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Wetlands promote carbon sequestration through saturated, anoxic soils. However, the persistent 

presence of water results in reduce conditions, which promotes methane (CH4) production. The 

climatological variables responsible for the source/sink behavior are still unclear. This study 

quantifies temporal changes in the empirical drivers of the carbon fluxes of a constructed inland 

salt marsh in Camillus, New York. The mean CH4 (0.328 µmol·m-2·s-1) and carbon dioxide 

(CO2) (0.195 µmol·m-2·s-1) emissions from June 27, 2019 to November 11, 2019 show the site’s 

slight carbon source behavior. Latent heat flux had the strongest relationship with CH4 and gross 

primary production (GPP), while air temperature best explained ecosystem respiration (Re). The 

lag responses of Re (3-hours) and CH4 (5-hours) from air temperature are likely attributed to the 

lag response between the air and soil temperature. Whereas the lag response of GPP (1-hour), Re 

(2-hours), and CH4 (1-day) from rainfall events are likely a reflection of an increase in dissolved 

oxygen and soil moisture content.  
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Chapter 1: Introduction 
 

  

Wetlands offer a variety of ecosystem services, including biodiversity support, water quality 

improvement, flood abatement, and carbon management (Zedler and Kercher, 2005). The 

Intergovernmental Panel on Climate Change (IPCC; Intergovernmental Panel on Climate Change 

and Edenhofer, 2014) lists wetlands as a potential mitigation strategy to combat climate change 

through the sequestration of carbon across soil pools, peat formation, sediment decomposition, 

and plant biomass (Bridgham et al., 2006). It is estimated that wetland soils contain 20-30% of 

the total storage of carbon in the earth’s soils (Bridgham et al., 2006; Roulet, 2000), the 

equivalent of 75% of the earth’s total atmospheric carbon (Piao et al., 2009). However, wetlands 

also emit 30% of the global methane (CH4) emissions, which has 28 times the global warming 

potential (GWP) of carbon dioxide (CO2) when considered over a 100-year time horizon 

(Edenhofer, 2015). Thus, wetlands occupy a unique climatological niche, where they can be 

carbon sinks but global warming sources. The ecological drivers responsible for the source/sink 

behavior of wetlands are still not clear; however, it is essential to understand the climatological 

variables that drive engineered wetlands’ CO2 and CH4 fluxes in order to optimize their carbon 

and warming budgets. 

 

Over the last two decades, scientist conducted many observational studies (Baldocchi et al., 

2001; Inglett et al., 2012; Kim et al., 1998; Morin et al., 2014a; Rey-Sanchez et al., 2018; Rinne 

et al., 2007, 2018) to measure the ecosystem-level greenhouse gas vertical fluxes of wetlands 

using the eddy covariance technique. The eddy covariance method provides temporally 

continuous and spatially integrated flux measurements of an ecosystem by measuring the 
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turbulent diffusion of gases at a set height above the atmosphere-ecosystem interface (Baldocchi, 

2003; Schmid, 1994). The integration of fluxes originating from a large area referred to as the 

tower footprint dampens the sampling bias due to spatially heterogeneous fluxes, which provides 

an accurate estimation of the site-level total fluxes. Efforts have been made to use observed 

responses to create and validate empirical models to examine the influence of any predictor 

variable on the final observed fluxes. Empirical models for CO2 and CH4 fluxes may incorporate 

a wide host of environmental variables (e.g., meteorological data, soil characteristics, types and 

diversity of plants, etc.), which can provide insight into the underlying statistical relationships 

from multiple data sets simultaneously (Morin et al., 2014b). For example, climatological 

variables such as TAir and PPTT affect the carbon behavior of wetlands based on their influence 

on soil temperature and the water table level, which directly influence above- and below-ground 

carbon fluxes.   

 

Despite these efforts, discrepancies between estimated carbon responses among wetland types 

and locations suggest a need for more ecosystem-level efforts to explain temporal (across 

seasons and days) and spatial variation and for model validation (Kirschke et al., 2013). 

Furthermore, environmental conditions may drive future CO2 and CH4 emissions, potentially 

inducing a phase lag between the two signals (Kim et al., 1998). Lag response due to weather 

events cause delayed effects due to changes in the water table level, altered vegetation activity, 

and atmospheric stability and mixing. Continuous measurement of the fluxes permits temporal 

analyses and provides insight into the temporal dynamics of the climatological variables and the 

ecosystem carbon exchange. 
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Fluxes also vary spatially due in part to the spatial heterogeneity of above- and below-ground 

conditions, including the presence or absence of standing water, the vigor of plants, or the depth 

of labile carbon availability (Sha et al., 2011). The integration of these environmental variables 

into the eddy-covariance tower footprint metrics provides insight into spatial drivers. Recent 

developments in remote-sensing measurements allow for spatial variation in plant productivity in 

the form of the normalized difference vegetation index (NDVI). The integration of NDVI can 

provide understanding to gross primary production (GPP), CH4, and ecosystem respiration (Re) 

drivers, and CH4 transport through the vegetation (Boon, 2000).  Ultimately, NDVI and temporal 

changes in climatological variables may help offer insight into site-specific responses and model 

validation. 

 

The broad goal of this study is to characterize the empirical drivers of the carbon fluxes of 

a constructed inland salt marsh in Camillus, New York. To accomplish this, we measured 

and modeled the CH4, GPP, and Re fluxes from the constructed inland salt marsh using the eddy 

covariance method from June 27, 2019 to November 11, 2019. We set three research objectives: 

1) Determine temporal changes in the statistical relationships between the carbon fluxes and 

the climatological variables (air temperature, precipitation, vapor pressure density, net 

radiation, wind speed, wind direction, atmospheric pressure, heat flux, and low friction 

velocity) and vegetative distribution (NDVI footprint weighted total) using an empirical 

model.  

2) Determine the frequency response of the ecosystem's carbon exchange (CH4, GPP, Re) to 

precipitation events and shifts in atmospheric temperature during the growing season.  



4 
 

3) Evaluate the spatial influence of a heterogeneous plant community from an individual 

NDVI event on site-level integrated carbon fluxes.  
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Chapter 2: Methods 

2.1 Site Description 

  

The Solvay inland salt marsh (Figure 1) is a 2.1 hectare (ha) wetland built on top of a sediment 

basin located in Camillus, New York. Historically, the Solvay Sediment Basins 12-15 (SSB), 

was filled with Solvay waste, composed of calcium carbonate and other salts of calcium, 

magnesium, and sodium, from a local soda ash production facility (mid-1900’s -1986) (Hewlett, 

1956; Mirck and Volk, 2010). The original filling of the SSB left a depression in the center of 

sediment basin 14 (43°04’10” N, 76°15’45” W, 140 m altitude), which accumulated drainage 

from the surrounding SSB, leaving the depression with alkaline, infertile soil with a pH and total 

Nitrogen (N) approximately 8.5 and 0.5%, respectively (Eallonardo, 2010). In 2008, through a 

collaboration between the State University of New York College of Environmental Science and 

Forestry, Honeywell International, and O’Brien & Gere Engineers, the seasonally flooded 

depression was converted to an inland salt marsh and the surrounding SSB were enclosed in a 

willow-based evapotranspiration cover system (New York State Department of Environmental 

Conservation, 2010) to reduce leachate. The decision to select inland salt marsh as the restoration 

target was decided due to the extreme soil conditions caused by the high alkalinity, low total N 

(Eallonardo, 2010), and volumetric water content of 70% at saturation (Hewlett, 1956; Mirck and 

Volk, 2010). 
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Figure 1. Aerial representation of the inland salt marsh and willow beds on sediment basin 14. 

The flux tower captured the carbon fluxes, latent heat flux (LE), wind speed (windspeed), wind 

direction (winddir), and friction velocity (u*) from June 27, 2019 until November 11, 2019 

(observational period). The meteorological station collected air temperature (TAir), precipitation 

total (PPTT), net radiation (netRad), atmospheric pressure (Pa), and vapor pressure deficit (VPD) 

through the observational period.  

 

 

The vegetation of the inland salt marsh is a combination of alvar grassland, inland salt marsh, 

Great Lakes dune, and marl fen plant communities which were introduced to the site from 2008 

to 2010 (Eallonardo, 2010). Data collected from 2008 to 2013 demonstrated that vegetation 

development was rapid, with percent cover increasing from nearly 0% to 100% in six years. 

Herbaceous plant species that are 1 - 2 m tall dominate the site, with over 100% areal coverage. 

