# Evaluation of Unmanned Aerial Systems (UAS) Imagery for Forest Regeneration Surveys 

Muhammet Ali Ozderya<br>SUNY College of Environmental Science and Forestry, maozdery@syr.edu

Follow this and additional works at: https://digitalcommons.esf.edu/etds
Part of the Environmental Monitoring Commons, and the Forest Sciences Commons

## Recommended Citation

Ozderya, Muhammet Ali, "Evaluation of Unmanned Aerial Systems (UAS) Imagery for Forest Regeneration Surveys" (2020). Dissertations and Theses. 165.
https://digitalcommons.esf.edu/etds/165

This Open Access Thesis is brought to you for free and open access by Digital Commons @ ESF. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Digital Commons @ ESF. For more information, please contact digitalcommons@esf.edu, cjkoons@esf.edu.

## by

## M Ali Ozderya

A Thesis
Submitted in Partial Fulfillment of the Requirements for The Master of Science Degree

State University Of New York College of Environmental Science and Forestry

Syracuse, New York
March 2020

Department of Sustainable Resources Management

Approved by:
Eddie Bevilacqua, Major Professor
Hyatt Green, Chair, Examining Committee
Chris A. Nowak, Department Chair
S. Scott Shannon, Dean, The Graduate School
© 2020
Copyright
M. A. Ozderya

All rights reserved

## ACKNOWLEDGMENT

There are number of people who have made my graduate work possible and to whom I am grateful. My major professor, Eddie Bevilacqua, for his endless patience and assistance with this thesis. Without his guidance and advice, I would not be able managed. Diane Kiernan and Jane M Read, my steering committee, for their contributions to this project. I am very grateful to professors who have servicing as my examiners, Mark Storrings and Hyatt Green. Also, l'll like to thank Mehmet Ozen who helped me at my field data collection. My friend and my family for enduring supports of all my various pursuits. Finally, the Republic of Turkey Ministry of National Education who provided me financial support that covers all my expenses during my education period.

## Table of Contents

LIST OF FIGURES ..... vi
LIST OF TABLES. ..... viii
Chapter 1. INTRODUCTION ..... 1
1.1. Traditional Methods of Forest Regeneration Surveys ..... 1
1.2. General History of UAV Development ..... 2
1.3. Benefits and Limitations of UAV in Environmental Research Applications ..... 3
1.4. Case Studies in Forest Regeneration Surveys ..... 3
1.5. Norway Spruce (Picea abies) ..... 5
1.6. UAV Research Gaps ..... 5
Chapter 2. GOALS AND OBJECTIVES. ..... 7
Chapter 3. METHODS ..... 8
3.1. Study Area ..... 8
3.2. Ground Data Collections ..... 10
3.2.1. Mapping Trees Using Distance Measurements and INTERPNT ..... 10
3.3. UAV Data Collection ..... 12
3.4. Derived Products from Stereo Imagery ..... 13
3.5. Manual and Automated Tree Detection ..... 13
3.5.1. Manual Tree Identification and Measurement ..... 13
3.5.2. Automated Tree Detection. ..... 14
3.6. Assessment of Individual Tree Detection and Crown Delineation ..... 14
3.6.1. Individual Tree Detection Accuracy ..... 14
3.6.2. Positional Accuracy. ..... 15
3.6.3. Delineation Accuracy ..... 16
3.6.4. Assessment of Tree-Level Predictions ..... 16
Chapter 4. RESULTS ..... 17
4.1. Field Data ..... 17
4.2. Crown Overlap ..... 18
4.3. Missions ..... 19
4.4. Orthoimage Creation ..... 22
4.5. Orthoimage Visual quality comparison between DroneDeploy and Agisoft ..... 22
4.6. Individual Tree Detection ..... 24
4.6.1. Manual Tree Detection ..... 24
4.6.2. Automated Tree Detection ..... 27
4.7. Positional Accuracy ..... 30
4.8. Crown Delineation Accuracy ..... 35
4.9. Relationship Between Field-Based and Imagery Derived Crown Area ..... 36
4.9.1. Basal Area Relationship Between Field-Based Basal Area and Imagery Derived Crown Area ..... 39
Chapter 5. DISCUSSION ..... 42
5.1. Challenges in acquiring UAV imagery ..... 42
5.2. Challenges in processing UAV imagery ..... 44
5.2.1. Geotagging ..... 44
5.2.2. Creating Orthomosaic ..... 45
5.2.3. Creation of DEM ..... 45
5.3. Imagery Analysis ..... 46
5.3.1. Manual Tree Detection and Delineation ..... 46
5.3.2. Automated Tree Detection ..... 47
5.3.3. Resolution ..... 48
Chapter 6. CONCLUSIONS ..... 50
Chapter 7. References ..... 51
Chapter 8. APPENDIX ..... 56
Curriculum Vitae ..... 73

## LIST OF FIGURES

$$
\begin{aligned}
& \text { Figure 1. Amount of UVS related papers between } 2013 \text { and 2017, with search terms: } \\
& \text { "unmanned" and "drone" on the WoS (SCI-E), last updated June 12, } 2018 \text { (Chabot, 2018) } \\
& \text {.............................................................................................................................................. } 2
\end{aligned}
$$

Figure 2. Visual representation of a small portion of the study area ............................................. 8
Figure 3. Location of Study Area.................................................................................................... 9
Figure 4. Some tree attributes that collected at field .................................................................. 10
Figure 5. Illustration of trilateration method ............................................................................... 11
Figure 6. Flight altitudes and flight angle (all distances are drawn to scale). .............................. 12
Figure 7. Example of manually created tree crown by using Circle Construction Tool................ 13
Figure 8. Overview of automated tree detection process........................................................... 14
Figure 9. Frequency distributions of measured diameter-at-breast height (DBH), diameter-atground level (DGL), tree height, and crown width ........................................................... 17
Figure 10. Frequency distributions of crown overlap.................................................................. 18
Figure 11. An example of a discarded picture from the mission at 150 ft altitude with 0 -degree flight angle and 5 mph speed flight .................................................................................. 19

Figure 12. Examples of some distortion at orthoimeges A) Gaps B) Blotches C) lack of contrast
around crown edges ............................................................................................................ 23
Figure 13. Frequency distribution of missing trees from manual tree detection by DBH class
using orthoimages created by DroneDeploy ...................................................................... 26
Figure 14. Frequency distribution of missing trees from manual tree detection by DBH class
using orthoimages created by Agisoft ................................................................................ 26
Figure 15. Frequency distribution of missing trees from automated tree detection by DBH class using orthoimages created by DroneDeploy .................................................................... 29

Figure 16. Frequency distribution of missing trees from automated tree detection by DBH class
using orthoimages created by Agisoft ............................................................................... 29
Figure 17. Histogram from manual tree detection displaying distribution of distance between field- and image-tree coordinates using orthoimage created by DroneDeploy33

Figure 18. Histogram from manual tree detection displaying distribution of distance between field- and image-tree coordinates using orthoimage created by Agisoft

Figure 19. Histogram from autometad tree detection displaying distribution of distance between field- and image-tree coordinates using orthoimage created by DroneDeploy 34

Figure 20. Histogram from autometad tree detection displaying distribution of distance between field- and image-tree coordinates using orthoimage created by Agisoft ......... 34

Figure 21. Scatter plot showing relationship in area between field- and image-tree crown using orthoimage created by DroneDeploy. Red line is regression equation, diagonal black line is a 1:1 identity reference line.

Figure 22. Scatter plot showing relationship in area between field- and image-tree crown using orthoimage created by Agisoft. Red line is regression equation, diagonal black line is a 1:1 identity reference line.

Figure 23. Scatter plot showing relationship in area between field-based basal area and imagetree crown using orthoimage created by DroneDeploy41

Figure 24. Scatter plot showing relationship in area between field-based basal area and imagetree crown using orthoimage created Agisoft.................................................................. 41

Figure 25. Example of unexpected flight path............................................................................ 42
Figure 26. Example of various tlogs output................................................................................. 44
Figure 27. Two 3D surface models of crown shape from one individual tree, observed from same perspective, left image generated by Agisoft, right image by DroneDeploy.......... 46

Figure 28. ArcMap model created for automated tree top detection from UAV digital elevation
$\qquad$
LIST OF TABLES
Table 1. Example of first 5 tree distance measurement ..... 11
Table 2. Summary statistics of diameter-at-breast height (DBH), diameter-at-ground level (DGL), tree height, and crown width ..... 17
Table 3. Summary of UAS missions using the visible RGB camera ..... 20
Table 4. Summary of UAS missions using the near-IR camera ..... 21
Table 5. Summary of orthoimage productivity ..... 22
Table 6. Summary of orthoimage resolution ..... 23
Table 7. Summary of manual tree detection accuracy ..... 25
Table 8. Summary of automated tree detection accuracy ..... 28
Table 9. Assessment of positional accuracy, based on distance between field- and image-tree coordinates ..... 31
Table 10. Positional accuracy based on predicted image tree location falling within field crown area. ..... 32
Table 11. Assessment of crown delineation accuracy ..... 35
Table 12. Detailed results from linear regression analyzes relating to image-based crown area and field-based crown area ..... 37
Table 13. Detailed results from linear regression analyzes relating to image-based crown and field-based basal area ..... 40
Table 14. Complete list of field measurements. ..... 56


#### Abstract

M Ali Ozderya. Evaluation of unmanned aerial systems (UAS) imagery for forest regeneration surveys, 72 pages, 14 tables, 28 figures, 2020. Harvard - Anglia style guide used.

Accurate and reliable methods of assessing forest regeneration are necessary to improve forest inventories and assist management decisions. This research evaluates the effectiveness of high spatial resolution imagery from unmanned aerial systems (UAS) to assess abundance and structure of forest regeneration. Data were collected for 696 young Norway spruce (Picea abies) trees to establish field-based census. UAS digital stereo imagery was collected at three altitudes, two flight speeds and four flight azimuths, for a total of 24 separate missions. Using two orthomosaic programs, orthoimages and Digital Elevation Models (DEM) were created. Number, location and size distribution of Norway spruce trees were derived from UAS products through manual and automated processes and compared to field measurements. Manual tree detection and position estimates produced best results with $93 \%$ accuracy, while automated tree detection was only $63 \%$ accurate. Significantly strong correlations ( $\mathrm{R}^{2}>55 \%$ ) between UAS crown estimates and field measurements were obtained.


Keywords: Remote Sensing, Unmanned Aerial Vehicle (UAV), Tree detection, Forest Inventory

## M Ali Ozderya

Candidate for the degree of Master of Science, March 2020
Eddie Bevilacqua, Ph.D.
Department of Sustainable Resources Management
State University of New York, College of Science and Forestry
Syracuse, New York

## Chapter 1. INTRODUCTION

### 1.1. Traditional Methods of Forest Regeneration Surveys

Information from forest regeneration assessments are used to estimate current conditions of desired species, to evaluate the success of harvest operations and planting or seeding treatments, and to identify areas that may require extra silvicultural treatments. Assessment is most often done by conducting field sampling using systematically located plots throughout the forest. Even though their main purpose concerns estimating overall stocking and density, additional features on regeneration are also collected, such as diameter, height, species composition, competition, crown size, etc. (Brand, et al., 1991; Stein, 1992).

Numerous field techniques have been developed to estimate regeneration in forests, but no single method will necessarily answer all questions a forester is looking for. Generally, field methods fall into two categories: fixed area and variable area plots. Each sampling method varies in approach and data collected. Although each method has pros and cons, they can be combined or modified to satisfy more than one objective (Stein, 1992).

Fixed areas plots fall into three different approaches, namely (1) the stocked-quadrat, (2) the plot-count, and (3) the staked-point. They can assess tree size distribution, density, and are useful for monitoring changes in the same trees or plots over time (Stein, 1992).

Variable-area plots are considerably less common in regeneration surveys. With this method, plot size varies depending on the diameter or height of the regeneration being sampled. This method falls into two main approaches: (1) Distance sampling and (2) Verticalline or vertical-point intersection sampling (Stein, 1992).

The main limitations of field sampling are the time and cost needed to derive regeneration assessments at a desired level of precision (Brand, et al., 1991).

### 1.2. General History of UAV Development

As a means to supplement regeneration field work, remote sensing techniques have often been incorporated in regeneration surveys. However, traditional airborne and spaceborne technologies are expensive, not always available at the desired time and provide low spatial data resolution (Siebert \& Teizer, 2014). In contrast, unmanned aerial vehicle (UAVs) technologies prove to be safe, accessible, and flexible for many applications.

As with most other remote sensing systems, UAVs were initially developed by military organizations for military applications, with data collection and weapon platforms being the primary examples of usages (Watts, et al., 2012; Austin, 2011).

Subsequent to military usage, UAVs are becoming progressively appealing for many civilian purposes, including educational and commercial applications, as well as scientific data collection.

The number of papers published on UAV's, commonly referred to as drones, has increased exponentially. As Chabot (2018) reported, use of unmanned vehicle systems (UVS) for environmental monitoring and remote sensing published between 2013 and 2017 (result was obtained at 12 January 2018) increased from 544 to 1593 (Figure 1).


Figure 1. Amount of UVS related papers between 2013 and 2017, with search terms: "unmanned" and "drone" on the WoS (SCI-E), last updated June 12, 2018 (Chabot, 2018)

### 1.3. Benefits and Limitations of UAV in Environmental Research Applications

Unmanned aircraft vehicles help us to extend our potential data collection in difficult to access areas and to perform dangerous or difficult tasks safely and efficiently. Using this technology saves money and time. Current applications include forest and agriculture purposes (Saari, et al., 2011), range (Quilter \& Anderson, 2000; Quilter \& Anderson, 2001; Rango, et al., 2006), wildlife (Jones IV, et al., 2006), and wildlands (Göktoǧan, et al., 2009) management, and emergency and disaster management (Ameri, et al., 2009).

One advantage of UAV is that they are relatively safe for pilots and crews. In hazardous conditions, such as search and rescue operations following earthquakes, volcano, or forest wildfire, using UAVs offers fast and safe data collection and monitoring of current condition. Another benefit of UAVs is their ability to fly at low altitude and gather high resolution imagery, which is essential for sampling and data collection. Moreover, they have operational flexibilities and mobilities, able to be deployed within relatively short time and less affected by cloudy conditions. Also, compared to traditional aerial remote sensing using airplanes, they require minimal runway space for landing and launching.

Another significant benefit of small UAVs is their overall lower cost. Not only they can be less expensive to buy their components and build one, but they also have low maintenance costs and low expense per flight.

Although UAVs have many advantages, limitations still exist. One is their small size and weight. During flight, any vibrations produced by maneuvers or wind causes distortion in images. Flight times and aerial coverage are limited by battery performance. Flight times are further limited by the amount of payload attached to the UAV.

### 1.4. Case Studies in Forest Regeneration Surveys

Aerial imagery has been used in forest applications for close to a century and are beneficial for conducting regeneration survey. Previous success of using them in forest management and inventory led them to be used in regeneration inventory (Goodbody, et al., 2017). Early work in regeneration surveys focused on large-scale photography and manual analysis (Pouliot, et al., 2002). Doing so, Kneppeck and Ahern (1987) studied airborne imagery
for young forest surveys in British Colombia with great success, even though this approach was not well known at that time. Brand et al. (1991) compared Multispectral Electro-optical Imaging Scanner (MEIS) imagery with field measurement for young plantation in the Petawawa National Forestry Institute research forest. They were successful in obtaining tree counts with slightly more than $90 \%$ agreement. Forest stocking and regeneration density were studied using largescale (1:500) photographs in Prince Albert National Park (Hall \& Aldred, 1992). The study found large differences in absolute measures of density between field sampling and photo estimates and recommended such surveys should not be conducted using large-scale photography, although large-scale photos were a suitable tool for assessing stocking and survival rates. While results seem mostly positive, remote sensing methods have not been widely accepted because of either technical limitations of sensors, time consuming process of image collection and analysis, or the requirement of qualified personnel and special equipment (King, 2000).

Compared to other airborne vehicles, UAVs potentially provide quick, inexpensive, and accurate information. Because tree height and crown size are important characteristics of forest structure (Panagiotidis, et al., 2017), most of the regeneration survey using UAVs focused on estimating these attributes. Using a tree-detecting algorithm, Pouliot et al. (2002), achieved, as a best result, $91 \%$ success from $5-\mathrm{cm}$ pixel imagery taken at an altitude of 196.6 m above canopy. Estimating height via point cloud processing of UAS stereo imagery has been successfully used, with strong statistical correlation ( $r_{s}=0.91, p=0.01$ ) (Goodbody, et al., 2018). Panagiotidis et al. (2017) used DJI S800 carrying a RGB camera with 5 cm resolution to estimate tree crown and height and achieved acceptable results, with RMSE\% in range 11.4$12.6 \%$ and 14.3-18.6\%, respectively.

### 1.5. Norway Spruce (Picea abies)

Norway Spruce is very widely spread in Northern and Central Europe (Hosley, 1936). The tree can find at an altitude of around 3000 m from sea level (Reynisson, 2011).

Trees can achieve heights of around 40 to 50 m and diameters up to 100 to 150 cm in its natural range. They have a conical crown. The branchlets are small and strong. The leaves vary from 1 to 2.5 cm in length and are medium to dark green (Anon., 2020). They can live up to 500 years (Woolsey \& Greeley, 1920).

New York State Wood Products Development Council go into partnership with Northeastern Lumber Manufacturers Association to provide funding needed for Norway spruce lumber testing. This led to Norway spruce to the first U.S.-grown softwood species to be accepted for use in the construction since research started in the 1920s (Wood Products Development Council, 2017). New York state alone has adequate Norway Spruce to harvest at its current rate for 90 years (LBM Journal, 2017).

### 1.6. UAV Research Gaps

Studies on Norway spruce regeneration have been performed often in Europe (Diaci, et al., 2000; Baier, et al., 2007; Juntunen \& Neuvonen, 2006a; Juntunen \& Neuvonen, 2006b; Szydlarski \& Modrzyński, 2015; Meyer, et al., 2017; Dănescua, et al., 2018). Compared to Europe, much less research on regeneration has been conducted in New York. Although there is abundant research on regeneration surveys involving remote sensing techniques in the last decades, Norway spruce is rarely a species that has been studied. Larsen (1997), Brandtberg and Walter (1998a; 1998b; 1999), and Erikson (2003) studied tree-crown detection algorithms by using high resolution imagery on mature Norway spruce stands. Panagiotidis et al. (2017) estimated tree height and crown diameter of tall, widely spaced Norway spruce trees from high-resolution UAV imagery and concluded methods were accepted for detecting heights and crown diameter. Heinzel and Ginzler (2019) and Puliti, et al. (2019) used unmanned aerial vehicle to evaluate regeneration height and density in young boreal forest stands and
concluded the use of UAVs for inventorying regeneration can be beneficial compared to traditional field assessments.

Remote sensing practices that enhance Norway spruce regeneration surveys have not been studied in Central New York. Most studies in Europe focused their research on natural regenerated stands, although artificial regeneration was been the primary regeneration method used in Central New York. This paper will provide a case study on using UAVs to estimate density and size distribution in a young planted Norway spruce stand.

## Chapter 2. GOALS AND OBJECTIVES

The aim of this project is to evaluate whether current regeneration survey methodologies can be improved using Unmanned Aerial System (UAS) by reducing time and expenses spent while improving efficiency and productivity. The overall goal of the report is to determine if we could use UAS to estimate difficult to measure features of the regeneration.

Specific objectives are:

1. Establish a field-based census of Norway spruce to use as ground-truth measurements. Field measurements will be collected on every tree, including diameter-at-breast, ground-level diameter, crown width, tree height and mapping individual tree coordinates using trilateration.
2. Perform UAV missions over the study area and collect raw and jpeg images at 100,150 , and $200 \mathrm{ft}(30,45$, and 60 m , respectively).
3. Process collected imagery and create orthoimage and 3D digital surface model.
4. Identify individual trees, tree locations, crown area and crown volume using orthoimage and 3D digital surface model.
5. Compare calculated UAV derived tree and crown data with field measurement in order to evaluate precision.

## Chapter 3. METHODS

### 3.1. Study Area

The research site, Norway spruce plantation, is located in the Svend O. Heiberg Memorial Forest which lies across both Onondaga and Cortland Counties within the towns of Tully, Fabius, Pompey, and Truxton in New York State (Figure 3) (ESF; Briggs, 2001). The study area is a young 30-year-old planted Norway spruce forest situated on the northern limit of the forest property at an elevation of 520 m .

The climate at the study area has average annual maximum and minimum temperatures of $11.2^{\circ} \mathrm{C}$ and $1.9^{\circ} \mathrm{C}$, respectively. The annual precipitation is 1181 mm , with most of it falling in May through September and the least in January through February. Average snow fall is 3124 mm and the snow cover reaches 10.1 cm (Western Regional Climate Center, 2007).

There are three discrete young Norway spruce groups located in the third management compartment: $0.4,0.5$ and 1.2 ha in size. We chose to study the 0.5 -hectare stand, located on the southeast portion of the compartment. The study area is a rectangular shape which has a length of 160 m and a width of 35 m . Individual trees have crowns and branches extending close to the ground or grown into clusters with significant crown overlap and complete crown closure.


