York, USA, May – July 2019 and 2020. Ecozones are classified according to 

Edinger et al. (2014) and are denoted as Central Adirondack (CA), Western Adirondack 

Foothills (WAF), Sable Highlands (SH), High Peaks (HP), and Eastern Adirondack Foothills 

(EAF). 
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Figure 2.2. Mean occupancy probability with 95% credible intervals for 7 species of waterbirds 

in beaver–modified wetlands, undeveloped lakes, and developed lakes in the Adirondack Park, 

New York, USA, May – July 2019 and 2020. Alpha codes = CAGO – Canada goose, WODU – 

wood duck, MALL – mallard, ABDU – American black duck, HOME – hooded merganser, 

COME – common merganser, and COLO – common loon. 
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Figure 2.3. Derived difference in occupancy probability with 95% credible intervals for mallards 

and black ducks in beaver–modified wetlands (W), undeveloped lakes (L), and developed lakes 

(D) in the Adirondack Park, New York, USA, May – July 2019 and 2020. Test category is coded 

to denote differences between test categories including species (B = black duck, M = mallard), 

and treatment (L, W, or D). For example, B–M~W = the difference between mallard and black 

duck occupancy probability in wetlands). Black filled dots denote an estimate that does not 

overlap 0, indicating a significant result. 
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Figure 2.4. Beta parameter estimates with 95% credible intervals for the effect of developed lake 

(a) and undeveloped lake (b) treatment (i.e., stratum) relative to wetlands on occupancy 

probability of 7 species of waterbirds in the Adirondack Park, New York, USA, May – July 2019 

and 2020. Alpha codes = CAGO – Canada goose, WODU – wood duck, MALL – mallard, 

ABDU – American black duck, HOME – hooded merganser, COME – common merganser, and 

COLO – common loon. Black filled dots denote an estimate that does not overlap 0, indicating a 

significant result. 

  

a. 

b. 
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Figure 2.5. Beta parameter estimates with 95% credible intervals for the effect of (a) year, (b) 

percentage open water in site, and (c) percentage emergent vegetation as shoreline on occupancy 

probability of 7 species of waterbirds in the Adirondack Park, New York, USA, May – July 2019 

and 2020. Alpha codes = CAGO – Canada goose, WODU – wood duck, MALL – mallard, 

ABDU – American black duck, HOME – hooded merganser, COME – common merganser, and 

COLO – common loon. Black filled dots denote an estimate that does not overlap 0, indicating a 

significant result. 

c. 

b. 

a. 



49 

 

 

Figure 2.6. Covariate predictive plots with 95% credible intervals for the effect of percent 

shoreline as emergent vegetation on occupancy probability of wood ducks, and the effect of 

percent open water in survey site on occupancy probability of common loons in the Adirondack 

Park, New York, USA, May – July 2019 and 2020.  

Wood Duck Common Loon 
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CHAPTER 3: EXAMINING UTILITY OF UNMANNED AERIAL VEHICLES TO 

SURVEY WATERFOWL IN FORESTED WETLANDS OF NORTHERN NEW YORK 

ABSTRACT Unmanned aerial vehicles (UAV) are increasingly popular for wildlife studies 

because they offer many opportunities to resolve issues with land access, animal detectability, 

animal disturbance, survey reproducibility, and human safety. Waterbirds in wetlands with 

vertical structure that obstructs horizontal line–of sight are challenging to survey because 

detection is greatly reduced. The waterfowl species that inhabit densely vegetated wetlands are 

often secretive, and subject to being easily disturbed. Based on recent advances in integrated 

UAV camera systems, and recent research into colonial waterbirds in various environments, I 

hypothesized an off–the–shelf consumer grade UAV might be capable of collecting imagery and 

video that allow researchers to effectively detect, identify, and count waterfowl in beaver–

modified wetlands of the Adirondack Park (AP), New York, USA. I evaluated this hypothesis by 

conducting successive ground and UAV surveys at 16 beaver–modified wetlands in the AP. I 

compared detection probability between methods while accounting for differences in covariates 

of the area surveyed by each method, and their corresponding survey–specific vegetation 

metrics. I analyzed the paired ground and UAV counts in an N–mixture model fit to a Bayesian 

statistical framework. I found no difference in detection probability between the UAV (p = 0.493 

± 0.247 SD) and ground survey (p = 0.452 ± 0.238 SD) after accounting for differences in 

vegetative cover and wetland area surveyed by these methods. However, review of raw video 

from the UAV detected more waterfowl in dense vegetation than the ground observer including 3 

occasions where the UAV recorded black ducks not detected from the ground. Survey efforts 

were similar between methods, but UAV video includes additional viewing time.  
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KEY WORDS Adirondack Park, American black duck, Anas platyrhynchos, Anas rubripes, 

mallard, UAV, unmanned aerial vehicles. 

UAVs may have advantages relative to traditional ground–based surveys including greater 

survey viewing angle, site access, and real–time collection of observational habitat data (Chabot 

and Bird 2015, Drever et al. 2015). UAVs have been applied to studies of rare and common 

species in terrestrial and aquatic environments (Watts et al. 2010, Brooke et al. 2015, 

Weissensteiner et al. 2015, McEvoy et al. 2016, Delparte et al. 2019). Application of UAVs to 

survey waterbirds has the potential to detect birds with various life history strategies and among 

a diversity of cover types (Chabot and Bird 2015, Hodgson et al. 2018). However, studies 

determining the utility of UAVs to survey waterbirds in wetlands surrounded by forest is limited 

to examples with few incidental trees in more arid environments relative to the dense older 

forests found in the northeastern United States. UAVs have been used to count nesting Canada 

geese (Branta canadensis) and snow geese (Chen caerulescens) as effectively and accurately as 

ground observers without noticeable disturbance (Chabot and Bird 2012). A thermal and visual 

sensor platform on a UAV was used in the grasslands of North America to effectively detect, 

monitor, and identify nests and broods of waterfowl (Bushaw et al 2020). In Australia, a medium 

format sensor on a large rotary wing UAV was used to identify between two similar species of 

dark plumage ducks while avoidance disturbance of birds during the non–breeding period 

(McEvoy et al. 2016). To my knowledge, no current publication has successfully used UAVs to 

survey waterfowl in a mountainous environment on wetlands surrounded by forest.  

 The American black duck (Anas rubripes; hereon black duck) declined in population in 

the eastern United States over the last century. Concurrent with that decline was an expansion in 

the range and population of mallards (Anas platyrhynchos). Black ducks are known to behave 
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more secretively than mallards in relation to human development (Diefenbach and Owen 1989) 

and select forested wetlands (Kirby 1980; 1988) which can hinder large scale surveys 

(Merendino et al. 1995). Furthermore, breeding waterfowl often select brood–rearing habitat 

with abundant emergent vegetation (Cowardin and Blohm 1992), which can decrease probability 

of detections (Diem and Lu 1960). Therefore, the successful application of UAVs for surveying 

black ducks at a greater detection probability than ground surveys would enable more precise 

estimation of population trends in difficult–to–survey environments. 

The Adirondack Park (AP) in northern New York, USA, has a diversity of waterfowl 

habitats including emergent wetlands, forested wetlands, glacial lakes, bogs, and riverine 

systems, all of which can be modified by beaver (Castor canadensis) activity. The cyclical 

occupancy of beaver–modified wetlands has long been recognized as beneficial to waterfowl 

(Nummi 1992, Kirby 1973). Its value to black ducks in densely forested areas of North America 

has also been well identified (Whitman 1978, Spencer 1986, Kirby 1980; 1988). Considering the 

abundance of beaver–modified wetlands and their importance to breeding waterfowl of the 

region, I aimed to determine if a high–resolution visible spectrum sensor on a consumer grade 

UAV would be useful to survey waterfowl in this habitat. Currently, this is the only study I am 

aware of that attempts to survey waterfowl in a densely forested and mountainous environment 

using a UAV. My objectives were to 1) determine if a UAV was able to identify black ducks and 

sympatric heterospecific waterfowl (hereon “ducks”) at altitudes known to reduce disturbance 

(McEvoy et al. 2016) and avoid ground structure, 2) compare UAV survey performance to 

ground–survey methods, 3) compensate for inherent differences between ground and aerial 

survey methods, and 4) assess the chosen platform and flight strategy for species–specific cases 

of efficacy and recommend future strategies or points of study.  



