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Abstract 

J. Lin. Sensitivity and Uncertainty Analyses of an Urban Forest Structure and Function 

Model, 226 pages, 14 tables, 15 figures, 2020. APA style guide used. 

 

Urban forest models can quantify forest structure and benefits, and are frequently employed 

in decision-making. This dissertation first reviewed case studies of urban forest modeling 

practices over the past two-decades, compared the similarities and differences among 

different models, and summarized the current trends and gaps in the field of urban forest 

modeling. One gap is the lack of uncertainty assessments for model output. To address this 

gap, this dissertation performed sensitivity and uncertainty analyses for a popular urban forest 

model, i-Tree Eco. Based on a case study in New York City, the sensitivity analyses found 

that the most important input variables are genus for isoprene and monoterpene emissions, 

DBH for carbon estimators, and leaf area index, temperature, and photosynthetically active 

radiation for dry deposition estimators. The uncertainty analyses addressed uncertainties 

associated with the entire i-Tree Eco modeling process, from input data collection, to the 

characterization of urban tree structure, to the subsequent estimators of the ecosystem 

services of urban trees. Uncertainty magnitudes were quantified by employing bootstrap and 

Monte Carlo simulations, and the three sources of uncertainty, input, model, and sampling, 

were aggregated to derive an estimator of total uncertainty. Through case studies in 16 cities 

across the United States, the average magnitude of total uncertainty across the 16 cities was 

12.4% for leaf area, 12.4% for leaf biomass, 13.5% for carbon storage, 11.1% for carbon 

sequestration, 40.7% for isoprene emissions, and 25.0% for monoterpene emissions. For leaf 

and carbon estimators, the total uncertainty is primarily driven by sampling uncertainty, while 

the magnitudes of sampling, input and model uncertainty are similar across the 16 study 

cities. In contrast, input, sampling, and model uncertainties all contribute similarly to the total 

uncertainty for isoprene and monoterpene emission estimators, and there are larger variations 

in these three sources of uncertainty across the 16 study cities. To reduce overall uncertainty, 

future studies should develop more accurate urban-, local-, and species-specific allometric 

relationships, improve the spatial representation of meteorological variables, develop more 

extensive and accurate local-scale measurements to calibrate and verify models, and improve 

sampling strategies. 

 

Keywords: urban forestry, i-Tree Eco, ecosystem services, comparative studies, sampling, 

sensitivity, and uncertainty analyses. 
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Chapter 1 Introduction 

1 Background and motivation  

Urbanization can result in many adverse effects, including increased runoff and 

nutrient export, increased human exposure to air pollutants, increased temperatures, and 

increased material consumption and energy use (Arnold & Gibbons, 1996; Shuster et al., 

2005; Grimmond, 2007; Duh et al., 2008; Gurjar et al., 2008; Poumanyvong & Kaneko, 

2010). Engineered infrastructure (e.g., sewer systems, levees, well-insulated buildings) is 

often built to alleviate these negative effects and bring benefits to all segments of urban 

society. However, built infrastructure tends to be expensive in terms of construction and 

maintenance costs, and there is a lack of flexibility and adaptability when these systems are 

constructed (Keeler et al., 2019). As a nature-based solution, urban trees are known to 

provide multiple ecosystem services to benefit human well-being, and these solutions are 

typically more affordable, flexible and able to provide more diverse benefits than built 

infrastructure. Many cities have launched large urban tree planting initiatives, and 

incorporated trees into urban master plans (Morani et al., 2011; McPherson et al., 2011; 

Pincetl et al., 2013). However, simply increasing tree canopy does not necessarily guarantee 

alleviating the adverse effects of urbanization or the provision of expected ecosystem 

services.  

To better manage urban forests and increase tree benefits, models have been developed 

to quantify the structure, function and ecosystem benefits of trees. Both mechanistic and 

statistical models have been developed. The models use forest structure, locational and 
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environmental parameters as input variables to estimate ecosystem services. Models of the 

structure, function and services of urban trees can help develop more efficient and effective 

planting schemes, identify areas where existing forests should be maintained, improve the 

overall management of urban forests, and better quantify the benefits of these forest 

resources. These models have been applied in different locations and at varying scales around 

the world to advocate for the benefits of urban trees. Among these urban forest models, the i-

Tree tools (www.itreetools.org), developed by the U.S. Department of Agriculture (USDA) 

Forest Service, have been used by hundreds of researchers, urban planners, and foresters (Lin 

et al., 2019). i-Tree Eco consists of five modules which can quantify forest structure, biogenic 

emissions, carbon storage and sequestration, air pollution removal, and building energy 

effects of urban forests. This model typically uses field plots, air pollution, and 

meteorological data as input variables (Nowak & Crane, 2000; Nowak et al., 2008a). The 

model provides information regarding the structure, function, and benefits of urban forests on 

ecosystems and their inhabitants. This dissertation focuses generally on urban forest 

modeling tools, and the i-Tree tools in particular. 

i-Tree tools have been extremely beneficial to the planning and management of urban 

trees, but have their limitations. These tools make assumptions that simplify the function of 

urban forests and the representation of urban landscapes. While such assumptions are often 

necessary to model these complex systems, they can increase the uncertainty of model output 

(Yang et al., 2005), and which may hinder the efficient and effective management of urban 

forests. The characterization of the uncertainty of output from i-Tree tools should be more 

fully explored. In the field of environmental modeling, uncertainty analysis is regarded as a 

http://www.itreetools.org/
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necessary component of modeling practices because uncertainty information can facilitate 

model transparency and clarify the nature of evidence (Bryant et al., 2018). When these 

models are applied to support decision making, such as in policy analyses, risk assessments, 

and environmental impact assessments, decision makers may adjust their decision making 

process when they are made aware of the uncertainty of the information they are 

incorporating to make these decisions (Walker et al., 2003).  

This research first conducts a literature review of urban forest modeling during the 

past two-decades, and then using i-Tree Eco performs a sensitivity analysis and develops 

methods to characterize the uncertainty of i-Tree Eco output. The sensitivity analysis maps 

the relationships between input and output variables to determine which input variables have 

the greatest impact on output variability, and this information is then used when assessing the 

uncertainty of model output. This work explores not only the uncertainty of output due to the 

uncertainty of input variables, but also the uncertainties associated with other aspects of the 

model and modeling processes (e.g., sampling uncertainty and model uncertainty).  

2 Sensitivity and uncertainty analyses  

A model is an abstract representation of a system or process (Turner & Gardner, 

2015), involving a certain degree of aggregation and exclusion (Christopher Frey & Patil, 

2002). For any model, a critically important component is to assess the sensitivity of model 

output to model inputs, and to develop estimators of the uncertainty of model outputs 

(Halpern, 2005; Marino et al., 2008). Sensitivity analysis (SA) focuses on the change in 

model output values that result from changes in model input values (Saltelli et al., 2008). 
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Saltelli et al. (2004 & 2008) provide a comprehensive review of SA techniques, classification 

and comparisons, application settings, and case studies. Overall, SA techniques can be 

roughly divided into global and local methods, and are generally applied using four 

techniques: factor fixing, factor prioritization, factor mapping, and variance cutting. Local 

methods typically involve variations of input parameters at one specific location (e.g., at one 

solution), and do not attempt to fully explore the sample space of the input variables. In 

contrast, global method allows simultaneous variation of all input variables across the entire 

input variable space (Saltelli et al., 2008). By fixing non-influential factors, factor fixing is 

able to identify the subset of input factors which explain most of the variance in the outputs. 

With this information, one can reduce the dimensionality of the problem. Factor prioritization 

is then performed to identify the most influential factors from this subset of input factors. 

Factor mapping explores which factor or combination of factors is mostly responsible for 

producing realizations of specific outputs. The objective of variance cutting is to reduce the 

output variance to a specific threshold. 

Uncertainty analysis (UA) attempts to describe the entire set of possible outcomes, 

together with their associated probabilities of occurrence (Loucks et al., 2005). Various 

methods for UA have been developed. These methods range from classical frequentist 

analyses (Omlin & Reichert, 1999) to complex Bayesian networks (Bishop, 2006), and can be 

either subjective (e.g., expert assessment; Uusitalo et al., 2015) or objective (e.g., probability 

theory; Pearl, 2003). Of all these methods, gradient-based first-order error analyses, 

resampling methods, and Bayesian techniques are most frequently employed (Clark, 2005). 

Gradient-based first-order error analyses techniques, which are sometimes referred to as delta 
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methods, are based on a first-order Taylor series approximation to the variance of the output 

parameters (Loucks et al., 2005). Resampling techniques require multiple model simulations, 

all of which are generally assumed to be equally likely, and then examining the distribution of 

the output parameter. For resampling techniques, input parameters are often randomly chosen 

with a preconceived notion of their probability distribution (Helton et al., 2006). Bayesian 

techniques require the user to have a prior distribution of the uncertainty of the input, and 

then for each parameter set, the model is simulated based on the prior distribution. In 

Bayesian techniques, a posterior distribution of the output is then developed, where each 

prior simulated output is weighted by the likelihood it occurred (Freer et al., 1996).  

Currently only limited efforts have been devoted to assessing the sensitivity of i-Tree 

Eco outputs to their inputs, and to characterize the uncertainty of model output. Hirabayashi 

et al. (2011) performed a SA of air pollution removal (i-Tree Eco-D) using Monte Carlo 

simulations with a Latin hypercube sampling and a Morris one-at-a-time sensitivity test. 

Nowak et al. (2008b) examined the effects of plot size and number of plots on the variability 

of urban forest assessments. Based on the criterion of standard error and relative standard 

error of output, as well as tradeoffs between cost, precision and the length of the typical 

sampling season, Nowak et al. (2008b) recommended a minimum of 200 plots and plot size 

of one-tenth of an acre. The application of both SA and UA to i-Tree Eco, one of the i-Tree 

tools, will be the primary focus of this thesis. 
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3 Research objectives  

This research assesses the sensitivity of i-Tree Eco output to its inputs, and develops 

and implements a methodology to characterize the uncertainty of i-Tree Eco output. The 

intellectual merit of this work includes: (1) identifying new emerging topics, and discovering 

broad trends and insight in the field of urban forest modeling; (2) developing methods and 

frameworks to explicitly quantify and present model uncertainties to increase the credibility 

of the modeling process; and (3) providing urban managers more complete information about 

the structure, function, and value of their forest resources to support effective decision-

making. In addition, the developed methods and framework can be applied to other urban 

forest models to advance urban forest modeling practices in general.  

This thesis revolves around four research objectives. Below each research objective is 

presented, along with a related research questions and a testable null hypothesis. 

Research Objective 1 

The first research objective is to review literature on the modeling of urban forest 

structure and function during the last two-decades, compare the similarities and differences 

between modeling techniques and applications, and assess model case studies among 

different locations, units and scales.  

Research Questions 

What are the most commonly used models in the field of urban forestry? Can urban 

forest modeling case studies throughout the world be generalized? What topics or ecosystem 

services do most urban forest models quantify?  
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Null Hypothesis 

All the urban forest models are equally applied and are used to estimate similar 

ecosystem services. 

Research Objective 2 

The second research objective is to assess the sensitivity of output from i-Tree Eco, one 

of the most commonly employed urban forest models, to changes in input parameters. 

Specially, we explore how individual inputs or groups of inputs contribute to the variability 

of i-Tree Eco outputs, and differentiate the relative importance of different input variables.  

Research Questions 

Which input variables contribute most to the variance of output parameters of interest? 

What effects (e.g., negligible, linear and additive, non-linear or interaction, threshold effects) 

do input variables have towards the output of interest? 

Null Hypothesis 

All input variables contribute equally to the uncertainty of model outputs. 

Research Objective 3 

The third research objective is to assess the uncertainties associated with input data, 

field sampling methods and model error throughout on the quantification of urban forest 

structure and function, and to aggregate these three sources of uncertainty to derive an 

estimator of total uncertainty.  

Research Questions 

What are the magnitudes of model output uncertainty, and which uncertainty sources 

contribute most to the total uncertainty of i-Tree output estimators? For different model 
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outputs, are the conclusions the same? 

Null Hypothesis 

All three sources of uncertainty contribute equally to the total uncertainty of i-Tree 

output estimators.   

Research Objective 4 

The fourth research objective is to apply the uncertainty framework to 16 cities having 

different urban characteristics and located in different climatic zones across the US, and to 

assess whether similar relationships between model, sampling and input uncertainty are 

consistent across these cities. 

Research Questions 

What are the range for the magnitudes of the total uncertainty, and how do they change 

across cities? How do the characteristics of the three sources of uncertainty (e.g., their 

magnitudes and rankings) vary across cities? 

Null Hypothesis 

The characteristics of the three sources of uncertainty are consistent across 16 cities. 

4 Thesis Outline 

This thesis follows a manuscript format, where subsequent chapters are written as 

stand-alone manuscripts. Chapter 1 contains a brief introduction to the thesis and presents the 

thesis research objectives and questions. Chapter 2 provides a thorough review of urban 

forest modeling, and has been published in Urban Forestry & Urban Greening (Lin et al., 

2019). Chapter 3 presents a sensitivity analysis of three components of i-Tree Eco: biogenic 
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volatile organic compounds (BVOCs) (isoprene and monoterpenes) emissions, carbon storage 

and sequestration, and dry deposition of nitrogen dioxide, sulfur dioxide, and ozone. This 

chapter has been accepted for publication in Arboriculture and Urban Forestry (Lin et al., 

2020). Chapter 4 presents an analysis of model, sampling, input uncertainty on output from i-

Tree Eco’s urban forest characterization, BVOCs, carbon storage and sequestration, and air 

pollution removal. This chapter uses New York City as a case study. Chapter 5 expands the 

uncertainty analyses of Chapter 4 to other US cities to see if the results found in New York 

City are consistent with those found in other cities. Finally, Chapter 6 provides a thesis 

summary and reflects back on the research objectives and questions presented in Chapter 1. 
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Chapter 2 A review of urban forest modeling: 

implications for management and future research 

Abstract 

Urban forest modeling is becoming increasingly complex, global, and 

transdisciplinary. Increased modeling of urban forest structure and function presents an 

urgent need for comparative studies to assess the similarities and differences between 

modeling techniques and applications. This paper provides a systematic review of 242 journal 

papers over the past two-decades, and identifies 476 case studies. We assess model case 

studies among different locations, units and scales, compare the ability and functional 

capacity of the models and different tools, compare papers published in different disciplines, 

and identify new emerging topics in the field of urban forest modeling. Conclusions from this 

analysis include: (1) the spatial distribution of case studies is primarily clustered around the 

US, Europe, and China, with the most popular units to model being streets and parks; (2) the 

most commonly used model types are the i-Tree toolset, ENVI-met, computational fluid 

dynamic models, and the Hedonic price model; (3) uncertainty assessment of urban forest 

models is limited; (4) spatially explicit models are critically important for estimating of 

ecosystem services as well as for environment management; (5) most case studies focus on 

biophysical benefits with few studies estimating economic and social benefits; and (6) 

linkages between urban forests and their social-psychological and health effects are less 

common due to subjectivity and uncertainty in expressing and quantifying human cultures, 

attitudes and behaviors. Based on a comparison of different models and a syntheses of case 
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studies, we make suggestions for future research connecting urban forestry and urban 

ecosystems, model development, and ecosystem services. Such knowledge is critical for 

policy- and decision-makers, and can help improve urban forest planning, design and 

management. 

Key words: urban forestry, comparative studies, multi-scale, ecosystem services, social-

ecological system 

1 Introduction 

A term first used in 1965 (Gerhold, 2007), “urban forestry” has become increasingly 

transdisciplinary in terms of theories (from both physical and social sciences), methods (e.g., 

Geographic Information Systems, remote sensing, monitoring, and modeling), and 

participants (e.g., researchers, government officials, citizens, and volunteers). Many 

definitions of urban forestry have been given, and the definition and terminology 

harmonization is challenging (Konijnendijk et al., 2006). However, several widely-used 

definitions, such as those provided by Jorgensen (1986), Society of American Foresters 

(Helms, 1988), Konijnendijk et al. (2006), and Nowak et al. (2010), all emphasize urban 

forestry’s comprehensive nature, which involves scientific, management, and planning 

elements. In this article, we look at urban forestry in a general way. Literally, “urban forestry” 

consists of two parts “urban” and “forestry”. An “urban” system is a spatially heterogeneous, 

complex adaptive social-ecological system (Wu, 2014), which aims for not only 

environmental functionality, but also social equity and economic viability (BES LTER, 

2018). Compared to traditional forestry, “forestry” in the urban context focuses on additional 
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services to advance urban sustainability. As a demographic trend and land transformation 

process (Pickett et al, 2001), urbanization creates many environmental issues (e.g., Duh et al., 

2008; Grimmond, 2007; Poumanyvong & Kaneko, 2010); these issues make the design of 

sustainable urban forestry (Fazio, 2003) particularly challenging.  

The morphological characteristics (e.g., leaf area, stem diameter), functions (e.g., 

photosynthesis, evapotranspiration), and structure (e.g., species composition, spatial pattern) 

of trees provide a wide range of ecosystem services (ES) and benefits that can alleviate the 

adverse effects of urbanization (Nowak & Dwyer, 2007). Many cities have established 

substantial programs to increase their tree canopy coverage (Morani et al., 2011; McPherson 

et al., 2011). However, simply increasing tree canopy itself does not guarantee the provision 

of expected ES. For example, Vos et al. (2013) have shown that it may not be a viable 

solution to alleviate a local air pollution hotspot by using urban vegetation, and Wu (2014) 

indicated that urban greening may lead to unintended environmental injustice issues such as 

‘ecological gentrification’.  

To better manage urban forests and maximize tree benefits, several models have been 

developed and implemented. These models have been applied in case studies on individual 

locations and provide us with knowledge about urban tree services and benefits. Although 

there is evidence of a global trend of increased urban landscapes and ecological structural 

homogenization (Wu, 2014; Turner & Gardner, 2015), each city is still unique, and the ES 

provided by urban forests change with forest characteristics and environmental conditions. 

Findings for one city can be quite different compared to those of another city, and the current 

global distribution of urban forest case studies tends to cluster within specific regions.  
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There are limited comparative studies of urban forest ecosystem models. Of interest 

here is summarizing and generalizing findings across a wide range of case studies to identify 

trends and gaps in urban forest modeling. Such knowledge is critical for urban forests 

research and management. By reviewing urban forest modeling over the past two-decades, 

the goal of this paper is to facilitate a better understanding of model characteristics and uses, 

and integrate different model practices and case studies to advance our knowledge of urban 

forestry and inform future research and management. 

2 Key terms and concepts 

The urban forest contains all trees, shrubs, lawns, and pervious soils in urban areas 

(Escobedo et al., 2011; Roy et al., 2012). Our review here focuses on trees and shrubs in 

different urban areas (e.g., street, park, and residential area), as well as their local site and 

environmental conditions. Green roofs, green infrastructure, and green space (Rowe, 2011) 

are all different, but related concepts, and they include various vegetative components. They 

are also included in this review if their study focuses on the structure and benefits of urban 

trees and shrubs. 

There are many definitions of interdisciplinarity and transdisciplinary. We 

differentiate them based on participants and final goals. Here interdisciplinary studies refer to 

the involvement of several academic disciplines under a common research goal to create new 

knowledge. Alternatively, transdisciplinary studies involve not only academic researchers but 

also non-academic participants (e.g., the public and policy-makers) for the purpose of solving 

real-world problems (Tress et al., 2005). 
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 A model is a simplified description of a real system with inputs, key components of 

the system and their relationships, and outputs constrained within specific spatial boundary 

(Jones, 2013). A model can be developed based on either mechanistic approaches or 

empirical relationships, or a hybrid of both. The models considered in this study must be able 

to describe urban forest structure (e.g., size, species composition, spatial configuration) 

(Nowak et al., 2008), and function (e.g., various ES) in highly complex systems. They use 

forest structure, as well as other site and environmental parameters, as input variables to 

estimate ES as model outputs. We focus on numerical and statistical models since they are 

used extensively to quantify forest derived ES. To link more directly to management 

implications and limit the scope of the analyses reviewed, models focusing entirely on forest 

structure and dynamics (e.g., growth, mortality) are excluded. As input datasets are a 

necessary part of any model, characteristics of input datasets are also explored from the 

perspective of data acquisition approaches: bottom-up approaches mainly consist of field 

surveys and sampling while top-down approaches rely mainly on remotely sensed data.   

Since the release of the UN’s Millennium Ecosystem Assessment (MEA) (MEA, 

2005) and The Economics of Ecosystems and Biodiversity (TEEB) report (TEEB 

Foundations, 2010), ES have gained broader attention in the literature (Escobedo et al., 2011; 

Gómez-Baggethun & Barton, 2013). The differentiation between ecosystem function and 

service has been well-established, with the former emphasizing ecosystem processes (means) 

while the latter focusing on specific outputs or products (ends) (Escobedo et al., 2011; Roy et 

al., 2012). In this study, we focus on ES that can be derived from forest structure and 

function. Following the classification scheme of urban forest ES provided by Nowak and 



 

19 

 

Dwyer (2007), we expressed them in three value-domains: biophysical, social and economic. 