Figure 2. Visual representation of a small portion of the study area


Figure 3. Location of Study Area

### 3.2. Ground Data Collections

Regeneration data was collected in the autumn of 2018 and took about 25 days. For validation of tracking data, starting from east side of the plot, trees were tagged and enumerated. Diameter-at-breast height (DBH, 1.3 m or 4.5 ft above the ground) and diameter-at-ground-level (DGL) were measured to the nearest 0.1 cm with a diameter tape. Crown width was measured to the nearest 1 cm in north-south, and east-west directions at the crown base, using a tape measure and arithmetic average taken to single value. Tree heights were measured to the highest live point of the crown, to the nearest 3 cm .


Figure 4. Some tree attributes that collected at field

### 3.2.1. Mapping Trees Using Distance Measurements and INTERPNT

The next step of field study was to map the location of trees using INTERPNT, a computer program developed at Harvard University in 1990 (Boose, et al., 1998). The computer program applies the principles of trilateration to calculate the coordinates of an unknown position in a two-dimensional space by measuring distances from three known positions (Figure 5). Three reference points (benchmarks) were set up and cartesian coordinates were obtained by a tripod-mounted Trimble Geo XH 3000 GPS Unit. As mentioned in the ground data collection section, individual trees were already tagged with plastic or metal tags and their DBH measured. To calculate coordinates of each target tree, three distances measured to the
nearest 0.1 cm using a Leica DISTO laser distance measurer were obtained from either benchmarks or previously located trees (Figure 5, Table 1).


Figure 5. Illustration of trilateration method

Table 1. Example of first 5 tree distance measurement

| Tree | dB | target1 | dist1 | target2 | dist2 | target3 | dist3 | x | y | diff1 | diff2 | diff3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BM1 | 2.5 |  |  |  |  |  |  | 411138 | 4737164 |  |  |  |
| BM2 | 2.5 |  |  |  |  |  |  | 411141 | 4737160 |  |  |  |
| BM3 | 2.5 |  |  |  |  |  |  | 411137 | 4737157 |  |  |  |
| 1 | 11.9 | BM1 | 3.775 | BM2 | 4.651 | BM3 | 3.754 | 411137 | 4737161 | 0.06 | -0.11 | 0.06 |
| 2 | 14.8 | BM1 | 6.089 | BM2 | 6.598 | BM3 | 3.545 | 411135 | 4737159 | -0.02 | 0.01 | -0.02 |
| 3 | 11.6 | BM1 | 3.590 | BM2 | 6.717 | BM3 | 6.096 | 411135 | 4737162 | 0.06 | -0.04 | 0.06 |
| 4 | 7.5 | 3 | 2.526 | 1 | 3.397 | 2 | 2.123 | 411133 | 4737160 | -0.08 | 0.05 | -0.07 |
| 5 | 6.2 | 3 | 2.275 | 2 | 5.328 | 4 | 3.678 | 411133 | 4737164 | 0.04 | -0.02 | 0.03 |
| The data collected and recorded by user |  |  |  |  |  |  |  | Coordinates and individual distance errors calculated by computer program |  |  |  |  |

### 3.3. UAV Data Collection

For this research we used a 3DR Solo quadcopter mounted beneath with two MAPIR Survey 2 cameras, a near infrared (IR) and a visible band red-green-blue (RBG). Missions for this UAS with the above payload would last for up to 20 minutes.

Three UAV mission parameters were modified for each flight, as presented in Figure 6 and described below, for a total of $2 \times 4 \times 3=24$ separate flights:

1. 2 flight speeds ( 5 mph and 8 mph );
2. 4 flight azimuths $\left(0^{\circ}, 45^{\circ}, 90^{\circ}\right.$, and $\left.135^{\circ}\right)$; and
3. 3 altitudes above ground level ( 30,45 , and $60 \mathrm{~m}[100,150$, and 200 ft , respectively]).


Figure 6. Flight altitudes and flight angle (all distances are drawn to scale).

The Tower software (DroidPlanner, 2016) was used for flight planning. This software allows user input for all flight parameters and then operates the flight automatically. All the missions were set up to acquire stereo imagery with a front overlap of $85 \%$ and a side overlap of $80 \%$. Geosetter (Schmidt, 2019) was used to geotag images while MAPIR Camera Control Kernel program was used to process raw images to convert to either tiff or jpg images.

### 3.4. Derived Products from Stereo Imagery

DroneDeploy (DroneDeploy, 2019) and Agisoft Metashape Professional (Agisoft, 2019) were used to create orthoimages, generate point cloud layers and produce a digital elevation model of canopy surface for each mission's set of stereo imagery.
3.5. Manual and Automated Tree Detection

### 3.5.1. Manual Tree Identification and Measurement

Manual individual tree identification was conducted using only the orthoimage derived from 5 mph RGB imagery. The orthoimages from all IR and 8 mph RGB imagery were dropped for manual identification because human eyes could hardly distinguish individual trees from their surroundings due to similar pixel values in IR while quality of orthoimage from 8 mph was very low and had lots of distortion.

All usable orthoimages were added to ArcMap, and the Georeferencing Toolbar used reference images to readily available base maps to minimize distortions and increase accuracy. Between 10 and 12 control points were used until an acceptable (average 2.2 cm ) Root Mean Squared Error (RMSE) was obtained. The Circle Construction Tool from Editor Toolbar was used to manually delineate tree crowns (Figure 7). At the conclusion of this step, all individual trees crown areas and locations were visually and attributively acquired.


Figure 7. Example of manually created tree crown by using Circle Construction Tool

### 3.5.2. Automated Tree Detection

Automated individual tree detection was conducted using the 3D digital elevation model (DEM) derived from the stereo imagery. A cartographic model was developed using local maxima principles. The process of tree detection consists of the four steps indicated in Figure 8. In the first step (A), DEMs are masked in order to eliminate detection of trees outside of study area. This step also helps to reduce noise by preventing mistaken detection of local maximum in vegetation.

In the second step (B), a local maxima statistic was applied from the DEM. Among the
A. Mask DEM
B. Apply initial fixed size local maximum statistic
C. Identify apexes by comparing DEM and maximum statistic

D. Extract apexes and convert into point shapefile

Figure 8. Overview of automated tree detection process. several neighborhood settings tested, including different shapes and units, the best results were achieved using a circle with a 1-m radius for DroneDeploy and 1.5-m radius for Agisoft.

In the third step (C), the raster calculator is executed by the Boolean logic expression that returns 1, or "true" when the local maxima filter and the DEM are matched, and if not, 0, or "false". In order to filter apexes, the Reclassify Tool was used to convert value 0 to NoData. In the last step (D), the cells representing tree apexes were converted into point shapefile.

### 3.6. Assessment of Individual Tree Detection and Crown Delineation

### 3.6.1. Individual Tree Detection Accuracy

The accuracy of manual and automated individual tree detection (image-trees) was evaluated by comparing and matching their locations to field-based measurements (i.e., fieldtree). Three types of tree detection parameters were evaluated: true positive (TP, correctly detected), false negative (FN, could not detected) and false positive (FP, does not exist but is detected).

For manually detected trees, each image-detected tree was deemed to be a TP (have a matching field-tree) when a field-tree's crown significantly overlapped the image-tree's crown, otherwise the image-tree was considered a FP. Field-trees without a paired image-tree were considered an FN.

For automated identified trees, image-tree apexes closest to and within field-tree crowns were assigned as TP. Image-tree apexes not overlapping field-tree crowns were FP, while field-trees without a paired image-tree were considered an FN. In order to evaluate the overall accuracy of the detection, omission and commission errors and accuracy index were calculated using the following equations:

Commission Error refers to the percentage of trees incorrectly included in the population, computed as the ratio of FP to total number of detected trees. Omission Error refers to the percentage of trees that were undetected from the population, computed as the ratio of FN to total number of field trees. Accuracy Index refers the percentage of detected trees against all errors.

$$
\begin{gather*}
\text { Commission Error }(\%)=\frac{F P}{F P+T P} \times 100  \tag{1}\\
\text { Omission Error }(\%)=\frac{F N}{F N+T P} \times 100  \tag{2}\\
\text { Accuracy Index }(\%)=\frac{n-(O+C)}{n} \times 100 \tag{3}
\end{gather*}
$$

where $O$ and $C$ are the number of omission and commission errors, and $n$ is the total number of field trees.

### 3.6.2. Positional Accuracy

Positional accuracy of a tree is calculated as the Euclidean distance between field- and image-tree position. After matching all true-positive (TP) image-trees from manual and automated tree detection procedures, positional accuracy of image-tree locations was evaluated using mean and RMSE distance between field- and image-tree coordinates.

### 3.6.3. Delineation Accuracy

After matching all true-positive (TP) image-trees from manual and automated tree detection procedures, assessment of image-based estimates of crown area were evaluated using Root Mean Square Error (RMSE) and Root Mean Square Error as a percentage of the mean true value.

$$
\begin{gather*}
\operatorname{RMSE}(m)=\sqrt{\frac{\sum\left(\hat{Y}_{i}-Y_{i}\right)^{2}}{n}}  \tag{4}\\
\operatorname{RMSE}(\%)=\frac{100}{\bar{Y}} \times \sqrt{\frac{\sum\left(\hat{Y}_{i}-Y_{i}\right)^{2}}{n}} \tag{5}
\end{gather*}
$$

where $\widehat{Y}_{i}$ is predicted value driven from imagery, $Y_{i}$ is ground measurement, $n$ is number of observations, and $\bar{Y}$ is mean value of ground measurement.

### 3.6.4. Assessment of Tree-Level Predictions

After matching all true-positive (TP) from image-trees, the assessment of image-tree estimates of crown area was evaluated using fit statistics, i.e., coefficient of determination ( $\mathrm{R}^{2}$ ) and Root Mean Squared Error (RMSE), from linear regression analysis. All regression equations using image-based crown area estimates as the independent variable, and field-based tree measurements (i.e., tree basal area and crown area) as dependent variables.

## Chapter 4. RESULTS

### 4.1. Field Data

A total of 696 young Norway spruce were identified and mapped, and measurements of their size was gathered. The statistics are summarized in detail at Table 2. Distribution of all variables is not symmetric, each skewed to the left (Figure 9).

Table 2. Summary statistics of diameter-at-breast height (DBH), diameter-at-ground level (DGL), tree height, and crown width

|  | Mean | Median | Std.Dev. | Min | Max |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DBH (cm) | 7.52 | 8.00 | 3.37 | 0.00 | 16.30 |
| DGL (cm) | 11.15 | 11.60 | 4.43 | 0.90 | 21.80 |
| Height (m) | 5.21 | 5.45 | 1.73 | 0.46 | 9.32 |
| Crown Width (m) | 2.63 | 2.71 | 0.85 | 0.29 | 5.52 |



Figure 9. Frequency distributions of measured diameter-at-breast height (DBH), diameter-at-ground level (DGL), tree height, and crown width

### 4.2. Crown Overlap

After creating a stem map derived from trilateration method, crown areas of individual trees were created using Buffer and Elliptical tools in ArcMap. There was no distinguishable difference between the two approaches due to symmetrical characteristic of crowns. Over 230 trees (approx. 33\%) have crowns that more than 25 percent overlap with neighboring trees' crowns. The remaining trees had crowns that either did not overlap at all or only up to 25 percent overlap with other trees.


Figure 10. Frequency distributions of crown overlap

### 4.3. Missions

As expected, increasing the flight altitude generally decreased the flight duration with fewer images taken. However, increasing the flight speed surprisingly decreased front image overlap. Decreased front image overlap is unexpected because we programmed the drone for specific overlap. The exception for this can be seen in Table 3 and Table 4 with an altitude 100 m and $90^{\circ}$ and $135^{\circ}$ flight azimuths. Because each mission was generated


Figure 11. An example of a discarded picture from the mission at 150 ft altitude with 0-degree flight angle independently, the coverage of each mission varied, sometimes resulting in more photos to be produced at a faster mission than the slowest mission counterpart. Within the same mission, two different cameras (IR and RGB) were initiated together, but after a certain period of time, became unsynchronized due to small fluctuations in the writing speed of saving picture to a microSD card. Thus, this issue made the IR and RGB pictures incompatible to combine with each other in any subsequent processing steps. Some pictures were discarded because they covered very little of the study area (Figure 11) and had a negative effect on the orthoimage quality. In total, 3674 images ( 1860 RGB and 1814 IR) were taken and 660 images ( 349 RGB and 311 IR) were discarded.

Table 3. Summary of UAS missions using the visible RGB camera

| Altitude <br> (ft) | Hatch Angle | Speed <br> (mph) | Date flown | Time of flight | Duration (min) | Number of images |  | Pixel Resolution* (mm) | Storage (GB) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Images acquired | Images used |  |  |
| 100 | 0 | 5 | 6/27/2019 | 2:07 PM | 12 | 115 | 78 | 10.3 | 3.92 |
|  |  | 8 | 6/23/2019 | 11:06 AM | 7 | 82 | 66 | 10.3 | 2.80 |
|  | 45 | 5 | 6/27/2019 | 2:32 PM | 11 | 111 | 84 | 10.3 | 3.79 |
|  |  | 8 | 6/23/2019 | 11:23 AM | 7 | 90 | 78 | 10.3 | 3.06 |
|  | 90 | 5 | 6/23/2019 | 10:15 AM | 11 | 109 | 85 | 10.3 | 3.71 |
|  |  | 8 | 6/23/2019 | 11:47 AM | 10 | 123 | 65 | 10.3 | 4.19 |
|  | 135 | 5 | 6/23/2019 | 10:41 AM | 9 | 80 | 80 | 10.3 | 2.72 |
|  |  | 8 | 6/23/2019 | 12:16 PM | 7 | 84 | 57 | 10.3 | 2.86 |
| 150 | 0 | 5 | 6/22/2019 | 10:46 AM | 11 | 128 | 84 | 15.4 | 4.36 |
|  |  | 8 | 6/27/2019 | 1:40 PM | 7 | 67 | 43 | 15.4 | 2.29 |
|  | 45 | 5 | 6/22/2019 | 11:21 AM | 10 | 119 | 89 | 15.4 | 4.06 |
|  |  | 8 | 6/23/2019 | 12:50 PM | 6 | 50 | 47 | 15.4 | 1.71 |
|  | 90 | 5 | 9/8/2019 | 12:29 AM | 8 | 93 | 86 | 15.4 | 3.17 |
|  |  | 8 | 6/23/2019 | 1:12 PM | 6 | 51 | 42 | 15.4 | 1.74 |
|  | 135 | 5 | 9/8/2019 | 12:56 AM | 7 | 79 | 77 | 15.4 | 2.69 |
|  |  | 8 | 6/23/2019 | 1:34 PM | 4 | 51 | 47 | 15.4 | 1.74 |
| 200 | 0 | 5 | 6/27/2019 | 3:15 PM | 8 | 63 | 60 | 20.6 | 2.15 |
|  |  | 8 | 6/23/2019 | 1:51 PM | 4 | 46 | 44 | 20.6 | 1.57 |
|  | 45 | 5 | 6/27/2019 | 3:40 PM | 8 | 63 | 63 | 20.6 | 2.14 |
|  |  | 8 | 6/23/2019 | 2:05 PM | 5 | 43 | 43 | 20.6 | 1.47 |
|  | 90 | 5 | 6/27/2019 | 3:58 PM | 7 | 59 | 59 | 20.6 | 2.01 |
|  |  | 8 | 9/8/2019 | 11:52 AM | 5 | 54 | 40 | 20.6 | 1.60 |
|  | 135 | 5 | 6/27/2019 | 3.28 PM | 8 | 60 | 48 | 20.6 | 2.05 |
|  |  | 8 | 6/23/2019 | 2.23 PM | 5 | 47 | 39 | 20.6 | 1.60 |

[^0]Table 4. Summary of UAS missions using the near-IR camera

| Altitude <br> (ft) | Hatch Angle | Speed (mph) | Date <br> flown | Time of flight | Duration (min) | Number of images |  | Pixel Resolution* (mm) | Storage (GB) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Images acquired | Images used |  |  |
| 100 | 0 | 5 | 6/27/2019 | 2:07 PM | 12 | 114 | 73 | 10.3 | 3.87 |
|  |  | 8 | 6/23/2019 | 11:05 AM | 7 | 76 | 59 | 10.3 | 2.58 |
|  | 45 | 5 | 6/27/2019 | 2:30 PM | 11 | 118 | 95 | 10.3 | 4.00 |
|  |  | 8 | 6/23/2019 | 11:20 AM | 7 | 89 | 72 | 10.3 | 3.03 |
|  | 90 | 5 | 6/23/2019 | 10:15 AM | 11 | 116 | 87 | 10.3 | 3.96 |
|  |  | 8 | 6/23/2019 | 11:47 AM | 10 | 126 | 75 | 10.3 | 4.29 |
|  | 135 | 5 | 6/23/2019 | 10:40 AM | 9 | 84 | 84 | 10.3 | 2.86 |
|  |  | 8 | 6/23/2019 | 12:15 PM | 7 | 88 | 61 | 10.3 | 2.99 |
| 150 | 0 | 5 | 6/22/2019 | 10:45 AM | 11 | 137 | 80 | 15.4 | 4.66 |
|  |  | 8 | 6/27/2019 | 1:40 PM | 7 | 64 | 51 | 15.4 | 2.16 |
|  | 45 | 5 | 6/22/2019 | 11:10 AM | 10 | 102 | 76 | 15.4 | 3.46 |
|  |  | 8 | 6/23/2019 | 12:50 PM | 6 | 45 | 41 | 15.4 | 1.52 |
|  | 90 | 5 | 9/8/2019 | 12:29 AM | 8 | 93 | 91 | 15.4 | 3.17 |
|  |  | 8 | 6/23/2019 | 1:10 PM | 6 | 49 | 45 | 15.4 | 1.66 |
|  | 135 | 5 | 9/8/2019 | 12:55 AM | 7 | 77 | 75 | 15.4 | 2.61 |
|  |  | 8 | 6/23/2019 | 1:30 PM | 4 | 49 | 49 | 15.4 | 1.66 |
| 200 | 0 | 5 | 6/27/2019 | 3:10 PM | 8 | 67 | 63 | 20.6 | 2.26 |
|  |  | 8 | 6/23/2019 | 1:50 PM | 4 | 34 | 33 | 20.6 | 1.15 |
|  | 45 | 5 | 6/27/2019 | 3:40 PM | 8 | 59 | 59 | 20.6 | 1.99 |
|  |  | 8 | 6/23/2019 | 2:05 PM | 5 | 47 | 47 | 20.6 | 1.59 |
|  | 90 | 5 | 6/27/2019 | 3:58 PM | 7 | 61 | 57 | 20.6 | 2.06 |
|  |  | 8 | 9/8/2019 | 11:54 AM | 5 | 52 | 39 | 20.6 | 1.78 |
|  | 135 | 5 | 6/27/2019 | 3.28 PM | 8 | 72 | 59 | 20.6 | 2.44 |
|  |  | 8 | 6/23/2019 | 2.22 PM | 5 | 47 | 42 | 20.6 | 1.58 |

[^1]
### 4.4. Orthoimage Creation

Creation of orthoimages was more successful using DroneDeploy, as compared to Agisoft. For nearly half of the missions, Agisoft was unable to generate a useful orthoimage. In contrast, DroneDeploy failed to produce an orthoimage only twice.

Table 5. Summary of orthoimage productivity

| Flight Altitude | Number of successful orthoimages created |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number of flights* | Agisoft |  | DroneDeploy |  |
|  |  | 5 mph | 8 mph | 5 mph | 8 mph |
| 100 ft | 4 | 2 | 2 | 3 | 3 |
| 150 ft | 4 | 2 | 2 | 4 | 4 |
| 200 ft | 4 | 4 | 2 | 4 | 4 |

* Hatch angle and flight speed combined
4.5. Orthoimage Visual quality comparison between DroneDeploy and Agisoft

The spatial resolution of orthoimages achieved by the both Agisoft and DroneDeploy were very high, with DroneDeploy having slightly smaller resolution. Altitude and speed had an impact on visual quality, with imagery obtained at higher altitudes producing reduced quality orthoimages, while increase in speed creates additional visual quality problems.

Although the resolution of orthoimages was very high, there were some difficulties in using the resulting images. First, there are data gaps in some orthoimages, which creates up to 20 voids of different sizes and shapes (Figure 12 A). Second, "blotches" that drop the quality of image and make individual tree identification difficult (Figure 12 B ). With nature of IR camera having only has one spectral band, reducing contrast around crown edges, limiting one's ability to identify individual trees (Figure 12 C ).

Overall, having fewer blotches and gaps, DroneDeploy produces clearer images, sharper crown edges, and individual trees with more details as compared to images produced using Agisoft.