53 

 

METHODS 

Study Area 

The AP, located in northern New York state, is the largest publicly protected area in the 

contiguous United States and is a designated World Biosphere Reserve in 1989. The AP has 

similar geologic and ecologic conditions to Canada’s boreal forest and its extensive forest cover 

is characterized as a transition between northern hardwoods (maple–beech–birch) (Acer spp., 

Fagus grandifolia, Betula spp.) and northeastern spruce–fir (Picea spp., Abes balsamea, Tsuga 

canadensis) assemblages (Bryce et al. 2010). Geology is greatly shaped by glaciation and the 

granite upwelling of the Adirondack mountains, and the AP provides numerous lakes, wetlands, 

bogs, and cold–water river systems (Bryce et al. 2010). The AP provides breeding habitat for 

black ducks with > 3,000 lakes and abundant beaver–modified wetlands (Brown and Parsons 

1979, Dwyer and Baldassarre 1994, Macy and Straub 2016). Despite the potential abundance of 

waterfowl breeding habitat in the AP, naïve occupancy can be as low as 30% for beaver–

modified wetlands (Chapter 2). Impediments to flying UAVs in the AP include mountainous 

topography (~1000 m prominence), trees > 33m in altitude above surface level (ASL), active 

military operations areas (MOAs), atmospheric weather conditions, and a matrix of private and 

publicly owned conservation lands with UAV and airspace use restrictions. Access to these 

wetlands using traditional ground–based approaches is physically difficult which can limit 

sample sizes, and the dense forests and vegetation in and around beaver–modified wetlands also 

often decreases detections (Diem and Liu 1960, Kirby 1980). Conventional aerial surveys of 

beaver–modified wetlands using manned aircraft are conducted rapidly and often fail to 

adequately detect the waterfowl present on wetlands (McAuley et al. 2004).  
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Experimental Design 

I first applied basic photogrammetric calculations to manufacturer–provided specifications of 

modern consumer grade UAV and sensor combinations. I wanted to ensure an image resolution 

that made color and size details recognizable for identification of female mallards and black 

ducks in the breeding period, which may require collecting imagery with enough precision to 

identify bill color. I vetted identification capability by acquiring pilot licensing (FAA 14 CFR 

Part 107), access permits, suitable UAV equipment, and then employed them over known black 

duck habitat in central New York, USA, in March and April 2019. During the waterfowl brood 

rearing period (July 2020), I flew UAV surveys immediately after ground–based point counts in 

an existing wetland survey framework for waterfowl and analyzed the two counts for comparison 

of detection probability. In addition, I incorporated the covariates of survey area (ha of wetland) 

as “available” waterfowl habitat and percentage vegetative cover into estimates of detection 

probability and abundance, to control for the inherent relative differences between ground and 

UAV methods. I conducted surveys when allowed by MOA schedules, there was no 

precipitation, visibility was > 4.9 km, wind was < 24 km/h, and when high–angle sunlight did 

not impede detections. 

Sensor Selection and Species ID Testing 

AP beaver–modified wetlands are often surrounded by mature stands of mixed forests with white 

pine (Pinus strobus). My primary concerns for safely operating UAVs in the AP were trees that 

can often reach > 33m ASL in combination with the increasing elevation of topography 

surrounding wetlands. Additionally, I wanted to fly high enough to avoid waterfowl disturbance 

while still collecting imagery of the precision necessary for waterfowl identification. To 

accomplish this, I first determined the ideal ground–sampling distance (GSD; a linear measure of 
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ground represented per image pixel) (Neumann 2004, 2008). I assumed the ideal GSD to be the 

resolution at which an individual pixel would likely capture the overall body color, speculum, 

tail feathers, bill color, or other features of individual waterfowl detections that could distinguish 

between female mallards and black ducks (sensu McEvoy et al. 2016). Using the LeMaster 

method book (LeMaster 1996), I measured the length and width of a black duck bill, as this was 

one of the finer scale detection differences available between species. I divided each dimension 

by 3 (i.e., allowing for partial color collection at all sides of a central pixel) to create a necessary 

image pixel size of one third the bill width and length of a black duck. Camera pixels are square, 

so I assumed the bill–width dimension mandated the desired GSD. This measurement then 

became my target GSD for differentiating between female mallards and black ducks.  

 With this target GSD, I then compared the contemporary consumer grade (i.e., “off–the–

shelf”) UAV/sensor combinations available in January 2019. I only considered models requiring 

no custom programming or airframe modifications which also typically included fully integrated 

sensor payloads and real–time ground control station (GCS) video transmission systems. Densely 

forested environments typically require vertical takeoff and landing (VTOL) capabilities, and 

rotary–wing “quadcopter” type UAVs are most well suited for this strategy. As such, only VTOL 

capable aircraft platforms (mostly quadcopters) were considered. I selected the Inspire 2 airframe 

and Zenmuse X7 aerial sensor combination, with 16 mm and 50 mm aspherical (ASPH) lenses 

(24 mm and 77 mm spherical–lens equivalence) (DJI, Nanshan, Shenzhen, China). The Zenmuse 

X7 sensor is a “Super–35” sized 24–megapixel sensor measuring 23.5×15.7 mm. 

An effective larger sensor and airframe combination were known to exist (McEvoy et al. 

2016), however the expense, lack of portability, and lack of contemporary systems integrations 

(e.g., live video transmission and collision avoidance) was the motivating deciding factor against 
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its use. I also preferred UAV airframes and navigation systems that had been well vetted for 

inherent errors by widespread consumer use.  

 I assembled, registered (FAA 14 CFR Part 48), updated, and calibrated the newly 

acquired aerial platform and sensor. I then deployed the UAV over known black duck habitat in 

the Northern Montezuma Wildlife Management Area (NMWMA) in Savannah, NY, USA, 

during the spring migration of March and April 2019. This is a New York State Department of 

Environmental Conservation (NYSDEC) owned property and required a NYSDEC UAV pilot 

license, in addition to a temporary revocable permit. Further testing to obtain a diversity of 

species detections using various flight strategies was conducted over flooded hardwoods and rice 

fields in Poinsett County, Arkansas, USA, February 2019, Lake Ontario, New York, USA March 

2019, and the AP target wetlands, August 2019. 

Flight Strategy, Imagery Collection and Review 

I used the approximate flight strategy employed by McEvoy et al. (2016) by flying the aircraft as 

high above the wetland as imagery proved useful for identifying ducks, and most maneuvers 

such as VTOL, turning, or altitude change are conducted as far from the view of the wetland as 

possible to avoid causing disturbance to the birds. My method differed from McEvoy et al. 