3 Study Methods 

Model practices and case studies of urban forests in academic English-language 

journals were reviewed during the past two-decades (1996- 2017). Here we use the term 

“case study” to refer to one simulation at one location employing either numerical or 

statistical models. To be comprehensive, objective and accurate, a systematic quantitative 

literature review was first performed (Petticrew, 2001). Two worldwide scholarly electronic 

databases, Google Scholar and Scopus, were employed in this study. Keywords or 

combination of keywords used for the search included: ‘urban tree/forest/vegetation/green 

roof’, ‘ecosystem services/benefits’, and ‘model/tool’. For each identified paper, articles of 

related or similar topics were identified via: (1) references within the paper, (2) ‘related 

articles/documents’ function in Google Scholar and Scopus, and (3) articles that cited the 

paper. Although this step was mainly implemented based on Google Scholar and Scopus, 

other scholarly electronic databases were involved because search results often led to 

different links (e.g., Science Direct, Research Gate, Springer Link, and individual journal 

websites). While our literature search was not exhaustive, we believe we have captured a 

majority of journal articles on this topic.     

After identifying journal articles, the following items were extracted from each paper: 

(i) year of publication, (ii) case study location, (iii) model(s), (iv) input data, (v) title, (vi) 

author(s), (vii) journal, (viii) discipline, and (ix) topics and ES. A spatio-temporal analysis 

was then performed using (i) year of publication and (ii) case study location. For this 



 

20 

 

analysis, each paper was grouped by continent and major climatic zone to determine the 

distribution and pattern of urban forest studies. Following the work of Roy et al. (2012), the 

continents included were North America, South America, Europe, Asia, Australia, and Africa; 

and the climatic zones were tropical, dry, subtropical, temperate, and continental. Other 

space-based analyses included identifying the scale of each study performed (e.g., city, 

region, nation), and the unit for each case study (e.g., park, street, neighborhood, community, 

district, watershed). Next, comparisons among models and among disciplines were conducted 

using (iii) model(s), (iv) input data, and (viii) discipline. For each model, the total numbers of 

papers and citations (how many times that particular paper has been cited) were calculated. In 

addition, as input datasets are part of any model, each paper was also characterized based on 

the acquisition sources of the input datasets. Each journal was grouped into a specific field, 

and a comparison among fields was conducted. We grouped journals into fields based on 

journal description and the topics of the identified papers from journals. Finally, comparisons 

between ES were investigated using (ix) ES topics.  

4 Results 

We identified 242 relevant papers and 476 case studies over the time period 1996-

2017 (see Supplementary Material for a list of papers), with more than half of the papers 

published during the past 6 years (2012-2017). There are more case studies than publications 

because some papers include several case studies. Citation numbers, primarily conducted 

between the period of November 2017 to January 2018 based on Google scholar, show a 

relatively exponential-type growth pattern over time (Figure 2.1), reflecting the increasing 
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number of publications, activities and influences of this field. 

 

Figure 2.1 The number of publications and citations yearly from 1996 to 2017 (citation 

counting was conducted between the period of November 2017 to January 2018 based on 

Google scholar). 

4.1 Place-based, comparative studies 

Among the papers examined, a total of 476 model practices and case studies were 

identified globally (Figure 2.2): North America (66.6%), Europe (14.5%), Asia (11.1%), 

Australia (3.6%), South America (2.7%), and Africa (1.5%). Another way to express the 

global distribution of case studies is to classify case studies by climatic zones: tropical 

(2.8%), dry (7.4%), subtropical (4.9%), temperate (44.9%), and continental (40.0%) (Figure 

2.3). The global distribution of case studies was uneven, with a majority of studies focused on 

urbanizing regions of temperate and continental climatic zones in the US, Europe and China; 
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there were comparatively few studies of urban forest modeling in South America, Australia, 

and Africa. 

 

Figure 2.2 Global distribution of urban forest case studies 

With regards to scale, there were 8 papers conducted at a national level, 9 at a 

regional level, 61 at a city level, 8 at a watershed level, 49 at a local scale level, and 107 at a 

microscale level (Figure 2.3). Both local and microscale levels are scales smaller than a city 

level. Local scale includes neighborhoods, communities, districts, planning zones, 

socioeconomic sub-regions, and other similar units, while microscale includes green roofs, 

buildings, parks, streets and other similar settings. Most of the studies were conducted at city, 

local and microscale levels, while some studies have been made at watershed, regional and 

national levels. 
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Figure 2.3 Summary statistics (percentage) of 242 original papers in different sub-categories: 

continents, climatic zones, scale, and input data sources. The percentages for each continent 

and climatic zone are calculated based on number of case studies, while percentages for each 

scale and input data source are based on number of papers. 

 

Inside the city, a variety of geographies have been employed in case studies, 

depending on the study purpose and discipline. Each discipline may identify a geographical 

unit or the most salient features associated with the unit differently (Grimm et al., 2000), such 

as a watershed (hydrology), land use or land cover types (geography), neighborhood or 

community (social science), and street canyon or building block (energy science). For the 

local scale, the most studied units were districts/communities with a total of 28 case studies; 

within the microscale, streets, parks, and green roofs received the most attention, with the 

numbers of case studies being 58, 22 and 25, respectively. 
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4.2 Field-based analyses 

Sixty-nine journals were identified over a wide range of fields (Table 2.1), revealing 

the transdisciplinary nature of this topic. Three fields interact closely and contribute the 

largest number of papers on this topic (in parenthesis are the number of papers and 

percentages, respectively): environment (53, 21.9%), forestry (48, 19.8%), and energy (37, 

15.3%). The reason that the environmental field occupied the largest number of papers is due 

to the contribution from two journals: Environmental Pollution (16, 6.6%) and Atmospheric 

Environment (12, 5.0%). Thirty-four papers were published in Urban Forestry & Urban 

Greening, which makes forestry the next most common field. This field was followed by 

energy, with the largest contributions from Building and Environment (16, 6.6%) and Energy 

and Buildings (15, 6.2%). Other fields that also contribute to this topic were landscape (28, 

11.6%), ecology (14, 5.8%), economics (11, 4.5%), climatology (12, 5.0%), and geography 

(3, 1.2%) (Table 2.1). This topic attracts attention from not only scientists, but also urban 

planners and policy makers, leading to papers in urban planning and management journals 

(e.g., Journal of Environmental Management, Environmental Management). 
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Table 2.1 Distribution of urban forest modeling papers among different fields 

Fields Journal Title No. of Papers Field Total 

Environment Environmental Pollution 16 53 

 
Atmospheric Environment 12 

 

 Journal of Environmental Management 7 
 

 Science of the Total Environment 5 
 

 Environmental Modelling & Software 2 
 

 Environmental Science & Technology 1 
 

 International Journal of Environment and Pollution 1 
 

 Environmental Management 1 
 

 Environmental Science and Pollution Research 1 
 

 Environment and Behavior 1 
 

 Journal of Environmental Planning and Management 1 
 

 
International Journal of Environmental Science and Development 1 

 

 Atmospheric Pollution Research 1 
 

 Procedia Environmental Sciences 1 
 

 Ambio 1 
 

 AIMS Environmental Science 1 
 

Forestry and Arboriculture Urban Forestry & Urban Greening 34 48 

 
Journal of Arboriculture 5 

 

 Arboriculture and Urban Forestry 3 
 

 Journal of Forestry 2 
 

 iForest-Biogeosciences and Forestry 1 
 

 Frontiers of Forestry in China 1 
 

 Journal of Sustainable Forestry 1 
 

 Forests 1 
 

Energy Building and Environment 16 37 

 
Energy and Buildings 15 

 

 Solar Energy 3 
 

 Energy Procedia 1 
 

 Applied Energy 1 
 

 Building Simulation 1 
 

Landscape Landscape and Urban Planning 28 28 

Ecology Urban Ecosystems 7 14 

 
Ecological Modelling 2 

 

 

International Journal of Biodiversity Science, Ecosystem Services & 

Management  
2 

 

 Ecological Applications 1 
 

 Ecosystem Services 1 
 

 Ecosystems 1 
 

Meteorology and 

Climatology 
Theoretical and Applied Climatology 4 12 

 
Meteorologische Zeitschrift 2 

 

 Atmosphere 2 
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 International journal of climatology 1 
 

 Boundary-layer meteorology 1 
 

 Advances in Meteorology 1 
 

 Journal of Applied Meteorology and Climatology 1 
 

Economics Ecological Economics 4 11 

 
Journal of Forest Economics 1 

 

 Journal of Environmental Economics and Management 1 
 

 Land Economics 1 
 

 The Appraisal Journal 1 
 

 Australian Journal of Agricultural and Resource Economics 1 
 

 The Journal of Real Estate Finance and Economics 1 
 

 Forest Policy and Economics 1 
 

Geography Urban Geography  1 3 

 
Moravian Geographical Reports 1 

 

 Chinese Geographical Science 1 
 

Other Sustainable Cities and Society 6 36 

 
Sustainability 5 

 

 JAWRA Journal of the American Water Resources Association 3 
 

 Cities 2 
 

 Journal of Wind Engineering and Industrial Aerodynamics 2 
 

 Land Use Policy 2 
 

 Advances in Urban Rehabilitation and Sustainability 1 
 

 Journal of Sound and Vibration 1 
 

 Journal of Contemporary Water Research & Education 1 
 

 Agriculture and Agricultural Science Procedia 1 
 

 Remote Sensing of Environment 1 
 

 Spatial Demography 1 
 

 International Journal of Sustainable Development and Planning 1 
 

 Transportation Research Part D: Transport and Environment 1 
 

 Book Chapter 4 
 

  

Official publication from USDA, National Recreation and Park 

Association and ENVI-met 
4 

  

4.3 Urban forest models 

Urban forest case studies have been analyzed and simulated using a wide range of 

models (Table 2.2). In terms of numerical models, they can be roughly divided into two 

categories: general-purpose models (ENVI-met, computational fluid dynamics (CFD), Green 

Cluster Thermal Time Constant (Green CTTC), DOE-2 building-energy simulation program 
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(DOE-2), and Solar and Longwave Environmental Irradiance Geometry (SOLWEIG)), and 

urban forest-specific models (i-Tree, CITYgreen). The detailed description of these models 

can be found in the Supplementary Material to this paper. 

i-Tree is the most dominant model used in urban forest modeling (Table 2.2). i-Tree 

and ENVI-met are toolsets, including various sub-tools or modules (Table 2.3). Of the 

various i-Tree toolsets, Eco (formerly UFORE) was implemented most frequently, although 

case studies can also be found using Streets (formerly STRATUM), Hydro, Canopy, and 

Species. The next widely used models are ENVI-met and CFDs. For ENVI-met application, 

the typical approach is based on a scenario comparison of designed or real landscapes (e.g., 

with/without trees, tree configuration, tree-building spatial layouts) (e.g., Skelhorn et al., 

2014; Salata et al., 2015; Morakinyo & Lam, 2016). CFD is a collection of models that are 

based on the fundamental laws of fluid mechanics and thermodynamics. Typical applications 

of CFD include the thermal effects of trees on surrounding buildings and pedestrian 

environments (e.g., Dimoudi & Nikolopoulou, 2003), and removal and trapping of air 

pollutants from road traffic due to trees’ deposition effects, filtering capacity, and 

aerodynamic effects (e.g., barrier, ventilation performance) (e.g., Jeanjean et al., 2015; 

Amorim et al., 2013). Detailed principles, processes and parameterizations of CFDs can be 

found in Buccolieri et al.’s (2018) review of urban tree CFD modeling. Unlike i-Tree, which 

emphasizes the impact of different tree aspects, ENVI-met and CFDs also simulate the 

impacts of street and building characteristics (e.g., sky view factor, road traffic volume, 

canyon geometry, and ground and building materials) (e.g., Wania et al., 2012; Tan et al., 

2016; Salata et al., 2015; Shahidan et al., 2012). As such, ENVI-met and CFDs are also 
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employed in the areas of landscape architecture, building design, and energy and 

environmental planning (Ambrosini et al., 2014). 

Although not as widely used as the above-mentioned models, CITYgreen, Green 

CTTC, DOE-2, and SOLWEIG are also frequently employed (Table 2.2). CITYgreen had 

many applications from 1996 - 2006, but became less used afterwards due to model 

limitations (Longcore et al., 2004) and probably the increased use of i-Tree tools. Both DOE-

2 and SOLWEIG also have applications in building energy analysis, emphasizing the impacts 

of building characteristics (e.g., building layouts, constructions, conditioning systems, and 

shade patterns of walls) on energy usage (Akbari et al., 2001; Lindberg & Grimmond, 2011). 

While other models were also represented, their contributions were minimal. For example, 

Shadow Pattern Simulator is found in three case studies examining tree’s effect on residential 

energy use and indirectly carbon reduction (e.g., Simpson & McPherson, 1998; Jo & 

McPherson, 2001). Only two case studies use the fine resolution atmospheric multi-pollutant 

exchange atmospheric transport model (e.g., McDonald et al., 2007) and the coupled weather 

research and forecasting and urban canopy model (Loughner et al., 2012). One case study 

was found utilizing the vegetated urban canopy model (Lee, 2011), and the CHIMERE air 

quality model (Alonso et al., 2011).  

Regarding statistical models, 45 papers and 60 case studies were identified over the 

study period. Three characteristics can be summarized. First, statistical models often have a 

strong economic focus, and consider issues such as an urban forest’s impact on property 

values (Donovan & Butry, 2010), rental rates (Laverne & Winson-Geideman, 2003), and 

energy savings (Pandit & Laband, 2010). Second, 18 out of 45 papers adopted a spatially 
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explicit approach. Even for some models adopting a non-spatial approach, they considered 

spatial effects indirectly by employing location or distance factors as predictor variables 

(Tyrväinen, 1997; Laverne & Winson-Geideman, 2003; Morancho, 2003). Finally, among the 

45 papers focusing on statistical models of urban forests, 32 papers used Hedonic price 

modeling, a method to estimate the contribution of ecosystem or environmental services to 

the value of a property (Sander et al., 2010) (Table 2.2). 

Two characteristics of models are also investigated: spatial explicitness and 

uncertainty. A model is spatially explicit when the inputs, outputs or processes vary spatially 

(Turner & Gardner, 2015). ENVI-met, CFD, SOLWEIG, i-Tree Design and i-Tree Landscape 

are spatially explicit models, while other models investigated are generally not spatially 

explicit (Table 2.3). Uncertainty, due to incomplete information or the lack of knowledge of 

underlying processes, is a fundamental characteristic of any model (Wu et al., 2006). 

Uncertainty is generally insufficiently evaluated, or overlooked, in current urban forest 

models (Table 2.3). Uncertainty assessments are usually something added after the model has 

already been developed. For example, in models such as ENVI-met, Green CTTC, and 

SOLWEIG, only model output uncertainty (or prediction error) is assessed and expressed as 

the discrepancy between the model predictions and observations (e.g., Wu & Chen, 2017; 

Shashua-Bar & Hoffman, 2002; Lindberg & Grimmond, 2011). In addition, only specific 

kinds of uncertainty are typically assessed. For example, in i-Tree, only sampling error of 

field plot data is evaluated while other kinds of uncertainties (e.g., model structure and 

parameter uncertainty) are ignored, resulting in the underestimation of the overall uncertainty 

(Nowak et al., 2013). None of the papers address uncertainty in communication of model 
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output to the public and decision-makers. 

Table 2.2 Summary statistics of urban forest models 

  Citations Country Case studies Publications 

i-Tree 8461 21 264 76 

ENVI-met 2614 18 50 43 

CFD 2206 8 35 35 

CITYgreen 305 2 8 6 

Green CTTC 881 3 7 7 

DOE-2 1658 2 24 5 

SOLWEIG 222 3 4 4 

Hedonic price model 2996 10 40 32 

Others 2710 10 44 34 
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Table 2.3 Characteristics of the main numerical urban forest models 

Models 
Initial release &  

current version 
Sub-modules & web references 

Free / 

open 

source or 

not  

User programming  

knowledge required 

(low, medium, 

high) 

Uncertainty 

assessments 

(No, limited, 

developed) 

Spatially 

explicit  

or not 

i-Tree 1996; Version 6 

Eco, Hydro, Streets, Vue, Species, 

Canopy, Design, & Landscape: 

https://www.itreetools.org/a 

 Yes / No Low Limited  

Yes for  

specific 

modules 

ENVI-met 
1994; Version 4.3 

(As of Nov 2017) 

Atmospheric, Vegetation, Soil, and 

Built environment & Building system: 

http://www.envi-met.com/ 

 Yes / No Low Limited  Yes 

CFD 
2004; Version 1712 

(As of Dec 2017) 

Open Field Operation and 

Manipulation (OpenFOAM) 

http://www.openfoam.com 

Yes / Yes High Limited  Yes 

 
1996; Version 19.1 

(As of May 2018) 

ANSYS’ Fluent 

https://www.ansys.com/products/fluids

/ansys-fluent 

No / No Medium Limited  Yes 

 1981; Version 2018 
CHAM’s PHOENICS 

http://www.cham.co.uk/ 
No / No Medium Limited  Yes 

 
1989; Version 6.3 

(As of July 2014) 

Lohmeyer’s Microscale Flow and 

Dispersion Model (MISKAM): 

http://www.lohmeyer.de/en 

No / No Medium Limited  Yes 

CITY-

green 

1996; Version 5 (As 

of March 2004) 
None Yes /No Low No No 

Green 

CTTC 
2002; None None None None Limited  No 

DOE-2 
1978; Version 2.3 

(As of July 2017)  http://doe2.com/ 
Yes / No Medium Limited  No 

SOLWEIG 
2008; Version 2016a 

(as of Sept 2016) http://www.urban-climate.net/content/ 
Yes / Yes Medium Limited  Yes 

a The last access of weblink is July 2018; 

In terms of acquiring input datasets, 164 papers employed only bottom-up 

approaches, while 78 papers used the top-down approaches relying on remotely sensed 

imagery (Figure 2.3), including aerial photographs, AVHRR, Landsat, MODIS, LiDAR, 

NLCD, TRMM, IKONOS, and QuickBird imagery. Fifty-four of the 78 papers were 

published after year 2011, indicating the increasing utilization of remotely sensed imagery. A 
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wide range of top-down approaches were employed to derive different model inputs. For 

example, MODIS has been used to estimate leaf area index (e.g., Nowak et al., 2014), and 

high resolution digital imagery and Landsat data have been employed to estimate tree canopy 

and land cover types (e.g., Morani et al., 2011; Yang et al., 2005). 

4.4 Ecosystem services estimated with urban forest models  

ES found in the papers examined were classified into three categories: biophysical, 

social and economic (Table 2.4). Biophysical benefits had 432 case studies, which was much 

higher than economic benefits (80) and social benefits (25), indicating an uneven distribution 

of case studies. Of the 432 case studies examining biophysical benefits, air pollutant removal 

was ranked highest with 264 case studies, followed by temperature and microclimatic 

modifications (98), carbon storage and sequestration (39), and water regulation (28). There 

were also three case studies analyzing wildlife and biodiversity, and one case study focused 

on noise effects. Regarding economic benefits, the most dominant topics were building 

energy cost reduction (e.g., cooling effects, heating effects) (39) and increased property 

values (36), followed by aesthetic quality (5). Among social benefits, thermal comfort 

received the most attention with 15 case studies, followed by reduced crime rate (5) and 

human health and disease (3).  

In terms of new emerging topics, there appears to be an evolution in urban forest 

modeling. While studies of biophysical benefits continue to be most common, studies of fine 

particulate matter (PM2.5), ultraviolet light, elemental carbon, and water quality appeared only 

after 2011. Assessing the impacts of urban forests on these issues increases the diversity of 



 

33 

 

urban forest ES and presents new challenges and opportunities in urban forest modeling. 