Table 6. Summary of orthoimage resolution

| Speed <br> Flight Altitude | Average Orthoimage resolution (cm/pix) <br> (mph |  |  |  | Agisoft |  | DroneDeploy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | RGB | IR | RGB | IR |  |  |
| 100 ft | 5 | 1.13 | 1.25 | 1.09 | 1.07 |  |  |
|  | 8 | 1.08 | 1.13 | 1.04 | 1.02 |  |  |
| 150 ft | 5 | 1.60 | 1.68 | 1.30 | 1.27 |  |  |
|  | 8 | 2.53 | 2.16 | 1.57 | 1.55 |  |  |
| 200 ft | 5 | 2.29 | 2.04 | 2.13 | 2.06 |  |  |
|  | 8 | 2.60 | 2.20 | 2.09 | 2.05 |  |  |



Figure 12. Examples of some distortion at orthoimeges A) Gaps B) Blotches C) lack of contrast around crown edges

### 4.6. Individual Tree Detection

### 4.6.1. Manual Tree Detection

Overall accuracy from manual detection of treetops using orthoimages generated by both image analysis computer programs-i.e., DroneDeploy and Agisoft—was very high, accuracy indices around $90 \%$. Manual tree detection from DroneDeploy orthoimages has lower amounts of omission and commission error as compared to tree detection from Agisoft orthoimages (Table 7). Missed trees on the DroneDeploy orthoimages are mostly from the very small diameter class of 0-2 cm (Figure 13), while Agisoft produced orthoimages that resulted in more missed trees from larger DBH classes (Figure 14). There were no discernable differences in the frequency distribution of missed trees by DBH class among UAV missions (Figure 13). However, the orthoimages created from missions flown at $135^{\circ}$ azimuth (i.e., parallel to the planting row orientation) generally resulted in the smallest proportion of missed trees (Table 7).

Errors of commission-i.e., detecting a tree that isn't there-were relatively rare compared to errors of omission for all orthoimages.

Table 7. Summary of manual tree detection accuracy

| Computer Program | Altitude <br> (ft) | Hatch <br> Angle | Detected Tree | Omission (\%) | Commission <br> (\%) | Accuracy <br> Index (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DroneDeploy |  | 0 | 613 | 11.93 | 0.65 | 87.64 |
|  |  | 45 | N/A | N/A | N/A | N/A |
|  |  | 90 | 642 | 7.76 | 0.62 | 91.67 |
|  |  | 135 | 650 | 6.61 | 0.31 | 93.10 |
|  |  | 0 | 631 | 9.34 | 0.79 | 89.94 |
|  |  | 45 | 630 | 9.48 | 0.63 | 89.94 |
|  | 15 | 90 | 638 | 8.33 | 0.62 | 91.09 |
|  |  | 135 | 650 | 6.61 | 0.76 | 92.67 |
|  |  | 0 | 646 | 7.18 | 1.52 | 91.38 |
|  |  | 45 | 633 | 9.05 | 1.25 | 89.80 |
|  | 200 | 90 | 629 | 9.63 | 1.10 | 89.37 |
|  |  | 135 | 643 | 7.61 | 0.62 | 91.81 |
| Agisoft |  | 0 | N/A | N/A | N/A | N/A |
|  |  | 45 | 590 | 15.23 | 0.67 | 84.20 |
|  | 10 | 90 | N/A | N/A | N/A | N/A |
|  |  | 135 | 640 | 8.05 | 1.99 | 90.09 |
|  |  | 0 | 638 | 8.33 | 2.00 | 89.80 |
|  | 150 | 45 | N/A | N/A | N/A | N/A |
|  | 150 | 90 | N/A | N/A | N/A | N/A |
|  |  | 135 | 614 | 11.78 | 1.13 | 87.21 |
|  |  | 0 | 572 | 17.82 | 1.55 | 80.89 |
|  | 200 | 45 | 606 | 12.93 | 1.46 | 85.78 |
|  |  | 90 | 614 | 11.78 | 1.44 | 86.93 |
|  |  | 135 | 613 | 11.93 | 3.77 | 84.63 |



Figure 13. Frequency distribution of missing trees from manual tree detection by DBH class using orthoimages created by DroneDeploy


Figure 14. Frequency distribution of missing trees from manual tree detection by DBH class using orthoimages created by Agisoft

### 4.6.2. Automated Tree Detection

Compared to manual tree detection, automated tree detection accuracy from 3D canopy surfaces was very low, with accuracy indices averaging at 50\% for DroneDeploy and 38\% for Agisoft (Table 8). This was the result of increased errors of both omission and commission. Canopy surfaces derived from 200 ft missions produced fewer errors of commission compared to 100 and 150 ft missions. Unlike manual tree detection, there was no pattern in detection accuracy among the missions with different azimuths.

Table 8. Summary of automated tree detection accuracy

| Computer <br> Program | Altitude $\qquad$ | Hatch <br> Angle | Detected Tree | $\begin{gathered} \hline \text { Omission } \\ (\%) \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Commission } \\ (\%) \\ \hline \end{gathered}$ | Accuracy Index (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DroneDeploy |  | 0 | 307 | 55.89 | 23.63 | 30.46 |
|  |  | 45 | N/A | N/A | N/A | N/A |
|  |  | 90 | 463 | 33.48 | 12.14 | 57.33 |
|  |  | 135 | 417 | 40.09 | 12.94 | 51.01 |
|  |  | 0 | 448 | 35.63 | 10.58 | 56.75 |
|  |  | 45 | 421 | 39.51 | 10.23 | 53.59 |
|  |  | 90 | 511 | 26.58 | 12.20 | 63.22 |
|  |  | 135 | 495 | 28.88 | 14.51 | 59.05 |
|  |  | 0 | 418 | 39.94 | 5.64 | 56.47 |
|  |  | 45 | 394 | 43.39 | 6.19 | 52.87 |
|  | 200 | 90 | 409 | 41.24 | 7.26 | 54.17 |
|  |  | 135 | 385 | 44.68 | 7.89 | 50.57 |
| Agisoft |  | 0 | N/A | N/A | N/A | N/A |
|  |  | 45 | 334 | 52.01 | 30.27 | 27.16 |
|  | 100 | 90 | N/A | N/A | N/A | N/A |
|  |  | 135 | 375 | 46.12 | 18.12 | 41.95 |
|  |  | 0 | 380 | 45.40 | 24.30 | 37.07 |
|  | 150 | 45 | N/A | N/A | N/A | N/A |
|  | 150 | 90 | N/A | N/A | N/A | N/A |
|  |  | 135 | 365 | 47.56 | 24.12 | 35.78 |
|  |  | 0 | 371 | 46.70 | 19.70 | 40.23 |
|  | 200 | 45 | 385 | 44.68 | 18.78 | 42.53 |
|  |  | 90 | 379 | 45.55 | 17.97 | 42.53 |
|  |  | 135 | 368 | 47.13 | 21.54 | 38.36 |



DBH (cm)

Figure 15. Frequency distribution of missing trees from automated tree detection by DBH class using orthoimages created by DroneDeploy


DBH (cm)

Figure 16. Frequency distribution of missing trees from automated tree detection by DBH class using orthoimages created by Agisoft

### 4.7. Positional Accuracy

The positional accuracy achieved by both the manual and automated tree detections were very good (Table 9). Manual detection has slightly better positional accuracy, with mean error around 0.5 m , as compared to automatic tree detection, which had fewer detected trees and a mean error of approximately 1.0 m . On average, mean positional error of DroneDeploy was 10 cm better than in Agisoft. The pattern in positional error varied among mission azimuths, with 135-degree missions having the lowest mean positional error at all flight altitudes.

The frequency distributions of positional error values from the manual tree detection of DroneDeploy orthoimages tended to be slightly right-skewed (Figure 17), particularly for 200 ft missions. In contrast, frequency distributions of positional error values showed no constant pattern for Agisoft orthoimages, with distributions being either uniform, right-skewed and leftskewed (Figure 18).

Excluding 200 ft missions, there were tree positional errors rarely greater than 1 m (Figure 17), while 100 and 150 ft orthoimagery often had tree locations greater than 1 m from the actual location. There was no pattern of mean positional error between missions with different azimuths.

On average, $92 \%$ of detected trees were located within their crown area, while there are only two missions in which this percentage drop between $70 \%$ and $85 \%$ (Table 10).

Table 9. Assessment of positional accuracy, based on distance between field- and image-tree coordinates

| Procedure | Altitude <br> (ft) | Hatch Angle | RMSE (m) |  | Mean distance (m) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | DroneDeploy | Agisoft | DroneDeploy | Agisoft |
| Manual | 100 | 0 | 0.60 | N/A | 0.53 | N/A |
|  |  | 45 | N/A | 0.94 | N/A | 0.82 |
|  |  | 90 | 0.69 | N/A | 0.63 | N/A |
|  |  | 135 | 0.76 | 0.67 | 0.67 | 0.60 |
|  | 150 | 0 | 0.64 | 0.75 | 0.59 | 0.63 |
|  |  | 45 | 0.52 | N/A | 0.46 | N/A |
|  |  | 90 | 0.67 | N/A | 0.62 | N/A |
|  |  | 135 | 0.55 | 0.77 | 0.47 | 0.69 |
|  | 200 | 0 | 0.56 | 0.73 | 0.49 | 0.65 |
|  |  | 45 | 0.59 | 0.91 | 0.54 | 0.75 |
|  |  | 90 | 0.57 | 0.75 | 0.52 | 0.64 |
|  |  | 135 | 0.48 | 1.07 | 0.42 | 0.99 |
| Automatic | 100 | 0 | 4.32 | N/A | 1.36 | N/A |
|  |  | 45 | N/A | 2.37 | N/A | 1.14 |
|  |  | 90 | 1.13 | N/A | 0.95 | N/A |
|  |  | 135 | 0.80 | 1.75 | 0.67 | 0.69 |
|  | 150 | 0 | 4.31 | 1.10 | 0.91 | 0.86 |
|  |  | 45 | 0.78 | N/A | 0.66 | N/A |
|  |  | 90 | 3.08 | N/A | 0.77 | N/A |
|  |  | 135 | 0.63 | 1.37 | 0.53 | 1.00 |
|  | 200 | 0 | 5.15 | 0.88 | 1.07 | 0.80 |
|  |  | 45 | 0.88 | 1.46 | 0.81 | 0.89 |
|  |  | 90 | 1.36 | 2.06 | 0.77 | 0.78 |
|  |  | 135 | 1.18 | 1.04 | 0.74 | 0.91 |

Table 10. Positional accuracy based on predicted image tree location falling within field crown area

| Procedure | Altitude <br> (ft) | Hatch Angle | DroneDeploy |  |  | Agisoft |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Within half crown | Half to full crown | Outside of crown | Within Half crown | Half to full crown | Outside of crown |
| Manual | 100 | 0 | 438 | 152 | 24 | N/A | N/A | N/A |
|  |  | 45 | N/A | N/A | N/A | 252 | 251 | 86 |
|  |  | 90 | 355 | 260 | 27 | N/A | N/A | N/A |
|  |  | 135 | 376 | 206 | 68 | 386 | 227 | 28 |
|  | 150 | 0 | 386 | 223 | 22 | 365 | 215 | 57 |
|  |  | 45 | 499 | 117 | 14 | N/A | N/A | N/A |
|  |  | 90 | 378 | 226 | 34 | N/A | N/A | N/A |
|  |  | 135 | 485 | 135 | 30 | 312 | 251 | 52 |
|  | 200 | 0 | 472 | 151 | 23 | 329 | 228 | 15 |
|  |  | 45 | 432 | 185 | 16 | 278 | 259 | 69 |
|  |  | 90 | 433 | 173 | 23 | 371 | 185 | 58 |
|  |  | 135 | 541 | 89 | 13 | 144 | 324 | 143 |
| Automatic | 100 | 0 | 58 | 157 | 92 | N/A | N/A | N/A |
|  |  | 45 | N/A | N/A | N/A | 126 | 171 | 37 |
|  |  | 90 | 148 | 242 | 73 | N/A | N/A | N/A |
|  |  | 135 | 251 | 125 | 41 | 277 | 81 | 17 |
|  | 150 | 0 | 287 | 136 | 25 | 169 | 171 | 40 |
|  |  | 45 | 261 | 134 | 26 | N/A | N/A | N/A |
|  |  | 90 | 358 | 120 | 33 | N/A | N/A | N/A |
|  |  | 135 | 363 | 106 | 26 | 113 | 200 | 52 |
|  | 200 | 0 | 241 | 142 | 35 | 193 | 151 | 27 |
|  |  | 45 | 167 | 203 | 24 | 171 | 182 | 32 |
|  |  | 90 | 219 | 158 | 32 | 224 | 139 | 16 |
|  |  | 135 | 216 | 151 | 18 | 142 | 179 | 47 |



## Distance (m)

Figure 17. Histogram from manual tree detection displaying distribution of distance between field-and imagetree coordinates using orthoimage created by DroneDeploy


## Distance (m)

Figure 18. Histogram from manual tree detection displaying distribution of distance between field- and imagetree coordinates using orthoimage created by Agisoft


## Distance (m)

Figure 19. Histogram from autometad tree detection displaying distribution of distance between field- and image-tree coordinates using orthoimage created by DroneDeploy


Distance (m)

Figure 20. Histogram from autometad tree detection displaying distribution of distance between field- and image-tree coordinates using orthoimage created by Agisoft

### 4.8. Crown Delineation Accuracy

Crown Area (CA) determined from orthoimage matched the ground measurement with approximately 39.7\% error for DroneDeploy and 53.3\% error for Agisoft. CA derived from DroneDeploy was generally overestimated with mean error around $0.27 \mathrm{~m}^{2}$, while CA derived from Agisoft was underestimated with mean error around $-1.48 \mathrm{~m}^{2}$.

Table 11. Assessment of crown delineation accuracy

| Procedure | Altitude <br> (ft) | Hatch <br> Angle | Mean Difference (m²) |  | RMSE (\%) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | DroneDeploy | Agisoft | DroneDeploy | Agisoft |
| Manual | 100 | 0 | 0.00 | N/A | 43.51 | N/A |
|  |  | 45 | N/A | -0.64 | N/A | 51.65 |
|  |  | 90 | 0.52 | N/A | 41.32 | N/A |
|  |  | 135 | 0.49 | -1.48 | 39.18 | 47.57 |
|  | 150 | 0 | -0.11 | -1.71 | 38.30 | 56.79 |
|  |  | 45 | 0.31 | N/A | 40.11 | N/A |
|  |  | 90 | 0.15 | N/A | 36.33 | N/A |
|  |  | 135 | 0.71 | -1.48 | 35.55 | 49.83 |
|  | 200 | 0 | -0.04 | -1.65 | 40.15 | 54.97 |
|  |  | 45 | 0.21 | -1.08 | 40.04 | 52.86 |
|  |  | 90 | 0.12 | -2.23 | 41.11 | 56.50 |
|  |  | 135 | 0.56 | -1.56 | 40.61 | 56.04 |

### 4.9. Relationship Between Field-Based and Imagery Derived Crown Area

From DroneDeploy, imagery derived crown area (CA) was found to have a positive, linear relationship with field-based crown area (Figure 21). The correlation with field-based CA has a $R^{2}$ of $64.62 \%$ and lowest RMSE of 1.92 m (Table 12). From Agisoft, there were generally weaker linear relationships between field and imagery CA estimates (Figure 22). The best model from Agisoft had a weaker relationship between field and imagery CA measurements compared to a worse model from DroneDeploy. Among all flight angles, the 135-degree azimuth flights produced imagery that provided better a relationship-i.e., stronger agreement-with field measurements.

With average slope value of 0.80 , it suggests that imagery-based estimates tend to overestimate CA. This would be expected due to forced elliptical crown shape produced from imagery based estimates (Figure 7). This is clearly evident for larger trees, where the regression line lies beneath the 1:1 line (Figure 21 and Figure 22). This is not the case for smaller crown trees. In fact, CA estimates derived from Agisoft orthoimages are more likely to underestimate CA for smaller trees-i.e., regression line is above the 1:1 line.

DroneDeploy images produce better regression models, as evidenced by the larger $\mathrm{R}^{2}$ and smaller RMSE fit statistics (Table 12), along with the tighter cluster of points near regression line on the scatter plots (Figure 21 and Figure 22). The scatter plots show larger scatter around regression line with larger CA. This suggest that the residuals have a heteroscedastic (cone-shape) distribution pattern.

Table 12. Detailed results from linear regression analyzes relating to image-based crown area and field-based crown area

| Computer <br> Program | Altitude <br> (ft) | Hatch <br> Angle | $\beta 0$ | $\beta 1$ | $\begin{gathered} \mathrm{R}^{2} \\ (\%) \end{gathered}$ | $\begin{aligned} & \text { RMSE } \\ & \left(\mathrm{m}^{2}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DroneDeploy |  | 0 | 2.151 | 0.6624 | 45.22 | 2.37 |
|  |  | 45 | N/A | N/A | N/A | N/A |
|  |  | 90 | 1.376 | 0.7260 | 48.96 | 2.28 |
|  |  | 135 | 0.934 | 0.7911 | 53.05 | 2.22 |
|  |  | 0 | 1.190 | 0.8290 | 50.52 | 2.25 |
|  |  | 45 | 1.534 | 0.7269 | 51.92 | 2.23 |
|  |  | 90 | 0.706 | 0.8686 | 55.46 | 2.15 |
|  |  | 135 | 0.640 | 0.8081 | 64.62 | 1.92 |
|  |  | 0 | 1.435 | 0.7785 | 47.12 | 2.34 |
|  |  | 45 | 1.429 | 0.7541 | 48.32 | 2.28 |
|  |  | 90 | 1.675 | 0.7283 | 45.83 | 2.33 |
|  |  | 135 | 1.173 | 0.7499 | 51.59 | 2.24 |
| Agisoft |  | 0 | N/A | N/A | N/A | N/A |
|  |  | 45 | 3.004 | 0.5969 | 19.31 | 2.88 |
|  |  | 90 | N/A | N/A | N/A | N/A |
|  |  | 135 | 1.670 | 0.9607 | 41.86 | 2.44 |
|  |  | 0 | 2.944 | 0.7358 | 19.30 | 2.90 |
|  |  | 45 | N/A | N/A | N/A | N/A |
|  |  | 90 | N/A | N/A | N/A | N/A |
|  |  | 135 | 2.373 | 0.8202 | 37.46 | 2.56 |
|  |  | 0 | 2.643 | 0.7952 | 24.65 | 2.83 |
|  |  | 45 | 2.887 | 0.6644 | 18.63 | 2.90 |
|  |  | 90 | 2.568 | 0.9198 | 34.76 | 2.55 |
|  |  | 135 | 3.095 | 0.6824 | 19.63 | 2.90 |



Figure 21. Scatter plot showing relationship in area between field- and image-tree crown using orthoimage created by DroneDeploy. Red line is regression equation, diagonal black line is a 1:1 identity reference

line.
Figure 22. Scatter plot showing relationship in area between field- and image-tree crown using orthoimage created by Agisoft. Red line is regression equation, diagonal black line is a $1: 1$ identity reference line.
4.9.1. Basal Area Relationship Between Field-Based Basal Area and Imagery Derived Crown Area

Similar to field and imagery crown area (CA) relationships, imagery derived CA from DroneDeploy was found to have a positive, linear relationship with between field measurements of basal area (BA) as compared to imagery derived CA from Agisoft which has weaker linear relationships (Table 13). The scatter plot shows points less spread out from DroneDeploy (Figure 23) as compare to the scatter plots from Agisoft (Figure 24). Among the different DroneDeploy images, there is more consistency in the estimated slopes from linear regression lines (Table 13), while the Agisoft images produced regression lines had greater variation in slope. However, similar to the CA:CA analysis (Figure 21 and Figure 22), residuals around regression line were not uniformly distributed, being smaller for smaller trees and increasing with tree size.