 

Met Tower 

Flux Tower 

43°04’10” N, 

76°15’45” W 
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The growing season typically lasts from the end of April through mid-October. The mean annual 

air temperature (TAir) is 9°C (1989-2019) and the mean annual precipitation is 977 mm (1989-

2019) (Binghamton, NY Weather Forecast Office, 2020).  

2.2 Data Collection 

 

We constructed the eddy-covariance tower on June 27, 2019 and ran continuously through 

November 11, 2019. The equipment on the tower includes two Infrared Gas Analyzers (IRGAs): 

a LI-7500RS (LI-COR Biosciences, Lincoln NE) for CO2 and H2O, and a LI-7700 (LI-COR 

Biosciences, Lincoln NE) for CH4, and a CSAT3B sonic anemometer (Campbell Scientific, Inc. 

Logan, UT). The air pressure, three-dimensional wind velocities, and CO2, CH4, and H2O 

concentrations were measured at 10 Hz and recorded on a CR3000 datalogger (Campbell 

Scientific, Inc. Logan, UT). The data were then transmitted from the tower via FM radio (RF451, 

Campbell Scientific, Inc. Logan, UT) to a nearby computer to be processed into 30-minute block 

averages using MATLAB (version R2018a, MathWorks, Natick, MA) using methods described 

originally in Morin et al., (2014a). Additional averaged hourly meteorological observations were 

recorded by a nearby meteorological tower (Figure 1), including TAir, vapor pressure deficit 

(VPD), net radiation (netRad), atmospheric pressure (Pa), total rainfall (PPTT), wind speed 

(windspeed), and wind direction (winddir) throughout the observational period. 

 

A DJI Matrice 100 drone (elevation 120 m) flew over the wetland on August 1, 2019 to capture 

multispectral data (blue, green, red, red edge, near-IR spectral bands) using a RedEdge-M 

multispectral camera (MicaSense, Inc., Seattle, WA) with an 80% front and side overlap and 4.2 

cm2 pixel resolution. The 5-band reflectance orthomosaic was processed using Pix4D mapper 
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photogrammetry software, including MicaSense supplied calibration targets, which were 

factored into the data from the onboard down-welling light sensor. The NDVI map was 

calculated using the red and near-infrared bands from the reflectance orthomosaic in ESRI 

ArcMap (Esri, Redlands, CA) and converted to a 1 m2 pixel resolution.  

2.3 Tower Configuration 

 

Based on theory and practice, the tower’s placement and design are determined to limit the 

systematic biases caused by flow distortions to best capture the climatological variables and 

processes from a heterogeneous environment. To do this, the tower’s location, height, and 

orientation were all considered. Before tower placement, we estimated the footprint size using 

historical wind data gathered at the meteorological station (Figure 1). We used those data to 

determine the location and height of the tower, where the setup would have a relatively 

homogeneous topography within the fetch for all wind directions. The location was near the 

center of the wetland (Figure 1) downwind of the most spatially homogeneous portion of the 

wetland and far from surrounding trees and depressions in the wetland soils that could introduce 

irregular vertical wind conditions. This placement reduced wind streamline distortion caused by 

changes in the wind displacement height from varying vegetation within the tower’s footprint.   

 

We vertically positioned the sonic anemometer and the IRGAs by keeping in mind the following 

two considerations: 1) the instruments must be at least 1.5 times the vegetation height to be in the 

well-mixed surface layer and 2) the measurement height determines the fetch length of the tower, 

with a taller tower incorporating a larger area into each measurement. Prior to installation, we 

measured the height of the dead vegetation to determine the minimum height needed and 

Outlet 



9 
 

estimated the maximum height required from a preliminary footprint analysis. We mounted the 

CSAT3B and IRGAs at the height of 2.87 m as measured from the soil surface to the central 

point of the sensors (Figure 2). We also considered winddir for the tower setup because the 

physical structure of the tower has effects on surrounding airflows, including the distortion of the 

wind velocity and direction. Because of this, we oriented the CSAT3B to point at 184°S to 

maximize the exposure time for winds blowing from the prevailing wind directions, southwest 

(SW). These design guidelines are necessary to capture ≥ 80% contribution of the representative 

wetland, with the design goal of ≥ 90% contribution (Lee et al., 2004). 

 

Figure 2. Open-path eddy-covariance tower configuration approximately 2.87 m above the 

inland salt marsh floor.  

 

LI7700 

LI7500RS 

CSAT3B 

CR3000 
LI7500RS 

Computer 
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The LI-7500RS was placed 0.23 m upwind from the centralized point of the transducers on the 

CSAT3B with a slight angle from the vertical direction (~10-15°) to prevent water accumulation 

on the sensor’s windows during rainstorms, as recommended by the LI-7500RS manual (LI-

COR Biosciences, 2019). We installed the LI-7700 such that the center of the LI-7700 path was 

vertically aligned with the center of the CSAT3B transducers and was horizontally separated 

from the anemometer by 0.61 m. The sensor was oriented in a vertical mounting position to 

ensure 360° acceptance for winddir, as recommended by the LI-7700 manual (LI-COR 

Biosciences, 2020). The sensors were powered using photovoltaic cells installed 4.57 m from the 

tripod. The panels charged four 6V deep-cycle marine batteries with enough storage capacity for 

three days of power. 

2.4 Flux Calculations 

 

Flux measurements were calculated from the raw windspeed and gas concentration measurements 

using methods described originally in Morin et al., (2014b). In brief, we performed a 3-D 

coordinate rotation to the wind measurements to ensure the vertical and crosswind components 

average out to 0 for each 30-minute interval (Lee et al., 2004) and included the following 

corrections: (1) A lag correction accounting for the separation distance between the sonic 

anemometer and the IRGAs using the method of maximum covariance. (2) A spectral correction 

assessing for high-frequency data loss from IRGA path lengths (Massman, 2000). (3) 

Temperature correction for the dependence of the absorption spectrum of CO2, CH4, and water 

vapor (Kaimal and Gaynor, 1991), and (4) Webb, Pearman and Leuning (WPL) corrections to 

account for the changes in air density and water vapor for CO2 and CH4 concentrations (Webb et 

al., 1980). The corrections were completed on available despiked data.  
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Data were despiked using a series of filters. First, we filtered the data using internal diagnostic 

value information provided by the sensors to exclude situations when the measured concentration 

may not be reliable, as instructed by the manuals for LI-7700, LI-7500RS, and CSAT3B. We 

then evaluated data against seasonal maximum and minimum thresholds and identified and 

removed outliers by finding points six standard deviations away from the mean value of a 

measurement. A 30-minute interval is representative of the average surface exchange, capturing 

the major flux-carrying eddies (Farmer et al., 2006; Wolfe et al., 2009). The half-hour 

measurements were filtered using a friction velocity (u*) threshold of 0.1 ms-1, to account for 

periods of insufficient turbulent mixing (Reichstein et al., 2005).  

 

The hourly meteorological data were converted to half-hour measurements and gap-filled using a 

bi-linear, periodic, trended interpolation relationship (Morin et al., 2014b). This method 

considers the diurnal variation using the closest available values for each variable. The hourly 

cumulative rainfall measurements were not gap-filled in this fashion, but instead, the hourly 

measurement was applied to the final half-hour of each hour, and the initial half-hour was 

expressed as 0 mm. All meteorological data and flux measurements were categorized to day-

night measurements based on the corresponding photosynthetically available radiation (PAR). 

PAR values greater than 10 W m-2 were determined to be day measurements. Otherwise, the 

value would be classified as night.  
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2.5 Footprint Model 

 

We used a footprint model to estimate the land-source locations for the fluxes measured by the 

eddy-covariance tower. The footprint model is based on Morin et al., (2014b), an expansion of 

the 2-D model by Detto et al., (2006), which is built upon the 1-D model created by Hsieh et al., 

(2000). The model traces the probability that a parcel of air measured by the eddy-covariance 

tower derived from any point in the wetland using windspeed, winddir, boundary-layer stability, 

and turbulence data. We overlaid the footprint model with the map of NDVI measurements to 

calculate a NDVI footprint-weighted total (NDVIfwt), using a pixel resolution of one m2 for each 

map for each 30-minute interval. The NDVIfwt is the integrated average NDVI value for each 

half-hour within the footprint contour bounds.   