(2016) and Drever et al. (2015) because I chose to collect a continuous reel of high–resolution 

video (4096 x 2160 pixels – hereafter 4K, and 6006 x 3200 pixels – hereafter 6K) in addition to 

4K and 6K still images collected by prior studies. I used neutral–density optical filters to mitigate 

sunlight intensity when needed. Relatively linear–shaped wetlands with forested edges were 

flown at > 50 m ASL with a 50 mm focal length ASPH lens with mechanical leaf shutter. More 

circular, wider shaped wetland basins were flown > 30 m ASL with a 16 mm focal length ASPH 

lens.  
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Challenges securing permits in summer 2019 precluded my ability to conduct UAV 

surveys at a useful time in the 2019 waterfowl breeding period, however a subset of the selected 

AP wetlands were flown for testing in August 2019. During these flights, I tested autonomously 

programmed 50% overlap imagery in grid–style flights with the UAV camera aimed at nadir 

(Drever et al. 2015) in comparison to a hybrid method of manually flying grid–like patterns over 

wetlands (McEvoy et al. 2016) while allowing for some oblique camera viewing. For both flight 

strategies, I collected a continuous stream of 4K video (i.e., stored in onboard memory cards) 

while simultaneously collecting 4K and 6K still images of shaded forested shoreline and areas 

with dense aquatic vegetation. Still images were collected for any detections of waterfowl made 

during the GCS video feed, as well as other challenging detection environments such as dead 

forested wetlands and scrub–shrub shoreline. I used the Inspire 2 telemetry data (automatically 

plotted in a GCS on–screen map) to ensure full aerial–surface coverage of the wetland to be 

surveyed during the manual grid search method. Some wetlands were large enough to require 

battery changes to complete surveys of the wetland surface area. Telemetry data was also used to 

resume surveys where they were stopped, and ground surveyors observed for assumptions of 

closure between the surveyed and un–surveyed portions of wetlands. 

In the lab, I reviewed video and imagery twice to detect and identify waterfowl. I 

recorded time of detection (i.e., survey effort time and video–index time), number of birds in 

each detection, demographic information, vegetative covariates, and if the UAV appeared to 

affect behavior. I recorded vegetation covariates from UAV video as an estimate of percentage 

of wetland with emergent vegetation above the water. This was included to model the effect of 

vegetation on detectability (Diem and Liu 1960, Kirby 1980) as well as its complimentary effect 

on abundance (Kirby 1980, Kaminski and Prince 1981, Dyson et al. 2018). I used VLC media 
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player (VideoLAN, Paris, France) and 4K–ready computer monitors with substantial 

contemporary graphics processing hardware to effectively review, detect, and identify waterfowl 

in UAV imagery and video and found them essential to this process. I improved my ability to 

detect and identify waterfowl in videos by reducing playback by 1/3rd speed and zooming into 

images by ≤ 1000%.  

Ground–based Wetland Surveys 

I chose 16 AP beaver–modified wetlands in 2020 (Fig 3.1) with physical properties suitable for 

VTOL and maintaining visual line of sight (VLOS) that were already part of an existing ground–

based waterfowl survey. At each wetland, observers surveyed for 30 min prior to the UAV flight 

from shoreline points with a secretive approach and the greatest visibility of wetland area. 

Ground and UAV surveys were conducted successively by the observer and the UAV pilot 

(myself in all cases) to synchronize the immediate transition of survey methods. Ground 

observers recorded the number, species, sex, and age of waterfowl in the wetland in a radius 

limited only by the extent of wetland visible from the survey point, and covariates for vegetation 

(relative to ground observer), and bird behaviors potentially associated with disturbance (i.e., 

flight, swimming away, hiding, change of activity). At the conclusion of the 30 min ground 

count, I launched the UAV and surveyed the wetland using the integrated camera system. During 

the UAV survey the ground observer watched for UAV disturbance of waterfowl and 

movements of waterfowl that might affect detection (i.e., during battery changes, disturbance 

behaviors). The pilot was not made aware of any detections recorded by the ground observer 

until after all flights had been completed.  
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Count Analysis and Detection Probability 

I tallied counts conservatively (i.e., each brood or related group of ducks as a single detection) 

from each survey method to maintain model assumptions of independence of the counted 

individuals (Kéry 2010). I did not consider single adult or juvenile heterospecific waterfowl 

occurring in the same area as grouped, but conspecifics in arrangements of broods or pairs were 

counted as single detections. I combined all species of waterfowl detected and will discuss them 

hereafter simply as ducks because of small sample sizes for individual duck species. I analyzed 

count data using an adaptation of the binomial mixture model described by Kéry (2010) to model 

presence or absence of ducks from a binomial distribution, and their “true” count abundance 

from a Poisson distribution, considering the ground and UAV survey as two independent visits. 

The model was fitted in a Bayesian statistical framework using JAGS (Just Another Gibbs 

Sampler Version 4.3.0, Plummer 2003) called through program R (R Version 4.0.3, www.r–

project.org, accessed 8/17 2020), and package rjags (rjags Version 4–10, Plummer 2013). I 

further parameterized this mixture model to account for wetland area, the availability of survey 

area for detection (i.e., method–specific survey area), and method–specific (i.e., UAV or ground) 

covariates for vegetated cover modeled to affect both presence and detection.  

To model the “true” state of duck abundance, I specified the model equations as:  

Ni ~ Poisson (λi) 

log(λi) = log (Aui) + αλ + βλ * Vui + €i 

where Ni is the true abundance at site i, with a mean around λi (lambda = the Poisson intensity 

parameter). The deterministic equation for λi includes an offset for wetland area (Aui), the 

intercept αλ for λ, and the beta parameter (βλ) for the effect of wetland vegetated cover (Vui) on 
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duck abundance at site i. €i is an extra–Poisson variation parameter I included to compensate for 

overdispersion from zero–inflated data. I specified priors for the above parameters as: 

€i ~ Normal (0, τ) 

σ ~ Uniform (0, 100) 

 τ = 1/(σ * σ) 

αλ ~ Normal (0, 0.001) 

 βλ ~ Normal (0, 0.001) 

where €i is distributed normally around a mean of 0 and a precision of τ. σ (standard deviation of 

€i) is distributed uniformly around a mean of 0 and a standard deviation of 100. I specified the 

observational model for replicated counts as: 

Ci ~ Binomial (p.ei, Ni) 

p.ei = pi * Avi 

logit(pi) = αp + βpV * Vpi + βpObs * Obsi 

where Ci (count data at observation i) is distributed binomial with a probability around p.ei (the 

probability of detection correcting for duck availability) given N detection trials at site of 

observation i. Availability (Avi) = method–specific proportion of survey area covered, and was 

determined by using ArcGIS version 10.7 (ESRI, Redlands, CA) to delineate method–specific 

survey areas based on ground observer location, orthoimagery, and UAV flightpath and video. I 

specified the deterministic model for pi (probability of detection) to include beta parameters for 

the effect (βpV) of method–specific vegetated cover covariates (Vpi) and beta parameters for the 

effect (βpObs) of survey method (Obsi) on detection probability for observation i. Priors for these 

parameters are specified as: 

αp ~ Normal (0, 0.001) 



61 

 

βpV ~ Normal (0, 0.001) 

βpObs ~ Normal (0, 0.001) 

where all coefficient priors were distributed normally with a mean around 0, and a SD around 1. 

I examined model estimates of detection probability between methods and generated predictive 

plots for the effect of vegetation on detection probability.  

RESULTS 

UAV Selection and Testing 

Using the LeMaster method book (LeMaster 1996), I determined a female black duck bill was 

approximately 55 mm long and 23mm wide. I then determined my ideal GSD to be 7.6 mm. 

Using this GSD, I found that as of January 2019 the only UAV platform and sensor combination 

capable of obtaining this GSD and satisfy other mission criteria (i.e., portability, VTOL) was the 

Inspire 2 UAV and integrated Zenmuse X7 sensor. Test flights from NMWMA made it apparent 

(Fig 3.2) that mallards and black ducks could be readily distinguished from each other in 

imagery, video, and “live” on the GCS screen at altitudes > 50 m ASL with a 50 mm ASPH lens, 

especially when appearing together.  