Table 13. Detailed results from linear regression analyzes relating to image-based crown and field-based basal area

| Computer Program | Altitude (ft) | Hatch <br> Angle | $\beta 0$ | $\beta 1$ | $\begin{gathered} \mathrm{R}^{2} \\ (\%) \end{gathered}$ | $\begin{aligned} & \text { RMSE } \\ & \left(\mathrm{cm}^{2}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DroneDeploy | 100 | 0 | 0.000851 | 0.000764 | 46.29 | 26.72 |
|  |  | 45 | N/A | N/A | N/A | N/A |
|  |  | 90 | -0.000277 | 0.000872 | 53.18 | 25.12 |
|  |  | 135 | -0.000591 | 0.000921 | 54.75 | 24.92 |
|  | 150 | 0 | -0.000450 | 0.000985 | 54.34 | 24.76 |
|  |  | 45 | 0.000022 | 0.000858 | 55.43 | 24.52 |
|  |  | 90 | -0.000628 | 0.000973 | 53.11 | 25.20 |
|  |  | 135 | -0.000599 | 0.000890 | 59.44 | 23.54 |
|  | 200 | 0 | -0.000102 | 0.000919 | 49.24 | 26.29 |
|  |  | 45 | 0.000015 | 0.000871 | 48.83 | 26.10 |
|  |  | 90 | 0.000113 | 0.000869 | 49.25 | 25.97 |
|  |  | 135 | -0.000239 | 0.000861 | 51.95 | 25.60 |
| Agisoft | 100 | 0 | N/A | N/A | N/A | N/A |
|  |  | 45 | 0.001338 | 0.000774 | 24.59 | 32.03 |
|  |  | 90 | N/A | N/A | N/A | N/A |
|  |  | 135 | 0.000187 | 0.001132 | 44.36 | 27.35 |
|  | 150 | 0 | 0.001566 | 0.000897 | 21.88 | 32.68 |
|  |  | 45 | N/A | N/A | N/A | N/A |
|  |  | 90 | N/A | N/A | N/A | N/A |
|  |  | 135 | 0.000982 | 0.000976 | 40.46 | 28.61 |
|  | 200 | 0 | 0.001768 | 0.000852 | 21.57 | 33.06 |
|  |  | 45 | 0.001306 | 0.000844 | 22.90 | 32.34 |
|  |  | 90 | 0.001235 | 0.001087 | 36.37 | 29.12 |
|  |  | 135 | 0.001937 | 0.000790 | 20.03 | 33.17 |



Figure 23. Scatter plot showing relationship in area between field-based basal area and image-tree crown using orthoimage created by DroneDeploy


Figure 24. Scatter plot showing relationship in area between field-based basal area and image-tree crown using orthoimage created Agisoft

## Chapter 5. DISCUSSION

Using UAVs for surveying forest regeneration has many advantages. Traditional field survey methods can take days or even weeks, but the same survey can be completed in hours by UAVs and the collected imagery can be processed on the same day. UAVs allow all kinds of payloads, such as RGB cameras to map surfaces. Not only do UAVs make the process cheaper and faster for inventory personnel, but they also make the job safer. In my field experience, for example, I stood on an underground bee nest and suffered multiple stings. Although there are advantages to using UAVs, there are still many challenges.

### 5.1. Challenges in acquiring UAV imagery

Creating a flight mission is relatively straight forward with most mission planning software or apps, and requires few user inputs. However, there can be some app issues. For example, to make all flights comparable with each other in terms of flight duration and number of images taken, the user can pre-program the UAV to repeat the exact flight area, changing only secondary inputs-i.e., flight orientation, speed, and altitude. In theory, flight mission data from the software can be stored in the internal storage of the tablet and then uploaded to the UAV in order to repeat mission parameters at any time. However, due to unknown reasons, pre-programming caused some significant inconsistencies on the UAV and caused it to follow an unexpected flight path (Figure 25). I assume it was caused by the Tower app itself and might be fixed with a future update. This glitch might not be an issue for other mission planning apps.


Programmed Flight Path


Unexpected Flight Path

Figure 25. Example of unexpected flight path

A second challenge in image acquisition is data management. Missions flown during this study acquired, on average, up to 130 images and 4.5 GB of data on each camera. With more than one camera or even only one camera, file management of images is quite challenging after a couple of flights. I recommend that anyone attempting to conduct a large-area UAV survey requiring multiple missions-i.e., due to battery limitations-catalog all data immediately following each flight.

A third challenge is UAV image quality. Weather conditions have impact of UAV images. On overcast days, UAV imagery will have low reflectance values which greatly reduces data quality. Adjusting camera settings prior to each flight may improve image quality but requires detailed knowledge linking measures of cloudiness to camera settings. On intermittent cloudy days, a single mission may include both bright and dark images, impairing image analysis. In addition, windy days reduce or increase UAV speed depending on wind direction, increase battery consumption, and cause UAVs to loss stability, with pitch and role resulting in a great number of blurry pictures which were impossible to use. If I were to repeat my UAV flights, I would use a gimbal to see whether the quality of my results will improve.

### 5.2. Challenges in processing UAV imagery

### 5.2.1. Geotagging

Images must be geotagged before creating an orthoimage because MAPIR Survey 2 cameras do not geotag images during flight. This process requires downloading telemetry log (tlog) files which are recordings of a whole mission after connecting UAV with ground station (ArduPilot Dev Team, 2019). Due to tlog files not being a common format, they first needed to be converted into kml using MissionPlanner (ArduPilot, 2019). Following MAPIR guide (MAPIR Camera, 2015), all images can then be automatically geotagged using Geosetter (Schmidt, 2019).

Although all steps above were straight forward, I faced one challenge during geotagged images. When UAVs connected with ground station, it continues to record whole drone action without stopping between flight. This caused all survey path combined each other until ground station shut down (Figure 26) and caused a lot of confusion and trouble on matching images with corresponding flight path. This can be prevented resetting ground station after every flight.


Tlog from one flight path


Tlog from five combined flight path

Figure 26. Example of various tlogs output

### 5.2.2. Creating Orthomosaic

DroneDeploy (DroneDeploy, 2019) and Agisoft Metashape Professional (Agisoft, 2019) were used to create the orthoimages in this research. DroneDeploy can produce orthoimage after 1 to 3 hours of processing time, while Agisoft Metashape Professional needed between 15 to 22 hours. As this research included 48 ( 24 RGB and 24 IR) different flight missions, the whole process took about 45 days for Agisoft Metashape Professional while less than a week for DroneDeploy.

### 5.2.3. Creation of DEM

Using the same set of stereo images, both orthomosaic programs were inconsistent in the creation of Digital Elevation Model (DEM), and generated DEMs with very different characteristics of the crown surfaces. Crown shapes of individual trees from Agisoft had sharp edges and jagged shapes, which was in direct contrast to gradual and smooth edges of the crown surfaces produced in the DEM by DroneDeploy (Figure 27). The sharp edges in the DEM derived from Agisoft tend to create more errors of omission than those of DroneDeploy. This is because jagged crown surface will be cause some secondary maximum point within the same crown area which can be seen in Figure 27 which the crown surface created by Agisoft.


Figure 27. Two 3D surface models of crown shape from one individual tree, observed from same perspective, left image generated by Agisoft, right image by DroneDeploy
5.3. Imagery Analysis

### 5.3.1. Manual Tree Detection and Delineation

Individual tree detection from RGB Imagery is very accurate based the manual approach was used in this study. Tree identification success is very high, but it requires great amount of user input and time. For those trees correctly detected from the UAV data, the best performance was able to reach $93.1 \%$ detection accuracy (Table 7). With correctly detected trees, crown area estimates returned RMSEs of $39.7 \%$ and $53.3 \%$, and mean difference of 0.26 $m^{2}(6.9 \%)$ and $-1.48 m^{2}(-20.2 \%)$ for DroneDeploy and Agisoft orthoimagery, respectively. These results are comparable to results obtained by Pouliot et al. (2002), who reported RMSE value of $11.2 \%$ and mean difference of $-4.1 \%$.

### 5.3.2. Automated Tree Detection

Numerous methods have been developed for individual tree detection using by lidar data. These methods either use Canopy Height Model (CHM) or point clouds. Even though CHM based approaches are considered to be not ideal due to some uncertainties involved during the interpolation process, there are commonly used (Lu, et al., 2014). It has been shown, however, that there are some limitations is this approached caused when there is uniform canopy structure and greatly overlapping tree crowns (Li, et al., 2012).

In this study, some existing tree detection algorithms were tested using DEMs derived from stereo UAV imagery as representing crown surfaces. Unfortunately, as these algorithms were developed for use with lidar derived CHM data, they could not able to create successful output for my stereo-image derived data. For further analysis, a model was built on using the local maxima approach to identify treetops in ArcMap model builder (Figure 28).


Figure 28. ArcMap model created for automated tree top detection from UAV digital elevation model.

The best result from the automated tree detection method was $63 \%$ success, with average success of $50 \%$ for DroneDeploy and $38 \%$ for Agisoft (Table 8). The number of correctly detected trees by automated approach was generally lower than values reported among other studies. Pitkänen et al. (2004), for example, used local maxima and several other methods to detect individual trees and only 40\% of all trees were able to detected. In contrast, Korpela et al. (2007) applied the multi-scale template matching method and was able to achieve about 95\% detection success. Näsi et al. (2015) performed watershed method and reported 74.7\% detection accuracy. Additionally, Kattenborn et al. (2014) detected $86.1 \%$ of palm trees with Omission error $=9.4 \%$ and commission error $=5.4 \%$. Also, Pouliot et al. (2002) reported 90.9\% correctly detected trees.

In this study, the relatively poor performance of automated tree detection can be associated with the complex canopy structure of the Norway spruce crowns. Dense clusters of overlapping individual tree crowns of different sizes and shapes makes detection harder. The local maxima approach is based on the theory that trees are spaced sufficiently far apart so as to allow the CHM to accurately reflect the crown profile of a single treetop. With overtopped and overlapping tree crowns, some individual treetops did not appear as local maxima and could not be observed, while other local maxima caused by noise identified as source of error.

### 5.3.3. Resolution

Remote sensing data can be categorized in four primary types of resolution, namely spatial, spectral, radiometric, and temporal. Spatial resolution is typically defined as the size of a pixel along one side. Compared to the Landsat 8 has 30 -meter spatial resolution, orthoimage created for this study has very high spatial resolution, averaging 1.1, 1.7, and 2.2 cm for 100, 150, and 200 ft flight altitudes, respectively. Spectral resolution is described as the number and width of individual spectral bands, or ranges of wavelength. For comparison, RGB images contain 3 bands, for red (wavelength between 630-680nm), green ( $520-590 \mathrm{~nm}$ ) and blue ( $450-$ 515 nm ) visible light, while IR images have only 1 band ( $750-900 \mathrm{~nm}$ ). From my data processing results, RGB images created more detailed and useful output-i.e., Orthoimage and DEM—as compared to IR images. However, I could not test if 4 band ( $R G B+I R$ ) output would be an improvement over RGB output due to the two different cameras used acquiring data produced
uncompilable picture. I assume that if I used a single camera that could record all 4 bands, my results could be slightly better. Radiometric resolution is described of capacity of information can be stored in one-pixel value as a unit of bits. The cameras used for this research has 24-bit which one pixel can have $16,777,215\left(2^{24}\right)$ color levels. During post processing picture, 8 -bit picture were produced but output quality produced from this picture is very low compare to the original pictures. Temporal resolution refers to time between measurement of same area. All data were acquired between 10 am and 4 pm in four different days. There were no statistical differences between same angle flights in term of temporal resolution.

## Chapter 6. CONCLUSIONS

This research has demonstrated the potential for using UAV-based imagery for collecting information about forest regeneration. By using the same set of stereo images, the two photogrammetric software programs tested achieved significantly different results in terms of tree detection and crown delineation, with performance sometimes comparable but mostly not as strong as those achieved in other studies. However, individual tree detection using UAVbased DEM is still a relatively new research topic. Results suggest that not only will adjusting UAV mission parameters improve accuracies in tree detection and crown delineation, but that the choice of photogrammetric software used to generate orthoimagery and 3D canopy surface could improve results. While better results were obtained using manual approaches, improvements in automated approaches could increase their practicability.

## Chapter 7. References

Agisoft, 2019. [Online]
Available at: https://www.agisoft.com/
[Accessed 2019].
Ameri, B., Meger, D., Power, K. \& Gao, Y., 2009. UAS Applications: Disaster \& Emergency Management. American Society for Photogrammetry and Remote Sensing, Volume 1, pp. 45-55.

Anon., 2020. Picea abies. [Online]
Available at: https://www.conifers.org/pi/Picea_abies.php
ArduPilot Dev Team, 2019. Telemetry Logs. [Online]
Available at: https://ardupilot.org/copter/docs/common-mission-planner-telemetrylogs.html
[Accessed 2020].
ArduPilot, 2019. MissionPlanner,. [Online]
Available at: https://github.com/ArduPilot/MissionPlanner
Austin, R., 2011. Unmanned Aircraft Systems: UAVS Design, Development and Deployment. s.l.:John Wiley \& Sons.

Baier, R., Meyer, J. \& Göttlein, A., 2007. Regeneration niches of Norway spruce (Picea abies [L.] Karst.) saplings in small canopy gaps in mixed mountain forests of the Bavarian Limestone Alps. European Journal of Forest Research, January, 126(1), pp. 11-22.

Boose, E. R., Boose, E. F. \& Lezberg, A. L., 1998. A Practical Method for Mapping Trees Using Distance Measurements. Ecology, 79(3), pp. 819-827.

Brand, D. G., Leckie, D. G. \& Cloney, E. E., 1991. Forest regeneration surveys: Design, data collection, and analysis. The Forestry Chronicle, 67(6), pp. 649-657.

Brandtberg, T., 1999. Automatic individual tree based analysis of high spatial resolution aerial images on naturally regenerated boreal forests. Canadian Journal of Forest Research, 29(10), pp. 1464-1478.

Brandtberg, T. \& Walter, F., 1998a. Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis. Machine Vision and Applications, Volume 11, p. 64-73.

Brandtberg, T. \& Walter, F., 1998b. An algorithm for delineation of individual tree crowns in high spatial resolution aerial images using curved edge segments at multiple scales. Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, 10-12 February.pp. 41-54.

Briggs, R., 2001. Svend O. Heiberg Memorial Forest Fact Sheet. [Online] Available at: https://www.esf.edu/for/briggs/FOR345/heiberg.htm [Accessed 2212 2018].

Chabot, D., 2018. Trends in drone research and applications as the Journal of Unmanned Vehicle Systems turns five. Journal of Unmanned Vehicle Systems, 6(1), pp. vi-xv.

Dănescu, A., Kohnle, U., Bauhus, J., Weiskittel, A., \& Albrecht, A. T., 2018. Long-term development of natural regeneration in irregular, mixed stands of silver fir and Norway spruce. Forest Ecology and Management, 15 December, Volume 430, pp. 105-116.

Diaci, J., Kutnar, L., Rupel, M., Smolej, I., Urbancio, M., \& Kraigher, H., 2000. Interactions of ecological factors and natural regeneration in an altimontane Norway spruce (Picea abies (L.) Karst.) stand. Phyton (Horn, Austria), 40(4), pp. 17-26.

DroidPlanner, 2016. Tower. [Online]
Available at: https://github.com/DroidPlanner/Tower [Accessed 2019].

DroneDeploy, 2019. DroneDeploy. [Online] Available at: https://www.dronedeploy.com/

Erikson, M., 2003. Segmentation of individual tree crowns in colour aerial photographs using region growing supported by fuzzy rules. Canadian Journal of Forest Research, 33(8), p. 1557-1563.

ESF, n.d. Heiberg Forest \& Tully Field Station. [Online] Available at: https://www.esf.edu/campuses/heiberg/ [Accessed 2212 2018].

FAA, 2016. SUMMARY OF SMALL UNMANNED AIRCRAFT RULE (PART 107). [Online] Available at: https://www.faa.gov/uas/media/Part 107 Summary.pdf [Accessed 2020].

Göktoǧan, A. H., Sukkarieh, S., Bryson, M., Randle, J., Lupton, T., \& Hung, C., 2009. A Rotarywing Unmanned Air Vehicle for Aquatic Weed Surveillance and Management. Journal of Intelligent and Robotic Systems, 57(1-4), pp. 467-484.

Goodbody, T. R., Coops, N. C., Hermosilla, T., Tompalski, P., \& Crawford, P., 2018. Assessing the status of forest regeneration using digital aerial photogrammetry and unmanned aerial systems. International Journal of Remote Sensing, 39(15-16), pp. 5246-5264.

Goodbody, T. R., Coops, N. C., Marshall, P. L., Tompalski, P., \& Crawford, P., 2017. Unmanned aerial systems for precision forest inventory purposes: A review and case study. The Forestry Chronicle, 93(1), pp. 71-81.

Hall, R. J. \& Aldred, A. H., 1992. Forest regeneration appraisal with large-scale aerial photographs. The Forestry Chronicle, 68(1), pp. 142-150.

Heinzel, J. \& Ginzler, C., 2019. A Single-Tree Processing Framework Using Terrestrial Laser Scanning Data for Detecting Forest Regeneration. Remote Sensing, 11(1), p. 60.

Hosley, N. W., 1936. Norway Spruce in the North-Eastern United States: A Study of Existing Plantations..

Jones IV, G. P., Pearlstine, L. G. \& Percival, H. F., 2006. An Assessment of Small Unmanned Aerial Vehicles for Wildlife Research. Wildlife Society Bulletin, October, 34(3), pp. 750-758.

Juntunen, V. \& Neuvonen, S., 2006a. Natural Regeneration of Scots Pine and Norway Spruce Close to the Timberline in Northern Finland. Silva Fennica, 40(3), p. 443-458.

Juntunen, V. \& Neuvonen, S., 2006b. Predicting regeneration establishment in Norway spruce plantations using a multivariate multilevel model. New Forests, November, 32(3), p. 265-283.

Kattenborn, T., Sperlich, M., Bataua, K. \& Koch, B., 2014. Automatic Single Palm Tree Detection in Plantations Using UAV-based Photogrammetric Point Clouds. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(3), pp. 139-144.

Keane, J. A., 2004. Natural regeneration of Norway spruce [Picea abies (L.) Karst.] within and around plantations in central New York, Syracuse, New York: s.n.

King, D. J., 2000. Airborne remote sensing in forestry: Sensors, analysis and applications. The Forestry Chronicle, 76(6), pp. 859-876.

Kneppeck, I. D. \& Ahern, F. J., 1987. Evaluation of a multispectral linear array sensor for assessing juvenile stand conditions.. Ann Arbor, Michigan, International Symposium on Remote Sensing of Environment, pp. 955-969.

Korpela, I., Dahlin, B., Schäfer, H., Bruun, E., Haapaniemi, F., Honkasalo, J., Ilvesniemi, S., Kuutti, V., Linkosalmi, M., Mustonen, J. and Salo, M., 2007. Single-tree forest inventory using lidar and aerial images for 3D treetop positioning, species recognition, height and crown width estimation. Int. Archieves Photogramm. Remote Sens., 36(3), pp. 227-233.

Larsen, M., 1997. Crown modelling to find tree top positions in aerial photographs. Copenhagen, Denmark, s.n.

LBM Journal, 2017. Norway Spruce 101. [Online]
Available at: https://lbmjournal.com/norway-spruce-101/
Leonard, R. T., 1985. Forest floor and soil characteristics beneath Picea abies (L.) Karst. Stands in central New York, Syracuse, New York: s.n.

Li, W., Guo, Q., Jakubowski, M. K. \& Kelly, M., 2012. A New Method for Segmenting Individual Trees from the Lidar Point Cloud. Photogrammetric Engineering \& Remote Sensing, January, 78(1), pp. 75-84.

Lu, X., Guo, Q., Li, W. \& Flanagan, J., 2014. A bottom-up approach to segment individual deciduous trees usingleaf-off lidar point cloud data. ISPRS Journal of Photogrammetry and Remote Sensing, Volume 94, pp. 1-12.

MAPIR Camera, 2015. Applying GPS Coordinates to Survey Images From an UAV Flight Log. [Online]
Available at: https://www.youtube.com/watch?v=QXBNRqo6q8E
MAPIR CAMERA, 2020. Camera Flight Calculator. [Online] Available at: https://www.mapir.camera/pages/camera-flight-calculator

Meyer, P., Janda, P., Mikoláš, M., Trotsiuk, V., Krumm, F., Mrhalová, H., Synek, M., Lábusová, J., Kraus, D., Brandes, J. and Svoboda, M., 2017. A matter of time: self-regulated tree regeneration in a natural Norway spruce (Picea abies) forest at Mt. Brocken, Germany. European Journal of Forest Research, December, 136(5-6), p. 907-921.

Näsi, R., Honkavaara, E., Lyytikäinen-Saarenmaa, P., Blomqvist, M., Litkey, P., Hakala, T., Viljanen, N., Kantola, T., Tanhuanpää, T. and Holopainen, M., 2015. Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping Bark Beetle Damage at TreeLevel. Remote sensing, 18 November, Volume 7, pp. 15467-15493.

Panagiotidis, D., Abdollahnejad, A., Surový, P. \& Chiteculo, V., 2017. Determining tree height and crown diameter from high resolution UAV imagery. International Journal of Remote Sensing, 38(8-10), pp. 2392-2410.

Pitkänen, J., Maltamo, M., Hyyppä, J. \& Yu, X., 2004. Adaptive Methods for Individual Tree Detection on Airborne Laser. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8), pp. 187-191.

Pouliot, D. A., King, D. J., Bell, F. W. \& Pitt, D. G., 2002. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sensing of Environment, 82(2-3), pp. 322-334.

Puliti, S., Solberg, S. \& Granhus, A., 2019. Use of UAV Photogrammetric Data for Estimation of Biophysical Properties in Forest Stands Under Regeneration. Remote Sensing, 11(3), p. 233.

Quilter, M. C. \& Anderson, V. J., 2000. Low Altitude/Large Scale Aerial Photographs: A Tool ForRange And Resource Managers. Rangelands Archives, April, 22(2), pp. 13-17.

Quilter, M. C. \& Anderson, V. J., 2001. A Proposed Method for Determining Shrub Utilization Using (LA/LS) Imagery. Journal of Range Management, 54(4), pp. 378-381.