Some topics (e.g., urban heat island, park cool effect, thermal comfort, human health and 

disease) show an increasing rate of study after year 2011, indicating a potential increasing 

trend in the future.  
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Table 2.4 Number of case studies assessing urban forest ES 

 1996-2010 2011-2017 1996-2017 

Ecosystem services (#/year) (#/year) Total # 

Physical/Biological Benefits 
  

 

Removal of Air Pollutants 
  

 

Remove course particulate matter (PM10) 1.2 5.1 54 

Remove ozone (O3) 1.2 4.8 52 

Remove nitrogen dioxide (NO2) 0.9 4.8 47 

Remove carbon monoxide (CO) 0.9 3.7 40 

Remove sulfur dioxide (SO2) 0.7 3.6 36 

Remove fine particulate matter (PM2.5) 0.0 2.4 17 

Remove volatile organic compounds (VOCs) 0.5 1.0 15 

Remove elemental carbon (EC) 0.0 0.3 2 

Remove nitrogen monoxide (NO) 0.0 0.2 1 

Remove ultraviolet (UV) radiation 0.0 0.2 1 

Temperature and Microclimatic Modifications 
  

 

Lower air temperature 1.4 3.0 42 

Provide tree shade 1.0 0.7 20 

Reduce urban heat island (UHI) 0.1 1.4 12 

Provide evaporative and transpiration cooling 0.3 0.4 8 

Provide park cool effect 0.1 0.9 8 

Regulate wind 0.1 0.9 8 

Reduce incoming solar radiation 0.0 0.3 2 

Carbon storage and sequestration 
  

 

Carbon storage and sequestration 0.9 3.5 39 

Storm water regulation 
  

 

Reduce runoff 0.9 1.9 26 

Improve water quality 0.0 0.3 2 

Other 
  

 

Wildlife and biodiversity 0.1 0.2 3 

Noise effect 0.0 0.2 1 

Economic Benefits 
  

 

Reduce building energy use (e.g., heating, and cooling) 1.5 2.3 39 

Increasing property value or rent price 1.3 2.3 36 

Aesthetic quality 0.1 0.4 5 

Social Benefits 
  

 

Thermal comfort/heat stress 0.1 2.0 15 

Crime rate 0.1 0.6 5 

Human health and disease 0.1 0.3 3 

Environmental inequality 0.0 0.3 2 



 

35 

 

5 Discussion 

5.1 Place-based, comparative studies 

5.1.1 Distribution of case studies 

The systematic review presented here assesses and compares urban forest modeling 

practices among places and across scales. We identified that: (1) the spatial distribution of 

case studies is clustered around certain locations (e.g., US, Europe and China and mostly in 

temperate and continental climatic zones); (2) most of the studies were conducted at and 

below city scales, and only a few studies were made at regional or national scales; and (3) 

within cities, the most popular units were parks and individual streets. The popularity of 

specific locations, cities and units could be attributed to several factors. The US and Europe 

are highly developed areas while China is one of the most rapidly developing countries; all 

have a large number of cities and associated various kinds of urban environmental issues. As 

such, cities in those areas provide ideal natural laboratories for urban forests studies. In 

addition, some models (e.g., ENVI-met, CFD) are designed for microscale simulations, and 

thus favor units like parks and street canyons. Urban forest studies in these areas are 

generally more comprehensive, and these studies have the potential to provide information to 

support future urban forest studies in less-studied regions. 

These analyses contribute to our understanding of the structure, function, and benefit 

of urban forests, and the interactions between social and natural systems. Unfortunately, the 

uneven and fragmented distribution of case studies may bias our knowledge and 

understanding of urban forestry. Each place is unique in its own way and findings for one city 
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can be quite different than for another city. For example, Nowak et al. (2006) performed 

computer modeling of air pollution removal by trees in 55 US cities and their results showed 

that pollution removal per unit canopy cover varied significantly from place to place, 

depending on pollution concentrations, length of in-leaf season, amount of precipitation, and 

other meteorological variables. Overall, management of urban tree canopy cover could be a 

viable strategy to improve air quality. However, Setälä et al. (2013) studied two Finnish cities 

and concluded that the ability of urban vegetation to remove air pollutants is minor in 

northern climates considering the short growing season. Vos et al. (2013) conducted a 

computer simulation and reached the conclusion that trees can deteriorate air quality at least 

locally at roadside locations based on summary of 17 scenario simulations of various 

vegetation settings. Conclusions about air pollution removal effects are clearly location- and 

scale-specific, and caution is needed when generalizing results. Regarding carbon storage, 

based on the studies of 28 cities and 6 states in the US, carbon density per unit of tree cover 

varied among cities based on tree density, tree size distributions, and species composition, 

with the general pattern of forested regions having greater carbon densities than grassland or 

desert regions (Nowak et al., 2013a). In terms of carbon sequestration, depending on which 

models are employed (e.g., i-Tree Streets, allometric equations from Urban Tree Database, or 

other empirical equations), the differences among the magnitudes of carbon sequestration 

estimates can be up to a factor of 2 (Boukili et al., 2017). Apart from the magnitude, the 

direction (e.g., from source to sink) can also vary. Based on two studies in Singapore and 

Mexico City, Velasco et al. (2016) concluded that carbon sequestration by urban trees are 

both positive, but when including soil respiration effects, overall carbon sequestration is 
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negative, i.e. the trees and soil in Singapore act as a carbon source and not a sink. Soil 

respiration is typically ignored due to large areas of impervious surfaces in cities. Even 

within one city, the impact of location cannot be neglected. For example, in terms of cooling 

effects and human thermal comfort, avenue-trees often have the strongest impact, façade 

greening has some noticeable effect, and roof greening is mostly ineffective (Ng et al., 2012; 

Gromke et al., 2015). Trees also appear to perform differently depending on their placement 

within a unit (such as the leeward, windward, central, and end parts of street canyons) 

(Moonen et al., 2013). The compilation of numerous case studies, while uneven, can give 

indications of commonalities and ranges of urban forest effects in different cities. 

5.1.2 Scale and study unit 

Apart from the uneven spatial distribution of case studies, there is also a gap between 

local research and global generalizations. Local scale research is important and the existing 

literature illustrates and discusses the need of local forest structure (Escobedo & Nowak, 

2009; Nowak et al., 2013a) and local scale tree design (Nowak et al., 2013b). However, due 

to spatial heterogeneity (Escobedo & Nowak, 2009), urban trees may have opposing effects 

at different scales (Vos et al., 2013), and there is the need for multi-scale approaches 

(Jeanjean et al., 2015). Caution is needed to generalize findings among different places and 

scales, but by understanding the physics, chemistry, biology and social structure of urban 

forests, generalized principles can be developed to guide urban foresters in designing forest 

structure to optimize ES.  

Another concept that is related to scale is the study unit. Different units provide 



 

38 

 

different perspectives, and only through integration of a variety of units can a comprehensive 

view of urban forestry be achieved. For example, focusing on street canyons, the conclusion 

that roadside trees negatively affect the local air quality may be obtained under certain 

conditions (Ries & Eichhorn, 2001; Wania et al., 2012). However, this does not indicate that 

trees in urban backyards and parks have a similar effect (Vos et al., 2013). More studies are 

needed to integrate different units and scales. Two challenges exist when considering 

different study units. First, the increased focus on ecological units and integration of 

ecological and political units should be pursued in the future. Existing studies focus mostly 

on political units (e.g., census block groups), while ignoring ecological units such as patches, 

habitats and ecoregions. Units important to humans are not necessarily relevant for tree 

species or ecological processes, but help convey information in units important to managers, 

planners and politicians. The boundaries of different units, such as watersheds and 

administrative districts, may not coincide. In addition, mismatch between units or scales of 

ecological processes and the institutions that are responsible for managing them can 

contribute to decision failures (Cumming et al., 2006). Second, spatially heterogeneous 

representation of landscapes can be classified as a mosaic, which include patches and 

corridors with abrupt discontinuities or boundaries, and gradients with gradual differences in 

concentrations (Forman,1995). Most studies reviewed in this paper focus on urban mosaics 

and ignore gradient approaches. This is mainly because the boundaries must be explicitly 

defined under most modeling frameworks. Due to practical need, boundaries are usually 

defined where several discontinuities coincide (MEA, 2005). Although gradient areas (e.g., 

urban-periurban-rural, wildland-urban interface) have been intensively studied in ecology 
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(Openshaw, 1984), geography (Kwan, 2012), and even urban forestry (Zipperer et al., 1997) 

using approaches such as landscape metrics, spatial statistics, and transect analyses (Luck & 

Wu, 2002; Kong & Nakagoshi, 2006), few studies incorporate these ideas or principles in 

urban forest modeling.    

5.2 Field-based analyses 

Urban forestry has developed rapidly (Figure 2.1) due to contributions from many 

fields (Table 2.1). For example, the concept of sustainable urban forestry is largely based on 

sustainability concepts from the ecology field (Fazio, 2003); the theories about scale and 

spatial heterogeneity from geography contribute greatly to spatially explicit research of urban 

forests (Escobedo & Nowak, 2009); the laws of fluid dynamics and thermodynamics from 

energy science improve our understanding of interactions between surface, vegetation and the 

atmosphere (Bruse & Fleer, 1998); and landscape ecology principles are used in the design 

and planning of urban green spaces (Zhou et al., 2011). Urban forestry is interdisciplinary by 

fusing knowledge from several fields, and transdisciplinary by applying scientific knowledge 

in policy-relevant ways. Transitioning more urban forestry initiatives and studies from 

interdisciplinary to transdisciplinary could be of great benefit. For example, with volunteer 

public participation, the MillionTrees program and 10-year cycle street tree census (2015-

2016) in New York City have been implemented more efficiently (NYC Parks, 2018). 

Discipline-bound approaches conflict with the nature of urban forestry because by definition 

urban systems are social-ecological, and urban forests provide a wide range of ES which are 

of common interest to multiple disciplines. Urban forestry not only concerns itself with 
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scientific research, but also involves in management, planning, education and outreach 

(Moskell et al., 2010;Rae et al., 2010). 

5.3 Urban forest models 

5.3.1 Numerical models 

 A wide range of urban forest models exist, each suitable for specific applications. i-

Tree and ENVI-met are two of the most widely used models (Table 2.2), most likely because 

they are freely available, do not require user programming experience, and contain various 

modules for different applications (Table 2.3). One additional reason that i-Tree is the most 

widely used is that it can be used at new locations or conditions without the re-calibration of 

model parameters. This is different from approaches adopted by other models (e.g., ENVI-

met, CFD); when applying models outside their original modeling domains, new site-specific 

parameter values must be obtained from measured data. i-Tree eliminates the need of 

parameter calibration by developing i-Tree databases, that contain tree species and location 

information for many countries to support modeling at new locations (see Supplementary 

Material). When site-specific parameters are insufficiently calibrated or unavailable, model 

outputs tend to contain large uncertainties (Walker et al., 2003). CFD models also have many 

applications for tree temperature effects (e.g., interaction with buildings characteristics), and 

air pollution removal effects (e.g., interaction with street characteristics and road traffic 

volume). One limitation of CFDs is that they usually require medium to high user 

programming experience (Table 2.3). When quantifying trees’ thermal and building energy 

effects is a focus, Green CTTC, SOLWEIG, and DOE-2 are also potential choices.  
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5.3.2 Statistical models 

Statistical models tend to be empirical and subjective due to the selection of predictor 

variables and functional forms. It is often the case that in one paper, several functional forms 

are developed, the structures and forms of statistical models often are identified based on the 

empirical fitting to observational datasets, and comparisons of different fittings are conducted 

using statistical measurements (e.g., the goodness-of-fit test) and information criteria (e.g., 

Akaike Information Criterion) (Conway et al., 2010; Sander et al., 2010; Pandit et al., 2013). 

The resultant best selected model can provide a useful description of the system even without 

physiological or mechanical knowledge (Jones, 2013). The problems of this approach are that 

(1) across papers, model forms and explanatory variables can vary widely which makes 

comparative studies challenging; and (2) the model may only be valid where it is developed 

and calibrated; caution is needed when generalizing the model to other locations, or when 

model-based inferences are performed. Future applications of statistical models in urban 

forestry should emphasize the use of theoretical guidance towards the selection of appropriate 

model structure and predictor variables. 

5.3.3 Spatially explicit modeling 

Although spatially explicit modeling can increase model complexity and data burden 

(Turner & Gardner, 2015), the spatial distribution of trees and their associated ES is essential 

for designing effective and equitable policy interventions (TEEB Foundations, 2010). The 

production, flow and use of ES varies spatially, as do the spatial patterns of beneficiaries and 

policy interventions. In addition, apart from the number of trees, the spatial composition and 
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configuration of trees can also affect the ES they provide (e.g., Li et al., 2012; Zhou et al., 

2017). ENVI-met, CFD and SOLWEIG are designed to be spatially explicit; the i-Tree tool 

suite is also transforming from lumped to spatially explicit modeling, with two new modules, 

i-Tree Design and Landscape, that can provide location information at local and landscape 

scales, respectively. Spatially explicit approaches are also often adopted by statistical models 

directly by using spatial regression or indirectly by employing location or distance factors as 

predictor variables. Providing equivalent tree cover per capita (or per land area) and 

accessibility to green space, especially for underrepresented or disadvantaged groups, could 

be a top priority for future urban forest management programs. Better quantifying the 

composition and configuration of trees and its influences on ES will also benefit forest 

management. 

5.3.4 Model uncertainties 

Although the importance of uncertainty in modeling is well recognized (Walker et al., 

2003), few studies of urban forest modeling provide critical information about model 

uncertainties. For those models that do provide uncertainty information, only specific kinds 

of uncertainties (e.g., sampling error, prediction error) are typically considered. This may be 

due to two reasons. First, for existing models that describe complex ecosystem interactions 

(e.g., i-Tree, ENVI-met), a full and thorough uncertainty assessment (especially 

quantification and reduction) usually involves significant changes to model architecture (e.g., 

model assumptions, simplifications, formulations, and parameterizations). The lack of time 

and funding given other competing priorities of model developments limits current 



 

43 

 

uncertainty assessments. Second, although uncertainty assessment methods are well-

developed (Refsgaard et al., 2007), no method is universally applicable and effective for all 

models. Guidance to select appropriate methods for specific model types and applications is 

lacking, plus each method has a learning curve (Pappenberger & Beven, 2006), which further 

limits uncertainty assessment. Given the importance of uncertainty analyses, especially for 

those models focused on policy- or decision-making, future modeling exercises could focus 

on improving the assessment and communication of uncertainty. Incorporating uncertainty 

assessment at the beginning of problem framing and model framework design, and tracking 

and documenting uncertainty throughout model development could significantly reduce 

overall efforts to incorporate uncertainty analyses in urban forest models. 

5.3.5 Model comparisons 

The comparison and integration of numerical models is rare, with only a few studies 

on model integration (e.g., Tiwary et al., 2009; McPherson & Kotow, 2013; Morakinyo et al., 

2016) and model comparison (e.g., Russo et al., 2014; Guidolotti et al., 2016). General 

comparisons of models and model outputs may not be useful, and sometimes can even be 

misleading. Different models can estimate similar ES based on different input variables, 

model assumptions and formulations. For example, when estimating trees’ temperature 

effects, a CFD model is based on the fundamental laws of fluid mechanics and 

thermodynamics to simulate the effects of vegetation on transpirational cooling and mean air 

flow and turbulence (e.g., Gromke et al., 2015). Contrary to this, Green CTTC employs an 

energy balance approach which quantifies anthropogenic heat-release, reduction of the solar 
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gain due to tree canopy, energy consumption for evapotranspiration, and the change in the 

heat stored based on leaf surface temperature (Shashua-Bar & Hoffman, 2004). In this case, 

the differences in a tree’s temperature effects could be due to different modeling approaches 

rather than a tree’s structure and function. However, this does not mean that model 

comparisons should be avoided. Modeling experiences from other fields (e.g., public health, 

agriculture crop yield) have shown that the combined information of several models is 

superior to that of a single model (Thomson et al., 2006; Cantelaube & Terres, 2005). The 

way models are compared and integrated is important. Model comparisons and integration 

can be conducted at the decision-making level; if different models, with dissimilar theoretical 

foundations, reach similar conclusions about the effects of urban forests, it will increase the 

confidence of urban forests management decisions based on such similar conclusions, 

especially when uncertainty analyses are lacking.  

5.3.6 Input datasets 

Remotely sensed images play an important role in urban forest modeling. This is 

mainly due to increased availability of free remotely sensed imagery (Patino & Duque, 2013), 

and many ready-to-use image derived products (e.g., vegetation index, leaf area index, tree 

canopy cover) (O'Neil-Dunne et al., 2014; Morani et al., 2011; Yang et al., 2005). Although 

there is a trend of increasing utilization of remotely sensed imagery, this information mainly 

serves as input variables for urban forest models. A closer connection between remote sensing 

and urban forest modeling is needed, which will open up additional possibilities for future 

research and innovation. Two-dimensional images may greatly improve our ability to perform 
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spatially explicit modeling, and long-term archives of time-series images present an 

opportunity to improve our understanding of the dynamics of urban forests and the impacts of 

these changes. In addition, remote sensing can sometimes aid in validating models (e.g., 

biomass, LAI) (Lu et al., 2016; Alonzo et al., 2016), which reduces model uncertainties and 

increases the credibility of a model and its outputs. 

5.4 Ecosystem services estimated with urban forest models 

5.4.1 Biophysical, economic and social benefits  

Most case studies focus on biophysical benefits while only a few estimate economic 

and social benefits. This disparity may be due to significant advances we have achieved in 

linking forest structure to function. For instance, we have a good understanding of how a 

tree’s characteristics (e.g., albedo, surface roughness) and biophysiological processes (e.g., 

evapotranspiration, storing carbon) affect temperature (Bonan, 2008), and how trees uptake 

and remove air pollution by dry deposition processes (Hirabayashi et al., 2011). We are able 

to parameterize these attributes and formulate these processes explicitly in models. However, 

we have limited capability to simulate economic and social benefits due to a lack of theory 

and large subjectivity and uncertainty in expressing and quantifying human cultures, values, 

attitudes and behaviors in models. For example, trees can provide amenity services to 

increase property values (e.g., Payton et al., 2008; Sander et al., 2010). However, amenity 

services (e.g., aesthetic enjoyment, recreation, intellectual development, and spiritual 

fulfillment) are influenced and shaped by human cultures, knowledge systems, religions, and 

social interactions (MEA, 2005). As such, quantifying those benefits suffers from large 



 

46 

 

uncertainties and biases. In terms of social benefits, for instance, trees can affect human 

health by reducing air pollutant concentrations, but valuing the effects suffers from 

subjectivity due to the cost of illness, willingness to pay to avoid illness, and productivity 

losses associated with health events (Nowak et al., 2014). Different individuals have different 

behavioral patterns, dietary patterns and physiological characteristics (e.g., breathing rates) 

(WHO, 2008), which adds additional complexity to model the effects of air pollutant 

exposure. Although challenging, human behaviors and values are well modeled in other fields 

(e.g., economic, political ecology) (Anderies, 2000; Peterson, 2000); those advanced 

experiences should benefit future urban forest modeling. The linkages between forest 

structure and biophysical benefits is well understood and modeled, and ES delivery in 

biophysical terms also provides solid ecological underpinnings to economic and social 

metrics (TEEB Foundations, 2010). Expanding the links to incorporate trees’ social-

psychological and health effects, as well as quantifying and valuing those effects, is a priority 

area where additional work is needed.  

5.4.2 Health-related ES 

Studies regarding the health-related ES of trees increased after 2011, compared to the 

period 1996-2010. These include ‘thermal comfort/heat stress’ and ‘human health and 

disease’ from social benefits, as well as various kinds of air pollutant removals (e.g., 

particulate matter, ozone), which have important health implications (Kinney, 2008). Many 

ES are public goods, and people usually lack direct incentives to protect and maintain them 

(TEEB Foundations, 2010). One of the key challenges facing urban forest campaigns is to get 
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the attention and involvement of different stakeholders (Zhang et al., 2007), and human 

health is one of the few ES that is relevant to almost everyone. Emphasizing the health effects 

of trees is an effective strategy to convey the importance of urban forests and gain support 

from stakeholders. 

5.4.3 Ecosystem disservices 

Another aspect that is less studied is ecosystem disservices (EDS) of urban forests. 

Common examples of EDS found in the literature include biogenic volatile organic 

compound emissions (Calfapietra et al., 2013), increases in potential energy use (Nowak et 

al., 2017), allergenic effects (Dobbs et al., 2014), air pollution trapping at road sites (Vos et 

al., 2013), and gentrification (Wolch et al., 2014). Although the adverse effects of urban 

forests have been mentioned and discussed in several papers (e.g., McDonald et al., 2007; 

Buccolieri et al., 2009; Morani et al., 2011), there are few studies to simulate and quantify 

EDS (Vos et al., 2013; Nowak et al. 2013b), let alone integrate EDS in decision-making. 

Since EDS are often ignored, the overall net benefits of urban forests may be less than 

initially estimated. The combined effects of ES and disservices and their influence on urban 

forest management and decision making are rarely investigated. 

5.4.4 ES interactions 

Regarding individual ES, the majority of papers explore specific types of ES while 

ignoring the interaction among different ES. These interactions can happen at different levels. 