Further flights over NMWMA, Lake Ontario, and flooded rice and hardwoods in 

Arkansas suggested this UAV and sensor combination is capable of detecting and identifying 

Canada goose (Branta canadensis), wood duck (Aix sponsa), northern shoveler (Spatula 

clypeata), American wigeon (Mareca americana), northern pintail (Anas acuta), green–winged 

teal (Anas crecca), redhead (Aythya americana), ring–necked duck (Aythya collaris), long–tailed 

duck (Clangula hyemalis), bufflehead (Bucephala albeola), hooded merganser (Lophodytes 

cucullatus), common merganser (Mergus merganser), red–breasted merganser (Mergus 

serrator), ruddy duck (Oxyura jamaicensis), pie–billed grebe (Podilymbus podiceps), and great 
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blue heron (Ardea herodias) in ideal lighting conditions at altitudes > 33 m ASL with a 50 mm 

ASPH lens.  

Flight Strategy Testing, Image Collection and Review 

I determined the geophysical properties (i.e., mountainous and forested) of AP beaver–modified 

wetlands and software issues with autonomous imagery collection precluded the use of the 

manufacturer–integrated autonomous flight software similar to the type used by Drever et al. 

(2015). Pre–programmed flight paths also were not able to adequately consider VLOS 

restrictions to the GCS in a densely forested environment, and view of the UAV often became 

obstructed by trees (sometimes at a similar altitude) when flying over the farthest portions of 

beaver–modified wetlands from the pilot. Onboard software did not allow for the discontinuous 

resumption of these programmed flight paths (i.e., waypoints) when VLOS interruptions 

occurred, and for legal compliance this method was deemed unsuitable. Additionally, color 

corruption errors in the encoding of autonomously collected still images suggested loss of image 

data and any included detections were likely. As such, my 2020 data collection flights were 

completed using the hybrid manual grid–like flight strategy.  

 During the 16 AP beaver–modified wetland flights, I collected 223 4K–videos totaling 

approximately 7.2 hrs of footage in addition to 1,865 4K and 6K–still images. I reviewed 

imagery twice during 60 hrs of viewing. The resulting file collection is approximately 432 

gigabytes in storage size, a non–trivial volume considering my sample size (Table 3.1). 

Count Analysis and Detection Probability 

On 5 paired surveys, the UAV detected more ducks and on 4 surveys more groups than the 

ground observer, whereas on 4 paired surveys, the ground observer detected more total ducks 

than the UAV, and more groups on 2 of those occasions (Table 3.2). In 7 of 16 surveys, neither 
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method detected ducks, and on one survey the UAV detected one duck while the ground 

observer saw none; however, the ground observer never detected ducks when the UAV found 

none (Table 3.2). In total, the UAV detected 44 birds in 20 independent groups, while the ground 

observer detected 20 birds in 11 independent groups (Table 3.2). Only 8 of 23 unique detections 

were shared by both methods, and only 16 of 54 individual ducks were detected by both methods 

(Table 3.2).  

During the UAV portion of 2 different surveys, the ground observer detected waterfowl 

entering the airspace immediately above the wetland that landed in the survey area with the UAV 

present and operating nearby. On one such occasion, the UAV failed to detect that duck, but 

having occurred after the ground survey, was not included in the ground observer count for those 

surveys (Table 3.2). On 3 surveys, waterfowl not detected by the ground observer were black 

ducks obstructed by vegetation, 2 of which were broods. On one occasion, the UAV takeoff 

flushed a male black duck that was observed during the ground count, but I failed to detect it on 

video. Disturbance at the level of initiating a flight response only occurred on 4 occasions out of 

a total > 70 duck–group approaches in the AP and in test flights elsewhere.  

I found no difference (∆p = 0.042 ± 0.155) in detection probability between the UAV (p 

= 0.493 ± 0.247 SD) and ground survey (p = 0.452 ± 0.238 SD) after compensating for 

differences in wetland area surveyed by these methods (i.e., availability). I also found no effect 

of vegetated cover covariates on abundance (βpV = –0.477 ± 2.610 SD), or detection probability 

(βλ = 1.489 ± 1.761 SD). I estimated that total “true” abundance of ducks was N = 57.676 ± 

54.36 SD (Table 3.3).  
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DISCUSSION 

My examination of raw detections by species suggests the UAV and ground observer are 

detecting ducks differently. Video review of UAV detections further suggests that emergent 

vegetation is less problematic for the UAV, while open water is more challenging. Like McEvoy 

et al. (2016), I think this is caused by ducks moving out from beneath the rotary wing UAV 

before it passes over them. Open water species like hooded and common mergansers 

(Baldassarre 2014) may dive or swim out of the UAV flightpath (McEvoy et al. 2016) more 

readily as that strategy suits the physical properties of their habitat selections (i.e., free space to 

move). I also suspect species favoring emergent vegetation like wood ducks (Davis et al. 2007, 

Dyson et al. 2018) and black ducks (Kirby 1980, Diefenbach and Owen 1989) might rely more 

on concealment within vegetated cover rather than fleeing. In some cases this is favorable for 

UAV detection relative to the ground observer. Wood ducks were commonly detected in 

relatively dense vegetation (i.e., sometimes impossible for ground observers to detect), and on 

several occasions were filmed leaving emergent vegetation for the upland portion of heavily 

forested shorelines to avoid the UAV path. In short, the UAV was more easily detecting 

secretive species, while the ground observer was more readily detecting species in open water. 

My evaluation of raw counts by species shows split evidence, but generally supports this theory. 

On the two surveys where the ground observer saw more groups than the UAV, one was a 

hooded merganser hen, and the other was a black duck drake. On 1 of 4 surveys where the UAV 

detected more groups than the ground observer, the extra group detected was a hooded 

merganser. On the remaining 3 surveys with more UAV group detections than the ground 

observer, 2 of 10 extra groups detected by the UAV were hooded mergansers, and the remaining 

8 groups were wood duck, mallard, and black duck groups, respectively. 
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Given the raw counts, I was surprised to see no difference in detection probability 

between methods. I suspect the lack of significance in the effect of vegetation and observer on 

detection probability and vegetation on abundance is due to small sample size. I subsequently 

added a beta parameter term for the interactive–effect of observer and vegetation on detection 

probability and although it offered no further significance, the interaction dramatically reduced 

the burn–in and iterations necessary to reach model convergence, and further stabilized estimates 

of subsequent model runs. This suggests that further data are needed to quantify the interactive 

effect between observer specific detection probability and vegetation, but that the interaction is 

still functionally important to include in the model.  

Further evidence of satisfactory model performance is suggested by the estimates of 

“true” total abundance produced by my model. Based on raw counts, 54 total ducks were present 

in our 16 wetlands. As previously mentioned, these wetlands are part of a larger (n = 397) 

existing waterfowl study, the analysis of which uses a time–to–detection as a function for 

detection probability. From this larger study, I estimated the rough mean (i.e., “duck”) 

probability of detection for the 5 waterfowl species represented in this smaller UAV study as 

0.918. A simple application of this rough mean detection probability (i.e., 54 ducks/0.918 = 

58.82 ducks) suggests my UAV/ground analysis model was appropriately estimating method–

specific detection probability and total abundance (N = 57.7 ± 54.4) given the high variance 

likely driven by the thin, zero–inflated data used in the analysis.  

Although this platform and sensor combination could identify differences between 

mallards and black ducks in imagery, it elicited unanticipated swimming response and awareness 

behaviors by target waterfowl. The ground observer and video reviewer frequently noted ducks 

swimming away from the space immediately beneath the flightpath of the UAV, sometimes in 
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advance of the UAV, but most were still captured on video using the 16 mm ASPH lens. Some 

groups, most commonly broods, continued foraging behaviors uninterrupted despite the lingering 

presence of the UAV 30 m to 50 m above them. Magnitude of duck reaction to the quadcopter 

was inconsistent and difficult to predict, however all ducks that flushed were not bonded to a 

brood. This is partially a product of choosing a smaller sensor size than McEvoy et al. (2016), 

which required < 30 m lower elevation flights as well as more flight paths per unit area surveyed 

in my study. Additionally, errors and shortcomings in the autonomous image collection systems 

provided by the UAV manufacturer were not able to sufficiently consider current VLOS 

regulations in a heavily forested environment. As such, I recommend a larger sensor size on a 

similarly portable quadcopter platform (not available as of late 2020), so pilots can maintain 

higher elevations while still collecting target–GSD imagery. I caution that the weight, physical 

size, battery needs, and expense of the platform and sensor combination employed by McEvoy et 

al. (2016) would have widely prohibited meaningful application to wetlands in densely forested 

ecosystems like this study. Increased sensor size in turn also improves VLOS with the GCS, 

reduces the number of flight lines, and reduces overall disturbance behaviors (McEvoy et al. 