Rango, A., Laliberte, A., Steele, C., Herrick, J.E., Bestelmeyer, B., Schmugge, T., Roanhorse, A. and Jenkins, V., 2006. Using Unmanned Aerial Vehicles for Rangelands: Current Applications and Future Potentials. Environmental Practice, 8(3), pp. 159-168.

Reynisson, V., 2011. Comparison of yield of Norway spruce (Picea abies) and Sitka spruce (Picea sitchensis) in Skorradalur, West Iceland..

Saari, H., Pellikka, I., Pesonen, L., Tuominen, S., Heikkilä, J., Holmlund, C., Mäkynen, J., Ojala, K. and Antila, T., 2011. Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture applications. s.l., s.n., p. 81740 H .

Schmidt, F., 2019. GEOSETTER. [Online] Available at: https://geosetter.de/en/main-en/ [Accessed 2019].

Siebert, S. \& Teizer, J., 2014. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Automation in Construction, Volume 41, pp.114.

Stein, W. I., 1992. Regeneration surveys and evaluation. In: s.l.:s.n., pp. 347-378.
Szydlarski, M. \& Modrzyński, J., 2015. Increase of natural regeneration area of Norway spruce (Picea abies L. Karst.) in the Kaszuby Lake District during the decade 2002-2012. Forest Research Papers, March, 76(1), p. 66-72.

Thomas-Van Gundy, M. A., 1992. White pine and Norway spruce under-plantings on the Charles Lathrop Pack Demonstration Forest., Syracuse, New York: s.n.

Watts, A. C., Ambrosia, V. G. \& Hinkley, E. A., 2012. Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sensing, 4(6), pp. 1671-1692.

Wood Products Development Council, 2017. State Agriculture Commissioner Highlights New York's \$23 Billion Forest Products Industry. [Online]
Available at: https://woodproducts.ny.gov/news/state-agriculture-commissioner-highlights-new-yorks-23-billion-forest-products-industry

Woolsey, T. S. \& Greeley, W. B., 1920. Studies in French forestry. s.I.:John Wiley and Sons, Inc..
W. R. C. C., 2007. Period of Record Monthly Climate Summary. [Online] Available at: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ny8627 [Accessed 2212 2018].

## Chapter 8. APPENDIX

Table 14. Complete list of field measurements

| $\begin{gathered} \text { Tree } \\ \text { No } \\ \hline \end{gathered}$ | Dbh <br> (cm) | $\begin{aligned} & \text { DGL } \\ & (\mathrm{cm}) \end{aligned}$ | Height (m) | Crown (NS) | Crown (EW) | X Coordinate | Y <br> Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 11.9 | 17.4 | 6.29 | 3.117 | 2.842 | 411137.0843 | 4737160.997 |
| 2 | 14.8 | 20.7 | 7.61 | 4.074 | 3.908 | 411135.1456 | 4737159.466 |
| 3 | 11.6 | 16.1 | 6.86 | 3.380 | 3.296 | 411135.2414 | 4737162.812 |
| 4 | 7.5 | 10.3 | 5.37 | 2.706 | 2.874 | 411133.5425 | 4737160.916 |
| 5 | 6.2 | 8.4 | 5.22 | 2.656 | 2.484 | 411133.7383 | 4737164.690 |
| 6 | 8.1 | 10.1 | 6.28 | 3.182 | 3.214 | 411131.9221 | 4737163.156 |
| 7 | 1.1 | 2.4 | 1.88 | 1.182 | 1.096 | 411131.6888 | 4737159.616 |
| 8 | 11.0 | 16.6 | 6.65 | 3.938 | 3.964 | 411130.0449 | 4737157.944 |
| 9 | 11.1 | 14.9 | 6.86 | 3.562 | 3.460 | 411130.0127 | 4737161.282 |
| 10 | 7.6 | 8.5 | 5.95 | 2.912 | 2.821 | 411128.2910 | 4737159.665 |
| 11 | 5.6 | 9.3 | 6.86 | 3.566 | 3.242 | 411128.0977 | 4737156.278 |
| 12 | 10.8 | 14.4 | 6.14 | 3.266 | 3.236 | 411126.6809 | 4737161.511 |
| 13 | 14.2 | 17.5 | 9.32 | 3.588 | 3.158 | 411124.8028 | 4737159.755 |
| 14 | 13.3 | 17.9 | 7.77 | 4.291 | 3.956 | 411126.5664 | 4737154.745 |
| 15 | 7.8 | 10.2 | 6.70 | 3.118 | 3.148 | 411124.8071 | 4737156.543 |
| 16 | 2.4 | 4.3 | 2.94 | 1.471 | 1.448 | 411124.5494 | 4737153.066 |
| 17 | 12.0 | 16.3 | 7.92 | 3.754 | 3.704 | 411126.2088 | 4737151.315 |
| 18 | 10.5 | 14.4 | 7.35 | 3.578 | 3.298 | 411122.8903 | 4737154.745 |
| 19 | 8.2 | 11.0 | 5.62 | 2.722 | 2.648 | 411121.1757 | 4737153.172 |
| 20 | 11.5 | 15.1 | 6.84 | 4.060 | 3.946 | 411122.7660 | 4737147.887 |
| 21 | 2.8 | 4.5 | 3.10 | 1.544 | 1.684 | 411120.9112 | 4737146.199 |
| 22 | 10.7 | 14.6 | 6.36 | 4.054 | 3.666 | 411119.3223 | 4737148.021 |
| 23 | 12.8 | 17.5 | 7.13 | 3.564 | 3.423 | 411117.7125 | 4737149.836 |
| 24 | 8.2 | 10.7 | 5.74 | 2.872 | 3.090 | 411117.4408 | 4737146.423 |
| 25 | 12.3 | 15.5 | 8.08 | 3.418 | 3.192 | 411115.9380 | 4737148.242 |
| 26 | 11.0 | 13.2 | 6.21 | 4.584 | 4.403 | 411115.7492 | 4737144.726 |
| 27 | 1.2 | 2.9 | 2.14 | 1.096 | 1.038 | 411112.2806 | 4737144.864 |
| 28 | 11.9 | 15.7 | 8.40 | 4.060 | 4.002 | 411115.6257 | 4737141.392 |
| 29 | 8.2 | 10.9 | 6.05 | 2.896 | 2.769 | 411110.6249 | 4737146.750 |
| 30 | 6.4 | 8.2 | 6.48 | 2.252 | 2.982 | 411112.5071 | 4737148.353 |
| 31 | 9.4 | 12.5 | 6.99 | 2.856 | 3.114 | 411114.2717 | 4737150.016 |
| 32 | 5.7 | 7.5 | 5.91 | 2.136 | 2.528 | 411108.9745 | 4737148.604 |
| 33 | 13.2 | 19.6 | 6.41 | 4.104 | 4.072 | 411110.8370 | 4737150.154 |
| 34 | 9.9 | 12.4 | 7.47 | 2.802 | 3.064 | 411112.6193 | 4737151.810 |
| 35 | 12.3 | 14.4 | 7.64 | 3.602 | 4.580 | 411116.0706 | 4737151.522 |
| 36 | 11.9 | 16.4 | 7.79 | 4.122 | 4.246 | 411116.1051 | 4737154.970 |
| 37 | 12.6 | 17.1 | 8.84 | 3.198 | 3.278 | 411119.4168 | 4737154.874 |
| 38 | 8.6 | 9.4 | 6.57 | 2.252 | 2.451 | 411117.8566 | 4737156.694 |
| 39 | 12.9 | 18.5 | 8.36 | 5.192 | 4.380 | 411119.7314 | 4737158.387 |


| Tree No | Dbh <br> (cm) | $\begin{aligned} & \mathrm{DGL} \\ & (\mathrm{~cm}) \end{aligned}$ | Height <br> (m) | Crown (NS) | Crown (EW) | X Coordinate | Y <br> Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | 11.4 | 15.8 | 8.71 | 4.368 | 4.124 | 411123.0946 | 4737158.349 |
| 41 | 6.3 | 6.8 | 4.97 | 2.218 | 2.168 | 411121.6097 | 4737160.137 |
| 42 | 1.8 | 3.4 | 2.37 | 1.310 | 1.405 | 411125.0336 | 4737163.268 |
| 43 | 13.5 | 18.1 | 7.95 | 4.468 | 3.996 | 411128.5569 | 4737163.149 |
| 44 | 8.8 | 13.1 | 6.68 | 2.868 | 2.878 | 411130.2933 | 4737164.794 |
| 45 | 13.5 | 16.9 | 7.50 | 4.576 | 4.296 | 411131.9686 | 4737166.498 |
| 46 | 8.0 | 10.8 | 6.57 | 2.542 | 2.546 | 411128.5657 | 4737166.646 |
| 47 | 11.1 | 14.4 | 8.25 | 3.432 | 3.403 | 411126.7671 | 4737164.995 |
| 48 | 7.2 | 10.0 | 5.55 | 2.091 | 2.062 | 411128.7557 | 4737170.032 |
| 49 | 6.4 | 8.5 | 4.64 | 2.416 | 2.452 | 411126.8527 | 4737168.696 |
| 50 | 11.4 | 14.1 | 8.10 | 3.302 | 3.398 | 411125.1882 | 4737166.775 |
| 51 | 11.7 | 16.3 | 8.71 | 3.104 | 3.410 | 411123.4568 | 4737165.143 |
| 52 | 8.9 | 11.6 | 6.68 | 3.428 | 3.692 | 411121.3672 | 4737163.756 |
| 53 | 11.7 | 16.5 | 6.19 | 3.668 | 3.652 | 411119.7439 | 4737161.805 |
| 54 | 8.0 | 10.4 | 5.81 | 2.939 | 2.632 | 411117.8983 | 4737160.012 |
| 55 | 10.9 | 15.1 | 7.35 | 4.098 | 4.448 | 411116.1634 | 4737158.480 |
| 56 | 10.5 | 13.3 | 6.08 | 3.688 | 4.174 | 411114.3924 | 4737156.707 |
| 57 | 9.2 | 11.1 | 6.85 | 4.412 | 3.836 | 411112.8586 | 4737155.200 |
| 58 | 11.7 | 15.5 | 6.98 | 3.244 | 3.712 | 411110.8235 | 4737153.486 |
| 59 | 4.2 | 5.5 | 4.88 | 2.411 | 2.322 | 411109.2386 | 4737152.001 |
| 60 | 9.7 | 12.3 | 6.29 | 3.510 | 3.286 | 411107.3071 | 4737150.424 |
| 61 | 11.1 | 14.7 | 7.40 | 4.098 | 4.271 | 411105.7480 | 4737152.260 |
| 62 | 12.1 | 16.4 | 7.64 | 4.201 | 3.919 | 411107.7081 | 4737153.987 |
| 63 | 8.7 | 11.7 | 6.49 | 2.932 | 2.820 | 411110.9368 | 4737156.913 |
| 64 | 6.3 | 8.3 | 6.09 | 2.698 | 2.692 | 411112.6007 | 4737158.598 |
| 65 | 12.8 | 16.3 | 7.29 | 3.728 | 3.674 | 411114.4968 | 4737160.258 |
| 66 | 11.5 | 16.8 | 5.81 | 3.168 | 3.144 | 411118.0517 | 4737163.509 |
| 67 | 8.4 | 11.9 | 6.70 | 3.206 | 2.823 | 411119.5854 | 4737165.185 |
| 68 | 5.0 | 6.9 | 4.32 | 2.348 | 2.468 | 411121.5487 | 4737166.723 |
| 69 | 11.9 | 15.0 | 6.19 | 3.356 | 3.384 | 411123.6104 | 4737168.553 |
| 70 | 10.2 | 12.8 | 6.50 | 3.866 | 3.842 | 411125.2027 | 4737170.265 |
| 71 | 3.8 | 5.5 | 2.99 | 1.684 | 1.671 | 411127.0919 | 4737171.808 |
| 72 | 12.3 | 17.9 | 6.53 | 3.338 | 3.346 | 411125.3698 | 4737173.701 |
| 73 | 9.9 | 12.8 | 6.47 | 2.801 | 3.513 | 411123.7052 | 4737172.110 |
| 74 | 9.1 | 11.8 | 6.82 | 3.302 | 3.141 | 411120.0694 | 4737168.904 |
| 75 | 10.9 | 14.5 | 8.25 | 3.246 | 3.044 | 411118.1953 | 4737167.209 |
| 76 | 8.5 | 11.1 | 6.58 | 2.852 | 3.319 | 411116.4745 | 4737165.160 |
| 77 | 10.4 | 14.2 | 7.64 | 2.912 | 3.358 | 411114.3265 | 4737163.814 |
| 78 | 7.8 | 12.1 | 6.34 | 3.042 | 2.834 | 411110.9467 | 4737160.261 |
| 79 | 8.0 | 11.6 | 7.00 | 2.528 | 2.376 | 411109.5758 | 4737158.435 |
| 80 | 7.4 | 10.5 | 5.92 | 2.580 | 2.272 | 411104.1691 | 4737157.210 |
| 81 | 10.0 | 14.3 | 8.25 | 3.292 | 3.436 | 411105.7924 | 4737158.857 |
| 82 | 11.6 | 15.1 | 8.10 | 3.369 | 3.368 | 411107.5925 | 4737160.736 |


| Tree No | $\begin{aligned} & \text { Dbh } \\ & (\mathrm{cm}) \end{aligned}$ | $\begin{aligned} & \text { DGL } \\ & (\mathrm{cm}) \end{aligned}$ | Height (m) | Crown (NS) | Crown (EW) | X <br> Coordinate | Y <br> Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 83 | 8.1 | 10.7 | 7.33 | 3.168 | 2.952 | 411109.3823 | 4737162.147 |
| 84 | 8.8 | 11.4 | 7.41 | 2.642 | 2.736 | 411111.0470 | 4737163.866 |
| 85 | 9.1 | 12.3 | 7.22 | 3.362 | 3.466 | 411112.8975 | 4737165.470 |
| 86 | 14.1 | 18.5 | 8.40 | 3.186 | 3.882 | 411114.7221 | 4737167.000 |
| 87 | 12.2 | 17.4 | 8.10 | 3.694 | 3.946 | 411116.6087 | 4737169.010 |
| 88 | 14.1 | 18.8 | 6.94 | 4.104 | 3.871 | 411120.4172 | 4737172.210 |
| 89 | 7.9 | 10.3 | 5.94 | 2.542 | 2.359 | 411122.0650 | 4737173.966 |
| 90 | 4.0 | 6.0 | 3.96 | 1.742 | 1.714 | 411123.7972 | 4737175.481 |
| 91 | 13.1 | 19.5 | 8.25 | 3.922 | 4.152 | 411120.5389 | 4737175.658 |
| 92 | 10.3 | 15.1 | 6.07 | 4.194 | 3.898 | 411118.6059 | 4737173.853 |
| 93 | 8.4 | 11.6 | 6.49 | 3.342 | 3.122 | 411117.0420 | 4737172.478 |
| 94 | 11.3 | 15.5 | 7.64 | 4.092 | 3.964 | 411115.0151 | 4737170.960 |
| 95 | 10.8 | 14.1 | 6.39 | 3.264 | 3.192 | 411113.2577 | 4737168.753 |
| 96 | 3.6 | 5.4 | 3.82 | 1.950 | 1.914 | 411111.2649 | 4737167.169 |
| 97 | 6.7 | 10.6 | 5.46 | 2.678 | 2.870 | 411109.4408 | 4737165.590 |
| 98 | 1.0 | 2.8 | 1.77 | 0.948 | 0.804 | 411104.0624 | 4737160.561 |
| 99 | 6.4 | 9.1 | 4.64 | 2.368 | 2.528 | 411099.0799 | 4737159.217 |
| 100 | 2.9 | 4.5 | 2.54 | 1.324 | 1.252 | 411100.8587 | 4737160.847 |
| 101 | 4.7 | 6.2 | 4.15 | 1.952 | 2.016 | 411102.5105 | 4737162.337 |
| 102 | 11.8 | 15.7 | 7.95 | 3.198 | 3.220 | 411103.9284 | 4737163.971 |
| 103 | 10.8 | 14.5 | 7.79 | 2.980 | 3.038 | 411105.8569 | 4737165.685 |
| 104 | 9.2 | 14.2 | 7.22 | 2.876 | 2.845 | 411107.7355 | 4737167.268 |
| 105 | 9.6 | 13.8 | 7.46 | 3.062 | 3.036 | 411109.4932 | 4737169.006 |
| 106 | 11.7 | 16.1 | 7.79 | 4.108 | 4.422 | 411111.4946 | 4737170.531 |
| 107 | 11.0 | 14.5 | 6.78 | 3.336 | 3.350 | 411113.1919 | 4737172.238 |
| 108 | 7.4 | 10.1 | 6.18 | 2.331 | 2.242 | 411115.4783 | 4737174.204 |
| 109 | 2.8 | 5.0 | 3.04 | 1.536 | 1.580 | 411117.0645 | 4737175.737 |
| 110 | 6.9 | 9.3 | 5.03 | 2.764 | 2.892 | 411118.7079 | 4737177.571 |
| 111 | 2.2 | 4.4 | 2.44 | 1.376 | 1.452 | 411120.5932 | 4737179.083 |
| 112 | 11.8 | 15.7 | 6.46 | 3.339 | 3.228 | 411118.7545 | 4737180.786 |
| 113 | 10.7 | 15.1 | 6.97 | 3.262 | 3.442 | 411117.0606 | 4737179.116 |
| 114 | 13.9 | 19.2 | 7.95 | 4.366 | 4.195 | 411115.1507 | 4737177.390 |
| 115 | 10.2 | 15.1 | 7.52 | 3.336 | 3.534 | 411113.6605 | 4737175.901 |
| 116 | 9.5 | 15.4 | 6.54 | 3.424 | 3.224 | 411111.6461 | 4737174.382 |
| 117 | 7.7 | 10.8 | 6.60 | 2.636 | 2.505 | 411109.8192 | 4737172.415 |
| 118 | 9.1 | 14.0 | 5.26 | 3.474 | 3.672 | 411106.0421 | 4737169.189 |
| 119 | 8.0 | 10.7 | 5.73 | 3.130 | 3.298 | 411104.3889 | 4737167.580 |
| 120 | 9.0 | 12.9 | 7.52 | 3.292 | 3.380 | 411102.6297 | 4737165.863 |
| 121 | 8.7 | 12.0 | 5.98 | 3.336 | 3.122 | 411099.1588 | 4737162.591 |
| 122 | 3.9 | 6.9 | 3.81 | 1.820 | 1.674 | 411097.2634 | 4737160.821 |
| 123 | 5.6 | 8.6 | 4.54 | 2.200 | 2.166 | 411097.3778 | 4737164.319 |
| 124 | 10.4 | 13.8 | 8.40 | 3.084 | 2.984 | 411099.0168 | 4737166.003 |
| 125 | 10.5 | 13.6 | 6.58 | 3.518 | 3.380 | 411101.0700 | 4737167.256 |


| Tree <br> No | Dbh <br> $(\mathrm{cm})$ | DGL <br> $(\mathrm{cm})$ | Height <br> $(\mathrm{m})$ | Crown <br> $(\mathrm{NS})$ | Crown <br> $($ EW $)$ | X <br> Coordinate | Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 126 | 10.5 | 14.1 | 6.88 | 3.164 | 3.112 | 411102.6984 | 4737169.273 |
| 127 | 8.3 | 12.3 | 5.40 | 3.422 | 3.134 | 411106.1837 | 4737172.661 |
| 128 | 8.2 | 11.5 | 6.05 | 2.914 | 2.764 | 411108.0278 | 4737174.272 |
| 129 | 11.4 | 15.2 | 7.79 | 3.878 | 3.038 | 411111.7886 | 4737177.471 |
| 130 | 3.9 | 5.6 | 4.03 | 2.080 | 2.168 | 411113.5529 | 4737179.021 |
| 131 | 7.6 | 11.4 | 4.80 | 2.570 | 2.584 | 411115.4670 | 4737180.836 |
| 132 | 10.2 | 13.2 | 7.01 | 2.702 | 2.590 | 411117.0415 | 4737182.534 |
| 133 | 12.6 | 17.3 | 7.79 | 3.680 | 3.526 | 411115.3300 | 4737184.144 |
| 134 | 13.9 | 18.8 | 7.95 | 3.916 | 3.896 | 411113.6468 | 4737182.485 |
| 135 | 11.4 | 15.4 | 7.79 | 2.912 | 3.008 | 411111.8399 | 4737180.793 |
| 136 | 11.7 | 16.1 | 7.95 | 3.562 | 3.732 | 411110.1932 | 4737179.268 |
| 137 | 6.8 | 10.8 | 5.55 | 2.442 | 2.364 | 411108.2320 | 4737177.783 |
| 138 | 5.4 | 8.4 | 4.76 | 1.976 | 1.832 | 411106.3705 | 4737176.093 |
| 139 | 9.6 | 14.4 | 5.01 | 3.353 | 3.385 | 411102.7801 | 4737172.726 |
| 140 | 3.3 | 4.8 | 2.96 | 1.386 | 1.476 | 411100.7807 | 4737170.999 |
| 141 | 2.1 | 4.8 | 2.81 | 1.624 | 1.688 | 411099.2750 | 4737169.626 |
| 142 | 4.7 | 8.3 | 4.82 | 2.670 | 2.553 | 411097.3968 | 4737167.863 |
| 143 | 10.9 | 15.2 | 7.95 | 3.222 | 2.972 | 411095.7328 | 4737166.152 |
| 163 | 164 | 11.0 | 14.7 | 6.10 | 3.362 | 3.212 | 411092.3633 |