For instance, for air pollutant removal, most studies estimate the removal of PM10, O3, CO, 
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NO2, and SO2 in parallel. This makes sense for primary gases (e.g., NO2, SO2), but not for 

secondary gases (e.g., ozone), which can be created through complex chemical reactions and 

interactions (Pickett et al., 2011; Morani et al., 2011). Ignoring these interactions will lead to 

inaccurate estimation of net ozone effects (Cabaraban et al., 2013). At a higher level, the 

change of one ES could also affect other kinds of ES. For example, temperature reductions 

have implications for energy use, air quality, and human health (Nowak et al., 2014); energy 

savings can result in reduced emissions of CO2 and air pollutants (McPherson et al., 2017; 

Nowak et al., 2017). Those interactions, either positive synergies (multiple services are 

enhanced simultaneously) (Bennett et al., 2009) or negative tradeoffs (the provision of one 

service is reduced as a consequence of the increased use of another) (Turner & Gardner, 

2015), are commonplace in ecosystems (MEA, 2005). In contrast to the above common 

definition of tradeoffs, Mouchet et al. (2014) also refers to tradeoffs as various types of 

compromises, such as management compromises between ES. For instance, are tree species 

and locations being chosen to maximum or prioritize air pollution removal benefits or energy 

conservation benefits? Urban forest management decisions should consider these interactions 

and compromises to better avoid tradeoffs and enhance synergies. 

6 Future directions and conclusions 

Future directions in urban forest modeling can be organized around three key themes: 

urban systems, model development, and ES. An urban system is a complex and adaptive 

socio-ecological system which is characterized by spatial dependence and heterogeneity. 

However, urban ecosystems are often modeled non-spatially, which can ignore some local or 
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microscale effects and interactions due to spatial arrangements. Future studies of urban 

forestry could focus on: (1) summarizing and generalizing experiences from well-studied 

regions (e.g., US, Europe, China) to support urban forest studies in less-studied regions; (2) 

multi-scale approaches to capture interactions among spatial heterogeneity at the local scale, 

and interaction among cities, suburbs, and their regional background environments at the 

regional scale; (3) improving linkages between ecological processes and social organization 

scales to improve urban forest modeling, planning, management and stewardship. With 

regards to model development, future research could focus on (1) improving uncertainty 

analyses, (2) employing spatially explicit expressions of location information, including 

issues related to environmental justice, (3) comparing and integrating models at a policy-

making level, (4) increasing utilization of remote sensing, (5) increasing model capability to 

incorporate the effects of human cultures, values, attitudes and behaviors, and (6) increasing 

mechanistic understanding and its integration into statistical models. In addition, more effort 

could be devoted to model training to engage broader audiences and better utilize existing 

software, and to better communicate model outputs to stakeholders and decision-makers. In 

terms of ES, emphasis could be put on: (1) expanding linkages between forest structure and 

function to incorporate trees’ social-psychological and health effects, (2) quantifying and 

valuing EDS, and (3) investigating ecosystem service synergies and tradeoffs.  

With well-developed scientific rationales, models serve as a basis for collaboration 

and knowledge exchange between academic researchers and non-academic participants, and 

provide a scientific means to achieve sustainable urban forestry. Urban forest modeling is 

becoming increasing complex, global, and transdisciplinary, and this trend is likely to 
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continue. As such, there is an urgent need for comparative studies and studies across a wide 

range of geographic settings. By synthesizing case studies from the perspectives of places, 

units, scales, disciplines, tools, and topics, this review provides insights and suggestions for 

future urban forest modeling research. Such knowledge can improve urban forest planning, 

design and management, and better support critical policy- and decision-making processes. 
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8 Supplementary material 

8.1 Literature database 

Table 2.5 Author(s), year, journal and models employed of the 242 research papers identified 

in this study 

Author (Year) Journal Model 

Abhijith & Gokhale (2015) Environmental Pollution CFD 

Akbari (2002) Environmental pollution DOE-2 

Akbari et al. (1997) Energy and buildings DOE-2 

Akbari et al. (2001) Solar energy DOE-2  

Alchapar et al. (2017) Theoretical and Applied Climatology ENVI-met model 

Alexandri & Jones (2008) Building and Environment Other 

Alonso et al. (2011) Environmental Pollution Other 

Alonzo et al. (2016) Urban Forestry & Urban Greening i-Tree Eco 

Ambrosini et al. (2014) Sustainability ENVI-met model 
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Amorim et al. (2010) 
Advances in Urban Rehabilitation and 

Sustainability 
CFD 

Amorim et al. (2013a) Science of the Total Environment CFD 

Amorim et al. (2013b) Advances in Meteorology CFD 

Balczó et al. (2009) Meteorologische Zeitschrift CFD, MISKAM 

Baró (2014) Ambio i-Tree Eco 

Baumgardner et al. (2012) Environmental Pollution i-Tree Eco and WRF-Chem  

Berland & Hopton (2014) Urban Forestry & Urban Greening i-Tree Street 

Bodnaruk et al. (2017) Landscape and Urban Planning i-Tree Eco 

Bottalico et al. (2016) 
Agriculture and Agricultural Science 
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Bruns & Fetcher (2008) 
Journal of Contemporary Water Research & 
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Bruse & Fleer (1998) Environmental Modelling & Software ENVI-met model 

Buccolieri et al. (2009) Science of the Total Environment CFD, FLUENT 

Ca et al. (1998) Building and Environment Green CTTC model 
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8.2 Model description 

i-Tree (https://www.itreetools.org/) is a suite of freely available software tools which 

quantify a wide range of ES (e.g., biophysical, economic, and social) at various scales based 

on either mechanical processes (e.g., dry deposition) or empirical relationships (e.g., 

allometric equations) using field plots, air pollution, and meteorological data (Nowak et al., 

https://www.itreetools.org/
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2008a). To achieve satisfactory accuracies of outputs, approximately 200 plots of one-tenth 

acre are needed (Nowak et al., 2008b), and inside the plot, eight input variables (e.g., actual 

land use, total tree height, height to live top, height to crown space, crown width, percent 

crown missing, crown health, and crown light exposure) are recommended, in addition to two 

required input variables: species and diameter at breast height. Some outputs, such as 

building energy conservation due to trees, require additional input variables (e.g., tree-

building spatial relationships) (Nowak et al., 2017).  

i-Tree Database contains the database for species and location. The species database 

includes data for more than 6,500 tree and shrub species and their corresponding attributes. 

The location database includes site-specific parameters for many countries (e.g., leaf on & off 

dates, pollution, climate region, ozone state, cost of electricity and fuels). Users can 

contribute to the development of i-Tree Database by uploading their local site-specific data, 

but need to be validated by i-Tree team. 

ENVI-met (http://www.envi-met.com/) is a holistic microclimate model designed to 

simulate the surface-plant-air interactions in urban environments, with focus on the impacts 

of vegetation on the local microclimate and pollutant dispersion (e.g., Ng et al., 2012, Wania 

et al., 2012). Two main input files are required by ENVI-met: a configuration file which 

contains information for initial meteorological conditions and thermo-physical properties of 

land covers, and an area file which contains the layout of buildings and vegetation (Skelhorn 

et al., 2014; Wu & Chen, 2017). Although ENVI-met is also based on CFD principles, it is 

regarded as an individual category because it has its own well-developed platform and 

framework.  

http://www.envi-met.com/
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CFD is a collection of models that are based on the fundamental laws of fluid 

mechanics and thermodynamics, including Open Field Operation and Manipulation 

(OpenFOAM), ANSYS’ Fluent, CHAM’s PHOENICS, and Lohmeyer’s Microscale Flow and 

Dispersion Model (MISKAM). Detailed description of each CFD model can be found at 

website links provided in Table 2.3. 

CITYgreen is currently an extension to the Environmental Systems Research 

Institute’s ArcGIS software, which can map, measure, and analyze storm water, summer 

energy savings, carbon storage and sequestration, air quality, and wildlife of urban 

ecosystems. It was originally created by the AMERICAN FORESTS 

(http://www.americanforests.org) in 1996. 

Green CTTC is a thermal model that quantifies vegetation’s temperature effects and 

subsequently reductions in building energy use based on an energy balance approach which 

combines the processes of solar radiation, anthropogenic heat-release, heat transfer and 

evapotranspiration (Ca et al., 1998; Shashua-Bar & Hoffman, 2002). 

DOE-2 (http://doe2.com/) calculates buildings energy use, energy savings and CO2 

emission reductions (Akbari, 2002). Although DOE-2 is widely used in the area of building 

energy use and cost analysis (Zhu et al., 2013), its application in urban forestry is limited, 

with most applications examining the effects of shade trees (Akbari et al., 1997; Akbari et al., 

2001; Akbari, 2002; Wong et al., 2003).  

SOLWEIG (http://www.urban-climate.net/content/) simulates the influence of 

vegetation on radiant temperature based on six longwave and shortwave radiation fluxes 

(upward, downward and from the four cardinal points) (Lindberg & Grimmond, 2011). 

http://www.americanforests.org/
http://doe2.com/
http://www.urban-climate.net/content/
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Chapter 3 Ecosystem service-based sensitivity 

analyses of i-Tree Eco 

Abstract 

Trees are known to provide various ecosystem services and disservices (ESD) to urban 

communities. These ESD can be quantified using models based on field and environmental 

data, but it is often uncertain how tree structure and environmental variables impact model 

output. Here we perform a sensitivity analysis (SA) of i-Tree Eco, a common urban forest 

model, to analyze the relative impact of different model inputs on three model outputs: 

biogenic volatile organic compounds (BVOCs) (isoprene and monoterpenes) emissions, 

carbon storage and sequestration, and dry deposition of nitrogen dioxide, sulfur dioxide, and 

ozone. The SA methods included novel applications of Morris one-at-a-time method and a 

variance-based decomposition method which integrates Monte Carlo simulation with Latin 

hypercube sampling and Iman Conover analysis. A case study was performed in New York 

City with field plot data collected in 2013. Genus has the largest influence on BVOC 

emissions by determining base emission rates and its high interactions with other input 

factors. BVOC emissions are sensitive to leaf biomass in a concave manner and temperature 

in a convex manner, while isoprene emissions show a strong linear relationship with 

photosynthetically active radiation (PAR). Diameter at breast height plays the most important 

role for both carbon storage and sequestration estimators; crown light exposure and tree 

condition are also important for carbon sequestration. Dry deposition velocity is sensitive to 

leaf area index and relative humidity in a nearly linear way while sensitive to temperature and 
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PAR in a concave manner. These results provide guidance to facilitate future field plot 

campaigns and model development. The knowledge revealed by the SA is also beneficial for 

model uncertainty reduction, which in turn facilitates more effective urban forest 

management and decision-making.  

Key words: Air pollutant; Carbon storage and sequestration; Monte Carlo; Urban forests; 

Volatile organic compounds. 

1 Introduction 

As a demographic trend and land transformation process, urbanization creates many 

environmental problems (e.g., increased runoff and nutrient export, increased temperatures, 

and increased material consumption and energy use) (e.g., Duh et al., 2008; Poumanyvong & 

Kaneko, 2010). One way to alleviate these impacts is through urban greening, and many 

cities have launched large urban tree planting initiatives (McPherson et al., 2011). Models of 

urban tree impacts on the environment can help develop more efficient and effective planting 

schemes (Morani et al., 2011), identify areas where existing forests should be maintained 

(Locke et al., 2011), improve the overall management of urban forests, and better quantify the 

benefits of these forest resources (Nowak et al., 2008a). One popular model is i-Tree Eco 

(https://www.itreetools.org/), which can quantify the structure, function and ecosystem 

benefits trees provide (Nowak & Crane, 2000), and has been used by thousands of 

researchers, urban planners, and others around the world to advocate for the benefits of urban 

trees (Lin et al., 2019). 

While this tool has been extremely beneficial to the planning and management of urban 

https://www.itreetools.org/
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trees, this model makes assumptions that simplify the relationships between structure and 

function of urban forests and the representation of urban landscapes (Nowak & Crane, 2000). 

While such assumptions are often necessary to model these complex systems, they can 

increase the uncertainty of model output, and hinder the efficient and effective management 

of urban forests. Several studies point out that the uncertainty regarding various aspects of 

urban forest models (e.g., mortality rates of trees, transpiration rates, and meteorological 

conditions) should be better addressed (Yang et al., 2005; Morani et al., 2011; Selmi et al., 

2016). Current uncertainty estimation within i-Tree Eco is limited to the standard error of the 

total number of trees within the study area (Nowak et al., 2008b), and its impact on selected 

model outputs (e.g., carbon storage) (Nowak et al., 2013). In addition, those standard errors 

usually come from sampling error instead of error of estimation (e.g., allometric equations), 

and therefore tend to underestimate the overall uncertainty (Nowak et al., 2013). This study 

focuses on developing an advanced sensitivity analyses (SA) of i-Tree Eco, including 

assessing how changes in model outputs can be apportioned to different model inputs, 

differentiating the relative importance of different model inputs, and identifying specific 

input-output relationships. 

SA can be used in different settings (e.g., variance cutting, factors prioritization and 

fixing; Saltelli et al., 2004), and serves a variety of purposes (e.g., model development, 

scenario analyses, and comparative studies; Saltelli et al., 2004; Hirabayashi et al., 2011; 

Steffens et al., 2012). A wide range of SA techniques have been developed, ranging from 

classical frequentist analyses to complex Bayesian inference, and from local (e.g., Morris 

one-at-a-time) to global (e.g., variance-based methods) methods (Marino et al., 2008; Saltelli 



 

108 

 

et al., 2008). Different SA methods can also be integrated together to achieve a more 

complete understanding of the relationship between input and output variables (Van 

Griensven et al., 2006).  

This study employs a Morris one-at-a-time method (MOAT), and a variance-based 

decomposition method (VD) which integrates Monte Carlo simulation with Latin hypercube 

sampling (LHS-MC) and the Iman Conover method to address the correlation structure of the 

input variables (Iman & Conover, 1982). The novel applications of SA are illustrated with a 

case study in New York City (NYC) for 2013. The specific goals of this analysis are to: (1) 

determine the relative importance of input variables on i-Tree Eco outputs; (2) improve the 

understanding of the input-output variable relationships in i-Tree Eco (e.g., linear and 

additive effects, non-linear and interaction effects, and threshold effects); and (3) explore the 

implications of the results for future research and urban forests management (e.g., areas 

where additional data collection and analyses may be needed). 

2 Methods 

2.1 Model description   

i-Tree Eco consists of modules which can quantify urban forest structure, function and 

value using field plots, air pollution, and meteorological data as input variables (Nowak & 

Crane, 2000; Nowak et al., 2008a) (Figure 3.1). The input module, Eco-A, characterizes 

urban forest “Anatomy”, or the structure and composition based on data from field plots. 

Other modules examined here include one ecosystem disservice and two ecosystem services 

of urban trees. The Eco-B module estimates biogenic volatile organic compounds (BVOCs) 



 

109 

 

from trees based on tree species, leaf biomass, air temperature and other environmental 

factors. Trees emit hundreds of species of BVOCs, but the two major BVOCs are isoprene 

and monoterpenes (Bonan, 2015). The Eco-C module estimates total carbon storage and 

annual carbon sequestration based on allometric equations, tree growth, mortality and 

decomposition rates. The Eco-D module estimates the hourly air pollution removal by urban 

forests based on dry deposition processes (Nowak et al., 2006). The interactions between 

input variables and these modules are outlined in Figure 3.1, and the outputs from i-Tree Eco 

that will be examined in this study are listed in Table 3.1. 

 
Figure 3.1 Input variables, procedures in each module, and output variables from i-Tree Eco. 
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Table 3.1 A list of output variables used in this experiment. 

Module Output variable Unit Description 

Eco-B Isoprene μgC/hr Isoprene emission 

Eco-B Monoterpenes μgC/hr Monoterpenes emission 

Eco-C Carbon storage kg Carbon storage 

Eco-C Carbon gross sequestration kg/yr Annual gross carbon sequestration 

Eco-D Vd of NO2 cm/s Dry deposition velocity of nitrogen dioxide (NO2) 

Eco-D Vd of SO2 cm/s Dry deposition velocity of sulfur dioxide (SO2) 

Eco-D Vd of O3 cm/s Dry deposition velocity of ozone (O3) 

 

Eco-B estimates BVOC emissions (E) as: 

𝐸 = 𝐵𝐸 ∗  𝐵 ∗  𝛾     (1) 

where BE is the base genus emission rate, which is defined as the emission level standardized 

to T = 30 C and PAR = 1000μmol m-2*s-1 (Nowak et al., 2008a), B is species leaf dry weight 

biomass, and γ is the temperature and light correction factor. The i-Tree species database 

contains data for more than 6,500 tree and shrub species and their corresponding attributes; 

among these attributes, BE are compiled from the literature (Nowak et al., 2002). Users can 

also upload local site-specific BE values to the i-Tree database (this needs to be validated by 

the i-Tree team). For isoprene, γis estimated as: 

𝛾 =
exp (

𝑐𝑇1∗(𝑇− 𝑇𝑠)

𝑅∗𝑇𝑠∗𝑇
)

0.961+ exp (
𝑐𝑇2∗(𝑇− 𝑇𝑀)

𝑅∗𝑇𝑠∗𝑇
)

∗  
𝛼∗𝑐𝐿1∗𝑃𝐴𝑅

√1+𝛼2∗𝑃𝐴𝑅2
    (2) 

while for monoterpenes it is: 

𝛾 = exp (𝛽 ∗ (𝑇 − 𝑇𝑠))    (3) 

where 𝑐𝑇1= 95000 J*mol-1, 𝑐𝑇2= 230000 J*mol-1, 𝑇𝑀= 314 K, α = 0.0027 μmol-1*m2*s, 

𝑐𝐿1=1.066 (dimensionless), β =0.09 K-1 (empirical coefficient), R is the ideal gas constant 

(8.314 J*K-1*mol-1), 𝑇𝑠 is a standard temperature (303 K), and T is leaf temperature (K), 
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which is assumed to be equal to air temperature (Guenther et al., 1995; Guenther, 1997). 

Eco-C estimates forest biomass (Bio) using allometric equations from the literature 

(Nowak et al., 2013). The two most commonly used equations have the forms:  

𝐵𝑖𝑜 = 𝑒𝑥𝑝(𝐴 +  𝐵 ∗ 𝐿𝑁(𝑋)) and 𝐵𝑖𝑜 = 𝐴 ∗ (𝑋𝐵)   (4) 

where A and B are coefficients whose values vary based on species information. Species also 

determine the selection of equation forms. X is the predictor variable. Two forms of X 

employed in Eco-C are: 

X= DBH and X= (DBH2) * HEIGHT     (5) 

For Eco-D, detailed equations used to calculate aerodynamic resistance, boundary layer 

resistance, canopy resistance, and dry deposition velocity can be found in Hirabayashi et al., 

(2011).  

2.2 Study area and data employed 

A sensitivity analysis case study of three i-Tree Eco modules was performed for NYC. 

Tree species, diameter at breast height (DBH), tree height, crown height and width, tree 

condition, crown light exposure (CLE), percent crown missing and land use type associated 

with 1075 trees were obtained from 296 field plots measured in 2013, which is more than the 

200 plots used by many i-Tree studies (Nowak et al., 2008b). Although, some rare species are 

likely omitted by random sampling, random sampling produce statistically accurate estimates, 

with known bounds of error of urban forest structure (e.g., number of trees, and tree sizes). 

Tree condition is estimated as the percent of the crown that is composed of dead branches (to 

nearest 5%), which has a total of seven categories ranging from dead to excellent; CLE is the 
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number of sides (four cardinal directions and one top side) of the tree receiving sunlight from 

above (ranging from 0 to 5), which is employed to estimate light environment and 

consequently growth rates (Nowak et al., 2008a). Eight land use types were identified across 

the field plots; land use affects carbon storage and gross carbon sequestration, which is 

addressed by assigning land use biomass adjustment factors (Nowak et al., 2008a). Leaf area 

index (LAI) statistics for this study area were taken from Breuer et al. (2003) (Table 3.2), 

which summarize LAI for 26 temperate regions. Model meteorological inputs (e.g., 

temperature, relative humidity (RH), wind speed, air pressure, and photosynthetically active 

radiation (PAR)) were obtained or derived from data from the nearest airport (NCDC, 2018). 

PAR, which is the visible part (400-700 nm) of the solar spectrum, is calculated as 46 percent 

of total solar irradiance (Hirabayashi et al., 2011). The summary statistics for each input 

parameter are presented in Table 3.2. 
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Table 3.2 Summary statistics of input variables (each integer represents one category for 

categorical variables). 