2.6 Modeling and Gap-filling of Fluxes 

 

Following methods described in Morin et al., (2014a), artificial neural network (ANN) models 

were utilized to determine the empirical models for CH4, GPP, and Re as a function of 

climatological variables (e.g., meteorological data and NDVIfwt) and to gap-fill the flux 

measurements. We used a forward-stepwise linear regression model, evaluated with the Akaike 

Information Criterion (AIC) - to determine the climatological variables that were included in the 

final ANN models. The variables were only included in the ANN model if they lowered the AIC 

score of the linear stepwise model. All meteorological data (TAir, VPD, netRad, Pa, PPTT, 

windspeed, and winddir), u*, heat flux (LE), and the NDVIfwt were evaluated for each of the flux 

measurements. If a variable was selected by more than half of the forward-stepwise linear 
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regression models for a carbon flux, then we directly compared the variable against the carbon 

flux using pairwise linear regression.  

 

The CO2 (NEE) flux was partitioned into GPP and Re. The nighttime NEE was used as the 

observed Re values since no photosynthetic activity occurs then. We used an ANN to gap-fill the 

Re for all missing values, including through the daytime (when no observations existed). The 

modeled Re was subtracted from the NEE to calculate the GPP. The missing daytime GPP values 

were gap-filled using the ANN model. As defined in Rey-Sanchez et al., (2018), the ANN ran 

through 1000 iterations, and for each iteration, ANN chose an appropriate model if the model 

produced an r2 > 0.47, r2 > 0.3, and r2 > 0.7 for Re, CH4, and GPP respectively. If the r2 threshold 

was not met after 5000 attempts, ANN would accept a model with a r2 greater than the mean of 

all r2 +0.1. The final model was chosen based on an average of the top 10% iterations.  

2.7 Lag Response 

 

We also used the Granger causality test (G-causality) (Granger, 1969), to determine if the 

precipitation and atmospheric temperature time series were statistically significant predictors for 

the ecosystem’s carbon exchange (CH4, GPP, Re). We used the G-causality package 2020 in 

MATLAB (version R2018a, MathWorks, Natick, MA). The package created two modeled time 

series of each flux: (1) Using an auto-regression function, and (2) Combining the autoregressive 

function with prior values for the variable tested for causation. We compared each model to the 

true fluxes, and then the BIC was calculated. When the multivariate model’s (model 2) Bayesian 

Information Criteria (BIC) value significantly outperformed the univariate case (model 1), the 

driver was said to have a causal effect on the flux. The model’s maximum time lag response for 
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the fluxes and drivers was set to 24 hours for the hour lag response to eliminate spurious 

correlation. If no lag response was determined on an hourly scale, the lag response of the carbon 

fluxes from TAir and PPTT events were assessed on a daily timescale with a maximum time lag 

response of 10 days. The causality of the drivers was evaluated based on hourly and daily 

intervals. 
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Chapter 3: Results and Discussion 
 

3.1 Meteorological Conditions 
 

Monthly rainfall ranged from 80 mm in July to 176 mm in October (Table 1), with the total 

precipitation during the observation period was 495.3 mm. The predominant winddir was west 

south-west, with an average windspeed of 0.95 m/s (Figure 3). The stability of the windspeed and 

winddir can be attributed to the wetland’s location on top of SSB 14 (elevation 140 m) because 

the windspeed and winddir is less likely to be distorted by ground surface shear stresses.  

 

Table 1. Monthly and seasonal averages for the climatological variables (air temperature (TAir), 

precipitation total (PPTT), vapor pressure deficit (VPD), net radiation (netRad), friction velocity 

(u*), normalized difference vegetation idex footprint weighted total (NDVIfwt), wind speed 

(windspeed), wind direction (winddir), atmospheric pressure (Pa), and latent heat flux (LE)) used in 

the stepwise regression and neural network. The climatological variables were measured, 

averaged, and recorded on an hourly basis, while the eddy-covariance variables were measured, 

averaged, and recorded in 30-minute intervals. Therefore, the n values, listed in parentheses, for 

the climatological data is nearly half of the eddy covariance variables. PPTT values are expressed 

as a summation for each timeframe. Winddir values are expressed as the resultant vector average 

Winddir.  

 

  
Variables  

Jul. Aug. Sept. Oct. Nov. Seasonal 

value (n) value (n) value (n) value (n) value (n) value (n) 

TAir °C 23.2 (744) 20.01 (744) 17.3 (720) 10.5 (741) 1.5 (312) 16.4 (3384) 

PPTT mm 79.8 (744) 133 (744) 93.7 (720) 176 (741) 11.4 (312) 495 (3384) 

VPD hPa 818 (1358) 719 (1288) 703 (1125) 490 (1123) 367 (469) 669 (1260) 

NetRad W/m2 138 (744) 113 (744) 85.1 (720) 27.6 (741) 4.64 (312) 85.7 (3387) 

u* m/s 0.170 (1443) 0.169 (1471) 0.186 (1361) 0.224 (1463) 0.273 (485) 0.194 (393) 

NDVIfwt unitless 0.74 (1329) 0.74 (1279) 0.72 (1120) 0.75 (1133) 0.73 (442) 0.75 (1312) 

windspeed m/s 0.802 (1443) 0.79 (1471) 0.84 (1361) 1.16 (1463) 1.52 (485) 0.95 (393) 

winddir  deg 269 (1444) 268 (1471) 254 (1361) 241 (1463) 263 (485) 261 (392) 

Pa atm 0.99 (744) 0.99 (744) 0.99 (720) 0.99 (744) 0.99 (312) 0.99 (3384) 

LE W/m2 92.97 (1338) 75.72 (1279) 60.65 (1116) 29.54 (1107) 17.60 (446) 63.58 (1331) 
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Figure 3. The direction (degrees) frequency and wind speed (m/s) of the 30-minute averaged 

observations from CSAT3B from June 27-November 11, 2019. The length of each “spoke” 

around the rings of the wind rose indicate the frequency (number of half-hour measurements) the 

wind blew in each direction and the color represents the speed. The primary wind direction 

(winddir) is west south-west and the average wind speed (windspeed) is 0.95 m/s. 

 

The time series represented in Figure 4a, Figure 5a, and Figure 6a, show the seasonal decrease in 

TAir, netRad, and LE. The average TAir, netRad, and LE ranged from 23°C – 1.5°C, 138 W/m2 – 

4.64 W/m2, and 93 W/m2 – 17.6 W/m2, from July to November. The netRad observations were 

negative during the nighttime when there is no solar radiation and the netRad is dominated by the 

outgoing terrestrial longwave flux. The TAir observations on October 1, 2019 (maximum of 
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29.5.6°C) were outside the whisker boundaries (90th percentile) and were determined to be 

outliers for the month. The TAir variation, represented as the box portion (25th and 75th percentile) 

of the boxplot was constant, Figure 4b, while the variation of the netRad and LE decreased 

through the season, Figure 5b and Figure 6b. The mean VPD and Pa were 669 hPa and 0.99 atm, 

respectively.  
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Figure 4. (a) Air temperature (TAir) timeseries (one-hour intervals) from July 27 - November 11 

2019. (b) Monthly TAir variation expressed in a box and whisker plot. The bottom and top edges 

of the box plot indicate the 25th to 75th percentiles and the central mark (bullseye symbol) 

indicates the median. Each outlier (circle) represents an one-hour interval outside the 10th and 

90th percentiles whisker boundaries.  
 
 

a) 

b) 
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Figure 5. (a) Net radiation (netRad) timeseries (one-hour intervals) from July 27 - November 11 

2019. (b) Monthly netRad variation expressed in a box and whisker plot, The bottom and top 

edges of the box plot indicate the 25th to 75th percentiles and the central mark (bullseye symbol) 

indicates the median. Each outlier (circle) represents an one-hour interval outside the 10th and 

90th percentiles whisker boundaries. 

 

 

 

a) 

b) 
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Figure 6. (a) Latent heat flux (LE) timeseries (30-minute intervals) from July 27 – November 11, 

2019. (b) Monthly LE variation expressed in a box and whisker plot. The bottom and top edges 

of the box plot indicate the 25th to 75th percentiles and the central mark (bullseye symbol) 

indicates the median. Each outlier (circle) represents a 30-minute interval outside the 10th and 

90th percentiles whisker boundaries.  