| Tree <br> No | Dbh <br> (cm) | $\begin{aligned} & \text { DGL } \\ & (\mathrm{cm}) \end{aligned}$ | Height (m) | Crown (NS) | Crown (EW) | X <br> Coordinate | Y <br> Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | 10.2 | 15.5 | 6.14 | 3.064 | 3.172 | 411099.3758 | 4737179.827 |
| 170 | 6.3 | 8.8 | 5.17 | 2.626 | 2.520 | 411101.3234 | 4737181.414 |
| 171 | 4.6 | 6.8 | 4.16 | 2.466 | 2.150 | 411105.1708 | 4737184.630 |
| 172 | 3.5 | 4.7 | 4.09 | 1.834 | 1.750 | 411106.6557 | 4737186.187 |
| 173 | 9.9 | 15.8 | 6.71 | 3.576 | 3.436 | 411108.6052 | 4737187.878 |
| 174 | 9.2 | 11.8 | 7.64 | 3.670 | 3.334 | 411110.4845 | 4737189.463 |
| 175 | 8.7 | 12.8 | 6.64 | 3.176 | 3.002 | 411108.7928 | 4737191.226 |
| 176 | 2.4 | 4.1 | 3.02 | 1.184 | 1.216 | 411106.7629 | 4737189.801 |
| 177 | 10.6 | 15.3 | 7.17 | 3.654 | 3.446 | 411105.1052 | 4737188.033 |
| 178 | 10.2 | 14.1 | 7.64 | 4.242 | 3.904 | 411103.2915 | 4737186.170 |
| 179 | 9.1 | 12.7 | 6.21 | 3.144 | 3.360 | 411099.6914 | 4737183.292 |
| 180 | 4.7 | 9.2 | 3.83 | 2.256 | 2.176 | 411097.6636 | 4737181.620 |
| 181 | 7.6 | 11.9 | 6.63 | 2.796 | 2.984 | 411094.0634 | 4737178.052 |
| 182 | 9.6 | 13.3 | 5.32 | 3.412 | 3.204 | 411090.5823 | 4737174.876 |
| 183 | 10.0 | 14.4 | 7.95 | 3.362 | 3.448 | 411089.0654 | 4737173.038 |
| 184 | 7.1 | 11.4 | 5.04 | 2.794 | 2.618 | 411087.1193 | 4737171.498 |
| 185 | 9.0 | 12.0 | 5.61 | 3.290 | 3.100 | 411085.4027 | 4737173.286 |
| 186 | 2.6 | 3.8 | 2.98 | 1.258 | 1.296 | 411088.9338 | 4737176.717 |
| 187 | 10.3 | 15.5 | 4.88 | 4.144 | 3.952 | 411090.7297 | 4737178.278 |
| 188 | 2.6 | 4.3 | 3.12 | 1.278 | 1.522 | 411092.3957 | 4737179.675 |
| 189 | 8.3 | 13.4 | 6.37 | 2.370 | 2.306 | 411094.3332 | 4737181.655 |
| 190 | 7.6 | 11.9 | 5.55 | 2.484 | 2.470 | 411096.0217 | 4737183.373 |
| 191 | 11.5 | 16.6 | 5.89 | 4.082 | 3.450 | 411098.0724 | 4737185.021 |
| 192 | 10.9 | 16.9 | 6.15 | 3.340 | 3.226 | 411099.8200 | 4737186.619 |
| 193 | 6.9 | 10.3 | 5.45 | 2.650 | 2.320 | 411101.6916 | 4737188.107 |
| 194 | 10.5 | 14.6 | 7.64 | 2.910 | 3.096 | 411103.4979 | 4737189.762 |
| 195 | 8.7 | 13.1 | 5.60 | 2.844 | 2.764 | 411107.2036 | 4737192.923 |
| 196 | 7.2 | 12.2 | 5.00 | 2.780 | 2.470 | 411105.7648 | 4737194.446 |
| 197 | 2.7 | 4.9 | 3.03 | 1.608 | 1.426 | 411103.8224 | 4737193.152 |
| 198 | 9.6 | 12.3 | 6.36 | 3.178 | 3.292 | 411101.8108 | 4737191.666 |
| 199 | 12.2 | 19.8 | 7.46 | 3.741 | 3.692 | 411099.8847 | 4737189.860 |
| 200 | 13.0 | 19.5 | 7.02 | 4.518 | 3.868 | 411096.4344 | 4737186.822 |
| 201 | 11.2 | 16.4 | 7.79 | 3.852 | 3.712 | 411094.5117 | 4737185.211 |
| 202 | 2.7 | 6.1 | 3.14 | 1.554 | 1.548 | 411092.5139 | 4737183.468 |
| 203 | 7.5 | 11.6 | 6.32 | 2.546 | 2.242 | 411089.0261 | 4737180.020 |
| 204 | 9.3 | 13.8 | 6.48 | 2.892 | 3.122 | 411087.3275 | 4737178.503 |
| 205 | 4.8 | 7.6 | 4.55 | 1.826 | 1.938 | 411083.6565 | 4737175.078 |
| 206 | 1.5 | 3.2 | 2.16 | 1.074 | 1.122 | 411081.9528 | 4737176.857 |
| 207 | 5.9 | 8.2 | 5.21 | 2.226 | 2.176 | 411083.9628 | 4737178.573 |
| 208 | 8.6 | 13.3 | 6.09 | 3.048 | 2.902 | 411085.5961 | 4737180.144 |
| 209 | 12.0 | 17.2 | 6.78 | 3.514 | 3.816 | 411087.3009 | 4737181.789 |
| 210 | 8.0 | 11.5 | 4.45 | 3.420 | 3.112 | 411088.6635 | 4737183.729 |
| 211 | 8.2 | 11.8 | 5.91 | 2.714 | 2.516 | 411091.0847 | 4737185.246 |


| Tree No | $\begin{aligned} & \text { Dbh } \\ & (\mathrm{cm}) \end{aligned}$ | $\begin{aligned} & \text { DGL } \\ & (\mathrm{cm}) \end{aligned}$ | Height <br> (m) | Crown <br> (NS) | Crown (EW) | x Coordinate | Y Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 212 | 7.0 | 10.5 | 5.03 | 2.342 | 2.186 | 411092.9031 | 4737187.029 |
| 213 | 13.7 | 19.2 | 5.45 | 4.092 | 3.860 | 411094.7235 | 4737188.640 |
| 214 | 11.6 | 16.4 | 6.00 | 4.052 | 3.810 | 411096.6005 | 4737190.174 |
| 215 | 8.3 | 11.4 | 6.14 | 2.594 | 2.732 | 411098.1536 | 4737191.699 |
| 216 | 2.0 | 4.4 | 3.12 | 1.232 | 1.276 | 411100.2129 | 4737193.482 |
| 217 | 9.2 | 13.3 | 6.40 | 3.314 | 2.906 | 411103.9810 | 4737196.650 |
| 218 | 8.6 | 14.3 | 5.73 | 3.348 | 3.120 | 411098.4591 | 4737195.188 |
| 219 | 4.4 | 7.7 | 3.81 | 1.930 | 1.916 | 411096.6804 | 4737193.439 |
| 220 | 7.9 | 13.0 | 6.06 | 2.716 | 2.652 | 411094.8048 | 4737191.971 |
| 221 | 1.2 | 2.8 | 1.78 | 1.476 | 1.214 | 411093.0106 | 4737190.417 |
| 222 | 0.9 | 2.6 | 1.62 | 1.062 | 1.050 | 411091.3184 | 4737188.872 |
| 223 | 12.4 | 18.6 | 5.81 | 4.052 | 4.332 | 411085.6453 | 4737183.601 |
| 224 | 10.1 | 14.8 | 7.03 | 3.938 | 4.017 | 411083.9539 | 4737182.041 |
| 225 | 7.4 | 12.1 | 5.75 | 2.672 | 2.743 | 411082.2056 | 4737180.296 |
| 226 | 6.6 | 11.5 | 5.36 | 2.630 | 2.654 | 411080.3775 | 4737178.650 |
| 227 | 7.0 | 9.9 | 5.85 | 2.514 | 2.436 | 411078.7137 | 4737180.422 |
| 228 | 7.4 | 12.3 | 4.89 | 2.878 | 2.610 | 411084.0142 | 4737185.435 |
| 229 | 2.8 | 4.6 | 3.15 | 1.746 | 1.686 | 411089.6912 | 4737190.582 |
| 230 | 2.0 | 3.9 | 2.17 | 1.205 | 1.258 | 411091.2571 | 4737192.232 |
| 231 | 3.0 | 6.3 | 3.20 | 1.560 | 1.414 | 411093.1971 | 4737193.758 |
| 232 | 2.4 | 3.9 | 2.87 | 1.376 | 1.383 | 411096.7485 | 4737197.102 |
| 233 | 10.3 | 15.2 | 6.62 | 3.206 | 2.956 | 411098.7593 | 4737198.746 |
| 234 | 8.2 | 12.8 | 5.48 | 2.532 | 2.634 | 411098.9349 | 4737201.977 |
| 235 | 10.1 | 16.0 | 7.12 | 3.022 | 3.196 | 411097.0157 | 4737200.489 |
| 236 | 4.7 | 8.8 | 3.81 | 2.240 | 2.358 | 411094.9729 | 4737198.736 |
| 237 | 13.4 | 18.7 | 6.69 | 3.208 | 3.572 | 411093.4669 | 4737197.174 |
| 238 | 5.6 | 7.7 | 3.80 | 1.766 | 1.892 | 411089.6388 | 4737193.867 |
| 239 | 2.6 | 5.7 | 2.81 | 1.332 | 1.412 | 411088.1170 | 4737192.233 |
| 240 | 10.3 | 16.5 | 5.06 | 3.852 | 3.638 | 411082.2470 | 4737187.396 |
| 241 | 3.5 | 6.5 | 3.57 | 1.658 | 1.558 | 411080.8636 | 4737185.363 |
| 242 | 4.1 | 8.1 | 4.26 | 2.344 | 2.412 | 411075.6990 | 4737183.526 |
| 243 | 10.8 | 15.6 | 6.28 | 3.404 | 3.327 | 411075.5716 | 4737187.391 |
| 244 | 6.8 | 10.2 | 5.16 | 2.548 | 2.561 | 411077.3509 | 4737189.092 |
| 245 | 0.6 | 2.4 | 1.46 | 0.744 | 0.628 | 411079.0604 | 4737190.895 |
| 246 | 10.4 | 15.3 | 6.31 | 3.148 | 3.093 | 411082.5475 | 4737190.579 |
| 247 | 16.3 | 21.5 | 6.80 | 4.461 | 4.220 | 411086.1597 | 4737194.248 |
| 248 | 9.9 | 14.1 | 5.69 | 3.185 | 2.734 | 411087.8691 | 4737195.777 |
| 249 | 8.2 | 12.9 | 7.10 | 2.652 | 2.624 | 411084.3850 | 4737196.130 |
| 250 | 9.7 | 12.9 | 5.26 | 3.002 | 2.994 | 411086.2258 | 4737197.548 |
| 251 | 5.9 | 8.9 | 5.11 | 2.504 | 2.720 | 411088.5655 | 4737198.638 |
| 252 | 8.3 | 13.3 | 5.94 | 2.516 | 2.552 | 411091.8030 | 4737198.998 |
| 253 | 6.1 | 9.4 | 4.96 | 2.276 | 2.204 | 411089.9512 | 4737200.746 |
| 254 | 10.6 | 16.8 | 6.25 | 3.268 | 3.140 | 411093.5009 | 4737200.615 |


| Tree No | $\begin{aligned} & \text { Dbh } \\ & (\mathrm{cm}) \end{aligned}$ | $\begin{aligned} & \text { DGL } \\ & (\mathrm{cm}) \end{aligned}$ | Height <br> (m) | Crown (NS) | Crown (EW) | X Coordinate | Y <br> Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 255 | 2.4 | 5.2 | 2.57 | 1.496 | 1.484 | 411091.7463 | 4737202.351 |
| 256 | 7.1 | 10.4 | 5.32 | 2.930 | 3.016 | 411093.7386 | 4737204.014 |
| 257 | 10.0 | 17.6 | 6.19 | 3.626 | 3.570 | 411097.1319 | 4737203.881 |
| 258 | 9.5 | 15.1 | 6.55 | 3.402 | 3.435 | 411095.6488 | 4737205.416 |
| 259 | 7.5 | 13.1 | 4.83 | 2.610 | 2.762 | 411088.3696 | 4737202.652 |
| 260 | 5.9 | 8.8 | 4.26 | 2.258 | 1.896 | 411091.9287 | 4737205.852 |
| 261 | 7.5 | 12.0 | 4.82 | 2.756 | 2.704 | 411094.0474 | 4737207.255 |
| 262 | 6.5 | 9.4 | 5.23 | 2.216 | 2.214 | 411084.6502 | 4737199.382 |
| 263 | 4.9 | 7.5 | 4.43 | 1.748 | 1.928 | 411081.1231 | 4737196.020 |
| 264 | 12.8 | 19.2 | 7.79 | 3.278 | 3.236 | 411079.2998 | 4737194.229 |
| 265 | 5.0 | 7.1 | 5.02 | 1.756 | 1.958 | 411077.4886 | 4737192.680 |
| 266 | 10.0 | 14.9 | 7.48 | 3.682 | 3.505 | 411075.6937 | 4737190.927 |
| 267 | 12.3 | 17.9 | 7.26 | 4.218 | 4.030 | 411074.0402 | 4737189.131 |
| 268 | 6.6 | 10.9 | 5.37 | 2.424 | 2.538 | 411071.9993 | 4737187.480 |
| 269 | 0.0 | 1.1 | 0.93 | 0.632 | 0.678 | 411073.7997 | 4737185.420 |
| 270 | 10.7 | 14.9 | 7.79 | 2.954 | 3.218 | 411072.3465 | 4737190.967 |
| 271 | 5.7 | 8.5 | 4.98 | 1.856 | 1.962 | 411075.7027 | 4737194.407 |
| 272 | 9.3 | 13.8 | 7.64 | 2.956 | 2.932 | 411077.5841 | 4737196.048 |
| 273 | 10.9 | 15.6 | 7.73 | 3.108 | 2.986 | 411079.4541 | 4737197.805 |
| 274 | 9.9 | 13.3 | 5.78 | 2.872 | 2.864 | 411081.1927 | 4737199.651 |
| 275 | 8.8 | 12.0 | 7.54 | 2.565 | 2.838 | 411083.0452 | 4737201.094 |
| 276 | 11.2 | 15.8 | 6.16 | 3.522 | 3.468 | 411084.8983 | 4737202.890 |
| 277 | 6.2 | 9.7 | 4.15 | 2.108 | 2.212 | 411086.6935 | 4737204.346 |
| 278 | 4.4 | 8.1 | 4.05 | 1.694 | 1.404 | 411088.5676 | 4737205.975 |
| 279 | 6.7 | 11.7 | 4.55 | 2.524 | 2.560 | 411092.3679 | 4737209.067 |
| 280 | 8.5 | 12.3 | 6.04 | 2.920 | 3.092 | 411085.1222 | 4737206.312 |
| 281 | 0.7 | 2.4 | 1.51 | 0.942 | 0.996 | 411086.9782 | 4737207.791 |
| 282 | 9.1 | 13.0 | 5.83 | 1.906 | 2.550 | 411088.5773 | 4737209.422 |
| 283 | 4.6 | 7.1 | 4.11 | 2.216 | 1.762 | 411090.8676 | 4737210.746 |
| 284 | 10.3 | 14.9 | 6.91 | 3.026 | 2.694 | 411081.4604 | 4737203.061 |
| 285 | 0.0 | 1.6 | 0.86 | 0.548 | 0.580 | 411077.8681 | 4737199.602 |
| 286 | 0.6 | 2.3 | 1.64 | 1.290 | 1.032 | 411090.4056 | 4737207.761 |
| 287 | 0.0 | 1.7 | 0.98 | 0.736 | 0.742 | 411075.7976 | 4737198.065 |
| 288 | 10.5 | 14.7 | 7.48 | 3.730 | 3.626 | 411074.0228 | 4737196.307 |
| 289 | 9.5 | 14.1 | 6.40 | 3.054 | 3.182 | 411072.2795 | 4737194.542 |
| 290 | 10.3 | 14.7 | 7.42 | 2.486 | 2.764 | 411070.7311 | 4737192.800 |
| 291 | 9.2 | 13.0 | 7.32 | 3.446 | 3.394 | 411069.0456 | 4737194.685 |
| 292 | 9.6 | 13.2 | 5.87 | 3.026 | 2.984 | 411070.7349 | 4737196.297 |
| 293 | 13.7 | 18.2 | 7.70 | 4.164 | 3.986 | 411072.5099 | 4737197.977 |
| 294 | 3.1 | 5.3 | 3.46 | 1.992 | 1.744 | 411074.3756 | 4737199.570 |
| 295 | 7.4 | 11.4 | 6.52 | 3.004 | 3.160 | 411076.2813 | 4737201.420 |
| 296 | 9.0 | 13.1 | 5.92 | 3.030 | 3.004 | 411077.8084 | 4737203.277 |
| 297 | 9.0 | 15.0 | 4.50 | 3.446 | 3.318 | 411079.7637 | 4737204.786 |


| Tree <br> No | Dbh <br> (cm) | $\begin{aligned} & \text { DGL } \\ & (\mathrm{cm}) \end{aligned}$ | Height (m) | Crown (NS) | Crown (EW) | X <br> Coordinate | Y <br> Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 298 | 5.3 | 9.6 | 3.97 | 2.272 | 2.204 | 411083.3452 | 4737207.950 |
| 299 | 1.7 | 4.3 | 1.96 | 1.085 | 1.136 | 411084.9513 | 4737209.847 |
| 300 | 9.1 | 13.1 | 6.66 | 2.964 | 2.648 | 411083.5346 | 4737211.431 |
| 301 | 10.5 | 15.2 | 5.82 | 3.296 | 2.818 | 411085.2668 | 4737212.985 |
| 302 | 4.6 | 7.9 | 4.11 | 1.726 | 1.860 | 411087.4350 | 4737214.572 |
| 303 | 10.1 | 14.1 | 7.54 | 3.052 | 2.816 | 411081.7112 | 4737209.767 |
| 304 | 0.0 | 1.9 | 1.07 | 0.582 | 0.720 | 411079.8985 | 4737208.068 |
| 305 | 3.7 | 6.7 | 3.69 | 1.730 | 1.790 | 411077.9310 | 4737206.511 |
| 306 | 8.2 | 12.8 | 6.50 | 2.996 | 3.120 | 411076.2068 | 4737205.000 |
| 307 | 10.4 | 14.6 | 5.81 | 3.112 | 2.760 | 411074.5117 | 4737203.176 |
| 308 | 7.6 | 11.6 | 5.00 | 2.796 | 2.836 | 411072.6870 | 4737201.362 |
| 309 | 7.6 | 12.5 | 5.32 | 2.354 | 2.442 | 411070.8421 | 4737199.848 |
| 310 | 7.5 | 10.2 | 4.68 | 2.724 | 2.394 | 411069.1972 | 4737198.013 |
| 311 | 6.9 | 10.1 | 5.82 | 3.010 | 2.644 | 411067.4544 | 4737196.364 |
| 312 | 7.5 | 11.3 | 6.07 | 2.332 | 2.534 | 411065.6297 | 4737194.806 |
| 313 | 9.0 | 13.0 | 5.85 | 2.640 | 2.634 | 411065.9257 | 4737198.135 |
| 314 | 6.3 | 9.8 | 5.48 | 2.500 | 2.520 | 411067.3383 | 4737200.047 |
| 315 | 7.0 | 10.5 | 5.97 | 2.644 | 2.556 | 411069.1008 | 4737201.666 |
| 316 | 11.5 | 17.4 | 7.02 | 3.216 | 2.832 | 411071.0367 | 4737203.240 |
| 317 | 5.7 | 9.2 | 4.96 | 2.460 | 2.456 | 411072.8307 | 4737205.014 |
| 318 | 6.5 | 8.8 | 5.09 | 2.114 | 2.104 | 411076.4983 | 4737208.342 |
| 319 | 10.5 | 14.8 | 7.95 | 2.948 | 3.360 | 411078.2757 | 4737209.890 |
| 320 | 7.9 | 11.1 | 5.88 | 2.536 | 2.602 | 411081.7376 | 4737213.332 |
| 321 | 7.8 | 9.5 | 4.76 | 1.782 | 1.800 | 411083.6777 | 4737214.800 |
| 322 | 8.6 | 12.5 | 5.38 | 2.774 | 2.486 | 411085.1305 | 4737216.550 |
| 323 | 6.3 | 9.0 | 4.00 | 2.734 | 3.096 | 411083.5371 | 4737218.588 |
| 324 | 11.6 | 16.9 | 6.07 | 3.658 | 3.608 | 411082.0327 | 4737216.654 |
| 325 | 10.0 | 15.3 | 5.86 | 2.162 | 1.930 | 411080.1677 | 4737214.951 |
| 326 | 8.7 | 11.4 | 5.57 | 2.784 | 2.668 | 411078.2840 | 4737213.219 |
| 327 | 9.2 | 11.7 | 5.47 | 2.904 | 2.810 | 411076.5652 | 4737211.635 |
| 328 | 14.7 | 19.6 | 7.21 | 3.592 | 4.062 | 411074.7460 | 4737210.057 |
| 329 | 2.7 | 4.6 | 2.69 | 1.554 | 1.810 | 411072.8555 | 4737208.534 |
| 330 | 15.2 | 21.8 | 8.56 | 5.358 | 4.710 | 411071.2488 | 4737206.889 |
| 331 | 3.3 | 5.2 | 3.22 | 1.676 | 1.584 | 411069.4703 | 4737205.061 |
| 332 | 8.5 | 12.5 | 5.23 | 3.664 | 3.534 | 411067.5043 | 4737203.478 |
| 333 | 6.5 | 9.4 | 4.72 | 2.246 | 2.228 | 411065.7356 | 4737201.753 |
| 334 | 11.2 | 16.8 | 7.16 | 4.074 | 3.792 | 411064.1431 | 4737199.928 |
| 335 | 12.7 | 15.1 | 5.61 | 3.414 | 3.468 | 411062.2824 | 4737198.405 |
| 336 | 3.6 | 7.2 | 3.45 | 1.702 | 1.596 | 411065.7792 | 4737205.284 |
| 337 | 7.5 | 11.0 | 5.33 | 2.802 | 2.558 | 411067.7090 | 4737206.897 |
| 338 | 9.3 | 14.2 | 4.91 | 2.852 | 3.042 | 411069.6690 | 4737208.539 |
| 339 | 9.9 | 14.5 | 5.81 | 3.276 | 3.266 | 411071.3258 | 4737210.430 |
| 340 | 3.4 | 5.3 | 3.13 | 1.818 | 2.016 | 411073.1958 | 4737211.905 |