2016) similarly through greater altitude.  

Recent advances in VTOL capable fixed–wing aerial platforms show a promising 

alternative to quadcopters in terms of flight duration (i.e., no battery changes) and in elevation 

(fully integrated full–frame sensors). As pointed out by Drever et al. (2015), flying high overlap 

imagery to collect detection data and habitat data simultaneously can be a potential useful tool in 

management, and fixed–wing aircraft are uniquely suited to high altitude (> 60 m ASL) mapping 

style missions. Furthermore, my initial testing of high overlap autonomous UAV surveys in AP 

wetlands suggested that method counted more waterfowl than the free search method, although 
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as previously mentioned VLOS regulations prevented this method from being widely applied. 

Managers who wish to employ UAVs in less forested wetland environments (e.g., NMWMA) 

would likely benefit from the use of fixed–wing platforms given the current off–the–shelf 

availability for fully integrated large (i.e., > 32 megapixels) sensors (and the current lack of them 

for portable sized quadcopters). Despite the potential of VTOL capable fixed–wing UAVs, I 

caution some abilities to collect imagery while hovering and freedom of camera movement are 

still inherent to rotary wing UAVs relative to fixed–wing. Future studies should incorporate 

species into this model, especially in a sample size meaningful to detect method–specific and 

species–specific differences in detection probability given vegetative cover. Furthermore, 

advances in UAV technology (i.e., VTOL capable fixed–wing airframes with full–frame censors) 

and likely impending relaxations of VLOS regulations suggest UAVs will become increasingly 

useful in the immediate future. Habitat and population data collection co–surveys are currently 

and increasingly possible in any environment located in legally accessible airspace, forested or 

otherwise. 

MANAGEMENT IMPLICATIONS 

UAVs in their current and upcoming forms can serve as a useful tool for waterfowl managers 

surveying wetlands in densely forested ecosystems and other habitats. My results suggest 

detection probabilities between UAVs and traditional ground methods are similar, but that UAVs 

may be more capable of detecting secretive waterfowl than a ground observer and offer greater 

access to a variety of wetlands relative to ground surveys. UAVs could effectively replace 

ground observers on largescale wetland surveys, but perfect detection cannot be assumed, so 

survey designs that correct for detection probability must be used. Typically, the UAV could 

access a larger survey area than ground observers and, in some wetlands, collect survey data 
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from a larger area faster. Ground and aerial surveys required similar total time spent surveying, 

however reviewing aerial imagery after UAV flights required substantially more labor than 

traditional ground surveys, but further offers the opportunity to review the data collected. 

Upcoming advances in automated imagery review software would be useful to reduce review 

time. 
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Table 3.1. Summary of survey effort and data collection for waterfowl point counts and 

unmanned aerial vehicle surveys (UAV) in 16 beaver–modified wetland sites in the Adirondack 

Park of NY, USA, 17 June 2020 to 20 July 2020. Survey effort is in minutes of active–searching 

video (EffortUAV) or minutes of ground observer observation (Effortg). Area of the UAV and 

ground surveyor (Areag) is reported in hectares. 

Site  Videos Images EffortUAV Effortg AreaUAV Areag 

1665  13 91 20.00 30 6.28 3.91 

1646  76 66 13.75 30 0.85 0.47 

17249  2 0 7.00 30 1.07 0.88 

192460  3 86 13.50 30 2.23 1.86 

1678  9 40 18.50 30 4.41 3.00 

16510  12 65 22.75 30 3.57 2.18 

181727  13 162 37.50 30 4.76 2.96 

190317  22 135 44.90 30 13.16 9.05 

190157  18 176 33.91 30 3.76 1.34 

182032  12 176 32.33 30 7.76 6.33 

190894  8 151 24.24 30 2.60 2.13 

181836  11 197 35.16 30 9.45 3.28 

192013  4 75 11.75 30 2.46 0.81 

190704  2 16 3.50 30 3.05 3.05 

190681  7 135 19.41 30 4.73 3.40 

193788  11 288 51.64 30 5.59 4.66 

Total  223 1859 389.84 480 75.71 49.29 
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Table 3.2. Summary of naïve detections for waterfowl point counts and unmanned aerial vehicle 

surveys (UAV), in beaver–modified wetland sites in the Adirondack Park of NY, USA, 17 June 

2020 to 20 July 2020. Counts are separated by number of groups of ducks (Ng) detected by the 

UAV (NgUAV) compared to ground (Ngg) surveys and by number of birds detected (Nd). 

Shared indicates groups and ducks detected by both methods. 

Site Name NgUAV Ngg Shared Total NdUAV Ndg Shared Total 

1665  1 2 1 2 3 7 3 7 

1646  0 0 0 0 0 0 0 0 

17249  0 0 0 0 0 0 0 0 

192460  0 0 0 0 0 0 0 0 

1678  1 1 0 2 4 1 0 5 

16510  0 0 0 0 0 0 0 0 

181727  3 3 3 3 6 8 5 8 

190317  4 1 1 4 17 5 5 17 

190157  3 0 0 3 7 0 0 7 

182032  0 0 0 0 0 0 0 0 

190894  0 0 0 0 0 0 0 0 

181836  1 1 1 1 1 3 1 2 

192013  0 0 0 0 0 0 0 0 

190704  1 0 0 1 1 0 0 1 

190681  4 1 1 4 4 1 1 4 

193788  1 2 1 2 1 3 1 3 

Total  19 11 8 22 44 28 16 54 
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Table 3.3. Mean estimates and variance statistics for N–mixture model parameters from 

waterfowl point counts and unmanned aerial vehicle surveys (UAV) in beaver–modified wetland 

sites in the Adirondack Park of New York, USA, 17 June 2020 to 20 July 2020. q2.5 and q97.5 

are their respectively named quantile estimates, overlap 0 is a logical argument for significance 

(i.e., FALSE = significant), and Rhat is the statistic to assess model convergence. Difference 

between q2.5 and q97.5 are the 95% credible interval for the specified estimate. Parameter name 

= N – total abundance across all sites, αλ – intercept of abundance, βλ – beta parameter for effect 

of vegetation on abundance, αp – intercept of detection probability, βpV – effect of vegetation on 

detection, βpObs – effect of UAV on detection, βpV*Obs – interactive effect of vegetation and 

observer, puav – UAV detection probability, pgrnd – ground surveyor detection probability, 

∆pu–g – derived differential parameter between methods of observation. 