 

 

b) 

a) 
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3.2 Ecosystem Carbon Exchange 
 

3.2.1 Methane 
 

 

From June 27, 2019 to November 11, 2019, we measured CH4 fluxes for 5,471 of a possible 

6,768 half-hours. The neural network gap-filled the remaining 1,297 samples of the CH4 flux 

(see Figure 7 for final modeled time-series). CH4 fluxes ranged from -0.18 μmol·m-2·s-1 to 0.22 

μmol·m-2·s-1 (both extrema occurring in September) with a mean flux of 0.002 μmol·m-2·s-1 for 

the observational period. The mean CH4 fluxes gradually decreased throughout the observational 

study, except for August. August’s mean flux was lower than expected for the decreasing trend 

but within the range of an acceptable mean flux. Since the mean flux does not account for winter 

months (which typically have low magnitude CH4 emissions), we expect the annual mean flux to 

be lower than what was measured for the observational period. Seasonal emissions differ among 

ecosystem types (Ortiz-Llorente and Alvarez-Cobelas, 2012). The Solvay CH4 fluxes are lower 

in magnitude than those reported for many freshwater systems but are comparable to observed in 

brackish and saltwater wetland systems (Table 2).  
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Figure 7. Overall modeled CH4 fluxes from June 27 – November 11, 2019. The modeled CH4 

fluxes shows the best model for filling in the despiked CH4 fluxes using the neural network. 

 

 

Table 2. CH4 fluxes from ranging ecosystems. CH4 fluxes were captured using the eddy 

covariance (EC) technique or flux chambers (FC). 
 

Wetland 
Type 

Location 
 

Timeframe Technique Mean CH4 

(μmol·m-2·s-1) 
Citation 

Solvay 
inland salt 
marsh 

Camillus, NY  Jul. – Nov., 
2019 

EC -0.18 – 0.222 This study 

Freshwater 
marsh 

Boutte, LA Annual, 1992-
1994 

FC 0.035 – 0.65 Alford et al., 
1997 

Freshwater 
estuarine 
marsh 

Lake Erie, OH 
 

Jun. – Oct., 
2016 & Apr. – 

Oct., 2016 

EC 0.03 – 1.6 Rey-Sanchez 
et al., 2018 

Tidal 
freshwater 
marsh 

Waccamaw, 
SC 

 
May 2008 to 

Jan. 2010 
FC 0.28 – 0.83 Neubauer, 

2013 

Temperate 
Salt Marsh 

Ribble, North-
west England 

 
Sept. 2010 – 

Aug. 2011 
FC 0.00017- 0.022 Ford et al., 

2012 
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3.2.1.1 Methane Regression Model 
 

The forward stepwise regression model trained on 1,297 CH4 flux samples. We used only half-

hours where there were valid measurements for all potential empirical drivers and the CH4 

fluxes. The model determined different relationships between climatological variables and the 

carbon fluxes for each month and the season; however, some general season trends emerged 

(Table 3). For each timeframe, the selected variables were included in the final ANN model. 

Ultimately, the r2 for the seasonal CH4 flux model improved from 0.23 using the forward 

stepwise regression to 0.27 using the ANN model. 

 

Table 3. Monthly and seasonal CH4 fluxes and climatological variables (air temperature (Tair), 

total precipitation (PPTT), vapor pressure deficit (VPD), net radiation (netRad), friction velocity 

(u*), normalized vegetation difference index (NDVIfwt), wind speed (windspeed), wind direction 

(winddir), atmospheric pressure (Pa), and latent heat flux (LE)). The statistical relationship 

between the CH4 fluxes and the climatological variables were determined through stepwise 

regression and were included in the neural network to determine the represented final modeled 

fluxes for each timeframe. The model’s stepwise regression order is the number listed in each of 

the columns.   
Jul Aug Sept Oct Nov Seasonal 

n 417 396 368 352 153 1734 
μmol·m-2·s-1 0.0036 0.0021 0.0035 0.0006 0.0003 0.002 
gC·m-2d-1 0.004 0.002 0.004 0.001 0.000 0.002 
gC·m-2 0.114 0.067 0.109 0.019 0.004 0.328 
Tair 2 

 
3 3 

 
3 

PPTT 
    

3 
 

VPD 3 
  

4 2 
 

netRad 4 
 

5 1 1 4 
u* 

    
7 

 

NDVIfwt  
  

7 
  

5 
windspeed 

  
6 5 6 

 

winddir 
  

4 
 

4 
 

Pa 

 
2 2 

 
8 2 

LE 1 1 1 2 5 1 
Stepwise r2 0.45 0.27 0.36 0.17 0.69 0.23 
Neural Network r2 0.48 0.27 0.37 0.21 0.54 0.27 
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TAir, netRad, Pa, and LE were identified to have a significant explanatory effect for more than half 

of the monthly models while also being chosen for use in the final seasonal timeframe model. 

We further tested these particular variables directly against CH4 using a pairwise regression to 

explore the underlying reasons behind the linkage (Figure 8). Other variables, including winddir, 

windspeed, VPD, u*, and PPTT were rejected from the final ANN model for the seasonal fluxes 

since their addition did not significantly improve the model. VPD and windspeed were selected to 

have a significant explanatory effect for three of the months, where PPTT and u* were only 

chosen to affect November.  

 

Figure 8. Pairwise relationships between the CH4 fluxes and a) air temperature (TAir), b) net 

radiation (netRad), c) atmospheric pressure (Pa), and d) latent heat flux (LE). The stepwise 

regression models (Table 3) selected TAir, netRad, Pa, and LE to have a significant explanatory 

effect for more than half of the monthly and seasonal models.  
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LE and CH4 fluxes were significantly correlated (r2 = 0.23, p<0.001), and LE was the single 

most powerful statistical associate of CH4 fluxes. LE was also the only variable to be selected for 

every monthly and seasonal stepwise regression model. This is comparable to the findings of 

Morin et al., (2014a), which demonstrated that LE was the strongest statistical associate for CH4 

fluxes during the daytime. Morin et al., (2014a) hypothesized that this relationship is a product of 

(1) an increase of the volatilization of methane and (2) the relationship between the stomatal 

conductance of water vapor and the methane transport through plant tissue. The pairwise 

regression (Figure 8d) indicates a positive relationship between LE and CH4 fluxes, which is 

consistent with those findings. However, there was no standing water present at Solvay, which 

may indicate a stronger linkage with vegetative transmission since CH4 transport from 

volatilization requires standing water. 

 

Similar to LE, the pairwise relationship of netRad and CH4 fluxes was positive (r2 = 0.18, 

p<0.001) (Figure 8b). Incoming radiation and LE drive many of the same mechanisms. Increased 

netRad increases photosynthesis of the vegetation, resulting in the release of water vapor through 

the stomata pore, therefore, increasing LE (Ball et al., 1987). The stepwise regression identified 

netRad as a statistical associate for every month and for the season, except for August, which had 

anomalously low CH4 fluxes that did not follow the seasonal trend (Table 3). The netRad in 

August was in par with the decreasing seasonal trend (Figure 8b). For October and November, 

netRad was the first variable added to the model. These were the only months that LE was not the 

first variable added to the stepwise regression models for CH4, further showing the connection 

between LE and netRad at the site.    
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Our findings also found that TAir had a significant explanatory effect on the CH4 emissions, 

consistent with other studies (Bloom et al., 2010; Bohn et al., 2007; Chu et al., 2014; Rey-

Sanchez et al., 2018). TSoil is commonly cited as an environmental driver of CH4 fluxes in 

wetlands due to its impact on microbial processes. Increased TSoil promotes an increase in 

competing metabolic interactions between anaerobic methanogenesis (CH4 production) and 

aerobic methanotrophy (CH4 consumption). The model selected TAir to have a significant 

explanatory effect for July, September, and October and the season. It was consistently the 3rd 

variable added to the stepwise models. The linear regression shown in Figure 8a resulted in a 

slightly positive pairwise relationship with CH4 flux (r2 = 0.02, p < 0.001) for the season.  

 

Interestingly, Pa was added as the 2nd variable to the stepwise regression models for the season 

and for August and September, and the 8th variable added to the model for November. The 

pairwise linear regression between CH4 fluxes and Pa (Figure 8c) showed a slight positive 

relationship (r2 = 0.02, p < 0.001). There is one reported hypothesis that Pa has a significant 

effect on CH4 emissions through CH4 transport; falling pressure destabilizes bubbles and 

transports CH4 by increasing CH4 ebullition (Tokida et al., 2007). However, this relationship 

requires standing water and would have resulted in a negative correlation. Therefore, we 

hypothesize that the primary interaction effects between the ecological drivers may be the 

primary way that Pa interacts with CH4 at our site.  