Module Parameter Type Mean 
Standard 

Deviation 
Minimum Maximum Distribution 

p-value for  

Kolmogorov–

Smirnov Test 

Eco-B 

Genus Categorical 
    Uniform 

 

Leaf biomass (kg) Continuous 8.18 18.5 0 267 Lognormal 0.19 

PAR (W/m2) Continuous 84.3 122 0 483 Gamma 0.08 

Temperature (C) Continuous 13.3 10.1 -10 37.2 Gumbel 0.09 

Eco-C 

Species Categorical 
    

Uniform 
 

DBH (cm) Continuous 16.3 18.3 2.5 122 Lognormal 0.12 

Height (m) Continuous 7 4.98 1.2 30.5 Lognormal 0.1 

Land use Categorical 
  1 8 Uniform 

 

Tree condition Categorical 
  

0 6 Uniform 
 

CLE* Categorical 
  

0 5 Uniform 
 

Eco-D 

LAI Continuous 5.8 1.7 2 10 Uniform 
 

Pressure (Mbar) Continuous 1010 7.79 978 1030 Lognormal 0.05 

PAR (W/m2) Continuous 84.3 122 0 483 Gamma 0.08 

Relative humidity (%) Continuous 61 19 8 100 Beta 0.04 

Temperature (C) Continuous 13.3 10.1 -10 37.2 Gumbel 0.09 

Wind speed (m/s) Continuous 5.27 2.83 0 20.6 Weibull 0.09 

* CLE affects the calculation of leaf biomass, and therefore is also employed as an input parameter for Eco-B. 

2.3 Sensitivity analyses 

2.3.1 Morris one-at-a-time analysis 

Two SA methods were employed in this study: MOAT and a variance-based 

decomposition (VD) method. MOAT and VD, along with regression analyses to support the 

SA, were conducted using the R statistical software package. MOAT is a local sensitivity 

method which is computationally inexpensive and can differentiate input variables as 

negligible, linear/nonlinear, or having interaction effects (Saltelli et al., 2004 & 2008). The 

method starts by random sampling k parameters, X1…,Xi ,…Xk, from predefined levels of all 

input variables and calculating the subsequent model output Y(X1…,Xi ,…Xk). For different 
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Eco modules, the number of model parameters (k) varies (k = 3 for isoprene, 2 for 

monoterpenes, 3 for carbon storage, 5 for carbon sequestration, and 6 for dry deposition. In 

the second run, only one parameter, Xi, is increased by step size Δ with all other parameters 

remaining at their starting values and model output is again calculated Y(X1…,Xi+ Δ ,…Xk). 

From this, the elementary effect, EE, (Saltelli et al., 2008; Van Griensven et al., 2006), of the 

ith input variable is estimated as: 

EEi = 

Y(X1…,Xi+ 𝛥 ,…Xk)−Y(X1,…,Xi ,…Xk)

Y(X1…,Xi ,…Xk)

𝛥

Xi

        (6) 

which is the percent change of the output divided by the percent change of the input. For each 

random sample of parameters, every parameter is subsequently increased with all other 

parameters back at their starting values, and the EE for that parameter is calculated. The 

levels of the parameters are usually identified by the midpoint of four, six or eight divisions 

of the parameter range, with each division of equal probability (Saltelli et al., 2004). In this 

study, eight divisions were used (so Δ = 1/8 * parameter range), and the above procedure was 

repeated 20 times, which leads to a total of 20(1+k) runs. The mean (μ) and standard 

deviation (σ) of the EE for each parameter across all runs is then calculated and plotted. μ 

measures the overall influence individual parameters have on the output while σ indicates 

whether the interaction between input and output are linear across the parameter space (low 

σ) or if nonlinear or interaction effects are present (high σ) (Saltelli et al., 2008). When 

positive and negative values of EEi cancel each other out, a low μ may be obtained for 

parameters which have a large impact on the output. Campolongo et al. (2007) proposed to 

instead calculate the mean of the absolute value of the EEi (μ*) to avoid this problem; this 

approach is implemented in this study. 
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When applying MOAT to Eco-B and C, three things should be noted. First, we dropped 

the cases when the original model output Y(X1…,Xi ,…Xk) = 0, because it will lead to an 

error (division by zero) when calculating EEi. For example, when a tree is dead, the annual 

carbon sequestration is equal to zero; this also occurs when the BVOC emissions are 

estimated as zero for some species. Second, for the categorical input variables ‘land use’, 

‘tree condition’ and ‘CLE’, which have limited categories and can be effectively represented 

using levels (each category is one level), 
𝛥

Xi
 was always set as 1 when changing individual 

input parameters from one level to the next in the EEi calculation. Third, the unordered 

categorical input variables ‘species’ was not examined because its levels cannot be effectively 

determined and chosen from hundreds of species in the study site; species were randomly 

chosen and fixed for each simulation.    

2.3.2 Variance-based decomposition (VD) analysis 

A flowchart to perform VD by integrating Monte Carlo simulation with Latin 

hypercube sampling (LHS) and Iman Conover is presented in Figure 3.2. Stage 1 is to 

determine appropriate probability distribution functions (PDFs) to describe input variables, 

and then to perform LHS on the PDFs. Stage 2 is a Monte Carlo simulation where model 

outputs are estimated using input variables obtained from the LHS in Stage 1. Stage 3 is a 

variance decomposition analysis, which decomposes the variance of the output into different 

fractions that can be attributed to different inputs, as well as a quantile regression analysis to 

explore the general input-output relationships. Each of these stages is briefly described below. 
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Figure 3.2 Flowchart to perform sensitivity analyses. 

Stage 1 has two components. First, probability distributions were fit to input variables. 

Specific probability distributions were identified based on either empirical datasets from the 

study site or literature recommendations (Table 3.2). The use of the Weibull distribution for 

wind speed and the beta distribution for relative humidity were suggested from the literature 

(Celik et al., 2010; Yao, 1974), and the PDFs of other identified input variables were 

empirically identified and estimated based on observational datasets from the study site. The 

assessment of PDF fit was performed by employing a Kolmogorov-Smirnov goodness-of-fit 

test and quantile-quantile plots (Wasserman, 2013). For LAI, a uniform distribution was 

assumed with the minimum and maximum values taken from Breuer et al. (2003). Ordered 

categorical input variables were assumed to follow a uniform distribution with an equal 

probability of being within each category. Table 3.2 contains the distribution used for each 

input variable and the p-values for the Kolmogorow-Smirnov tests, which were all less than 
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0.2 and generally less than 0.1. 

Second, LHS, which combines the advantages of random sampling and stratified 

sampling (Helton & Davis, 2003), was employed to sample probability distributions from 

Stage 1. In LHS, the parameter space of each input variable is divided into N (N=1500 in this 

study) intervals of equal marginal probability, 1/N, and one sample of each variable is made 

randomly within each interval. Thus, N non-overlapping values for each input parameter are 

generated (Hirabayashi et al., 2011). The LHS method typically assumes that the sampling is 

performed independently for each parameter (Marino et al., 2008), though many of the input 

variables are correlated. To avoid this assumption, the Iman Conover method is used to 

enforce a dependence structure on input variables (Iman & Conover, 1982). The Iman 

Conover method is based on rearranging the values of the parameters so that a desired 

correlation structure, which is derived from Spearman's rank correlation coefficients of 

empirical datasets (Table 3.3), is imposed on the k parameters. This technique has advantages 

of being distribution free and can be used with any type of sampling scheme (Helton & 

Davis, 2003). At Stage 2, i-Tree Eco-B, C and D were batch run using input variables from 

Stage 1 to generate model outputs. 

Table 3.3 Spearman's rank correlation coefficient structure among input variables. 

  Height Pressure PAR Relative humidity Temperature 

DBH 0.66 
    

Pressure 
 

1.00 
   

PAR 
 

0.14 1.00 
  

Relative humidity 
 

-0.24 -0.28 1.00 
 

Temperature 
 

0.04 0.58 -0.10 1.00 

Stage 3 has two components. First, VD was employed to characterize and quantify the 

relative importance of input variables, and then for those input variables which were 
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identified as important, quantile regression models were fit to binned data to capture specific 

input-output relationships.  

VD is a global SA which can decompose the variance of model output into fractions 

attributed to each model input and to input interactions (Saltelli et al., 2004 & 2008). The 

effects of VD are commonly measured by two sensitivity indices: a first order index and a 

total effect index. Model output, Y, is a function of a vector of k model inputs, X1,…,Xk. The 

variance decomposition of Y can be expressed as 

Var (Y)= ∑ 𝑉𝑘
𝑖=1 i + ∑  𝑘−1

𝑖=1 ∑ 𝑉𝑘
𝑗=𝑖+1 ij + … + V1,…,k        (7) 

where Vi = Var[E(Y|Xi)] is the contribution of Xi to the variance of Y, and Vij = Var(E(Y|Xi, 

Xj))- Vi - Vj is a part of the total variance caused by the interaction between Xi and all other 

Xj, namely the joint impact of Xi and all Xj on the variance of the output minus their first-

order effects (Saltelli et al., 2008). The first-order index (Si) of Xi on Y is: 

Si = 
𝑉𝑖

𝑉𝑎𝑟(𝑌)
               (8) 

and represents the percentage of the total variance accounted by the first-order effect of Xi. 

The total effect index (STi) is: 

STi= 1- 
𝑉~𝑖

𝑉𝑎𝑟(𝑌)
             (9) 

where V~i is the total contribution of all parameters except for Xi. STi accounts for the total 

contribution of Xi to the variance of model output (e.g., its first-order effect plus all higher-

order effects due to interactions) (Saltelli et al., 2008). By definition, Si ≤ STi, ∑ 𝑆𝑖 ≤ 1 and 

∑ 𝑆𝑇𝑖 ≥ 1. 

Following Saltelli et al. (2010), two base matrices (A and B) with dimension (N, k) 

were generated by LHS, where N is the number of simulation (N=1500) and k is the number 
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of input variables. Si and STi are calculated as  

fo = 
1

𝑁
∑ 𝑓(𝐴)𝑗

𝑁
𝑗=1                 (10) 

Si = 
1

𝑁
∑

𝑓(𝐵)𝑗(𝑓(𝐴𝐵
(𝑖)

)
𝑗

−𝑓(𝐴)𝑗)

1

𝑁
∑ (𝑓(𝐴)𝑗)2𝑁

𝑗=1 −𝑓0
2

𝑁
𝑗=1       (11) 

STi = 
1

2𝑁
∑

(𝑓(𝐴)𝑗−𝑓(𝐴𝐵
(𝑖)

)
𝑗

)2

1

𝑁
∑ (𝑓(𝐴)𝑗)2𝑁

𝑗=1 −𝑓0
2

𝑁
𝑗=1        (12) 

where 𝐴𝐵
(𝑖)

 represents all columns from A except the ith column which is from B, f() is a 

function to estimate a corresponding ecosystem service, and f(A)j (or f(B)j) is the estimate an 

ecosystem service using the jth row of base matrix A (or B) as input variables. fo represents the 

expected value of the ecosystem service across all parameter simulations represented in A, 

while the denominator of Eqns. (11) and (12) represents the total variance of the ecosystem 

service across all parameters in A. The main disadvantage of VD is the computational cost 

(here N(k+2) simulations).  

General input-output variable relationships were explored and identified using a binned 

quantile regression approach (Jucker et al., 2017). We divided the scatterplot points into ten 

bins with an equal number of points by calculating corresponding quantile points (10%, 

20%,……, 90%) and using these quantile points to separate scatterplot points; we then 

estimated the median values of output and input for each bin, and performed a regression 

exploring both linear and nonlinear relationships (Figure 3.3). Three possible forms of 

quantile regression for the medians (e.g., linear (c=0), convex (c>0), concave (c<0)) were 

employed to differentiate different input-output relationships using: 

Y = a + bX + cX2          (13) 

The best form for each input-output relationship was selected based on the Akaike 
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information criterion (Wasserman, 2013), with the constraint that all the parameters should 

also be statistically significant. To compare the degree of concavity or convexity among 

different input-output relationships, regression models were built by standardizing the 

response and explanatory variables by subtracting the mean from each value and dividing by 

the standard deviation. A larger |c| value indicates greater concavity or convexity. This 

approach does more than simply explore the input-output relationships from the equations 

within i-Tree Eco, but allows us to discover links between correlated variables and model 

output. An example of the binned regression for the deposition velocity of NO2 as a function 

of PAR is shown in Figure 3.3. 

 

Figure 3.3 Bin and quantile regression process: (a) scatterplot of PAR vs Vd of NO2; (b) 

scatterplot divided into 10 bins, and each bin represented as a boxplot with median values 

shown as a red star; and (c) regression curve fit to the median values to express a specific 

input-output relationship. 

3 Results 

3.1 MOAT analysis   

The MOAT analysis produced a mean absolute value (μ*) and standard deviation (σ) of 
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the output elementary effect for each input variable across the 20 simulations. For isoprene 

(Figure 3.4a), leaf biomass had greatest μ*, indicating its large impact on model output; 

temperature and PAR had around the same magnitude of μ*, indicating their moderate effects 

on model output. Of the three variables, leaf biomass had a higher σ value indicating that 

either the values of the elementary effect varied across the sample space or were strongly 

affected by the choice of other factors’ values (i.e. nonlinear effects). For monoterpenes 

(Figure 3.4b), leaf biomass (μ*=6.74) was slightly more important than temperature 

(μ*=4.09), and both had high values of σ.  

Among the three input variables examined for carbon storage (Figure 3.4c), the effect 

of DBH on the outputs (high μ* and σ) was much larger than height and land use. The high σ 

for DBH indicated nonlinear effects of this input variable on carbon storage. For carbon 

sequestration (Figure 3.4d), two additional input variables related to tree health (condition) 

and site condition (CLE), were also examined. The five input variables can be grouped into 

three categories according to μ* and σ: most important (DBH), moderate importance 

(condition, height, CLE), and negligible importance (land use).  

Eco-D calculates dry deposition of air pollution to trees based on the dry deposition 

velocity and the air pollutant concentration, and assumes that the pollutants do not damage 

plant functions. For dry deposition velocity (Vd) of NO2, temperature and LAI were the most 

important, as indicated by a high μ*. While they had similar μ*, temperature had a higher σ 

than LAI, indicating that its relationship to Vd of NO2 was much less linear than for LAI. RH, 

wind speed, and PAR all had smaller μ* than temperature and LAI, indicating their more 

moderate and similar effects on Vd of NO2; these variables all had a higher σ than LAI, 
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indicating a less linear relationship to Vd of NO2. Pressure had a negligible effect, as 

indicated by low μ* and σ. For Vd of SO2 and O3, a similar pattern of ranking based on μ* 

was displayed: temperature > RH > LAI > wind speed > PAR > pressure. Among these, 

temperature had the greatest μ* and σ, indicating its large impact on model output and a 

highly non-linear relationship with output; RH, LAI, wind speed and PAR clustered in the 

middle of the (μ*, σ) plane, while pressure had negligible effect. 

 

 
Figure 3.4 Output from MOAT analysis showing standard deviation of elementary effect (σ) 

versus the mean of the absolute value of the elementary effect (μ*) for Eco-B (a) isoprene 

and (b) monoterpenes, Eco-C (c) carbon storage and (d) sequestration, and Eco-D dry 

deposition velocity (Vd) for (e) NO2, (f) SO2, (g) and O3. 
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3.2 Variance-based decomposition (VD) analysis   

While MOAT is computationally cheap, it cannot fully explore the input space, has 

difficulty with categorical input variables, and assumes input variables are uncorrelated. To 

overcome these disadvantages, VD was employed in the study. In addition to four direct input 

variables (genus, leaf biomass, temperature, and PAR), the sensitivity of one indirect input 

variable (CLE) was also examined because previous studies have demonstrated that altering 

CLE values could greatly affect BVOC emissions (Pace et al., 2018). For isoprene (Figure 

3.5a), the order of importance measured by STi was genus > leaf biomass > temperature > 

CLE > PAR. Genus played a dominant role since base emission rates were assumed to be 

based on genera. The differences between Si and STi for all five input variables were large, 

indicating significant interaction effects between input variables. For monoterpenes (Figure 

3.5b), the order of importance measured by STi was genus > leaf biomass > temperature > 

CLE; large interaction effects also existed for all input variables as indicated by the large 

differences between Si and STi. 

Among the four input variables that determine carbon storage (Figure 3.5c), DBH 

played the dominant role, species had a smaller role, while height and land use had negligible 

effects. For carbon storage, the model interaction effects were small, as indicated by the small 

difference between Si and STi. For carbon sequestration (Figure 3.5d), DBH again had the 

largest effect, while condition and CLE had moderate effects; the other three input variables 

(species, height, and land use) all had negligible effects. The differences between Si and STi 

for DBH, condition, and CLE indicated the existence of important interaction effects between 

these variables and carbon sequestration. 
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For Vd of NO2 (Figure 3.5e), LAI and PAR had the most dominant effect, while RH, 

temperature and wind speed had smaller effects, and pressure had a negligible effect. The 

small differences between Si and STi for these variables indicated minimal interaction effects 

between these input variables and the output. For Vd of SO2 and O3, the pattern of rankings of 

importance were similar: PAR had the largest effect, followed by RH, LAI, temperature, and 

wind speed with moderate effects, and pressure with a negligible effect. For PAR and RH, 

interaction effects were detected by the differences in Si and STi.  

 

 

Figure 3.5 Sensitivity measures (Si and STi) of (a) isoprene and (b) monoterpenes emissions, 

(c) carbon storage and (d) sequestration, and dry deposition velocity (Vd) for (e) NO2, (f) 

SO2, (g) and O3. 

3.3 Bin regression analysis   

While VD can quantify the effects of individual input variables and their interaction 
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impacts on output variability, it does not identify general input-output relationships. For those 

input variables identified as important (unordered categorical input variables were excluded) 

in VD, a bin quantile regression analysis was employed, and the general input-output 

relationships at the aggregated level were described using regression form, regression 

coefficients and the adjusted R2 (Table 3.4).  

Leaf biomass showed a concave relationship with both emissions of isoprene and 

monoterpenes (Eco-B outputs), as indicated by a significant negative parameter on X2 (a 

significant positive parameter would be convex). With an increase in leaf biomass, the 

emissions increased at a faster rate initially, then at a slower rate, and finally became 

relatively insensitive to the change in leaf biomass. The concavity of the monoterpenes vs 

leaf biomass relationship was greater than that of the isoprene vs leaf biomass relationship. 

Although leaf biomass of an individual genus at a specific temperature affected BVOC 

emissions in a linear manner (equation (1)), with different base rates from different genus and 

the nonlinear relationship between temperature and the monoterpene temperature correction 

factor (equation (3)), the combined effect across all genera and temperature in the simulation 

produced a concave relationship. CLE showed a linear relationship with both isoprene and 

monoterpenes emissions, and their adjusted R2
 values were lower than that of leaf biomass, 

indicating a weaker relationship with BVOC emissions when compared with the leaf biomass 

and BVOC relationship. By contrast, temperature showed a convex relationship with both 

BVOC emissions, indicating that the output responded relatively insensitively at low and 

moderate values of temperature, but then increased strongly as the temperature increases; the 

degrees of convexity, measured by |𝑐|, were 0.49 and 0.39 for isoprene and monoterpenes, 
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respectively, as a function of temperature. This result makes sense since emission increases 

are nearly logarithmic with high temperatures. Unlike leaf biomass and temperature, PAR 

showed a strong linear relationship with isoprene emissions. The relationships between 

binned median inputs and median Eco-B output variables were generally strong, with 

adjusted R2
 values ranging from 0.87 to 1.00. 

DBH showed a convex relationship with carbon storage while it had linear relationship 

with gross carbon sequestration; these relationships had a high adjusted R2. By contrast, the 

linear form used to describe the relationships between tree condition and CLE to gross carbon 

sequestration had a relatively low adjusted R2, indicating either a weaker input-output 

relationship or the model we proposed to represent the binned quantile regression (equation 

(8)) was inadequate to capture this relationship.  

PAR showed concave relationships with Vd of NO2, SO2, and O3, with the degree of 

concavity of NO2 > O3 > SO2; Vd of all three gases also showed concave relationships with 

temperature with similar degrees of concavity. For all other input variables, linear 

relationships were detected. LAI showed the strongest linear relationship with Vd (high 

adjusted R2), while RH showed the weakest linear relationship (low adjusted R2). This may 

indicate Vd responds to RH, and interacts with other input variables in more complex ways. 

The dry deposition processes of all three gases showed similar regression patterns with input 

variables.  
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Table 3.4 Bin quantile regression analysis of i-Tree Eco-B, C, and D outputs for most 

important input variables. 