 

            N–mixture Model Estimates 

Parameter 

 

Mean SD q2.5 q97.5 

N 

 

57.676 54.360 22.00 228.0 

αλ 

 

–1.487 1.157 –3.451 1.122 

βλ 

 

1.489 1.761 –2.144 4.704 

αp 
 

–0.020 1.453 –2.927 2.711 

βpV 

 

–0.477 2.610 –5.320 5.088 

βpObs 

 

–0.631 1.322 –3.094 2.103 

βpV*Obs 

 

1.832 2.293 –2.774 6.264 

puav 

 

0.493 0.247 0.068 0.910 

pgrnd 

 

0.452 0.238 0.062 0.914 

∆pu–g 

 

0.042 0.155 –0.265 0.368 
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Figure 3.1. Map of beaver–modified wetlands flown as concurrent unmanned aerial vehicle 

surveys in the Adirondack Park (AP) of northern New York, USA, 17 June 2020 to 20 July 2020, 

and accompanying FAA airspace sectional charts. Blue line depicts the AP boundary. 
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Figure 3.2. Whole (top) and zoomed–inset (bottom) of test image containing sympatric mallards 

and black ducks in breeding plumage at Northern Montezuma Wildlife Management Area, 

Savannah, New York, USA, 27 March 2019. Image was captured with Inspire 2 unmanned aerial 

vehicle and Zenmuse X7 from > 45 m above surface level with a 50 mm aspherical lens. 
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CHAPTER 4: MEAN BROOD SIZES OF SYMPATRIC WATERFOWL IN THE 

ADIRONDACK PARK OF NEW YORK 

ABSTRACT The American black duck is a dabbling duck native to eastern North America 

which has declined > 50% in abundance since the 1950s. Concurrently, mallards replaced black 

ducks in many Atlantic flyway breeding habitats. Previous studies have found breeding 

parameters similar between these species when sympatric. I used a linear mixed model in a 

Bayesian statistical framework to analyze brood size data from point–count surveys in lakes and 

wetlands of the Adirondack Park of New York State, that were collected as part of larger 

occupancy studies from 2013 and 2016−2020. I included Canada goose, wood duck, mallard, 

black duck, and hooded merganser because additional species of brood data were available, 

helped increase precision of estimates for my focal species of mallard and black duck, and 

furthered the significance of intraspecific tests. I tested for differences in mean brood size 

between and within mallards and black ducks relative to wetlands and lakes. I found greater 

productivity of mallards and black ducks in lakes relative to wetlands. Combined with greater 

occupancy of mallards than black ducks in lakes, this suggests mallards may outproduce black 

ducks by greater use of a more reliable (i.e., stable water levels and food resources) breeding 

habitat than black ducks. 

KEY WORDS Adirondack Park, American black duck, Anas platyrhynchos, Anas rubripes, 

mallard, mean brood size, productivity. 

The American black duck (Anas rubripes; here–on black duck) has declined significantly in the 

second half of the 20th century, concurrent with the increase in sympatric mallards (Anas 

platyrhynchos) (Heusmann 1974, 1991). This pattern continued through the southern breeding 

range of the black duck, to the effect of the mallard becoming the most common species. Many 
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hypotheses are proposed for black duck decline, including introgressive hybridization (Ankney et 

al. 1987), competitive exclusion by mallards (Petrie et al. 2012, Merendino et al. 1993), and 

landscape scale habitat change (Diefenbach and Owen 1989, Maisonneuve et al. 2006). Nichols 

et al. (1987) concluded the cause of the decline must be driven by reproductive parameters, 

however future studies did not detect differences in clutch and brood sizes of sympatric mallards 

and black ducks (Krementz et al. 1992, Dwyer and Baldassarre 1994, Longcore et al. 1998, 

Maisonneuve et al. 2000, Petrie et al. 2000). Deviations from findings of identical reproductive 

parameters include greater black duck brood densities on freshwater lakes with human nutrient 

inputs (Staicer et al. 1994), and greater mean brood sizes of sympatric mallards and black ducks 

in similar nutrient–loaded lakes (Longcore et al. 1998) than habitats not impacted by humans in 

those studies.  

The Adirondack Park (AP) is a 2.5 million ha protected area assumed to provide 

substantial breeding waterfowl habitat with > 3000 lakes and abundant geologic and beaver–

modified wetlands. It consists of a mosaic of oligotrophic glacial lakes, bogs, beaver–modified 

wetlands, and cold–water river systems. However, breeding waterfowl occurrence in the AP is 

generally considered “rare” relative to other major breeding areas and > 60% of wetlands 

(NYSDEC, unpublished data) and > 90% of lakes may remain unoccupied in some years (Dwyer 

and Baldassarre 1994). As part of a larger ongoing effort to study the ecological separation of 

mallards and black ducks in the AP, I collected waterfowl brood data including number, age 

(Gollop and Marshall 1954), species, habitat type (i.e., wetland or lake), and date of detection for 

all waterfowl occurrences in this study frame. Small sample size precluded the application of 

broods in that larger occupancy analysis (Chapter 2), but here I analyze the sample of broods 
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detected in that larger study, in combination with broods detected in previous AP breeding 

waterfowl studies collected in a similar randomly sampled structural framework. 

Estimates from that larger study suggested greater occupancy probability of mallards than 

black ducks in human influenced lakes and beaver–modified wetlands. Given the differences in 

productivity (densities and ducklings/hen) between wetlands and human influenced lakes 

(Staicer et al. 1994, Longcore et al. 1998), I hypothesized that if mean brood sizes were greater 

at lake sites than wetland sites and mallard occupancy was greater than black ducks on lakes, this 

might offer mallards a slight advantage regionally in productivity relative to black ducks. 

Therefore, I aimed to test for differences in mean brood size between mallards and black ducks 

within strata (lakes and wetlands) and for each species between the strata. I incorporated the 

effects of species, stratum (i.e., wetland or lake), interval (i.e., days) between ice–out date and 

hatch date, brood age class, and year into my model estimates to compensate for differences in 

mean brood size inherent to those metrics (Arzel et al. 2014). Developed shoreline only occurs 

on lakes in this sample frame, so lakes are assumed to be the developed habitat in my analysis. 

However, undeveloped lakes are included but not modeled independently due to small brood 

sample sizes. I included Canada geese (Branta canadensis), wood ducks (Aix sponsa), and 

hooded mergansers (Lophodytes cumulates) because those data were available and offer some 

reference for assessing realism of model estimates. Additionally, species is a random effect, and 

inclusion of these data offers decreased variance of estimates. 

METHODS 

I used brood detections from single visit 30 min point counts at AP lake and wetland sites from 

2019 and 2020 (described in Chapter 2). I improved species and stratum–specific sample sizes 

by also including first detections of broods from similar repeat–style counts on a subsample of 
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the 2019 and 2020 wetlands completed June – August 2013 and 2016 − 2018 (Macy and Straub 

2016; NYSDEC, unpublished data). To determine hatch date, I used species–specific breeding 

parameters (Baldassarre 2014) and brood age class as described by Arzel et al. (2014). Ice–out 

date was available for Mirror Lake, Lake Placid, NY, USA, (44.2884° N, 73.9819° W) as an 

index of ice–out for the AP (Arzel et al. 2014). I calculated ice–out interval as the difference 

between Julian hatch date of a brood, minus the Julian mean ice–out date for that year. I then fit 

these data to an adaptation of the analysis performed by Arzel et al. (2014). I parameterized a 

linear mixed model with brood size as the dependent variable and species nested in stratum, ice 

interval, brood age class, and year as random effects. To test for differences between and within 

species and strata, I specified my linear mixed model as:  

BSi ~ Normal (μi, τ) 

    μi = αspec.i + βstrspec.i * Stratai + βagespec.i * Agei + βicespec.i * Icei + βyrspec.i * Yeari 

where μi is the mean brood size of observation i, and the brood size (BS) of observation i is 

distributed normally around that mean, with a variance of tau (τ). Tau is derived from sigma (σ) 

where the prior is specified as distributed uniformly around a mean of 0 and a SD of 10. All 

random effects for species on brood size, and species–specific estimates for the random effect of 

strata, age, ice interval, and year on mean brood size were drawn from corresponding 

hyperparameters (μk). All priors for random effects were specified similarly to the random effect 

of species on brood size as depicted below: 

αspec.k ~ Normal (μspec.k, τspec.k) 

μspec.k ~ Normal (0, 0.001) 

 τspec.k = 1 / (σspec.k * σspec.k) 
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 σspec.k ~ Uniform (0, 10) 

where αspec.k is the intercept and the random effect of species k on mean wetland brood size of 

observation i, and is distributed normally around a mean of μspec.k, (hyperparameter for random 

effect of species k on mean wetland brood size) and a precision of τspec.k. μspec.k is distributed 

normally with a mean of 0 and a precision of 0.001. Parameters designed to test for significant 

differences in mean brood size between and within species and strata were specified in the 

derived quantities of this model, fit using program JAGS (Just Another Gibbs Sampler Version 

4.3.0, Plummer 2003) called through program R (R Version 4.0.3, www.r–project.org, accessed 

8/17 2020), and package rjags (rjags Version 4–10, Plummer 2013). 