 

3.2.2 Carbon Dioxide 
 

The NEE of CO2, as measured by the eddy-covariance tower, is the combination of two distinct 

processes: Re and GPP. Here, we have 3,609 of a possible 6,768 valid half-hour measurements of 
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NEE. The remaining 3,159 values were gap-filled by the neural network (gap-filled time series 

shown in Figure 9). The NEE fluxes ranged during the season from -30.93 μmol·m-2·s-1 (in July) 

to 28.95 μmol·m-2·s-1 (in August) with a mean flux of 0.1954 μmol·m-2·s-1 for the observational 

period (Table 4). This indicated that the CO2 behavior of the site was a slight carbon source, 

which is comparable to the findings of Lu et al., (2017), who found that the average inland 

wetland was typically small CO2 sinks or was nearly CO2 neutral. This is consistent with the 

other reported NEE fluxes from freshwater wetlands sites (Table 5).  

 

Figure 9. Final modeled NEE split into GPP (Orange) and Re (Black) fluxes from June 27 – 

November 11, 2019. The red line indicates zero flux, for reference. 
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Table 4. Final modeled monthly and seasonal NEE (GPP + Re) fluxes from the neural network. 

The n values are based on the rows included in the stepwise regression. 

 

 
Jul Aug Sept Oct Nov Seasonal 

n 406 381 373 361 163 1711 
μmol·m-2·s-1 -1.25 0.68 0.71 1.83 0.22 0.20 

gC·m-2·d-1 -1.3 0.7 0.7 1.9 0.2 0.2 
gC·m2 -40.2 21.9 22.2 58.8 3.0 28.6 

 

 

 

 

Table 5. NEE fluxes from ranging ecosystems. NEE fluxes were captured using the eddy 

covariance (EC) technique or close flux chambers (FC). 

 

 

Wetland Type Location 
 

Date Technique NEE 
(μmol·m-2·s-1) 

Citation 

Solvay inland salt 
marsh 

Camillus, NY Jul. – Nov., 
2019 

EC 0.2 This study 

Freshwater swamp 
marsh 

Southern 
Finland 

Jul. 2004 – 
Dec. 2005 

EC 0.15 Aurela et al., 
2007 

Freshwater marsh Everglades, FL Apr. 2008 – 
Aug., 2009 

FC 2.92 Schedlbauer 
et al., 2012 

Alpine tundra 
wetland 

Zoige, China Jan. 2008 – 
Dec., 2000 

EC 0.17 Hao et al., 
2011 

Tidal salt marsh Hog Island, VA Jul. – Aug., 
2007 

EC -10 Kathilankal 
et al., 2008 

Freshwater coastal 
marsh 

Panjin, China Jan. – Dec., 
2005 

EC 0.17 Zhou et al., 
2009 

 

 

 

The monthly NEE fluxes indicated the site was a sink (negative flux) for CO2 in July and a 

source (positive flux) for CO2 in the remaining months (Table 4). The variation in the diurnal 

pattern lessens over the time series, showing high variation during the beginning months and less 

variation during the end of the observational period (Figure 10). The high diurnal variability 

during the summer months is due to elevated daytime photosynthesis (i.e. high GPP) and 
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elevated microbial and autotrophic respiratory processes (i.e. high Re). The mean Re (4.07 

μmol·m-2·s-1) from the inland salt marsh was higher than the mean GPP uptake (-3.87 μmol·m-

2·s-1), resulting in the site being a slight CO2 source of 28.6 gC·m2 of CO2 throughout the study. 

The GPP and Re were consistent with other observational studies (Chu et al., 2014; Hinojo-

Hinojo et al., 2016) that reported their GPP and Re fluxes during the growing season to be 326.7 

– 933 gC·m-2 and 282.8 – 561 gC·m-2, respectively. It is worth noting that the CO2 source 

behavior of the site is only reflective of the observational period and does not describe the 

behavior of the site on an annual timescale. We anticipate that the wetland would take in CO2 

during the early growing season but would emit CO2 during the winter (Wang et al., 2013). 

Because of this, the true annual CO2 flux behavior cannot be determined here, but our results 

suggest that the site is likely a slight source of CO2 to the atmosphere.  

 
 

Figure 10. Final modeled NEE fluxes from June 27 – November 11, 2019. The 1-day moving 

average shows the shift in the carbon behavior from a carbon sink in July to a slight carbon 

source in September.  
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3.2.2.1 Gross Primary Production Regression Model 
 

We used 1,114 GPP flux samples in the forward-stepwise regression model to determine the 

relationship between the climatological variables and GPP (Table 7). Like CH4, we used only 

half-hours where there were valid measurements for all climatological variables and GPP fluxes. 

The GPP models showed to have the most statistical associates per timeframe out of the carbon 

fluxes (CH4, GPP, and Re), especially for the seasonal timescale where the stepwise regression 

model selected all but PPTT to have a significant explanatory effect on GPP. Over half the 

monthly and seasonal models selected TAir, Pa, LE, VPD, netRad, and winddir as statistical 

associates for GPP (Table 6). We used a pairwise regression to test each of these variables 

against GPP for insight into the underlying cause of the correlation (Figure 11). The pairwise 

regressions showed the strongest trend between GPP and LE (Figure 11c: r2 = 0.66, p < 0.001), 

followed by GPP uptake and TAir (Figure 11b: r2 = 0.26, p < 0.001), netRad (Figure 11b: r2 = 0.26, 

p < 0.001), and VPD (Figure 11d: r2 = 0.25, p < 0.001), all of which showed a positive 

relationship. Also, LE, netRad, and VPD were consistently the 1st, 2nd, and 3rd variables added to 

the models; the order in which TAir was added varied month to month. The strong trends and 

positive relationships between GPP uptake and LE, VPD, and netRad are consistent with findings 

of other observational studies which reported that CO2 uptake was tightly correlated with LE and 

netRad and the relationship between the climatological variables themselves (Baker et al., 2003; 

Schäfer et al., 2014). LE itself may not be an actual driver of GPP, but may share the same 

underlying drivers with GPP, resulting in a strong agreement. 
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Table 6. Monthly and seasonal GPP fluxes and climatological variables (air temperature (Tair), 

total precipitation (PPTT), vapor pressure deficit (VPD), net radiation (netRad), friction velocity 

(u*), normalized vegetation difference index (NDVIfwt), wind speed (windspeed), wind direction 

(winddir), atmospheric pressure (Pa), and latent heat flux (LE)). The statistical relationship 

between the GPP fluxes and the climatological variables were determined through stepwise 

regression and were included in the neural network to determine the represented final modeled 

fluxes for each timeframe. The stepwise regression order is expressed by the number listed in 

each of the columns.  

 

 
Jul Aug Sept Oct Nov Seasonal 

n 294 277 252 199 75 1114 
μmol·m-2·s-1 -7.66 -5.81 -3.72 -1.95 -1.13 -3.87 
gC·m-2·d-1 -7.94 -6.02 -3.85 -2.03 -1.17 -4.02 
gC·m2 -246 -187 -116 -62.8 -15.17 -566 
Tair 2   6 4   6 
PPTTotal  7 7  1   
VPD  5 3 3 5 3 
netRad 5 2 4 2 2 2 
u*     3 8 
NDVIfwt   4   6 5 
windspeed   5  4 9 
winddir 3 3   7 4 
Pa 4 6 2   7 
LE 1 1 1 1 8 1 
Stepwise r2 0.81 0.84 0.51 0.71 0.84 0.86 
Neural Network r2 0.81 0.70 0.65 0.67 0.77 0.82 
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Figure 11. Pairwise relationships between the GPP fluxes and a) air temperature (TAir), b) net 

radiation (netRad), c) latent heat flux (LE), d) vapor pressure deficit (VPD), and e) atmospheric 

pressure (Pa). The stepwise regression models (Table 6) selected TAir, netRad, LE, VPD, and Pa to 

have a significant explanatory effect for more than half of the monthly and seasonal models. 

 

NetRad is the primary driver of photosynthesis (Frolking et al., 1998; Lafleur et al., 2001; Lund et 

al., 2009). During periods of high netRad, there is high light availability which promotes 

photosynthesis in well-watered plants, causing low CO2 concentrations within the plant, and 

therefore, maximizing the stomatal conductance rate. Stomatal conductance is the rate at which 

CO2 enters (GPP) uptake, and water vapor (LE) exits through the stomate pores on the leaves. 

This is confirmed in our findings, where Figure 11b shows a positive relationship with daytime 

GPP uptake.  