Module Output variable Y Input variable X Regression equation Regression form Adjusted R2 

Eco-B Isoprene Leaf biomass Y=0.16+1.32X-0.18X2 Concave 0.99 

Eco-B Isoprene Temperature Y=-0.45+0.82X+0.49X2 Convex 0.96 

Eco-B Isoprene PAR Y=0.94X Linear 0.87 

Eco-B Isoprene CLE Y=0.95X Linear 0.87 

Eco-B Monoterpenes Leaf biomass Y=0.34+1.66X-0.38X2 Concave 1.00 

Eco-B Monoterpenes Temperature Y=-0.35+0.89X+0.39X2 Convex 0.99 

Eco-B Monoterpenes CLE Y=0.89X Linear 0.74 

Eco-C Carbon storage DBH Y=-0.18+0.65X+0.2X2 Convex 0.99 

Eco-C Carbon gross sequestration DBH y=0.99X Linear 0.98 

Eco-C Carbon gross sequestration Condition y=0.91X Linear 0.78 

Eco-C Carbon gross sequestration CLE y=0.82X Linear 0.59 

Eco-D Vd,NO2 PAR y=0.42+1.148X-0.467X2 Concave 0.94 

Eco-D Vd,NO2 Relative humidity y=0.77X Linear 0.55 

Eco-D Vd,NO2 LAI y=0.99X Linear 0.98 

Eco-D Vd,NO2 Temperature y=0.2+0.97X-0.22X2 Concave 0.96 

Eco-D Vd,SO2 PAR Y=0.35+1.15X-0.39X2 Concave 0.99 

Eco-D Vd,SO2 Relative humidity Y=0.86X Linear 0.71 

Eco-D Vd,SO2 Temperature y=0.15+0.98X-0.16X2 Concave 0.98 

Eco-D Vd,SO2 LAI Y=0.975X Linear 0.95 

Eco-D Vd,O3 PAR Y=0.37+1.16X-0.41X2 Concave 0.98 

Eco-D Vd,O3 Relative humidity Y=0.85X Linear 0.69 

Eco-D Vd,O3 LAI Y=0.9775X Linear 0.95 

Eco-D Vd,O3 Temperature y=0.15+0.98X-0.17X2 Concave 0.98 

 

4 Discussion 

4.1 The emissions of isoprene and monoterpenes  

The amount of BVOCs emitted was affected by tree physiology (e.g., genus, leaf 

biomass) and environmental factors (e.g., temperature). The VD analysis indicated that genus 

had the largest influence on the emissions of isoprene and monoterpenes, and there were 

strong interaction effects among input variables, as indicated by the large differences between 

Si and STi and the high σ in the MOAT analysis. In Eco-B, each genus has specific BE values, 
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varying from 0 (e.g., Pyrus) to 70 (e.g., Liquidambar) ug g-1 hr-1 for isoprene emissions, and 

from 0 (e.g., Pyrus) to 7.9 (e.g., Pistacia) ug g-1 hr-1 for monoterpenes emissions. 

Misidentifications of tree species may or may not result to large changes in BVOC emissions; 

however, misidentifications of tree genera could produce large deviations in emissions, as 

demonstrated in one study in Munich, Germany that shows isoprene emissions decrease and 

monoterpene emissions increase primarily due to misclassifications of tree species (Pace et 

al., 2018). Genus-level BVOC emission rates are used. If species-specific emissions are 

demonstrated to provide more accurate estimates, the model can be updated to uses species-

species BVOC emission rates. Note that in the MOAT analysis, μ* for both Eco-B outputs 

were much larger in magnitude than for Eco-C and Eco-D outputs. This difference may be 

because a strong interaction existed among these input variables (high σ). High VOC-

emitting genera can increase the magnitude of EE. 

All the other factors (e.g., leaf biomass, temperature, PAR, and CLE) played roles 

highly affected by the selection of a specific genus. As expected, the effects of CLE were 

smaller than leaf biomass because CLE’s role is mainly through its effect on leaf biomass. 

Eco-A calculates leaf biomass using different approaches when CLE changes between classes 

(e.g., 0~1, 2~3, and 4~5). The same environmental factors may have a small influence if low-

emitting genera are selected, and a larger influence when high-emitting genera are selected. 

Leaf biomass affected BVOC emissions in a concave manner (Table 3.4), which contradicts 

the linear relationship expressed in Eqn (1). This is probably because in the SA, we 

resampled across the range of values of genus, leaf biomass, PAR and temperature across the 

entire parameter space and therefore these other parameters, in addition to leaf biomass, also 
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varied across different simulations. The concave relationships may be due to the simultaneous 

changes of all the variables and the interactions between the variables across the sample 

space. The effect of tree physiology (e.g., genus and leaf biomass) is greater than that of 

environmental factors (e.g., temperature, sunlight), which indicates planting of a low-emitting 

genus is a good strategy to help prevent BVOC emissions (Nowak & Crane, 2000). 

Temperature showed a convex relationship with both BVOC emissions, and extreme 

temperature can strongly increase BVOC emissions (Calfapietra et al., 2013; Sharkey et al., 

1991). This may be due to the physiological functions of plants to protect against heat stress 

(Bonan, 2016). Therefore, cooler environments can also reduce BVOC emissions. While 

genus and temperature both impact BVOC emissions, an urban planner generally has limited 

control over temperature; thus, maximizing the use of low VOC-emitting trees is an efficient 

strategy to prevent and reduce BVOC emissions. 

4.2 Carbon storage and sequestration  

DBH played a dominant role for both carbon storage and sequestration (high μ* and 

STi) while land use and tree height had negligible effects (low μ* and STi). These findings 

indicate that in terms of data collection, increasing the accuracy of DBH measurements is an 

effective way to reduce model output uncertainty. DBH is important because allometric 

equations typically have a nonlinear relationship (e.g., exponential or log-log) between DBH 

and carbon storage, which means that even small errors in DBH measurements can lead to 

inaccurate carbon estimators (Jucker et al., 2017). These results suggest large trees play a 

more important role in carbon estimates than small trees; large trees (DBH > 77 cm) store 
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approximately 1,000 time more carbon than small trees (DBH < 7 cm) (Nowak, 1994). 

Sustaining the health of large trees, and accurately measuring the DBH of large trees is 

critical for carbon management and estimation.  

Given the high correlation between DBH and height, it is counter-intuitive that height 

had a small influence on carbon estimation (low μ* and STi). This difference is likely because 

some allometric equations do not use height as an explanatory variable (Eqn.5). To compete 

for sunlight, trees often initially allocate resources to maximize tree height growth and 

approach their maximum height rapidly, and then invest resources in diameter growth (Jucker 

et al., 2017). This makes carbon estimation based on height alone problematic, because trees 

of similar height can have very different woody biomass. In addition, urban trees are more 

open-grown than trees in forested stands. However, McPherson et al. (2016) state that 

allometric equations using both DBH and height as predicator variables typically have higher 

accuracy than corresponding allometric equations employing only DBH. Although not as 

large as previously thought, species also affected the estimations of carbon storage 

(STi=5.4%) and sequestration (STi=6.5%) mainly through the selection of allometric equations 

of different forms and coefficients, which reflects differences among wood density and the 

water content of species (McPherson et al, 2013). This finding indicates that employing 

species-specific allometric equations can improve the accuracy of carbon estimations. Some 

studies also indicate that developing urban-specific allometric relationships is necessary 

(McHale et al., 2009). However, urban-specific allometric equations are scarce and location-

specific, and the very few that exist are usually developed based on street trees (McPherson et 

al., 2016). Generalizing those equations to be used with other urban trees may be 
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problematic. The current approach adopted in Eco-C, namely to use forest-based allometric 

equations and apply a biomass correction factor if it is an open-grown environment (Nowak 

et al., 2013), is popular in urban forestry, although some studies criticize that this simple 

correction results in conservative estimates of biomass (Aguaron & McPherson, 2012). 

Future studies to develop urban-specific allometric equations, and to perform uncertainty 

analyses of the biomass correction factor are needed. 

For carbon sequestration, two additional input factors (CLE and condition) were 

examined. CLE indicates site characteristics that impact sunlight to the tree crown, while 

condition is a measure of tree health. These two factors affect carbon estimates by adjusting 

tree growth rates. Both MOAT and VD showed that CLE and condition played moderate roles 

in model output (Figures 3.4 and 3.5), and the bin quantile regression analysis showed that 

carbon sequestration tended to increase linearly with the increase of CLE and condition 

(Table 3.4). These linear relationships may inadequately capture input-output relationships, as 

indicated by the low values of adjusted R2 (0.59 and 0.78). Consistent with the results from 

bin quantile regression, VD also showed that the effects of CLE and condition may depend 

on the selection of other input factors, as indicated by the large difference between Si and STi. 

This difference may be due to the responses of different species, which may have different 

tolerances to abiotic and biotic stressors. This finding suggests that adaptive management 

approaches are needed to enhance and sustain forest health to maximize carbon sequestration 

and storage. 
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4.3 Air pollution removal by dry deposition processes  

Both MOAT and VD analyses revealed that LAI was the most important factor for Vd 

of NO2, and an important factor for Vd of SO2 and O3 (Figures 3.4 and 3.5). Bin quantile 

regression analysis showed that dry deposition of all three gases tended to respond linearly to 

LAI, which is consistent with the analysis performed by Hirabayashi et al. (2011). However, 

this linear relationship is unlikely to be maintained with an increase of LAI. As LAI 

increases, there is more chance of overlay among the leaf distribution, as well as resource 

(e.g., nutrients) and microenvironment (e.g., light) limitations (Chapin et al., 2011). Although 

trees adapt to these limitations, the leaves tend to behave at a lower efficiency as LAI 

increases and thus are unlikely to maintain a linear relationship with Vd (Van der Zande et al., 

2009).   

RH was an important factor for Vd of NO2, SO2, and O3 (Figures 3.4 and 3.5). Eco 

calculates stomatal conductance by employing the Ball-Berry model, which is based on 

empirical relationships between stomatal conduction and photosynthesis from numerous leaf 

gas exchange measurements (Medlyn et al., 2011). During the process, Eco assumes RH is 

equivalent to the relative humidity at the leaf surface (Hirabayashi et al., 2011). Therefore, 

RH affects the stomatal conduction directly as an input to the Ball-Berry model, as well as 

indirectly through the influence of net leaf photosynthesis. Dry depositions of all three gases 

showed linear behavior with the change of RH (Table 3.4), which is consistent with the result 

obtained by Hirabayashi et al. (2011). However, a linear model may be inadequate to fully 

capture the response of Vd to RH, as indicated by relatively low adjusted R2 values (Table 

3.4). Bonan (2015) shows that stomatal conductance responds to vapor pressure deficit 
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linearly but at different rates with changing temperature, which indicates the linear model is 

not completely justified to represent the response of Vd to RH. The large differences between 

Si and STi also indicates that the response of Vd to RH may be depend on other factors. Our 

conclusion regarding the relationship between RH and Vd is based on applying SA to the 

Ball-Berry model. However, the model has been criticized for employing leaf surface RH as a 

direct input because stomata sense and respond directly to transpiration water fluxes (Medlyn 

et al., 2011). Therefore, it is the leaf-to-air vapor pressure deficit rather than RH that actually 

drives this process. Future model development should directly incorporate vapor pressure 

deficit into the calculation of the stomatal conductance. 

Wind speed and pressure were among the least important factors for dry deposition 

(Figures 3.4 and 3.5). Wind speed is important for aerodynamic and quasi-laminar boundary 

layer resistances because it reduces the thickness of the boundary layer of still air around 

each leaf and produces steeper gradients for the exchange of elements (e.g., water vapor, 

carbon dioxide) between the leaf surface and the atmosphere (Chapin et al., 2011). However, 

canopy resistance, which is the main driver of dry deposition, does not appear to be affected 

by wind speed (Hirabayashi et al., 2011); as a result, wind speed plays a minor role in 

determining dry deposition. Pressure appeared to have a limited relationship with Vd (Figures 

3.4 and 3.5). Pressure affects stomatal conduction indirectly through the computation of the 

direct and diffuse PAR (Hirabayashi et al., 2011). 

Temperature and PAR affected the opening and closing of stomata during 

photosynthesis and transpiration (Bonan, 2015). For the photosynthetic process, PAR mainly 

affects light-harvesting reactions while temperature mainly influences carbon-fixing reactions 
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through the control of enzymes (Bernacchi et al., 2013) . For transpiration processes, water is 

taken up by the tree’s roots, transported vertically by the xylem, and evaporates from the leaf 

surface to the ambient atmosphere through a water potential gradient. The entire process is 

driven by vapor pressure deficit, which is closely correlated to temperature and light intensity 

(Will et al., 2013). The MOAT and VD analyses give different conclusions about the Vd 

response to temperature and PAR. MOAT indicated that temperature is the most important 

factor while VD indicated that PAR has the largest effect. The differences may be due to the 

different approaches of two methods, as well as the non-linear response curves of Vd to 

temperature and PAR. MOAT is a local method based on changing one factor at a time across 

its entire range while fixing all other factors at certain values, and therefore cannot fully 

explore the parameter space (a 6-dimensional space in this case). VD is a global method 

based on the simultaneous change of all input factors among their PDFs. The typical response 

curve of stomatal conduction to PAR for many species is that conduction increases with 

increasing PAR up to about 300-400 W/m2, and is relatively insensitive to further increases in 

PAR (Jones, 2013). When the randomly selected levels used to calculate EE lie outside the 

range of 300-400 W/m2, a conclusion that conduction is insensitive to PAR may be obtained. 

The response curve of Vd to PAR was concave in the bin quantile regression analysis (Table 

3.4). Vd also responds to temperature in a concave way but with less concavity than with PAR 

(Table 3.4). Bonan (2015) shows that there exists an optimal temperature for the response of 

stomatal conductance, with the values being 15-25 C for most C3 plants (plants that don’t 

have photosynthetic adaptations to reduce photorespiration). The different response 

mechanisms of Vd to PAR and temperature indicate potential model inadequacies to 
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differentiate these response curves. More systematic modeling practices, which can capture 

different Vd response mechanisms (e.g., threshold and optimal points), are needed in the 

future. 

PAR, LAI, RH and temperature all play important roles in dry deposition processes. 

Note that the VD analysis shows that PAR and RH are the most sensitive variables for Vd of 

SO2 and O3, while they are less sensitive for Vd of NO2 (Figure 3.5). This may be because 

there are greater changes in Vd for SO2 and O3 than for NO2 when input variables are altered 

similarly. For example, when increasing PAR from 50 to 600 W*m-2, Vd of SO2 and O3 

increase by 0.31 and 0.33 cm*s-1, respectively, which is larger than that of NO2 (0.18 cm*s-1). 

The variations of Vd against PAR for these three gases are detailed in Figure 3.6. Hirabayashi 

et al. (2011) also observed similar patterns in their sensitivity analysis of Eco-D in Baltimore. 

These different degrees of sensitivity may be due to different parametrization schemes for the 

calculation of the quasi-laminar boundary layer and canopy resistances, where NO2 show 

higher values for mesophyll and cuticular resistances compared with SO2 and O3 

(Hirabayashi et al., 2015). For PAR and LAI, i-Tree Eco employs one of the best available 

processes in the literature to scale up from the leaf to canopy, and the interaction between 

PAR and LAI is fully captured by different components of PAR (e.g., direct, diffuse) and LAI 

(e.g., sunlit, shaded) (Hirabayashi et al., 2011). For RH and temperature, single values, 

instead of vertical profiles around canopy height, are employed in i-Tree Eco, which may 

constrain the model performance. In addition, the model assumes that leaf temperature is 

equal to air temperature, while leaf traits (e.g., hair) and properties (e.g., latent heat 

exchange) may make leaf temperature differ from air temperature (Yu et al., 2015). Future 
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model development may focus on the improved representative of RH and leaf temperature to 

reduce the uncertainties of model outputs. 

 

Figure 3.6 Relationships between Vd and PAR. 

5 Conclusions 

In this study, sensitivity analyses (SA) are performed to investigate how the 

characteristics of the i-Tree Eco inputs impact the ecosystem services and disservices of 

urban trees predicted by this model. Here the focus is on the inputs to three i-Tree Eco 

modules: BVOC emissions (Eco-B), carbon storage and sequestration (Eco-C), and dry 

deposition velocity of air pollutants (Eco-D). Two SA with different theoretical foundations 

are employed. Morris one-at-a-time (MOAT) is based on changing one factor at a time across 

its entire range to see what effect it has on the output, while variance decomposition (VD) is 

based on decomposing the variance of the output into different fractions which can be 
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attributed to different inputs or their interactions. The results provide useful information for 

future urban Forest Inventory and Analysis (FIA) data collections 

(https://www.nrs.fs.fed.us/fia/urban/), model uncertainty analyses, and urban forest 

management.   

Genus has the largest influence on BVOC emissions by determining base emission 

rates and its large interactions with other input factors. Temperature shows a convex 

relationship with both BVOC emissions, indicating that BVOCs increase at a greater rate 

with temperature as temperature increases (Sharkey et al., 1991). High temperatures can 

strongly increase BVOC emissions. Leaf biomass has a concave relationship with BVOCs, 

indicating that the emissions increase at a faster rate initially, then at a slower rate, and finally 

become relatively insensitive to the change in leaf biomass; knowing the inflection points 

from sensitive to insensitive is important to control BVOC emissions while maximizing other 

leaf related ecosystem services. PAR has a linear relationship with isoprene emissions. These 

findings indicate that maximizing the use of low VOC-emitting trees is an efficient strategy 

to prevent and reduce BVOC emissions, and maintaining cooler environments (e.g., through 

tree transpiration) can also help to reduce BVOC emissions. 

DBH has the greatest influence on carbon storage and sequestration provided by urban 

trees, and carbon storage tends to increase in a convex manner as DBH increases. Unlike 

relationships among input variables and BVOC emissions which show strong interactions, the 

combined interactions between DBH and the other input variables and their influence on 

carbon storage and sequestration appears minimal. These results indicate that increasing the 

accuracy of DBH measurements, especially for larger trees, is critical for accurate carbon 
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estimates. Employing species-specific allometric equations can also improve the accuracy of 

carbon estimates. Effort should be spent in improving current or developing new biomass 

equation in urban environments whenever possible. By contrast, tree height and land use 

appear to play minimal roles in carbon storage and sequestration. For carbon sequestration, 

tree condition and CLE are also important. Maintaining a good site environment and tree 

health are critical to maximizing carbon storage and sequestration provided by trees. 

For the dry deposition processes, PAR, LAI, RH and temperature all play important 

roles, with PAR and LAI generally having the largest influence. Dry deposition velocity is 

sensitive to LAI and RH in a nearly linear way while it is sensitive to temperature and PAR in 

a concave manner. Air pressure has almost no influence on dry deposition, while wind speed 

has a minimal influence. The interaction between the input variables and their influence on 

dry deposition velocity is also minimal. There exists an optimal temperature for maximum 

dry deposition velocity while PAR affects dry deposition velocity up to certain threshold 

value. Representation of RH and temperature around the entire canopy space as a single value 

may constrain model performance. Future model development should focus on the improved 

representative of RH and leaf temperature. 
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Chapter 4 An Uncertainty Framework for i-Tree Eco 

Abstract  

Uncertainty information associated with urban forest models are beneficial for model 

transparency, model development, effective communication of model output, and decision-

making. However, compared with the extensive studies based on the applications of urban 

forest models, little attention has been paid to the uncertainty of the output from urban forest 

models. In this study, bootstrap and Monte Carlo simulation were employed to explore the 

uncertainty of i-Tree Eco. We assess the uncertainties associated with input data, sampling 

methods and models throughout the processes of urban forest structure and function 

quantification, and we propagate and aggregate the three sources of uncertainty to derive an 

estimator of total uncertainty. The uncertainty magnitude is expressed as the coefficient of 

variation, the ratio of the standard error of the estimator to the mean of the estimator. Through 

a case study in New York City in 2013, we find that for leaf area, carbon storage and carbon 

sequestration estimators, the magnitude of total uncertainty is estimated as 11.3%, 12.8%, and 

10.1%, respectively. The sampling uncertainty is largest, followed by model and then input 

uncertainties. The magnitude of total uncertainty is 36.0% for isoprene and 25.2% for 

monoterpenes emission, and the three sources of uncertainty all play important roles. For air 

pollution removal, the magnitude of total uncertainty is 71.3% for nitrogen dioxide removal, 

80.5% for sulfur dioxide removal, and 58.5% for ozone removal. Both input and model 

uncertainties play important roles while sampling uncertainty has a moderate influence. To 

reduce overall uncertainty, future studies should develop more urban-, local-, and species-
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specific allometric relationships, improve the spatial representation of meteorological weather 

and air pollutant concentration monitors, develop more extensive and accurate local-scale 

measurements to calibrate and verify the modules, and improve sampling strategies. 

Key words: urban forestry, ecosystem services, model uncertainty, bootstrap, Monte Carlo.  

1 Introduction  

Modeling techniques have become increasingly popular in urban forestry, and a 

fundamental yet often overlooked characteristic of a model is its uncertainty (Wu et al., 

2006). Uncertainty typically exists in every component of a model such as input data, model 

parameters, and model structure (Beck, 1987; Beven & Binley, 1992; Draper, 1995). The 

model building and calibration process (e.g., modeling assumptions, calibrating to datasets, 

communicating outputs, making decisions) could also introduce additional sources of 

uncertainty (Ascough et al., 2008; Beven et al., 2015; Hallegatte, 2009; Helton et al., 2006). 