| Tree No | $\begin{aligned} & \mathrm{Dbh} \\ & (\mathrm{~cm}) \end{aligned}$ | $\begin{aligned} & \text { DGL } \\ & (\mathrm{cm}) \end{aligned}$ | Height (m) | Crown (NS) | Crown (EW) | x Coordinate | Y <br> Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 341 | 9.4 | 12.0 | 6.65 | 2.712 | 2.716 | 411074.8106 | 4737213.629 |
| 342 | 11.0 | 14.2 | 6.17 | 2.716 | 2.412 | 411076.7184 | 4737215.049 |
| 343 | 6.0 | 8.4 | 4.23 | 2.088 | 2.116 | 411078.4303 | 4737216.954 |
| 344 | 10.2 | 11.6 | 5.82 | 3.138 | 2.648 | 411080.3434 | 4737218.472 |
| 345 | 6.4 | 9.2 | 5.28 | 1.844 | 1.882 | 411082.0476 | 4737220.358 |
| 346 | 11.2 | 15.4 | 7.00 | 2.970 | 3.054 | 411080.7403 | 4737221.665 |
| 347 | 12.8 | 17.1 | 6.41 | 3.220 | 3.166 | 411078.8100 | 4737220.390 |
| 348 | 1.6 | 2.8 | 1.94 | 1.102 | 1.056 | 411077.0207 | 4737218.552 |
| 349 | 10.4 | 15.0 | 5.61 | 3.106 | 3.202 | 411074.9764 | 4737217.153 |
| 350 | 11.0 | 15.3 | 5.72 | 3.270 | 2.872 | 411073.1677 | 4737215.289 |
| 351 | 11.6 | 16.7 | 5.78 | 3.680 | 3.812 | 411067.8483 | 4737210.207 |
| 352 | 8.7 | 13.1 | 6.23 | 2.562 | 2.594 | 411065.9500 | 4737208.628 |
| 353 | 9.0 | 14.1 | 5.36 | 3.002 | 3.444 | 411062.3379 | 4737205.279 |
| 354 | 6.0 | 9.2 | 3.86 | 2.408 | 2.248 | 411059.0523 | 4737205.341 |
| 355 | 1.0 | 2.5 | 1.48 | 0.928 | 0.828 | 411060.7161 | 4737207.112 |
| 356 | 8.2 | 10.9 | 6.08 | 2.528 | 2.686 | 411062.3995 | 4737208.818 |
| 357 | 10.5 | 14.3 | 5.34 | 2.836 | 2.808 | 411064.2214 | 4737210.437 |
| 358 | 9.6 | 13.4 | 5.29 | 2.602 | 2.450 | 411066.1883 | 4737212.084 |
| 359 | 9.0 | 12.4 | 5.76 | 2.606 | 2.534 | 411067.8622 | 4737213.968 |
| 360 | 6.0 | 9.5 | 4.51 | 2.002 | 2.042 | 411069.7867 | 4737215.354 |
| 361 | 8.6 | 11.5 | 5.39 | 2.274 | 2.136 | 411071.8013 | 4737216.879 |
| 362 | 9.2 | 14.0 | 6.10 | 3.039 | 2.852 | 411073.2178 | 4737218.812 |
| 363 | 8.4 | 12.8 | 5.80 | 2.624 | 2.475 | 411076.9431 | 4737222.064 |
| 364 | 7.5 | 11.0 | 4.12 | 2.222 | 2.192 | 411079.0858 | 4737223.425 |
| 365 | 0.2 | 1.1 | 0.76 | 0.632 | 0.592 | 411073.5145 | 4737222.282 |
| 366 | 8.3 | 12.6 | 5.78 | 2.954 | 2.472 | 411071.4524 | 4737220.446 |
| 367 | 9.1 | 11.1 | 6.40 | 2.495 | 2.528 | 411069.6384 | 4737218.722 |
| 368 | 8.9 | 12.8 | 5.87 | 2.456 | 2.412 | 411067.9556 | 4737217.193 |
| 369 | 9.5 | 13.0 | 6.15 | 3.204 | 3.112 | 411064.3881 | 4737213.754 |
| 370 | 2.1 | 3.4 | 2.58 | 1.176 | 1.070 | 411062.5422 | 4737212.104 |
| 371 | 10.2 | 13.5 | 6.27 | 3.116 | 2.980 | 411060.6580 | 4737210.614 |
| 372 | 12.6 | 18.2 | 6.40 | 3.484 | 3.455 | 411058.9258 | 4737208.828 |
| 373 | 6.0 | 9.3 | 3.94 | 1.966 | 1.986 | 411057.5626 | 4737207.149 |
| 374 | 2.0 | 5.0 | 2.06 | 1.160 | 1.110 | 411055.5607 | 4737205.372 |
| 375 | 10.2 | 14.9 | 6.20 | 3.282 | 2.996 | 411053.7268 | 4737207.172 |
| 376 | 8.8 | 12.9 | 5.23 | 2.845 | 2.995 | 411055.6693 | 4737208.862 |
| 377 | 1.0 | 3.4 | 1.82 | 1.236 | 1.167 | 411057.2204 | 4737210.544 |
| 378 | 10.1 | 16.3 | 5.40 | 2.976 | 3.026 | 411059.0346 | 4737212.418 |
| 379 | 8.4 | 12.2 | 6.40 | 2.812 | 2.644 | 411060.8836 | 4737213.921 |
| 380 | 5.6 | 7.8 | 4.43 | 2.138 | 1.990 | 411062.7462 | 4737215.484 |
| 381 | 6.4 | 10.0 | 5.32 | 2.188 | 2.435 | 411064.3319 | 4737217.360 |
| 382 | 12.4 | 17.9 | 6.63 | 4.004 | 3.924 | 411066.2671 | 4737218.873 |
| 383 | 9.1 | 13.0 | 6.26 | 3.608 | 3.304 | 411068.0054 | 4737220.427 |


| Tree <br> No | Dbh <br> (cm) | $\begin{aligned} & \text { DGL } \\ & (\mathrm{cm}) \end{aligned}$ | Height (m) | Crown (NS) | Crown (EW) | X <br> Coordinate | Y <br> Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 384 | 5.3 | 8.5 | 3.90 | 1.936 | 1.848 | 411069.7871 | 4737222.183 |
| 385 | 7.9 | 11.3 | 5.23 | 2.774 | 2.642 | 411073.5019 | 4737225.469 |
| 386 | 7.1 | 11.1 | 5.38 | 2.284 | 2.399 | 411071.8058 | 4737227.377 |
| 387 | 4.4 | 7.4 | 3.80 | 2.016 | 1.892 | 411070.0964 | 4737225.514 |
| 388 | 10.7 | 15.1 | 6.40 | 3.894 | 3.940 | 411066.2200 | 4737222.098 |
| 389 | 8.7 | 13.7 | 5.64 | 3.030 | 2.978 | 411064.5606 | 4737220.613 |
| 390 | 10.0 | 15.8 | 7.64 | 3.812 | 3.786 | 411062.6498 | 4737219.153 |
| 391 | 6.3 | 8.2 | 4.93 | 2.446 | 2.292 | 411060.9974 | 4737217.214 |
| 392 | 11.1 | 14.4 | 7.14 | 3.234 | 3.604 | 411059.1086 | 4737215.572 |
| 393 | 8.0 | 11.3 | 5.29 | 3.186 | 2.922 | 411055.8634 | 4737212.357 |
| 394 | 0.5 | 1.9 | 1.40 | 0.696 | 0.780 | 411075.0264 | 4737220.457 |
| 395 | 2.2 | 4.1 | 2.68 | 1.732 | 1.716 | 411054.0314 | 4737210.603 |
| 396 | 10.2 | 15.0 | 6.34 | 3.515 | 3.072 | 411050.3779 | 4737210.779 |
| 397 | 19.6 | 33.1 | 6.91 | 5.730 | 5.300 | 411052.0336 | 4737212.500 |
| 398 | 9.0 | 12.2 | 5.64 | 3.060 | 3.084 | 411054.1228 | 4737214.153 |
| 399 | 6.7 | 11.6 | 4.93 | 2.254 | 2.660 | 411055.6567 | 4737215.803 |
| 400 | 7.8 | 9.8 | 5.31 | 2.756 | 2.584 | 411057.5612 | 4737217.397 |
| 401 | 0.2 | 1.2 | 0.83 | 0.378 | 0.372 | 411059.3384 | 4737219.324 |
| 402 | 8.0 | 13.0 | 5.74 | 2.792 | 2.846 | 411060.9017 | 4737220.816 |
| 403 | 11.7 | 15.5 | 5.92 | 2.840 | 2.992 | 411062.9376 | 4737222.320 |
| 404 | 4.5 | 6.2 | 2.76 | 1.698 | 1.612 | 411064.6546 | 4737223.888 |
| 405 | 7.5 | 12.4 | 4.76 | 2.444 | 2.278 | 411066.5237 | 4737225.718 |
| 406 | 11.5 | 15.8 | 5.00 | 3.004 | 2.984 | 411072.2788 | 4737230.331 |
| 407 | 12.7 | 17.3 | 5.41 | 3.068 | 3.040 | 411070.6007 | 4737232.266 |
| 408 | 11.2 | 14.5 | 5.65 | 3.010 | 2.783 | 411068.5195 | 4737230.949 |
| 409 | 6.5 | 11.2 | 4.17 | 2.020 | 2.046 | 411061.0933 | 4737224.253 |
| 410 | 7.9 | 11.8 | 6.05 | 2.193 | 2.024 | 411059.2343 | 4737222.489 |
| 411 | 12.6 | 19.4 | 7.05 | 3.584 | 3.639 | 411057.6131 | 4737220.652 |
| 412 | 6.9 | 11.5 | 3.99 | 2.428 | 2.572 | 411055.7022 | 4737219.070 |
| 413 | 11.1 | 16.5 | 7.24 | 3.046 | 3.120 | 411053.9093 | 4737217.663 |
| 414 | 8.4 | 12.5 | 5.63 | 2.450 | 2.326 | 411048.6600 | 4737212.408 |
| 415 | 8.0 | 11.5 | 5.12 | 2.804 | 2.626 | 411045.2348 | 4737212.618 |
| 416 | 9.8 | 14.3 | 6.93 | 3.016 | 3.018 | 411047.0866 | 4737214.385 |
| 417 | 10.5 | 14.2 | 5.50 | 3.424 | 3.362 | 411049.1174 | 4737215.789 |
| 418 | 9.5 | 14.7 | 6.17 | 3.118 | 2.846 | 411052.1948 | 4737219.378 |
| 419 | 9.0 | 13.7 | 5.21 | 3.104 | 2.872 | 411054.1658 | 4737220.885 |
| 420 | 8.4 | 11.5 | 5.84 | 2.784 | 2.728 | 411056.2539 | 4737222.752 |
| 421 | 9.8 | 17.0 | 5.91 | 3.734 | 3.592 | 411057.6747 | 4737224.431 |
| 422 | 6.6 | 10.9 | 3.94 | 2.498 | 2.236 | 411059.4803 | 4737225.918 |
| 423 | 9.6 | 14.7 | 5.71 | 3.086 | 2.886 | 411063.0751 | 4737229.054 |
| 424 | 0.9 | 2.5 | 1.34 | 0.843 | 0.764 | 411066.6982 | 4737232.560 |
| 425 | 10.9 | 17.1 | 6.14 | 3.812 | 3.620 | 411068.7724 | 4737234.088 |
| 426 | 7.3 | 12.0 | 5.78 | 2.772 | 2.718 | 411067.0875 | 4737235.811 |


| Tree No | $\begin{aligned} & \mathrm{Dbh} \\ & (\mathrm{~cm}) \end{aligned}$ | $\begin{aligned} & \text { DGL } \\ & (\mathrm{cm}) \end{aligned}$ | Height (m) | Crown (NS) | Crown (EW) | x Coordinate | Y Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 427 | 0.0 | 1.9 | 0.91 | 0.690 | 0.663 | 411065.1866 | 4737234.412 |
| 428 | 8.7 | 13.3 | 5.44 | 2.825 | 2.870 | 411063.4633 | 4737232.633 |
| 429 | 9.3 | 14.6 | 5.86 | 2.652 | 2.714 | 411061.5086 | 4737231.052 |
| 430 | 5.4 | 8.5 | 4.45 | 1.848 | 1.940 | 411057.7810 | 4737227.905 |
| 431 | 6.4 | 8.9 | 4.83 | 2.136 | 2.048 | 411055.9179 | 4737226.125 |
| 432 | 7.2 | 10.4 | 6.32 | 2.922 | 2.560 | 411054.4341 | 4737224.423 |
| 433 | 2.0 | 4.4 | 2.59 | 1.280 | 1.252 | 411052.3862 | 4737222.694 |
| 434 | 5.7 | 9.8 | 4.32 | 2.060 | 1.952 | 411050.8833 | 4737221.483 |
| 435 | 4.0 | 7.1 | 3.65 | 1.986 | 1.684 | 411048.9908 | 4737219.520 |
| 436 | 10.9 | 16.2 | 6.25 | 3.964 | 3.995 | 411047.4354 | 4737217.651 |
| 437 | 1.4 | 3.2 | 1.82 | 0.992 | 0.998 | 411045.4294 | 4737216.121 |
| 438 | 7.5 | 11.8 | 4.36 | 2.822 | 2.630 | 411043.6011 | 4737214.407 |
| 439 | 5.5 | 8.2 | 4.48 | 2.070 | 2.076 | 411041.9617 | 4737216.148 |
| 440 | 12.2 | 19.2 | 5.15 | 4.300 | 3.992 | 411043.8103 | 4737218.004 |
| 441 | 7.8 | 13.0 | 5.85 | 2.724 | 2.676 | 411045.6491 | 4737219.469 |
| 442 | 12.5 | 17.3 | 6.10 | 3.470 | 3.806 | 411047.2917 | 4737221.333 |
| 443 | 9.8 | 14.9 | 6.48 | 2.943 | 2.832 | 411050.7702 | 4737224.629 |
| 444 | 0.0 | 1.4 | 1.11 | 0.594 | 0.484 | 411053.9404 | 4737227.241 |
| 445 | 5.5 | 8.5 | 3.36 | 2.390 | 2.144 | 411055.7417 | 4737229.386 |
| 446 | 9.4 | 13.1 | 6.71 | 3.550 | 3.572 | 411057.8551 | 4737231.317 |
| 447 | 7.0 | 10.2 | 4.90 | 2.308 | 2.094 | 411059.8583 | 4737232.873 |
| 448 | 7.1 | 12.5 | 5.59 | 2.514 | 2.506 | 411061.5237 | 4737234.686 |
| 449 | 10.1 | 15.3 | 6.47 | 3.024 | 3.040 | 411063.8336 | 4737235.647 |
| 450 | 6.5 | 11.0 | 4.44 | 2.636 | 2.660 | 411065.3973 | 4737237.550 |
| 451 | 1.6 | 3.9 | 2.01 | 1.298 | 1.202 | 411063.7460 | 4737239.519 |
| 452 | 5.8 | 10.5 | 4.11 | 2.172 | 2.270 | 411061.8594 | 4737237.929 |
| 453 | 4.4 | 7.9 | 3.66 | 2.114 | 2.130 | 411060.0742 | 4737236.222 |
| 454 | 7.7 | 13.2 | 5.17 | 2.540 | 2.598 | 411056.2572 | 4737233.041 |
| 455 | 8.1 | 13.8 | 5.05 | 3.506 | 3.190 | 411052.2836 | 4737229.470 |
| 456 | 0.0 | 1.8 | 0.98 | 0.632 | 0.650 | 411050.0259 | 4737228.573 |
| 457 | 5.5 | 9.4 | 4.38 | 2.092 | 2.008 | 411049.1324 | 4737226.330 |
| 458 | 7.7 | 10.8 | 5.29 | 2.614 | 2.402 | 411045.7287 | 4737223.120 |
| 459 | 8.8 | 11.5 | 5.47 | 3.060 | 2.996 | 411043.8956 | 4737221.312 |
| 460 | 0.6 | 3.3 | 1.37 | 0.996 | 0.976 | 411042.0838 | 4737219.754 |
| 461 | 6.1 | 10.5 | 5.08 | 2.500 | 2.360 | 411040.3164 | 4737218.039 |
| 462 | 3.8 | 7.3 | 3.10 | 1.814 | 2.200 | 411038.6756 | 4737219.748 |
| 463 | 12.2 | 18.4 | 5.78 | 4.220 | 3.994 | 411040.3849 | 4737221.506 |
| 464 | 5.8 | 9.8 | 4.38 | 2.536 | 2.380 | 411042.3897 | 4737223.056 |
| 465 | 7.5 | 11.8 | 5.36 | 2.476 | 2.474 | 411043.9548 | 4737224.855 |
| 466 | 2.9 | 4.6 | 3.04 | 1.486 | 1.458 | 411045.5715 | 4737226.614 |
| 467 | 11.2 | 16.4 | 6.77 | 4.150 | 3.436 | 411047.4895 | 4737228.223 |
| 468 | 4.8 | 7.7 | 3.95 | 1.678 | 1.782 | 411049.4521 | 4737229.706 |
| 469 | 14.2 | 19.8 | 7.29 | 4.058 | 3.944 | 411051.0998 | 4737231.619 |