RESULTS 

Sample sizes ranged from 9 broods in 2013 to 71 in 2018, while ice–out date ranged from April 

6 in 2020 to May 4 in 2018 (Table 4.1). Mean brood size for mallards in wetlands was 4.35 ± 

0.47 SD and 4.08 ± 0.46 SD for black ducks (Fig. 4.1). In AP lakes, mean mallard brood size 

was 6.00 ± 0.37 SD and 5.33 ± 0.55 SD for black ducks (Fig. 4.1). I detected differences in mean 

brood size between lakes and wetlands for wood ducks, mallards, and black ducks (Fig. 4.2), and 

mean brood size varied negatively with brood age (Fig. 4.3) and ice interval (Fig. 4.4) for all 

species. For mallards and black ducks, mean brood size was greater on lakes by 1.66 ± 0.56 SD 

and 1.25 ± 0.60 SD ducklings, respectively (Fig. 4.5). I also detected that mean brood size of 

black ducks on wetlands was 1.92 ± 0.58 SD less than mallards on lakes, whereas mean brood 

size of mallards on wetlands did not differ from those of black ducks on lakes (0.99 ducklings ± 

0.75 SD; Fig. 4.5). There was no difference in the daily effect of ice–out interval on brood size 

between mallards and black ducks, however predictive plots suggest species–specific intercepts 

in mean brood size diverge in trend relative to increasing ice–out interval (Fig. 4.6). I found no 
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effect of year for any species, and that variable was removed from the final model output and 

results for parsimony. The inclusion of additional species (Canada goose, wood duck, hooded 

merganser) reduced the standard deviation around black duck and mallard brood size estimates 

by < 20%. Further, the increased precision was enough to enable the finding of greater black 

duck brood size on lakes relative to black ducks on wetlands (Fig. 4.5), whereas using a 2 species 

model could not identify that difference. 

DISCUSSION 

My results suggest that mallard and black duck mean brood size was greater on lakes than 

wetlands. Considering that mallards occupy lakes to a greater degree than black ducks (Chapter 

2), this may provide a regional benefit to mallards relative to black ducks (Holt 1985, Pulliam 

1988). Given the increasing rate of lakeshore development in the AP (Holland 2011), developed 

lakes may be increasingly important habitat for AP breeding waterfowl if there is indeed a 

unique and reliable productivity benefit to breeding there. I suggest the disturbance–adverse 

black duck (Diefenbach and Owen 1989) may be disadvantaged compared to the mallard’s 

history of opportunism in anthropogenic environments (Heusmann 1974, 1991). Petrie et al. 

(2012) suggested a decrease in black duck breeding propensity rather than differences in 

breeding parameters (Dwyer and Baldassarre 1994, Longcore et al. 1998, Petrie et al. 2000, 

Maisonneuve et al. 2000), and my results also suggest similar brood sizes when mallards and 

black ducks are sympatric. My results differ from prior studies because I detected greater mallard 

occupancy and brood size in lakes relative to black ducks in wetlands (Chapter 2). Studies of 

sympatric mallards and black ducks have shown little habitat partitioning (Petrie et al. 2012, 

Macy and Straub 2016, Bleau 2018, Droke 2018; see Chapter 2). In this context, mallards appear 

capable of outproducing black ducks in AP lakes and wetlands in years when mallard 



84 

 

productivity on lakes is greater than black ducks on wetlands, and that the inverse is not true. 

Predictive plots suggest ice–out interval is important to both species, but the mean brood size 

declines faster for black ducks than mallards as the duration of breeding season increases. This is 

possibly the effect of greater re–nesting effort of mallards than black ducks, a finding reported 

elsewhere in literature (Coulter and Miller 1968, Ankney et al. 1987, Dwyer and Baldassarre 

1993, Petrie and Drobney 1997, Maisonneuve et al. 2000). If even a small fraction of mallards 

produced small late season broods from greater renesting effort relative to the black duck, this 

could potentially explain the greater mean brood size detected later in the summer.  

MANAGEMENT IMPLICATIONS 

Mallards on lakes, especially those influenced by human activities, may be capable of 

outproducing black ducks in all other AP breeding habitats over long periods of time. Reduced 

environmental stochasticity in human influenced lakes relative to wetlands, combined with 

greater mallard breeding presence in lakes may further advantage mallards relative to black 

ducks. Further, increasing human development on AP lakes may enhance traditionally poor 

waterfowl breeding habitat specifically for mallards as they appear to exploit breeding habitats 

heavily altered by human activities more readily than AP black ducks. 
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Table 4.1. Summary of sample size by year, stratum, and species of 5 waterfowl from point 

counts in beaver–modified wetland and lake sites in the Adirondack Park of NY, USA from May 

to July in 2013, and 2016 to 2020. Mean ice–out date is derived from ice break–up records kept 

for Mirror Lake in Lake Placid, NY, USA. HDL is mean hatch date of lake broods and HDW is 

hatch date of wetland broods. Alpha codes = CAGO – Canada goose, WODU – wood duck, 

MALL – mallard, ABDU – American black duck, HOME – hooded merganser. 

Mean ice–out date   Sample sizes and mean hatch dates by stratum at first detection 

Year Ice−out Species Lake n Mean HD Lake Wetland n Mean HD Wet 

2013 22–Apr CAGO – – – – 

 

 WODU – – – – 

 

 MALL 1 26–May – – 

 

 ABDU 8 5–Jun – – 

 

 HOME – – – – 

2016 28–Mar CAGO – – 1 7–May 

 

 WODU – – 5 30–May 

 

 MALL – – 0 0 

 

 ABDU – – 4 6–Jun 

 

 HOME – – 7 27–May 

2017 16–Apr CAGO – – 1 13–May 

 

 WODU – – 5 18–Jun 

 

 MALL – – 0 0 

 

 ABDU – – 1 13–May 
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 HOME – – 9 3–Jun 

2018 4–May CAGO – – 3 27–May 

 

 WODU – – 17 13–Jun 

 

 MALL – – 3 22–May 

 

 ABDU – – 3 26–May 

 

 HOME – – 15 4–Jun 

2019 22–Apr CAGO 11 13–May 4 26–May 

 

 WODU 5 10–Jun 5 13–Jun 

 

 MALL 5 8–Jun 19 29–May 

 

 ABDU 1 28–May 1 6–Jun 

 

 HOME 1 6–Jun 10 31–May 

2020 6–Apr CAGO 10 16–May 2 6–May 

 

 WODU 2 16–Jun 17 29–May 

 

 MALL 14 25–May 6 4–Jun 

 

 ABDU 1 18–May 4 7–Jun 

   HOME 1 3–Jul 15 26–May 
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Figure 4.1. Model estimates of mean ducklings per brood with 95% credible intervals for 5 

species of waterfowl in beaver–modified wetlands and lakes in the Adirondack Park, New York, 

USA, May – July 2013 and 2016 to 2020. Estimates were generated using a linear mixed model 

accounting for random effects of species, strata, age class, and interval of hatch date – ice break–

up. Alpha codes = CAGO – Canada goose, WODU – wood duck, MALL – mallard, ABDU – 

American black duck, HOME – hooded merganser. 
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Figure 4.2. Beta parameters for the effect of lake stratum on mean ducklings per brood relative to 

wetlands, for 5 species of waterfowl in beaver–modified wetlands and lakes in the Adirondack 