In addition, applying models to real world applications typically increases the magnitude of 

output uncertainty. Urban systems are highly complex, and spatial heterogeneity requires the 

calibration of models to local conditions that may differ from those on which the models are 

based and developed (Hill, 2000). In addition, scale effects require re-verification of model 

structure and re-estimation of initial and boundary conditions and coefficient thresholds 

(Narasimhan et al., 2005), because there are not necessarily reasons why relationships valid at 

one scale would be valid at another scale (Rindfuss et al., 2004). Given these issues, 

uncertainty analysis (UA) should be regarded as important as model output, and the 

assessment of model output uncertainty should be formally integrated in modelling practices 
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(Pappenberger & Beven, 2006; Gallagher & Doherty, 2007). In the fields of decision support 

such as policy analysis, risk analysis, and environmental impact assessment, decision-makers 

may alter their management decisions with an understanding of uncertainty information 

associated with model output (Bryant et al., 2018; Walker et al., 2003). 

While various methods of UA have been developed to identify and quantify different 

sources of uncertainties in many fields of environmental sciences (Clark, 2003; Held, 2005; 

Mishra, 2009), uncertainty in urban forest modeling has been limited (Lin et al., 2019). UA is 

usually something added after a model has already been developed. For example, in models 

such as ENVI-met and the Green Cluster Thermal Time Constant, only model output 

uncertainty (or prediction error) is assessed and expressed as the discrepancy between the 

model predictions and observations (Shashua-Bar & Hoffman, 2002; Wu & Chen, 2017). In 

addition, only specific kinds of uncertainties are typically assessed. For example, in i-Tree 

Eco, only sampling error of field plot data is evaluated while other kinds of uncertainties 

(e.g., model structure, parameter uncertainty) are ignored, resulting in an underestimation of 

overall uncertainty (Nowak et al., 2013). 

Many models of urban forests have been developed to quantify the structure, function 

and ecosystem benefits that trees provide. i-Tree Eco (here after referred to as “Eco”) 

(https://www.itreetools.org/), is a model that has been widely employed in urban forest 

decision making such as developing priority planting schemes (McPherson et al., 2011) and 

urban forest master plans (Leff, 2016), informing environmental regulatory issues (Nowak et 

al., 2014), and assessing the tradeoffs among different kinds of ecosystem services (Bodnaruk 

et al., 2017). Considering these wide applications and the currently limited UA in urban forest 

https://www.itreetools.org/
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models, it is necessary to more fully assess and characterize uncertainty to both increase the 

credibility of the modeling process and to facilitate the effective use of model outputs in 

urban forest decision-making. 

This study focuses on an UA of Eco. Despite efforts devoted to reducing output 

uncertainty of Eco, the model only produces uncertainty estimates based on the impact of 

sampling uncertainty (Nowak et al., 2008a). To overcome the gaps and promote a better use 

of this tool, here we assess the uncertainties associated with the entire modeling process, from 

urban forest characterization and the subsequent estimators of urban forest function, to 

estimators of the services and benefits of urban trees. This includes assessing input, sampling 

and model structure uncertainties (Regan et al., 2002; Refsgaard et al., 2007; Yanai et al., 

2018). These three sources of uncertainty are estimated and compared to assess their relative 

magnitudes and identify the largest sources of uncertainty, are aggregated to derive an 

estimator of total uncertainty, and this estimator is then compared to the sampling uncertainty 

to ascertain whether the current model uncertainty estimator (based on sampling uncertainty 

alone) underestimates total uncertainty. Forest structure and function considered in this study 

include leaf area and biomass, biogenic volatile organic compound (BVOC) (isoprene and 

monoterpenes) emissions, carbon storage and sequestration, and air pollution removal 

(nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3)). The detailed processes to 

estimate those outputs can be found in the supplementary material (Eqns S1-S10). A case 

study is performed in New York City (NYC) for 2013, and the implications of the results on 

future urban forest plot inventory assessments, model development, and better use of the 

model output to support decision-making are discussed.  
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2 Methods  

2.1 Field plot data   

A total of 296 plots were selected by simple random sampling and inventoried in NYC 

in 2013. The plots are one-tenth acre in size and have a circular shape. The collected tree 

variables included tree species, diameter at breast height (DBH), tree height, crown height 

and width, tree condition, crown light exposure (CLE), and percent crown missing. Trees are 

defined as having a DBH greater than or equal to 2.54 cm (1 in), and therefore the minimum 

DBH size is 1 inch. CLE is the number of sides (four cardinal directions and one top side) of 

the tree receiving sunlight from above (ranging from 0 to 5) (Nowak et al., 2008a). There 

were a total of 1075 trees across all the plots, with the tree numbers in individual plots 

ranging from 0 to 71. 

2.2 Uncertainty analysis 

Three kinds of uncertainties (e.g., input, sampling and model uncertainty) were 

evaluated in this study. Assuming the independence of these three sources of uncertainty, we 

also aggregate them to derive an estimator of total uncertainty. Since the most pressing 

social-ecological problems and the associated decision-making (e.g., policy formulation and 

urban forest master plans) are typically addressed at the landscape scale, the uncertainty of 

Eco outputs is assessed based on the total estimate per unit land area (e.g., carbon storage 

(Mg)/hectare, leaf area (m2)/ hectare) rather than based on individual trees. To cancel out unit 

effects and facilitate the comparisons among different Eco outputs, the magnitudes of 
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uncertainty are presented as the coefficient of variation (CV), the standard error of an 

estimator divided by the estimate (e.g., mean value) from the estimator. The UA is 

demonstrated through application to a case study of NYC. 

2.2.1 Input uncertainty   

Sensitivity analyses were previously performed to investigate the relationships between 

input and output variables in Eco and to identify the most important parameters for estimating 

urban forest structure and function (Lin et al, 2020; Pace et al., 2018). For leaf area (LA) and 

leaf biomass (LB) estimators, sensitivity analyses from Chapter 3 identified crown height and 

width to be the most important variables; for BVOC emission estimators, leaf biomass, 

temperature, and photosynthetically active radiation (PAR) were most important; and for 

carbon storage and sequestration estimators, DBH was most important. We represented input 

uncertainty of tree attributes (e.g., DBH, crown height and width) and meteorological data 

(e.g., temperature and PAR) in different ways. For tree attributes, input uncertainty was 

represented as measurement error. Here the criteria of the USDA Forest Service’s Forest 

Inventory and Analysis (FIA) national core field guide were adopted 

(https://www.fia.fs.fed.us/library/field-guides-methods-proc/). The core guide employs two 

criteria to indicate measurement quality: measurement tolerance (MT) that is the range of 

measurement that is acceptable, and measurement quality objective (MQO) that is the 

percentage of time that collected data are required to be within MT. Here we assumed that 

these FIA criteria are indicative of the measurement error of tree attributes. The FIA core 

guide states that the MT for tree height and compacted crown ratio (defined as the portion of 
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the tree supporting live foliage) should be within +/- 10% of the true length, and the MQO 

should be at least 90% (meaning that crews are expected to be within the measurement 

tolerance at least 90% of the time). We assumed that measurement errors of crown heights 

follow a normal distribution. Based on the MT (within +/- 10% of crown height) and MQO 

(at least 90% of repeated times) criteria, the probability distribution of measurement error of 

crown height was represented as: 

P (𝜇-0.1𝜇 ≤  ≤ 𝜇+0.1𝜇) = 0.9      (1) 

where  denotes the measurement error of crown height and 𝜇 is the mean of . From Eqn 

(11), we calculated the CV for  as 0.0608. Using this methodology,  is a function of tree 

size, where larger trees have larger measurement errors. For the measurement error of crown 

width, the FIA core guide doesn’t provide specific guidance. Here we assumed crown width 

measurement error follows a normal distribution with a specific CV that is similar in 

magnitude to the CV for crown height. To evaluate the sensitivity of the effects of 

measurement errors of crown width to CV magnitudes, CV values of 0.05, 0.075, and 0.01 

were tested.  

For DBH, the FIA core guide states that MT should be within +/- 0.1 inch per 20.0 inch 

increments of measured DBH, and MQO should be at least 95%. Since DBH in the NYC plot 

data ranges from 1- 47.9 inches, we have three MT values, +/- 0.1, +/- 0.2, and +/- 0.3, for 

DBH varying from 1-20, 20-40, and 40-47.9, respectively. Following similar procedure as 

those used to obtain measurement errors for crown height, we calculated measurement errors 

for the three DBH size groups with a standard deviation (SD) equal to 0.051, 0.102, and 

0.153 inches, respectively. With this methodology, larger trees again tend to have larger 
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measurement errors than smaller trees.  

Eco uses a single monitoring station closest to the study area’s geographic center for 

meteorological data, and for air pollutant concentration data it uses the average across all 

monitoring stations within the study area. For meteorological and air pollutant concentration 

data, spatial variability, as opposed to the variability of individual measurements, most likely 

dominates input uncertainty. We represented input uncertainty for meteorological variables as 

the spatial variability among the meteorological monitoring data downloaded from the 

National Solar Radiation Database (NSRDB) (https://nsrdb.nrel.gov/). For air pollutant data, 

we obtained data from the Environmental Protection Agency for three monitoring sites for 

NO2, three for SO2, and five for O3 

(https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw). Similar to the studies of 

Hanna et al. (2005), Situ et al. (2014) and Zheng et al. (2010), we assumed temperature (T) 

and PAR have normal distributions. The mean of T was derived by: 

μ𝑖,𝑗 =
∑ 𝑇𝑖,𝑗,𝑘

3
𝑘=1

3
     (2) 

where i is the number of dates in July (one of the hottest months), j is the hours of the day, 

and k is the station. The overall SD of T (σ) was estimated as a function of the SD for a 

specific hour of the day (𝜎𝑖,𝑗) where: 

𝜎𝑖,𝑗 = √
∑ (𝑇𝑖,𝑗,𝑘−𝜇𝑖,𝑗)23

𝑘=1

3−1
    (3) 

and 

σ = √
∑ ∑ 𝜎𝑖,𝑗

224
𝑗=1

31
𝑖=1

31∗24
    (4) 

We obtained the SD for input uncertainty of temperature by adjusting σ with the hourly 

temperature autocorrelation structure using an autoregressive model of order one (Salas, 

https://nsrdb.nrel.gov/
https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw
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1980):  

𝜀𝐼 = ∅1 ∗ 𝜀𝐼−1 + 𝜀𝜀𝐼
       (5) 

where 𝜀𝐼 is the input uncertainty of temperature at time T, ∅1 is the lag-1autoregressive 

parameter between two continuous time periods T and T-1 which is derived from the hourly 

temperature data from all available monitoring stations, and 𝜀𝜀𝐼
 is a random error term of the 

input uncertainty of temperature which is assumed to be normally distributed with a mean of 

0 and a standard deviation of σ. A thousand sequences of 𝜀𝐼 were then simulated through 

our model for the month of July, and the standard deviation and CV of model outputs across 

all one thousand simulations were then calculated. The mean and SD values for input 

uncertainty of PAR, relative humidity (RH), and air pollutant concentrations were estimated 

in a similar manner as temperature.   

2.2.2 Sampling uncertainty   

We also evaluated the effects of sampling uncertainty, based on the number and 

distribution of plot data, on model output estimators using a bootstrap simulation, a 

resampling technique (Efron, 1982). We resampled 296 plots from the original 296 plot data 

set with replacement for 1000 iterations, calculating model output for each iteration. Using 

the results for all 1000 iterations, the standard error for each Eco output estimator can be 

estimated (Efron, 1982), from which the CV for model outputs can be estimated.  

2.2.3 Model uncertainty   

The Eco estimators of LA and LB, and carbon storage and sequestration are based on 
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empirical allometric regression models. We represented model uncertainty using the reported 

mean square error (MSE) of these regression models. Note that model selection uncertainty is 

not addressed in this analysis. The uncertainty (variance) of mean predictions from a 

regression model can be estimated as: 

�̂�𝑀
2  =𝑀𝑆𝐸𝑠 ∗ (

1

𝑛
+  

(𝑋0−�̅�)2

∑(𝑋𝑖−�̅�)2)      (6) 

where n is the sample size used to develop the regression model, X0 is the value of the 

explanatory variable for which the prediction is to be made, and X̅ is the mean of the 

explanatory variables, Xi, used to develop the regression model. While we can obtain the 

reported MSE for each regression model, n, Xi, and X̅ are not provided. Here we assumed 

that n, Xi, and X̅ of the samples used to develop regression equations are equivalent to the 

values from the tree plot data in our study area. The model uncertainty was then quantified 

using MC simulation. We first randomly sampled an error term, S, from a normal 

distribution with mean equal to zero and variance equal to the original MSES value for that 

allometric equation. We then replaced 𝑀𝑆𝐸𝑠 by S in Eqn (6), and calculated a value for the 

error term, M, using this equation, added this value back to the original allometric equations, 

and then applied these equations to all trees using that specific allometric equation. We 

repeated the iteration 1000 times to calculate the CV for each output estimator. 

BVOC emissions in Eco are estimated based on the procedures shown in Eqns (S3)-

(S6) in the supplementary material, an approach which was also adopted by the Biogenics 

Emission Inventory System (BEIS) from the US Environmental Protection Agency (Hanna et 

al., 2005). Previous studies based on other models of BVOC emission estimators, such as 

previous versions of BEIS (Hanna et al., 2005), the Model of Emissions of Gases and 
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Aerosols from Nature (Situ et al., 2014), and the Global Biosphere Emissions and 

Interactions System (Zheng et al., 2010), demonstrate that model parameters are key sources 

of uncertainty for BVOC emission estimators (Situ et al., 2014; Zheng et al., 2010). The 

uncertainty information (e.g., distribution, mean, and standard deviation (SD)) of the main 

parameters (e.g., 𝑐𝑇1, 𝑐𝑇2, 𝑇𝑀, 𝑐𝐿1, 𝛼, and β) in the Eco processes were obtained from the 

literature (Hanna et al., 2005). The meanings of the parameters and how they are employed to 

estimate BVOC emissions can be found in the supplementary material to this paper. Their 

statistical information and default values employed in Eco are summarized in Table 4.1. We 

then used MC to randomly sample parameter values, and then estimated BVOC emissions 

with these parameter values. The CVs were then calculated using the output from the 1000 

iterations. 

Table 4.1 Statistical information of main model parameters to estimate BVOC emissions 

Parameter Original value in Eco Unit Distribution Mean SD 

cT1 95000 J*mol-1 Lognormal 95000 20000 

cT2 230000 J*mol-1 Lognormal 230000 150000 

TM 314 K Normal 314 3 

cL1 1.066 dimensionless Normal 1.06 0.2 

α 0.0027 μmol-1*m2*s Lognormal 0.0027 0.0015 

β 0.09 K-1 Lognormal 0.09 0.02 

Air pollutant removals in Eco are estimated based on dry deposition processes. The 

detailed methodology employed in Eco can be found in Hirabayashi et al. (2011) and Nowak 

et al. (2006). Estimating the model uncertainty of air pollutant removal by trees via dry 

deposition is challenging due to the limited availability of data to assess model performance. 

The one study we identified is by Morani et al. (2014) who compared O3 flux estimators from 

Eco with measurements from an Eddy Covariance tower in Rome, Italy. Morani et al. 

presented the sum of squared deviations between the Eco O3 flux estimators and the Eddy 
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Covariance flux measurements, as well as the cumulative flux from Eddy Covariance 

measurements. Using this information and the number of observations, we were able to 

estimate the model uncertainty for the average Eco O3 flux measurement as 40.3%. This is 

most likely an overestimate of model uncertainty. The output produced by Morani et al. 

(2014) included two simulation periods: one for dry conditions and one for wet conditions.  

One would expect in urban areas, where trees are often watered, these dry conditions may not 

occur, and thus this data, which is the only data we have available to us, may overestimate 

model error. As we have no other data to support our analysis, here we assume the model 

uncertainty for the Eco NO2 and SO2 removal estimators to also be 40.3%. 

2.2.4 Total Uncertainty 

In addition to estimating the input, model and sampling uncertainties for each Eco output 

estimator, we also calculated the total uncertainty. Assuming the input, model and sampling 

uncertainty is independent, we estimate the CV of total uncertainty as: 

𝐶𝑉𝑇𝑜𝑡𝑎𝑙 =
√(𝐶𝑉𝐼𝑛𝑝𝑢𝑡∗𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)

2
+(𝐶𝑉𝑀𝑜𝑑𝑒𝑙∗𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)2+(𝐶𝑉𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔∗𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)

2

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒
    (7) 

3 Results  

Figures 4.1 contained boxplots of LA and LB estimators from the simulations of input, 

model and sampling uncertainties, and the calculated CV across all simulations. The CV 

values indicated the uncertainty magnitudes. Since LA and LB displayed almost identical 

results, the following description focused on LA. By combining the estimators of input, 

model and sampling uncertainties, and assuming independence amongst these uncertainty 
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sources, the total uncertainty for LA was estimated as 11.3%. The input uncertainty is for 

crown height (CH), crown width (CW) under different magnitudes of measurement errors, 

and both of these parameters together (CH & CW) assuming they are independent. The 

magnitudes of different forms of uncertainty for LA deceased from sampling to model and 

then to input. The largest uncertainty source came from sampling uncertainty, which is 

around 11% for LA. Nowak et al. (2008b) suggest a selection of 200 plots by balancing 

estimating precision and time costs. The sampling uncertainty for 200 plots was 13.9% for 

LA (results in Figure 4.1 are from resampling of 296 plots). Both model uncertainty 

(represented as confidence intervals in prediction of the mean) and input uncertainty 

(represented as measurement errors of crown height and width) had negligible effects on 

output variability. We performed a sensitivity analysis for measurement errors of crown width 

by increasing CV values from 0.05 to 0.1, and the overall conclusions were the same. The 

solid red line in Figure 4.1 showed the Eco outputs for LA from running the original 296 

plots, while the dashed red lines were the 25th and 75th quantiles for LA estimated using the 

reported standard error from Eco and assuming a normal distribution. All simulations were 

centered around the solid line, as expected; the sampling uncertainty from our simulation 

produced similar 25th and 75th quantiles as those produced by Eco. 
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Figure 4.1 Uncertainty estimates for LA and LB, where CH and CW represent crown height 

and crown width respectively. The input uncertainty is due to the measurement errors from 

both CH and CW. The solid red lines represent the Eco outputs from running the entire plot 

data set, and the dash red lines represent the Eco outputs at 25% and 75% quantiles, 

respectively. 

 

Figure 4.2 contained similar output as Figure 4.1, but for carbon storage and gross 

carbon sequestration estimators. The total uncertainty magnitude was 12.8% for carbon 

storage, and 10.1% for carbon sequestration. The ranking of uncertainty magnitude was again 

sampling > model > input. Sampling uncertainty had the greatest CV values, indicating it had 

the greatest impact on the uncertainty of model outputs; model uncertainty had smaller CV 

values than sampling uncertainty, indicating its relatively minor impact, while input 

uncertainty had negligible effects. For the sampling uncertainty, reducing plot number from 

296 to 200 resulted in the change of CV values from 12.64% to 15.1% for carbon storage, 

and 10.01% to 12.23% for carbon sequestration. Again the sampling uncertainty results 

matched those produced by Eco. 
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Figure 4.2 Uncertainty magnitudes estimates for carbon storage and sequestration. The solid 

red lines represent the Eco outputs from running the entire plot data set, and the dash red lines 

represent the Eco outputs at 25% and 75% quantiles, respectively. 

 

Figure 4.3 contained the uncertainty results for isoprene and monoterpenes emissions. 

For isoprene emissions, the total uncertainty was 36.0% and the order of output uncertainty 

magnitudes measured by CV was model > sampling > input. The output from Eco using the 

296 plots was provided (solid red line), but Eco did not currently estimate the standard error 

of isoprene estimators so no 25th and 75th percentiles were provided. Among the five model 

parameters that determine isoprene emissions (Figure 4.3a), 𝑐𝐿1 and 𝑐𝑇1 played dominant 

roles, followed by 𝛼 and 𝑐𝑇2, while 𝑇𝑀 had a negligible effect. Among the input 

uncertainty, the largest contributions came from temperature, while PAR and leaf biomass 
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had a much smaller effect on isoprene emissions. Note that when reducing plot numbers to 

200 (recommended minimum in Eco), sampling uncertainty increased from 18.3% to 22.1%. 

For monoterpenes emissions (Figure 4.3b), the total uncertainty was 25.2%, and the 

sampling uncertainty had the largest magnitude while the input and model uncertainties had 

around the same level of magnitude. The magnitude of sampling uncertainty was similar to 

that for isoprene emissions. However, compared with isoprene emissions, model uncertainty 

had a much smaller effect on monoterpenes emissions. This is probably because only one 

model parameter involved in the process of calculating the environmental correction factor. 