 

Stomata conductance regulates GPP and LE (Ball et al., 1987) through transpiration by the plant 

leaves and explains (1) the strong positive relationship that we found between GPP uptake and 

LE in the pairwise regression (Figure 11c) and (2) the selection of LE as the 1st variable to be 

added to the stepwise regression models (Table 6). GPP is mechanistically linked to LE, via 
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transpiration, since a plant that absorbs lots of carbon through photosynthesis will also transpire 

a lot. Because of this, we would expect that both variables would be driven by the same 

climatological variables (e.g., VPD and netRad) and would naturally be correlated, although 

neither was directly responsible for the other. Our stepwise model behaved as would be expected 

for this behavior, selecting VPD as the third variable, following LE and netRad, and showed a 

positive effect on GPP uptake in Figure 11d. VPD drives the stomata conductance (Penman, 

1948) by providing the impetus for water diffusion across the stomate pore. However, many 

plants will reduce stomatal conductance during periods of high VPD between the leaf and the 

atmosphere to minimize water loss and to retain the hydration of the plant cells. The exact effect 

that VPD imposes on LE is dependent on the state as well as the change in VPD. If the initial 

VPD is low and increases, then the LE will also increase since the positive effect of VPD 

outweighs the negative effect. If the VPD is initially high and increases further, though, then the 

LE will decrease since the negative effect will outweigh the positive effect. These findings show 

that the relationships between netRad, VPD, and LE are not static, but instead, the impact of one 

variable depends on the variations of the other climatological variables.  

 

TAir also had a positive correlation with daytime GPP uptake (r2 = 0.37, p < 0.001), Figure 11a, 

which is expected since TAir increases during the springtime and through the growing season, 

similar to netRad, so the two variables would be correlated absent direct driving behavior. 

However, vegetation vigor is also linked to TAir (Xiao and Moody, 2005), indicating possible 

causation and not merely a correlation. The peak magnitude of GPP occurred on July 16th (-35.31 

μmol·m-2·s-1), which is also the date with the highest recorded hourly temp (32.°C) during the 

observational period. The mean TAir on July 16, 2019 was 4.1°C cooler than the daily high TAir 
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of 27.5°C that occurred on July 20, 2019. Surprisingly, the highest daily mean GPP (-8.22 

μmol·m-2·s-1) occurred on July 20th, supporting TAir’s negative relationship with GPP. Hofstra 

and Hesketh et al., (1969) reported that cool-climate species had the widest apertures around 27 

to 30°C. Stomata are not expected to close down unless TAir reaches 36°C under water-stressed 

conditions, which was never the case during the observational study. During colder TAir periods 

with lower netRad, the vegetation growth and GPP uptake potential decrease.  

 

The stepwise regression also identified Pa and winddir to be other statistical associates for GPP. 

Shifts in Pa are not reported in the literature to impact GPP, but it is related to VPD and TAir. Pa is 

determined by the weight of the air above where the measurement was taken (Priestley, 1946), 

and the weight of the air varies with inversely with TAir. Typically, warm air rises and causes a 

decrease in surface pressure. Localized precipitation events or increased evaporation can also 

cause changes in Pa. Pa decreases with precipitation but increases with evaporation. Therefore, 

the stepwise regression may be using Pa as a proxy variable for a collection of other variables 

rather than suggesting that it is itself a direct driver of GPP.  

 

3.2.2.2 Ecosystem Respiration Regression Model 
 

 

 

For Re, the model identified TAir, LE, and NDVIfwt to have a significant explanatory effect for 

more than half of the monthly and seasonal timeframes (Table 7). We tested each of these 

variables against Re using pairwise regressions to determine the significance of the trends (Figure 

12). The stepwise model consistently added TAir into the model as the first variable for all 

timeframes and TAir was the only variable tested in pairwise regression to show a trend (Figure 
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12a). The positive relationship between TAir and Re, indicated that increased TAir resulted in 

increased Re at the site, consistent with the findings of Niu et al., (2012); Raich and Schlesinger 

et al., (1992); Schäfer et al., (2014); Singh and Gupta et al., (1977). Even though the positive 

trend between Re and TAir is well documented, there is no agreement on the exact form of the 

relationship (e.g., people hypothesize the linkage may be a linear relationship (Froment, 1972; 

Witkamp, 1966), Q10 exponential relationship (Hoff, 1898), or an exponential dependence 

(Raich and Schlesinger, 1992)). Lloyd and Taylor et al., (1994) compared the methods and found 

that an Arrhenius type equation where the effective activation energy for Re varies inversely with 

TAir accurately represents the relationship between Re and TAir.  
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Table 7. Monthly and seasonal Re fluxes and climatological variables (air temperature (Tair), total 

precipitation (PPTT), vapor pressure deficit (VPD), net radiation (netRad), friction velocity (u*), 

normalized vegetation difference index (NDVIfwt), wind speed (windspeed), wind direction 

(winddir), atmospheric pressure (Pa), and latent heat flux (LE)). The statistical relationship 

between the Re fluxes and the climatological variables were determined through stepwise 

regression and were included in the neural network to determine the represented final modeled 

fluxes for each timeframe. The stepwise regression order is expressed by the number listed in 

each of the columns.  

 

 
Jul Aug Sept Oct Nov Seasonal 

n 112 104 121 162 88 597 
μmol·m-2·s-1 6.41 6.49 4.43 3.78 1.35 4.07 

gC·m-2d-1 6.64 6.73 4.59 3.92 1.40 4.22 
gC·m2 206 209 138 122 18.17 595 

Tair 1 2 1 2 1 1 
PPTTotal        

VPD    3 6 5 
netRad     5   

u* 3     4 
NDVIfwt  4  3 4 4   

windspeed 2 1    2 
winddirection    5 2   

PAvg      3 
LE 5   2 1 3   

Stepwise r2 0.30 0.20 0.18 0.37 0.58 0.47 
Neural Network r2 0.57 0.39 0.24 0.66 0.73 0.43 

 



37 
 

Figure 12. Pairwise relationships between the Re fluxes and a) air temperature (TAir), b) latent 

heat flux (LE), and c) normalized difference vegetation index footprint weighted total (NDVIfwt). 

The stepwise regression models (Table 7) selected TAir, LE, and NDVIfwt to have a significant 

explanatory effect for more than half of the monthly and seasonal models. 

 

The uncertainty between Re and TAir is due to the complexity of Re. Re is made up of a variety of 

autotrophic (Ra) and heterotrophic (Rh) processes, and each component reacts differently to the 

changes in the ecological conditions (Bahn et al., 2010; Davidson and Janssens, 2006; Hopkins 

et al., 2013; Teskey et al., 2007; Trumbore, 2006). Ra is dependent on the carbon input from the 

canopy, while Rh is moderated by the carbon storage and nutrient content within the soil 

(Binkley et al., 2006). Ra contributes to a greater portion of ecosystem respiration in high-

productivity sites than in low-productivity sites (Bond‐Lamberty et al., 2004). 

 

The NDVI has been proven to be a valuable tool to determine the productivity of sites as a proxy 

for leaf area index (Tucker, 1979), absorbed photosynthetically active radiation (Kumar and 

a) 

b) 

c) 

r2 = 0.10 

p < 0.001 

y = 0.1156x + 2.172 

r2 = 0.11 

p < 0.001 

y = - 0.01187x + 4.76 

r2 = 0.0003 

p < 0.001 

y = 1.784x + 2.737 
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Monteith, 1981), vegetation biomass (Sellers, 1987), Re (Boelman et al., 2003), and NEE 

(Goward et al., 1985). The stepwise regression added the NDVIfwt into the model as the fourth 

variable and showed a slightly positive trend with Re through pairwise regression (Figure 12c: r2 

= 0.003, p < 0.001). Boelman et al., 2003 suggested that the positive correlation between NDVI 

and Re could be attributed to the following relationships: (1) NDVI is a proxy for photosynthesis 

and a portion of photosynthesis produced goes to plant maintenance and growth respiration 

(Waring et al., 1998). (2) During peak season, the total plant biomass accounts for the majority 

of Re (Johnson et al., 2000), and (3) High plant biomass has high litter production and, therefore, 

more labile carbon substrates for soil microbes. Further NDVI readings and an updated 

vegetation survey is required to dive into the relationship between NDVIfwt and Re at the site.  

 

The pairwise regression between LE and Re showed no discernable trend (Figure 12b: r2 = 0.11, 

p < 0.001). The order in which LE was added to the stepwise regression models for Re varied 

month to month (Table 7), ranging from the first variable to be added to the model in October 

and the fifth variable to be added in July. This may indicate that the stepwise regression was 

picking up an interaction effect with other climatological variables that are dependent on LE and 

influence Re, e.g., soil moisture or air and soil temperature.    