Park, New York, USA, May – July 2013 and 2016 to 2020. Alpha codes = CAGO – Canada 

goose, WODU – wood duck, MALL – mallard, ABDU – American black duck, HOME – 

hooded merganser. Black filled dots denote an estimate that does not overlap 0, indicating a 

significant result. 
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Figure 4.3. Beta parameters for the effect of age class on mean ducklings per brood for 5 species 

of waterfowl in beaver–modified wetlands and lakes in the Adirondack Park, New York, USA, 

May – July 2013 and 2016 to 2020. Alpha codes = CAGO – Canada goose, WODU – wood 

duck, MALL – mallard, ABDU – American black duck, HOME – hooded merganser. Black 

filled dots denote an estimate that does not overlap 0, indicating a significant result. 
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Figure 4.4. Beta parameters for the effect of hatching 1 day > ice–out date on mean ducklings per 

brood for 5 species of waterfowl in beaver–modified wetlands and lakes in the Adirondack Park, 

New York, USA, May – July 2013 and 2016 to 2020. Alpha codes = CAGO – Canada goose, 

WODU – wood duck, MALL – mallard, ABDU – American black duck, HOME – hooded 

merganser. Black filled dots denote an estimate that does not overlap 0, indicating a significant 

result. 
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Figure 4.5. Derived difference parameters for mean ducklings per brood between and within 

mallards and black ducks in beaver–modified wetlands and lakes in the Adirondack Park, New 

York, USA, May – July 2013 and 2016 to 2020. Test categories = B–black duck, M–mallard, 

W–wetland, L–lake, and ~ – “distributed as…”. Black filled dots denote an estimate that does 

not overlap 0, indicating a significant result. 
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Figure 4.6. Predictive plot comparisons for the effect of interval (days) between hatch date and 

ice–out date on mean brood sizes of mallards (green) and black ducks (black) on wetlands and 

lakes in the Adirondack Park, New York, USA, May – July 2013 and 2016 to 2020. Predictive 

estimates are parameterized to account for mean age class. Brood size comparisons = a – wetland 

mallards vs. wetland black ducks, b – wetland mallards vs. lake black ducks, c –lake mallards 

and lake black ducks, and d – lake mallards vs. wetland black ducks.  

a.) b.) 

c.) d.) 
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CHAPTER 5: CONCLUSIONS 

My multispecies occupancy model with a time–to–detection function for detection probability 

generated occupancy estimates for 7 waterbird species in the Adirondack Park (AP), while 

effectively capturing biological characteristics of their known life history strategies. I was able to 

use these estimates to test for differences occupancy of mallards and American black ducks 

among wetlands, undeveloped lakes, and developed lakes. In the AP, I detected that mallard 

occupancy was greater than black ducks among these habitat types. My results contrast with 

those of prior studies because they suggested that mallards were absent (Eaton 1910, Benson 

1968, Brown and Parsons 1979), or more recently, equally abundant to black ducks on breeding 

areas in the AP (Dwyer and Baldassarre 1994, Macy and Straub 2016). The greatest difference I 

detected between mallard and black duck occupancy was on lakes with human development. 

This largely agrees with previous findings that suggest mallards use human influenced areas 

more (Morton 1998, Osborne et al. 2010, Macy and Straub 2016, Bleau 2018) than black ducks 

(Diefenbach and Owen 1989, Macy and Straub 2016, Bleau 2018). 

 In the context of Lavretsky et al.’s (2019; 2020) findings, mallards of game–farm 

ancestry may be exploiting developed lakes to a greater degree than black ducks because of 

innate behaviors making them tolerant of humans. Tolerance for human activity has been 

suggested as inherited from captive reared Old–World mallards (Heusmann 1983, 1991, Hepp et 

al. 1998, Lavretsky et al. 2020), and my results suggest developed lakes are used by AP mallards 

more than black ducks. My results indicate the current niche of AP mallards is much larger than 

that of black ducks, and furthermore that their niches overlap in traditional AP black duck 

breeding habitats (Benson 1968, Brown and Parsons 1979, Dwyer and Baldassarre 1994) where 

mallards were previously absent (Eaton 1910). Further, this dynamic establishes the possibility 
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that human developed lakes, with stabilized water levels, may serve as a “source” for mallards 

relative to wetlands more traditionally used by black ducks which might act as a “sink” in years 

when beaver–modified wetlands are less available (Brown and Parsons 1979, Holt 1985, Pulliam 

1988). On years when lake–ice depth and delayed ice–out date temporarily prohibits nesting on 

lakes relative to wetlands, lake mallards may complicate this by attempting to initially breeding 

in wetlands. Investigation into patterns of mallard occupancy in similar boreal ecosystems in 

Finland suggests the Old–World mallard is capable of outcompeting sympatric wetland obligate 

waterfowl using oligotrophic lakes as a key resource (Lehikoinen 2016). Considering Lavretsky 

et al. (2019; 2020), focusing on characteristics of the Old–World mallard and how it performs in 

this context may be more appropriate than literature from the prairie pothole region concerning 

the new–world mallard. 

 I also tested for differences in mean brood size between mallards and black ducks on 

lakes and beaver–modified wetlands while modeling the effect of age, year, species, ice–out 

date, and stratum on mean brood size. The two species produced similar sized broods within the 

same wetlands and lakes. However, I found significant differences in mean brood size of 

mallards and black ducks on lakes relative to mallards and black ducks on wetlands. 

Investigating the differences between wetlands and lakes suggested the mean mallard brood size 

on lakes relative to black ducks on wetlands was greater, and the opposite relationship was not 

true (i.e., wetland mallards relative to lake black ducks). Although these data are somewhat 

disparate, they offer the most comprehensive, structurally collected brood data for AP waterfowl 

in recent years, and the only data for AP waterfowl at a time when AP mallards have surpassed 

breeding black ducks in abundance (Dwyer and Baldassarre 1994, USFWS 2017). 
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 Finally, I used unmanned aerial vehicles (UAV) to compare traditional ground–based 

point counts relative to this new aerial survey tool in an existing framework of AP wetland 

surveys and assessed case studies of detections. I found detection probabilities similar between 

the two methods while correcting for method–specific differences in survey area and vegetative 

cover. Furthermore, I found 3 cases in which black ducks could be detected by the UAV, but not 

by the ground observer. My review of footage and detections by species suggests UAVs are 

more well suited than ground observers for detecting secretive species of waterfowl that rely on 

dense vegetative cover to avoid perceived threats (Diefenbach and Owen 1989, Dyson et al. 

2018).  

Future Studies 

The continuation of time to detection data, even at smaller sample sizes, would likely add 

information to the occupancy model that I applied in Chapter 2, such that more specific 

relationships might be clearer (Henry et al. 2020). Regardless, this method of multispecies 

occupancy with time to detection can be broadly applied elsewhere for waterfowl and is 

especially useful where rare species (< 5% occupancy) can be estimated with reasonable 

variance when modeled with sympatric heterospecifics. Additionally, a simple change of model 

parameters will modify the model I present in Chapter 2 to allow for estimations of abundance. 

A substantial effort in habitat mapping, remote sensed data collection, and mapping analysis 

would likely be required to extrapolate an accurate estimate of abundance. These mapping data 

are generally available for the AP, but not well updated.  

The model I present here for UAV use can be more broadly applied to AP habitats and 

elsewhere, however I caution my UAV method and airframe are not well suited to study open 

water species on large bodies of water, but rather discreet areas of well vegetated wetlands. 
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Future studies of American black ducks, in the AP and elsewhere, would greatly benefit from a 

more detailed understanding of how development plays a role in niche differentiation between 

breeding AP waterfowl, and how that differentiation might be related to source–sink dynamics of 

mallards and black ducks in these habitats. A more substantive breeding survey with larger 

sample sizes, or longer running data sets that adequately model detection and attempt to capture 

the breeding parameter differences would also greatly benefit overall understanding of these two 

species.  
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