| Tree <br> No | Dbh <br> (cm) | $\begin{aligned} & \text { DGL } \\ & (\mathrm{cm}) \end{aligned}$ | Height (m) | Crown (NS) | Crown (EW) | X <br> Coordinate | Y <br> Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 470 | 6.2 | 8.1 | 4.80 | 2.196 | 2.120 | 411054.5448 | 4737234.842 |
| 471 | 6.1 | 8.4 | 4.90 | 2.352 | 2.560 | 411056.5696 | 4737236.520 |
| 472 | 5.9 | 10.5 | 4.68 | 2.194 | 2.296 | 411058.4686 | 4737238.041 |
| 473 | 7.7 | 13.0 | 3.90 | 2.796 | 2.528 | 411062.2740 | 4737241.142 |
| 474 | 3.0 | 6.3 | 2.81 | 1.776 | 1.674 | 411060.5831 | 4737242.957 |
| 475 | 5.5 | 8.1 | 4.90 | 2.358 | 2.522 | 411054.9139 | 4737238.286 |
| 476 | 5.8 | 9.4 | 4.28 | 2.532 | 2.208 | 411052.7949 | 4737236.651 |
| 477 | 5.3 | 8.3 | 3.92 | 2.154 | 2.048 | 411051.1045 | 4737234.948 |
| 478 | 7.7 | 11.9 | 7.14 | 2.442 | 2.356 | 411047.8326 | 4737231.488 |
| 479 | 11.0 | 15.5 | 5.72 | 3.440 | 3.200 | 411044.1905 | 4737228.144 |
| 480 | 5.4 | 8.6 | 3.60 | 2.010 | 2.026 | 411042.4712 | 4737226.415 |
| 481 | 7.0 | 10.2 | 5.58 | 2.716 | 2.732 | 411040.7123 | 4737224.802 |
| 482 | 10.8 | 17.7 | 5.60 | 3.638 | 3.722 | 411037.0040 | 4737221.503 |
| 483 | 5.5 | 9.3 | 4.75 | 2.242 | 2.380 | 411035.3463 | 4737223.295 |
| 484 | 10.4 | 15.5 | 6.64 | 3.950 | 3.402 | 411037.0723 | 4737225.020 |
| 485 | 8.9 | 14.1 | 5.82 | 3.094 | 3.136 | 411039.0317 | 4737226.609 |
| 486 | 8.6 | 15.5 | 6.03 | 3.868 | 3.548 | 411040.6629 | 4737228.412 |
| 487 | 7.0 | 9.8 | 4.36 | 2.516 | 2.472 | 411042.3042 | 4737230.184 |
| 488 | 9.6 | 15.5 | 6.57 | 3.236 | 3.006 | 411044.1708 | 4737231.687 |
| 489 | 1.2 | 2.2 | 1.79 | 1.038 | 0.987 | 411046.2235 | 4737233.268 |
| 490 | 7.7 | 11.7 | 5.85 | 2.604 | 2.316 | 411049.5000 | 4737236.663 |
| 491 | 4.4 | 7.8 | 3.74 | 2.314 | 2.182 | 411051.0839 | 4737238.475 |
| 492 | 9.5 | 14.3 | 6.75 | 2.774 | 2.766 | 411053.2009 | 4737240.063 |
| 493 | 1.4 | 2.4 | 1.62 | 1.012 | 0.988 | 411056.7729 | 4737243.427 |
| 494 | 8.4 | 11.6 | 6.86 | 3.056 | 3.120 | 411055.1816 | 4737244.931 |
| 495 | 6.0 | 11.2 | 3.66 | 2.682 | 2.668 | 411051.5423 | 4737241.817 |
| 496 | 9.4 | 14.0 | 5.45 | 3.156 | 3.192 | 411049.5338 | 4737240.177 |
| 497 | 8.4 | 12.7 | 6.08 | 2.362 | 2.372 | 411047.8508 | 4737238.461 |
| 498 | 6.4 | 10.8 | 4.35 | 2.770 | 2.462 | 411045.8330 | 4737236.863 |
| 499 | 9.2 | 13.8 | 5.91 | 3.006 | 3.052 | 411044.3470 | 4737235.177 |
| 500 | 7.3 | 11.1 | 5.82 | 2.472 | 2.320 | 411042.1066 | 4737233.678 |
| 501 | 10.2 | 16.7 | 5.73 | 3.454 | 3.452 | 411040.5927 | 4737231.823 |
| 502 | 9.0 | 14.4 | 6.44 | 2.658 | 2.368 | 411038.9793 | 4737230.073 |
| 503 | 10.2 | 14.8 | 6.11 | 3.472 | 3.394 | 411037.3663 | 4737228.511 |
| 504 | 10.6 | 13.8 | 5.96 | 3.518 | 3.214 | 411035.3340 | 4737226.805 |
| 505 | 8.0 | 13.4 | 5.63 | 3.106 | 3.240 | 411033.6061 | 4737225.124 |
| 506 | 1.5 | 3.5 | 1.94 | 1.400 | 1.278 | 411031.9152 | 4737226.801 |
| 507 | 2.8 | 4.8 | 3.04 | 1.416 | 1.504 | 411033.7835 | 4737228.444 |
| 508 | 6.5 | 10.1 | 4.50 | 2.548 | 2.382 | 411035.7442 | 4737230.212 |
| 509 | 3.9 | 6.9 | 3.29 | 1.732 | 1.532 | 411037.3043 | 4737231.821 |
| 510 | 9.9 | 13.9 | 6.44 | 2.962 | 2.924 | 411039.0033 | 4737233.544 |
| 511 | 1.0 | 2.4 | 1.57 | 0.988 | 0.946 | 411040.4984 | 4737235.554 |
| 512 | 11.8 | 17.2 | 7.16 | 2.874 | 2.944 | 411042.6478 | 4737236.884 |


| Tree | Dbh | DGL | Height <br> No <br> $(\mathrm{cm})$ | Crown <br> $(\mathrm{cm})$ | Crown <br> $($ (NW $)$ | X | Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Coordinate | (N) |
| :---: |


| Tree | Dbh | DGL | Height <br> No <br> $(\mathrm{cm})$ | Crown <br> $(\mathrm{cm})$ | Crown <br> $($ (NW $)$ | X | Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Coordinate | (NS) |
| :---: |


| Tree <br> No | Dbh <br> (cm) | $\begin{aligned} & \text { DGL } \\ & (\mathrm{cm}) \end{aligned}$ | Height <br> (m) | Crown (NS) | Crown (EW) | X <br> Coordinate | Y <br> Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 599 | 4.3 | 8.0 | 3.34 | 1.876 | 1.822 | 411023.9761 | 4737242.612 |
| 600 | 4.4 | 8.2 | 3.97 | 2.050 | 2.140 | 411021.9988 | 4737241.095 |
| 601 | 7.7 | 11.5 | 5.23 | 2.586 | 2.414 | 411018.5308 | 4737241.032 |
| 602 | 7.7 | 12.2 | 5.79 | 2.362 | 2.196 | 411020.4057 | 4737242.853 |
| 603 | 7.3 | 10.9 | 5.09 | 2.270 | 2.574 | 411022.2857 | 4737244.554 |
| 604 | 3.2 | 5.0 | 3.05 | 1.766 | 2.104 | 411023.9154 | 4737246.118 |
| 605 | 4.1 | 6.7 | 4.28 | 2.032 | 2.418 | 411025.4109 | 4737247.955 |
| 606 | 7.5 | 12.7 | 4.81 | 2.624 | 2.336 | 411027.3161 | 4737249.826 |
| 607 | 9.8 | 15.0 | 4.62 | 2.972 | 3.388 | 411031.1697 | 4737252.863 |
| 608 | 10.6 | 15.3 | 4.97 | 3.524 | 3.308 | 411032.7113 | 4737254.198 |
| 609 | 9.4 | 11.7 | 5.97 | 3.012 | 3.186 | 411035.0998 | 4737256.772 |
| 610 | 8.3 | 11.7 | 5.64 | 2.906 | 3.068 | 411037.0157 | 4737258.234 |
| 611 | 4.5 | 6.7 | 3.97 | 1.874 | 2.018 | 411038.8225 | 4737259.661 |
| 612 | 7.8 | 11.7 | 5.98 | 3.436 | 3.484 | 411040.5141 | 4737261.631 |
| 613 | 0.0 | 1.6 | 1.01 | 0.458 | 0.562 | 411043.8186 | 4737257.683 |
| 614 | 8.3 | 15.0 | 4.33 | 2.882 | 3.150 | 411041.1187 | 4737264.523 |
| 615 | 3.4 | 5.0 | 3.54 | 1.618 | 1.442 | 411039.1073 | 4737263.395 |
| 616 | 3.9 | 6.5 | 3.81 | 1.628 | 1.726 | 411037.2744 | 4737261.696 |
| 617 | 10.5 | 18.3 | 5.90 | 3.688 | 3.574 | 411035.4521 | 4737260.106 |
| 618 | 2.5 | 4.1 | 3.14 | 1.462 | 1.426 | 411033.8873 | 4737258.412 |
| 619 | 7.5 | 10.9 | 4.13 | 2.758 | 2.952 | 411031.7648 | 4737256.912 |
| 620 | 5.5 | 8.2 | 5.11 | 2.226 | 2.492 | 411029.6107 | 4737255.762 |
| 621 | 8.0 | 12.8 | 4.61 | 2.260 | 2.850 | 411025.6910 | 4737251.714 |
| 622 | 4.6 | 7.7 | 3.69 | 1.966 | 2.404 | 411023.8587 | 4737249.843 |
| 623 | 2.0 | 4.1 | 2.17 | 1.384 | 1.158 | 411022.1877 | 4737248.066 |
| 624 | 5.4 | 8.5 | 4.71 | 2.308 | 2.082 | 411020.8246 | 4737246.288 |
| 625 | 3.2 | 5.4 | 3.22 | 1.798 | 2.868 | 411018.9495 | 4737244.518 |
| 626 | 9.1 | 12.7 | 5.06 | 3.074 | 3.178 | 411016.9667 | 4737242.890 |
| 627 | 9.3 | 13.7 | 6.27 | 3.068 | 3.316 | 411015.3775 | 4737244.673 |
| 628 | 9.8 | 6.4 | 5.22 | 1.836 | 1.842 | 411017.0392 | 4737246.641 |
| 629 | 7.2 | 10.9 | 4.53 | 2.678 | 2.746 | 411018.8499 | 4737248.201 |
| 630 | 6.3 | 10.3 | 4.97 | 3.024 | 2.746 | 411020.8349 | 4737249.771 |
| 631 | 1.9 | 3.0 | 1.92 | 1.106 | 1.156 | 411022.4755 | 4737251.631 |
| 632 | 8.3 | 11.2 | 5.78 | 2.556 | 3.012 | 411024.1192 | 4737253.402 |
| 633 | 7.9 | 11.4 | 6.02 | 2.394 | 2.558 | 411026.0698 | 4737254.702 |
| 634 | 4.9 | 8.4 | 4.50 | 2.024 | 2.166 | 411027.9606 | 4737257.596 |
| 635 | 8.9 | 13.1 | 5.43 | 2.722 | 2.754 | 411030.1542 | 4737258.919 |
| 636 | 5.4 | 8.2 | 3.90 | 2.024 | 2.064 | 411033.8864 | 4737261.854 |
| 637 | 8.5 | 11.0 | 6.32 | 3.692 | 3.322 | 411037.2914 | 4737265.299 |
| 638 | 0.0 | 1.1 | 0.69 | 0.558 | 0.438 | 411039.1818 | 4737266.752 |
| 639 | 4.1 | 7.4 | 2.88 | 1.874 | 1.946 | 411035.6988 | 4737266.959 |
| 640 | 3.2 | 6.1 | 3.27 | 1.912 | 1.596 | 411033.9027 | 4737265.610 |
| 641 | 10.7 | 14.1 | 6.23 | 2.714 | 3.116 | 411032.3685 | 4737263.827 |


| Tree No | $\begin{aligned} & \text { Dbh } \\ & (\mathrm{cm}) \end{aligned}$ | $\begin{aligned} & \mathrm{DGL} \\ & (\mathrm{~cm}) \end{aligned}$ | Height <br> (m) | Crown (NS) | Crown (EW) | X Coordinate | Y Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 642 | 6.1 | 9.5 | 4.15 | 2.244 | 2.162 | 411030.0970 | 4737262.300 |
| 643 | 10.8 | 15.6 | 6.75 | 3.424 | 3.122 | 411028.5990 | 4737260.768 |
| 644 | 4.5 | 7.5 | 3.49 | 2.940 | 2.864 | 411026.3842 | 4737259.469 |
| 645 | 0.0 | 1.5 | 1.20 | 0.672 | 0.660 | 411024.7361 | 4737257.800 |
| 646 | 5.5 | 8.9 | 4.76 | 2.342 | 2.514 | 411019.1739 | 4737251.777 |
| 647 | 7.9 | 13.3 | 3.55 | 3.074 | 3.224 | 411015.7306 | 4737248.613 |
| 648 | 4.5 | 7.4 | 4.07 | 1.934 | 1.730 | 411012.1843 | 4737248.467 |
| 649 | 5.0 | 8.1 | 3.76 | 2.572 | 2.466 | 411015.9231 | 4737252.020 |
| 650 | 4.2 | 6.3 | 3.69 | 1.836 | 1.612 | 411017.6085 | 4737253.503 |
| 651 | 1.6 | 3.2 | 1.83 | 1.034 | 1.066 | 411018.9929 | 4737255.393 |
| 652 | 7.4 | 11.0 | 5.29 | 2.606 | 2.830 | 411020.6735 | 4737256.999 |
| 653 | 3.4 | 5.0 | 3.71 | 2.056 | 2.974 | 411022.8577 | 4737258.198 |
| 654 | 7.4 | 11.3 | 5.69 | 2.564 | 2.878 | 411024.0615 | 4737260.201 |
| 655 | 2.0 | 3.9 | 2.01 | 1.298 | 1.132 | 411026.9880 | 4737262.592 |
| 656 | 0.0 | 1.6 | 0.94 | 0.802 | 0.744 | 411028.8077 | 4737264.128 |
| 657 | 4.1 | 6.7 | 3.59 | 2.192 | 1.816 | 411030.7508 | 4737265.677 |
| 658 | 10.8 | 14.8 | 6.39 | 2.630 | 3.256 | 411032.4122 | 4737267.209 |
| 659 | 11.3 | 16.1 | 5.55 | 3.822 | 3.442 | 411034.0206 | 4737268.724 |
| 660 | 5.9 | 8.5 | 4.32 | 2.194 | 1.932 | 411036.0892 | 4737270.065 |
| 661 | 1.7 | 3.2 | 2.00 | 1.294 | 1.352 | 411032.4807 | 4737270.794 |
| 662 | 2.2 | 3.5 | 2.37 | 0.864 | 1.652 | 411029.1457 | 4737267.500 |
| 663 | 4.5 | 7.6 | 4.15 | 1.914 | 1.652 | 411025.3675 | 4737264.510 |
| 664 | 7.4 | 11.7 | 5.13 | 2.802 | 2.762 | 411022.2471 | 4737261.732 |
| 665 | 3.7 | 6.8 | 3.20 | 1.540 | 1.458 | 411020.9592 | 4737259.838 |
| 666 | 7.7 | 11.6 | 4.68 | 2.434 | 2.636 | 411019.1693 | 4737258.108 |
| 667 | 0.0 | 1.8 | 1.03 | 0.562 | 0.620 | 411017.4226 | 4737257.115 |
| 668 | 12.9 | 19.9 | 6.41 | 4.032 | 3.856 | 411015.9159 | 4737255.395 |
| 669 | 4.1 | 7.4 | 3.54 | 1.948 | 1.984 | 411014.3051 | 4737253.816 |
| 670 | 5.2 | 9.4 | 4.58 | 2.142 | 2.232 | 411010.7073 | 4737250.436 |
| 671 | 6.5 | 10.4 | 4.31 | 2.326 | 2.380 | 411010.9103 | 4737254.045 |
| 672 | 6.9 | 11.6 | 5.45 | 3.318 | 2.998 | 411012.5823 | 4737255.509 |
| 673 | 7.3 | 10.3 | 4.52 | 2.764 | 2.548 | 411014.2411 | 4737257.219 |
| 674 | 2.6 | 5.1 | 2.25 | 1.648 | 1.742 | 411015.5514 | 4737259.101 |
| 675 | 2.0 | 5.0 | 2.23 | 1.270 | 1.292 | 411019.0205 | 4737261.284 |
| 676 | 4.6 | 9.3 | 3.96 | 2.236 | 2.126 | 411022.2908 | 4737264.819 |
| 677 | 5.0 | 7.4 | 4.08 | 2.032 | 2.086 | 411025.7878 | 4737268.059 |
| 678 | 9.3 | 13.8 | 6.12 | 3.084 | 2.852 | 411027.5410 | 4737269.501 |
| 679 | 8.4 | 13.3 | 5.97 | 2.778 | 2.900 | 411030.9540 | 4737272.604 |
| 680 | 8.5 | 11.9 | 4.76 | 3.054 | 2.714 | 411032.9443 | 4737273.819 |
| 681 | 7.5 | 11.9 | 4.40 | 2.810 | 3.042 | 411031.3136 | 4737275.635 |
| 682 | 3.7 | 6.6 | 3.61 | 1.650 | 1.816 | 411029.2131 | 4737274.526 |
| 683 | 9.3 | 14.4 | 6.61 | 2.914 | 2.662 | 411026.0185 | 4737271.356 |
| 684 | 8.6 | 13.6 | 5.78 | 2.878 | 2.950 | 411024.1305 | 4737269.800 |


| Tree <br> No | Dbh <br> $(\mathrm{cm})$ | DGL <br> $(\mathrm{cm})$ | Height <br> $(\mathrm{m})$ | Crown <br> $(\mathrm{NS})$ | Crown <br> $(E W)$ | X <br> Coordinate | Y <br> Coordinate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 685 | 3.2 | 6.0 | 2.88 | 1.602 | 1.610 | 411022.2625 | 4737268.269 |
| 686 | 5.2 | 8.6 | 3.82 | 1.834 | 1.734 | 411017.2868 | 4737263.043 |
| 687 | 7.4 | 11.6 | 4.89 | 2.996 | 2.924 | 411020.8637 | 4737270.138 |
| 688 | 2.6 | 4.2 | 2.76 | 1.336 | 1.120 | 411024.2703 | 4737273.234 |
| 689 | 11.7 | 17.0 | 5.95 | 4.074 | 3.306 | 411026.0862 | 4737274.621 |
| 690 | 8.5 | 16.3 | 4.60 | 3.058 | 2.938 | 411029.7794 | 4737277.498 |
| 691 | 1.5 | 2.6 | 2.02 | 1.116 | 1.154 | 411122.1758 | 4737177.269 |
| 692 | 0.0 | 1.4 | 0.65 | 0.356 | 0.364 | 411086.5862 | 4737200.871 |
| 693 | 0.9 | 2.7 | 1.35 | 0.716 | 1.082 | 411064.0131 | 4737203.442 |
| 694 | 0.0 | 0.9 | 0.46 | 0.230 | 0.344 | 411052.1229 | 4737216.135 |
| 695 | 0.0 | 1.1 | 0.69 | 0.428 | 0.538 | 411058.1360 | 4737234.647 |
| 696 | 0.0 | 1.2 | 0.79 | 0.366 | 0.440 | 411052.6904 | 4737233.545 |

## Curriculum Vitae

## EDUCATION

2019 MASTER OF SCIENCE IN FORESTRY
SUNY College of Environmental Sciences and Forestry, Syracuse, NY.
Master's Degree Candidate, Graduate Program in Environmental Science
Graduate Advisor: Dr. Eddie Bevilacqua
Thesis Title: "Evaluation of UAS imagery for forest regeneration surveys"

## 2013 BACHELOR'S DEGREE IN FORESTRY

(Honor Degree)
Karadeniz Technical University, Trabzon, Turkey
Department of Forest Engineer

## PROFESSIONAL EXPERIENCE

2014 Work as a Forest Engineer, Erkar Forestry
Kutahya, Turkey
Forest monitoring and surveys. The work required technical skills such as in GPS, cartography, and tree ID.

2013 Work as a Forest Engineer, Erkar Forestry
Antep, Maras, and Hatay, Turkey
Forest monitoring and surveys. The work required technical skills such as in GPS, cartography, and tree ID.

2012 Internship as Forest Engineer at 31st chief engineer management
Gumushane, Turkey
Application of basic knowledge and skills in forestry

2011
Internship on mapping via ArcGIS at Laboratory of Forest Management at the Karadeniz Technical University

Trabzon, Turkey
Creating data set and creating maps in ArcGIS

## SUCCESS AND SCHOLARSHIPS

2019 Winner of "The Best Poster award at STRATUS 2019" (Systems and Technologies for Remote Sensing Applications Through Unmanned Aerial Systems), Rochester, NY.

2014 Turkish Ministry of Education Full Non-Return Scholarship to complete a master's degree.

2013 Honor Degree obtained when graduating from Karadeniz Technical University

## POSTER PRESENTATIONS

April 16, 2019

February 27, 2019

January 24, 2019

2019 Spotlight on Student Research Symposium Syracuse, New York.

STRATUS 2019
Rochester, NY. 25-27 February 2019.
NYSAF 2019 Annual Meeting
Syracuse, New York. January 23-25, 2019.

## LICENSES

Remote Pilot, Certificate Number: 4142821, 11 Jun 2018

## COMPUTER \& TECHNICAL SKILLS

| Expert | ArcGIS for Desktop, Word and Excel Microsoft Office Extensions |
| :--- | :--- |
| Proficient | SPSS, Minitab, Trimble Tripod GPS, Mission Planner, GeoSetter, Python. |

```
Beginner

\section*{VOLUNTEERING EXPERIENCE}

Fall 2018 Volunteered as a Teaching Assistant in the course ESF 300: Introduction to Geospatial Information Technologies at SUNY ESF. My role was to assist students during their lab hours.

2018-2019 Food Recovery Network at Syracuse University and SUNY ESF, This organization help to distribute donated dining hall food to local charitable organizations to reduce food waste.```


[^0]:    *The pixel resolution was derived from the MAPIR Camera Flight Calculator (MAPIR CAMERA, 2020).

[^1]:    *The pixel resolution was derived from the MAPIR Camera Flight Calculator (MAPIR CAMERA, 2020).