 

3.3 Lag Response  
 

We used the Granger Causality test to determine if Tair and/or PPTT were a causal driver of the 

carbon fluxes (Table 8). The test was essential to avoid an assumption of causation to variables 

that simply exhibited a strong correlation, which could indicate a linkage via a shared third driver 

or could indicate pseudo replication due to the natural diurnal cycle of environmental variables. 
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The hourly lag response models were based on 3360 values, while the daily lag response models 

(only used in the event that no hourly lag response was detected) were based on 131 values. 

Similar to Sturtevant et al., (2016), we allowed a maximum lag of 24 hours when testing for 

hourly lag response, and 10 days when evaluating on a multiday scale. We determined that GPP, 

Re, and CH4 fluxes were all driven by Tair, showing a maximal covariance between three (Re) to 

five (CH4) hours after Tair. The Granger Causality test identified that GPP and Re showed a 

hourly lag response from PPTT. CH4 fluxes exhibited a lag response to PPTT on a daily scale 

(peak at one day) but not an hourly scale. 

 

Table 8. Lag Responses of CH4, GPP, and Re caused by total precipitation (PPTT) and Tair in 

units of hours or days based on the timeframe. 

 

Caused Causal N Timeframe Lag 

Response  

P-value Granger-

Caused? 

 

 

CH4 

  

Tair 3360 Hourly 5 < 0.001 Yes 

 

PPTT 

3360 Hourly 1 0.0840 No 

131 Daily 1 < 0.001 Yes 

 

GPP 

Tair 3360 Hourly 4 < 0.001 Yes 

PPTT 3360 Hourly 1 0.0215 Yes 

 

Re 

Tair 3360 Hourly 3 < 0.001 Yes 

PPTT 3360 Hourly 2 < 0.001 Yes 

 

 

3.3.1 CH4 lag responses 
 

For CH4, there was a lag response of five hours from Tair, which may be indicative of the time it 

takes for Tair to influence the soil temperature (Tsoil). Tsoil is widely supported as a driver of 

belowground ecosystem processes due to its effects on microbial respiratory processes. Lee et 
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al., (1978) found a four- to six-hour lag time between Tsoil and Tair at a soil depth of 10 cm and 

also found that the exact lag time is influenced by topography, soil texture, and soil water 

content. The five-hour lag response between CH4 and Tair found here agrees with that range, 

strongly suggesting the link is ultimately via the lag response of Tair on Tsoil. This is also 

consistent with Reid et al., (2013) results that showed a lag between air and surface soil 

temperatures and depth-integrated CH4 pools. Overall, our findings support our stepwise 

regression model, which identified Tair as one of the four climatological variables that showed a 

significant explanatory effect on the CH4 fluxes, and indicated that CH4 emissions increase with 

temperature (Figure 8). 

 

The lag response of one day from daily PPTT events could reflect changes in the water table 

depth and dissolved oxygen (DO) concentrations caused by PPTT events. Water table 

fluctuations are dependent on the inputs (precipitation, surface flow, and groundwater inputs) 

and outputs (evapotranspiration, surface flow, and groundwater efflux) of the water budget, and 

are sensitive to environmental and climatic changes (Sollid and Sørbel, 1998). At the Solvay site 

the soil gravimetric water content approaches 70% of the volumetric soil content at saturation. In 

some portions of the wetland, there is an impermeable layer of compacted Solvay soil 

approximately 460 mm below the soil surface (D. Daley, personal communication, March 23, 

2020). Therefore, during and after significant precipitation events, we assume PPTT can be used 

as a proxy variable for water table depth since we expect nearly instantaneous shifts in the water 

table depth in response to PPTT events. Chamberlain et al., (2017) reported that during PPTT 

events, the DO concentrations increased to approximately 30 times the background 

concentrations within the water table and it took one day for the DO concentrations to reduce to 
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anoxic conditions (<1.0 mg·L-1) after the rainfall event. These findings are consistent with our 

lag response, indicating the site may take one day for the DO to deplete after PPTT events and to 

favor methanogenesis.  

 

3.3.2 CO2 lag responses 
 

We tested CO2 fluxes for lag responses by first partitioning NEE into GPP and Re since each 

component could hypothetically respond to environmental stimuli in distinct ways. Both 

exhibited a lag response to temperature with a maximal covariance lag time of four hours (GPP) 

and three hours (Re) (Table 8), both with a positive pairwise slope (Figure 11 and Figure 12). Re 

had the strongest relationship with Tair out of all the fluxes, as identified by the stepwise 

regression (Table 7). Like CH4, the Re emissions of the site are likely directly driven by Tsoil, 

which is slowly influenced by Tair. Our lag response for GPP from Tair is consistent with 

Admirall et al., (1976) and Colijn and Van Buurt et al., (1975) who all found that hourly Tair had 

a significant effect on primary production and growth rates (though the impact of these short-

term changes is species dependent (Admiraal, 1977)).   

 

Both carbon fluxes also had a response to PPTT. Re and GPP had much faster responses to PPTT 

events than CH4 fluxes, with two- and one-hour responses, respectively. The fast lag response of 

GPP to PPTT events is indicative of the water limitation at the site during the growing season. 

During drought conditions, PPTT events decrease water stress on vegetation and promote 

photosynthesis, increasing CO2 uptake by plants. GPP was the only CO2 flux that the stepwise 

regression identified PPTT to be an ecological driver for any of the months during the 

observational period, which could be suggestive of the low lag response of one hour. For GPP, 
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the stepwise regression identified PPTT to be a statistical associate in August (7th variable added), 

September (7th variable added), and November (1st variable added). Since PPTT was not selected 

as a driver for GPP on a seasonal timescale, we cannot determine the relationship using pairwise 

regression for the observational period. PPTT is a semi-discrete variable in that its value is zero 

except for during precipitation events. All other variables tested in this study were continuous, 

which may have discouraged the selection of PPTT in favor of other variables.  

 

 

Re showed a two-hour lag response from PPTT, which could be attributed to an increase in DO 

concentrations and soil moisture content during PPT events. Rainfall can increase the DO 

concentrations of the groundwater to approximately 30 times the background concentrations 

(Chamberlain et al., 2017) and, therefore, increase Re with DO consumption. Many studies, Aerts 

and de Caluwe et al., (1997); Jeong et al., (2018); Meentemeyer et al., (1984), reported that Re 

mainly depends on Tsoil and soil moisture content. Re emissions could hypothetically increase in 

response to both rising and falling water tables. During soil drying events, the cracking of 

organic colloids can increase the “water-soluble organic substrate” availability (Birch, 1959). 

During periods of high soil saturation, some soil microbes may experience cell lysis (i.e., 

breaking down of the cell wall) due to high turgor pressure resulting in the release of an organic 

substrate which surviving microbes will readily uptake (Kieft, 1987). Jeong et al., (2018) saw Re 

increase immediately after hourly PPTT events of 4.6 mm or more for up to two hours after the 

precipitation ended, and then Re returned to normal levels.  
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3.4 Footprint Model and NDVI footprint weighted total 
 

We determined the tower’s cumulative footprint for day and night for each of the months and for 

the entire observational period (Figure 13). The footprints for each of the timeframes had little 

variability and were stable in direction due to consistent winddir during the observational period 

(Table 1). The size of the footprint depended on the time of day (daytime versus nighttime) and 

month.  The footprint increased in size throughout the observational period and at night; the 

smallest occurring during the daytime in July (Figure 13a) and the largest during the nighttime in 

October (Figure 13d). We attribute the larger footprint during the night time and during the 

shoulder season to weak turbulent mixing and a stable boundary layer from lower surface 

temperatures. These atmospheric characteristics also caused some variability in the smoothness 

of the ovular shaped contour lines (best seen in Figure 13d).  



44 
 

 

 

Figure 13. The relative flux contribution for (a) July daytime, (b) July nighttime, (c) October 

daytime, and (d) October nighttime, overlaying the aerial NDVI values from August 1, 2019. 

The color legend represents the NDVI readings (ranging from 0.2 to 0.8).  

 

Within the seasonal footprint’s boundaries, the NDVI ranged from 0.23 to 0.8, with a mean value 

of 0.75 from the August 1, 2019 flyover. The NDVI values were consistent across the site, 

except for low NDVI values in the north portion of the inland salt marsh, shown in green in 

Figure 13. The variation of the NDVI values could correspond with the differences in vegetation 

community composition since the plant communities (alvar grassland, Great Lakes dune, inland 

Distance (m) 

a) b) 

c) d) 

D
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n
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m
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salt marsh, and marl fen emergent marsh, and fen) were planted in 2008 in separate plots within 

the wetland area (Eallonardo, 2010). 

 

For each measurement period, we also calculated the spatially and temporally integrated NDVI 

that contributed to the half-hour eddy covariance measurement (NDVIfwt). The NDVIfwt time-

series typically fluctuated between 0.7 and 0.8 (unitless) (Figure 14). The trend seemed more 

defined in the later months, beginning in September, and continuing through November. The 

NDVIfwt is calculated based on the NDVI readings from the August 1st flyover and the 30-minute 

measurements of winddir, windspeed, u*, Obukhov atmospheric stability length (L), and crosswind 

variation (v’v’). A time series of these variables were plotted to understand further the trend 

present in the NDVIfwt time series (Figure 15). The winddir time series followed a similar pattern 

as the NDVIfwt (Figure 15a), indicating that some of the variation of the NDVIfwt time series 

could be explained by changes in winddir.  

 

 

Figure 14. NDVIfwt timeseries, based on the NDVI readings from the August 1st, 2019 flyover 

within the bounds of the seasonal footprint. 
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Figure 15. Timeseries of variables that contributed to the footprint. (a) Radial wind direction, (b) 

wind speed, (c) friction velocity, (d) Obukhov length, and (e) crosswind variance. 

 

 

 

As mentioned in section 3.2.2, the stepwise regression models only selected NDVIfwt as a key 

ecological driver for Re (Table 7). However, there was no clear relationship determined by the 

pairwise regression on the half-hour timescale (Figure 12c). Also, we compared each of the 

carbon fluxes with NDVIfwt on a daily scale to control for temporal dissonance since the time of 

day may have a strong explanatory effect. The pairwise regression on the daily timescale showed 

a negative relationship between NDVIfwt and Re (Figure 16a: r2 = 0.03, p = 0.032), which was 

surprising since a substantial portion of Re is attributed to plant biomass respiration, which is 

itself directly driven by the aboveground biomass, and, thus, to NDVI (Gifford, 2003). However, 

a) 

b) 

c) 

d) 

e) 
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other factors, like PAR, PPTT, soil moisture content, vegetation type, and Tsoil affect both Re and 

aboveground production and may overshadow and confound any relationship between NDVI and 

Re. Our stepwise regression models had only a limit ability to explore the interaction between 

variables. Still, they may suggest that the negative correlation between Re and NDVIfwt could be 

attributed to the effects of other climatological variables based on the conclusions discussed in 

Huang et al., (2012) and La Puma et al., (2007), e.g., PAR and VPD.  

  

 

 

a) 

b) 
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Figure 16. Pairwise relationship between daily averaged NDVIfwt and (a) Re, (b) GPP, and (c) 

CH4. We determined the pairwise regression between the NDVIfwt and the carbon fluxes is best 

on a daily timescale to eliminate the systematic trends at the half-hour timescale related to the 

diurnal cycle. 

 

NDVIfwt was selected by the stepwise regression models to influence the CH4 and GPP fluxes for 

only some of the months (Table 3 and Table 6), but on a seasonal timescale, the stepwise 

regression models selected NDVIfwt for GPP and CH4 fluxes. On the daily timescale the pairwise 

regression between CH4 and NDVIfwt showed the best relationship out of the carbon fluxes 

(Figure 16c: r2 = 0.14, p < 0.001), followed by GPP (Figure 16c: r2 = 0.13, p < 0.001). The 

pairwise regression for CH4 and NDVIfwt showed a negative relationship indicating that areas 

within the inland salt marsh with lower NDVI values were responsible for an increase in CH4 

fluxes. Conversely, GPP showed a positive relationship. The relationship of NDVIfwt with the 

carbon fluxes (GPP, Re, CH4) was the opposite of what was expected, suggesting that the 

vegetation’s spatial variability of the site may influence the carbon fluxes. Further NDVIfwt 

readings are required to understand the influence of temporal and spatial variability of phenology 

and the carbon fluxes at the site.   

 

c) 
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Chapter 4: Conclusion 
 

This study combined three datasets to assess the empirical drivers of the carbon behavior of an 

inland salt marsh in Camillus, NY. We found that during the observational period the inland salt-

marsh acted as a slight carbon source of 38 gC·m2, including emissions of 9 gC·m2 of CH4, in 

CO2 equivalent, and 29 gC·m2 of CO2. We attribute the site’s small carbon emissions to low CH4 

emissions (mean of 0.0022 µmol·m-2·s-1), and slight NEE emissions (mean of 0.20 µmol·m-2·s-1). 

The cumulative GPP uptake of 566 gC·m2 nearly offset the cumulative Re emissions of 595 

gC·m2. During the growing season, the CH4 behavior of the site is comparable to saltwater 

systems, and the CO2 behavior is on par with other inland marshes. Further observation through 

the winter and spring would be necessary to make a final determination of the full annual carbon 

behavior.  

 

The major findings of the study are related to the research objectives outlined below: 

 

Research Objective 1: Determine temporal changes in the statistical relationships between the 

carbon fluxes and the climatological variables (air temperature, precipitation, vapor pressure 

density, net radiation, wind speed, wind direction, atmospheric pressure, heat flux, and low 

friction velocity) and vegetative distribution (NDVI footprint weighted total (NDVIfwt)) using an 

empirical model.  

 

The statistical relationships between the climatological variables and the carbon fluxes 

changed temporally, however, LE was identified to have a significant explanatory effect 

for CH4 and GPP on a monthly and seasonal timescale, while the variation of Re was best 
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explained by Tair. Both LE and TAir were selected for more than half of the monthly and 

seasonal stepwise models for all the carbon fluxes, whereas other variables like netRad and 

Pa  were specific to CH4 and GPP and were likely attributed to their influence on other 

critical climatological variables such as LE. These results further illustrate that the carbon 

fluxes are highly related to LE and TAir and the relationship between the climatological 

variables themselves.  

 

Research Objective 2: Determine the frequency response of the ecosystem's carbon exchange 

(CH4, GPP, Re) to precipitation events and shifts in atmospheric temperature during the growing 

season.  

 

CH4, GPP, and Re all showed significant lag responses to Tair and PPTT. However, the lag 

responses of CH4 (5-hours) and Re (3-hours) from TAir, we attribute to the lag response 

between TAir and TSoil rather than between TAir and the carbon fluxes themselves. CH4 

showed the longest lag response to PPTT of one-day that we attribute to the time it takes 

for the increased DO concentrations from PPTT events to reduce to anoxic conditions, 

versus GPP and Re, which showed a 1-hour and 2-hour lag response to rain events. The 

fast reaction from GPP to PPTT is like an indicator of a water limitation at the site 

throughout the growing season and an immediate increase in DO within the water table.  

 

Research Objective 3: Evaluate the spatial influence of a heterogeneous plant community from 

an individual NDVI event on site-level integrated carbon fluxes.  
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Surprisingly, Re was the only carbon flux that NDVIfwt was identified to have a 

significant explanatory effect for more than half of the months and the season. The 

pairwise regression on a daily timescale indicated that land-cover heterogeneity 

(NDVIfwt) showed to have a slight positive relationship with GPP, and a negative 

relationship with CH4 and Re, all of which were the opposite of what we hypothesized. 

The NDVI values within the footprint contribution had a low variation, values fluctuated 

between 0.7 and 0.8, with a mean NDVI of 0.75. The low variability of the NDVIfwt 

proposed a limitation for fine-scale analysis, likely contributing to the negative results. 

Additional NDVI readings are necessary to assess how the heterogeneity of the site 

influenced carbon behavior.  

 

4.1 Future Direction 
 

This study provides an analysis of the site-specific carbon flux empirical drivers at an inland salt 

marsh in Camillus, NY. There are many potential steps forward, including: 

 

1) Expand analysis to include a comparison of the carbon fluxes captured at the inland salt 

marsh during this observational study and the carbon fluxes obtained during the water 

budget assessment conducted by O’Brien and Gere from April 2011 to December 2011 

and April 2012 to May 2013. 

2) Expand the observational period through winters to capture the carbon behavior during an 

annual timescale.  

3) Further investigate the relationship between the NDVI values and the carbon fluxes of the 

site by conducting an additional observational study that includes monthly NDVI 
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readings, continuous measurement of the carbon fluxes, and a field survey of the present 

plant communities.  

4) Utilize the data from Ameriflux to assess site-specific empirical drivers and to determine 

common drivers among the sites, including other ecosystems (e.g., forested, or tidal 

systems).  

5) Determine a complete water budget of the inland salt marsh, including the measurement 

of unsaturated and saturated zones based on PPTT events. 
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