Among the input uncertainty, temperature had a large influence while leaf biomass had a 

negligible effect. Sampling uncertainty for monoterpenes using 200 plots increased from 

19.0% to 22.8%. 
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Figure 4.3 Uncertainty magnitudes estimates for isoprene and monoterpenes emissions, and 

the red lines represent the Eco outputs from running the entire plot data set. LB is leaf 

biomass, Temp is temperature, Alpha, CL1, CT1, CT2, and Tm are model parameters (see 

Table 4.1). 

 

Figure 4.4 contained the uncertainty results for the air pollution removals. Trees can 

remove air pollutants through dry deposition processes. We calculated the estimators for the 

changes in air pollutant concentration due to the process. The magnitudes of input and 

sampling uncertainties were calculated based on Monte Carlo simulation and bootstrap 

simulation, respectively while the magnitude of model uncertainty was obtained based on one 

existing study in Rome, Italy that compared O3 flux estimators from Eco with measurements 

from an Eddy Covariance tower. Therefore, there were no boxplots provided for model 

uncertainty in Figure 4.4. The magnitudes of total uncertainty were 71.3% for NO2, 80.5% 

for SO2, and 58.5% for O3, respectively. For all three gases, input and model uncertainties 

contributed the largest amount to the magnitude of total uncertainty, while sampling 

uncertainty played a moderate role. Among the input uncertainty, the air pollutant 

concentration had the largest influence, followed by the PAR; all other input variables had 

negligible effects. The magnitudes of total, input, and model uncertainties in the dry 

deposition output were larger than the corresponding values for other Eco estimators, while 

the magnitudes of sampling uncertainty were lower than for other Eco estimators. 
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Figure 4.4 Uncertainty magnitudes estimates for NO2, SO2 and O3, and the red lines represent 

the Eco outputs from running the entire plot data set. Temp is temperature, and Air represents 

ambient air pollutant concentration. 

4 Discussion  

4.1 Leaf area and leaf biomass estimators  

For LA and LB estimators, the CV values for model, input and sampling uncertainties 

were very similar. This is probably due to the fact that LB is calculated by multiplying LA 

and a species-specific constant value (gram of dry weight per square meter of leaf area). 

Regression equations for LB estimators have also been developed (Nowak, 1996). However, 

they are not employed directly in Eco because the ranges of tree parameters (e.g., the 

minimum and maximum values of crown width) are typically out of the application ranges of 

these equations. The discussion below, which is specific to LA, also applies to LB due to their 
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similar estimation processes.  

Sampling uncertainty’s impact on LA dominated the other two sources of uncertainty, 

which resulted in the sampling uncertainty being approximately equal to the total uncertainty. 

The effect of sampling uncertainty was mainly due to the spatial unevenness of the tree 

population distribution. There were 296 plots across NYC, which had LA densities range 

from 0 to 7375 m2/ha. Such a large variability resulted in a high sampling uncertainty of 

11.0%. An increase in sampling uncertainty from about 11% to 13% was observed when the 

plot numbers were reduced from 296 to 200. The reduced magnitude is likely a function of 

sampling intensity and study site heterogeneity. The sampling effects of LA are rarely 

evaluated, and the literature typically focuses on the influence of sampling on tree 

populations and tree’s ecosystem services (Martin et al., 2013; Nowak et al, 2008b). 

Model uncertainty for LA estimator played a minor role (CV = 1.74%). This may be 

due to model uncertainty being represented using a regression model prediction approach 

(Eqn 6) rather than using the MSE of the regression, which is integrated across all sites used 

to develop the regression model (Yanai et al., 2010). Adding MSEs directly to Eqns (S1) and 

(S7)-(S10) would inflate model uncertainty, as values of independent variables will be 

affected equally. When applying the approach in Eqn (6), the magnitudes of model 

uncertainty are also adjusted by the magnitude of independent variable (Xo), with the values 

close to the mean having smaller effects than values in the tails. Note that here we assume the 

sample from plots in NYC is the same as the sample used to develop the original regression 

equation.  

Apart from model fitting uncertainty, model selection can also be an important source 
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of uncertainty (Yanai et al., 2018). The effects of model choices, such as comparisons among 

species-specific and multi-species models, and selecting extant foreign models or developing 

local models, are often evaluated in non-urban sites (Van Breugel et al., 2011). The current 

method adopted by Eco for the LA estimator is based on a crown-based allometric equation 

developed from park tree data in Chicago (Nowak, 1996). Other approaches to estimate LA 

have also been developed, including species-specific equations (McPherson et al., 2016) and 

DBH-based equations (Timilsina et al., 2017). Comparisons among these methods are 

available in the literature. For example, by comparing four methods at a site located at 

northern California, Peper and McPherson (2003) reported that Nowak’s (1996) method tends 

to slightly overestimate LA. Another study, based on 74 urban trees and 5 species collected in 

Stevens Point, Wisconsin, concluded that locally developed LA models have higher 

accuracies than the default models employed by i-Tree Eco (Narasimhan et a., 2017). 

However, these comparisons are typically constrained to limited species and single study 

sites. Future studies based on more representative datasets and systematic comparisons are 

needed. Locally developed allometric relationships are generally superior only if they are 

developed using a sufficiently intensive and representative data set (Breugel et al., 2011). Due 

to other factors not considered in this study, such as environmental condition differences 

between application regions, the region of origin of leaf area equations, and management 

practices (e.g., pruning for aesthetic or safety purposes), the model uncertainty estimated for 

leaf area most likely is conservative.  

Output uncertainty due to measurement errors of crown width and height is negligible 

when compared with sampling uncertainty. Measurement errors are likely to be large at 
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individual tree levels, especially for large trees, due to the exponential relationship in the 

allometric equation (Eqn S1). However, measurement errors are negligible at a landscape 

level because we randomly sampled measurement errors for crown parameters, and those 

errors are equally likely to be positive and negative, and therefore cancel each other out when 

aggregating at a landscape level. We adopted the FIA core criteria of measurement tolerance 

and measurement quality objectives, which are most appropriate for experienced 

professionals. Urban forest programs often employ citizen science to collect tree attribute 

data (Roman et al., 2017), which may have higher measurement errors and input uncertainty 

than the results reported in this study.  

4.2 Carbon storage and sequestration estimators  

The largest uncertainty source for carbon storage and sequestration came from the 

sampling process, which had a CV of 12.64% and 10.01%, respectively. The total uncertainty 

was approximately equal to the sampling uncertainty due to the dominating influence of 

sampling uncertainty. This sampling uncertainty had similar magnitudes as those found for 

LA, which is probably because they are influenced by the similar spatial heterogeneity of the 

tree population. The plot densities for carbon storage and sequestration varied from 0 to 6893 

kg C/ha and 0 to 274 kg C/yr/ha, respectively, which results in large variations in the MC 

simulation. There are only limited efforts in the literature that evaluate the effects of sampling 

intensity on ecosystem service outputs in urban sites. Nowak et al. (2008b) reported that 200 

plots are needed to yield a 12% relative standard error on the total number of trees based on a 

study in Syracuse, NY. Martin et al. (2013) found that in order to achieve a +-10% error, 258, 
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870, and 483 plots are needed for the estimators of tree number, carbon storage and 

sequestration, respectively. McPherson et al. (2013) reported that standard errors for carbon 

storage and sequestration estimators are typically within 5 to 15% based on studies in Los 

Angeles and Sacramento, CA. Our estimated magnitudes of sampling uncertainty are 

comparable to these values from the literature. However, to achieve a comprehensive 

understanding of sampling uncertainty, it is necessary to incorporate the effects of other 

aspects of sampling strategy (e.g., sampling method), and to perform cross-site comparative 

studies to evaluate how city characteristics (e.g., city size and heterogeneity) influence 

sampling uncertainty. 

Model uncertainties for carbon storage and sequestration estimators had a CV of 1.61% 

and 1.18%, respectively, which were smaller than the corresponding sampling uncertainties. 

Both carbon and LA are estimated based on the regression equations. However, the equations 

have different MSE values (0.054 and 0.232) for carbon and LA. This disparity has little 

effect on the resulting magnitude of model uncertainty for carbon (CV=1.61% for carbon 

storage and 1.18% for carbon sequestration) and LA (CV=1.74%). Similar to the LA model, 

the magnitude of model uncertainty in the carbon model is also likely to be conservative due 

to the simplifying assumptions we made for Eqn (6). 

Several models have been developed to calculate carbon storage and sequestration, 

including those employed by Eco, i-Tree Streets, the CUFR Tree Carbon Calculator, and the 

Urban Tree Database biomass allometries, and substantial variability is reported when the 

models are compared (Aguaron & McPherson, 2012; Boukili et al., 2017). However, this 

variability typically results from different models employed (McHale et al., 2009) (i.e. 
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applying different models to the same tree results in different estimates), which makes model 

selection an important uncertainty source. In the urban forestry field, model selection is 

further complicated by employing either urban-specific allometric equations, which are 

relatively scarce, or forest-derived equations with a correction factor for urban open-grown 

trees. As suggested by Davies et al. (2013) and McHale et al. (2009), standardizing the 

models and methods used to estimate carbon storage and sequestration may reduce the 

variability and facilitate improved inter-city comparisons of these estimators. Other aspects of 

model uncertainty not considered in this study include species composition and species 

assignment errors (McPherson et al., 2013). Species misidentification may result in an 

assignment of inappropriate allometric equation. Depending on the species composition of a 

site, different proportions of the trees may be non-matching (i.e. there is not species-specific 

equation available), which necessitates the use of the average of results from models of the 

same genus (Nowak et al., 2008a). A higher proportion of non-matching sample site trees 

may increase the magnitude of uncertainty.  

For input uncertainty, although DBH is identified as the most important variable for 

carbon storage and sequestration estimators of individual trees (Lin et al., 2020), its effect on 

model output variability at the landscape scale is negligible. This is probably because we 

adopted the FIA core guide criteria. The assumed magnitudes of input uncertainty due to the 

measurement errors are relatively small, which results in a small impact to the output 

uncertainty.  
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4.3 Isoprene and monoterpenes emission estimators  

BVOC emissions are typically calculated by multiplying genus-based standardized 

emission rates by LB volumes, and then correcting for environmental effects (Eqn S3). 

Commonly employed models for estimating BVOC emissions include Eco, BEIS, GloBEIS, 

and MEGAN (Wang et al., 2016). In Eco, a complete genus base emission rate database has 

been developed (Nowak et al., 2002), and two environmental correction processes have been 

built for isoprene (temperature- and light-dependent (Eqns S4-S5)) and monoterpenes (only 

temperature-dependent (Eqn S6)) emission estimators.  

For both isoprene and monoterpenes emissions (Figures 4.3a and 4.3b), the total 

uncertainty is larger than that of the LA and carbon models. This is because the total 

uncertainty of isoprene and monoterpenes emissions more affected by all three sources of 

uncertainty, while the total uncertainty of the LA and carbon models is dominated by 

sampling uncertainty, with the other two sources having negligible effects. Uncertainty 

associated with input variables also play an important role, which is mainly due to the 

contribution from temperature. This finding is consistent with uncertainty assessments based 

on other BVOC emission models (Hanna et al., 2005; Situ et al., 2014). Apart from 

temperature and PAR, in other models additional environmental variables (e.g., humidity and 

wind speed) are also incorporated in BVOC emission estimators (Situ et al., 2014; Wang et 

al., 2016). It is not clear how these additional variables and associated processes affect the 

accuracy of BVOC emission estimators. The reduction of the uncertainty magnitude is not 

guaranteed unless the added processes are well-understood, well-represented and supported 

by good data (Turner & Gardner, 2015). Inter-model comparisons across different kinds of 
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landscapes are beneficial to improve mechanistic understanding of BVOC processes, and to 

reduce input and model impacts on output uncertainty. 

Compared with the effects of temperature, the uncertainty due to tree structure (e.g., 

leaf biomass) is negligible. However, this doesn’t mean that BVOC emission estimators are 

totally driven by environmental variables while tree attributes play minor roles. Through a 

sensitivity analysis, genus and leaf biomass were identified as the two most important input 

variables for estimating BVOC emissions (Lin et al., 2020; Pace et al., 2018). Input errors 

impacting LB estimators are likely due to small measurement errors of crown width and 

height, which limits the impact on output uncertainty. Treating all uncertainties 

probabilistically is impractical, and some uncertainty sources, such as nominal variables (e.g., 

genus), are not amenable to quantification (WHO, 2008). For low and high VOC-emitting 

genera, the differences of base emission rates can be up to a factor of 70 for isoprene, and 8 

for monoterpenes (Nowak et al., 2002). The misidentifications of genera could be a large 

potential source of uncertainty. The i-Tree Database also provides a mechanism for users to 

upload and employ local-specific species and location information. Advancements in science 

may not guarantee the reduction of some sources of uncertainty, such as those due to genera 

misidentifications. An effective approach is to develop a comprehensive local database which 

captures the diversity of the urban landscape.   

Sampling uncertainty for both isoprene and monoterpenes emissions are larger than that 

for LA or carbon. This is probably because BVOC emissions are affected by not only the 

spatial heterogeneity of tree population, but also the spatial distribution of tree species. High 

and low VOC-emitting species may be unevenly spaced, such as when some plots are 
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dominated by high-emitting species while others are dominated by low-emitting species. This 

results in large BVOC emission ranges across the sample plots and more sampling 

uncertainty.  

4.4 The estimators for the changes in air pollutant concentration 

For the estimators of changes in air pollutant concentration, two sources of uncertainty 

derived from input variables and the modeling procedure make the magnitudes of total 

uncertainty greatly larger than the corresponding values for all other Eco estimators. We 

calculated the magnitude of model uncertainty based on the reported results in one existing 

study in Rome, Italy (Morani et al., 2014). To our knowledge, this is the only study that 

compares the Eco air pollutant flux estimators with observations obtained from an Eddy 

Covariance tower in an urban location. We believe the calculated model uncertainty of 40.3% 

is likely an overestimate of model uncertainty. The magnitude of model uncertainty is based 

on a study from Rome, Italy, which has a Mediterranean climate, and the simulation period 

from which this uncertainty was derived contained a long dry period. In contrast, the dry 

deposition velocity in Eco is calculated based on a parameterization of the Ball-Berry model 

that is a general appropriation for well-watered soils (Bonan, 2015). Most urban areas are not 

in drought conditions, as even during droughts these systems are often watered. Therefore, 

using data from the Morani et al. (2014)’s study, which was the only data available to us, 

most likely results in an overestimate of model uncertainty. 

Other limitations of this existing study include (1) the study examined only three model 

parameters involved in the dry deposition process (e.g., the slope coefficient in the Ball-Berry 
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formula, light-saturated rate of electron transport, and maximum carboxylation rate); (2) the 

study only examined O3 estimators, and we assumed these results were transferrable to NO2 

and SO2; and (3) the analysis was only for one site in one city, and may not be transferrable to 

other urban locations. Future studies to systematically examine all necessary model 

parameters are needed. The lack of direct measurements of air pollutant flux, especially for 

NO2 and SO2, is one of the main obstacles to perform model uncertainty assessment. Future 

efforts to establish urban flux towers to obtain spatially distributed local observations are 

critical to verify model output and increase the credibility of the modeling process.  

Input uncertainty has the largest magnitude for SO2 and O3, while is the second largest 

for NO2. This is mainly due to the uncertainty of the air pollutant concentrations; all other 

meteorological and tree variables play smaller roles. Assuming the dry deposition velocity 

stays constant, the amount of air pollutant being removed from trees is linearly related to the 

air pollutant concentration (see equation 1 in Hirabayashi et al., 2011). In Eco, the current 

practice is to assign one air pollutant monitor to one study area, and if there is more than one 

monitor, air pollution removal is estimated for each monitor and the averaged result is 

reported (Nowak et al., 2014). There are few studies to incorporate multiple monitors to 

examine the spatial heterogeneity of air pollution removal and to spatially aggregate 

estimators to estimate total pollutant removal. This approach requires greater data support, 

and for most cities only a single air quality monitoring site exists. Escobedo and Nowak 

(2009) divided the Santiago, Chile into three subregions to examine the spatial heterogeneity 

of air pollution removal. To perform the experiment, they need to prepare three sets of input 

variables (e.g., tree structure, meteorological variables, and air pollutant measurements) for 
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three subregions, and then run Eco three times. Such a modeling approach may not be 

realistic for all users due to limited resources (e.g., time, budgets) and the available 

monitoring sites. 

Among the three sources of uncertainty for pollutant removal, sampling uncertainty has 

the smallest magnitude. The magnitudes of sampling uncertainty are close to the 

corresponding values for the leaf area estimators. This is probably because for the air 

pollutant removal, the input variables related to tree structure are the leaf area index and the 

tree canopy cover.  

5 Conclusions  

In this study, uncertainty analyses are performed to investigate the magnitudes of input, 

sampling and model uncertainties on output uncertainty of i-Tree Eco leaf area and biomass, 

carbon storage and sequestration, biogenic volatile organic compounds (BVOCs) emission 

(isoprene and monoterpenes) estimators, and the estimators for the air pollutant concentration 

changes for NO2, SO2, and O3. Bootstrap (for sampling uncertainty) and Monte Carlo (MC) 

simulation (for input and model uncertainty) are employed to quantify uncertainty 

magnitudes and identify key sources of uncertainty. 

By combining three sources of uncertainty, the total uncertainty is estimated as 11.3% 

for leaf area, 12.8% for carbon storage, 10.1% for carbon sequestration, 35.6% for isoprene 

emission, 25.2% for monoterpene emission, 71.3% for NO2 removal, 80.5% for SO2 removal, 

and 58.5% for O3 removal. For the leaf and carbon estimators, the rank of uncertainty 

magnitudes is similar, namely sampling > model > input, with the sampling uncertainty 
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playing a dominant role and model and input uncertainties having negligible effects. By 

bootstrap sampling the plot data, we found the sampling uncertainty associated with leaf and 

carbon outputs had similar magnitudes. Conversely, input, model and sampling uncertainties 

all play important roles in isoprene and monoterpenes emissions. The input uncertainty is 

important mainly due to the contribution from temperature. For isoprene estimators, five 

model parameters associated with two environmental correction factors make model 

uncertainty greater than sampling uncertainty, while the opposite is true for monoterpenes 

estimators. Relative sampling uncertainty associated with isoprene and monoterpenes 

estimators is greater than that of leaf and carbon outputs because the latter is affected by only 

the spatial heterogeneity of tree population, while the former is also impacted by the species 

distribution. For the air pollutant removal, input and model uncertainties play bigger roles 

than sampling uncertainty, and input uncertainty is mostly due to the spatial variability for the 

air pollutant concentrations. 

Uncertainty analysis should become a formal practice and necessary component of 

modelling exercises, especially for models which aim to support decision-making and policy-

formation. Although various sources of uncertainty throughout the process, from urban forest 

characterization to the subsequent ecosystem functions of those urban forests, are assessed, 

uncertainty magnitudes reported in this study are still believed to be conservative due to the 

omission of other factors that could increase output uncertainty. To reduce overall uncertainty, 

future studies should (1) develop urban- and species-specific allometric relationships when 

they are not available, (2) improve the spatial representation of meteorological weather and 

air pollutant monitors, (3) break the study domain into subareas when multiple monitors are 
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available to improve local meteorological and pollutant concentration estimates, and (4) 

improve sampling strategies which balance sampling intensities and data collection costs. 

Inter-comparisons among models are also beneficial assuming model mechanisms are well-

understood, and the comparisons are based on large sample data and city networks. In 

addition, there is a lack of experiments which provide data to fully assess the uncertainty of 

urban forest model output. Regardless, this analysis provides a framework for assessing the 

uncertainty of urban forest models, allows us to better quantify the uncertainty of model 

output, and should help us improve urban forest planning and management by providing 

information on how to reduce uncertainty.  
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7 Supplementary material 

i-Tree Eco (here after referred to as “Eco”) estimates urban forest structure (e.g., leaf 

area and biomass) and function (e.g., carbon storage and sequestration, and BVOC emissions) 

using field plots and meteorological data (Nowak et al., 2008), as well as the support of 

species- and location-specific information from the i-Tree Database. In this section, the 

methodology employed in Eco to estimate urban forest structure and function is described. 

Eco quantifies leaf area (LA) based on species, crown width and crown height from 

field plots, as well as species-specific shading coefficients from the i-Tree Database using the 

methodology from Nowak (1996) and Nowak et al. (2008). When crown light exposure 

(CLE) = 4-5, LA is estimated as: 

LA = exp (−4.3309 + 0.2942 ∗ H + 0.7312 ∗ W + 5.7217 ∗ S − 0.0148 ∗ C +
𝜎2

2
)  (S1) 

where H is the crown height, equal to the height difference between live top of the tree and 

crown base; W is the crown width, which is the average of the widths of the crown in the 

north-south and east-west directions; S is the species-specific shading coefficient (percent 

light intensity intercepted by foliated tree crowns); C is the crown’s outer surface area which 

is calculated asπW(H+W)/2; and 𝜎2 is the variance of the model errors, which is assumed 

to be the mean squared error of regression model used to develop Eqn (1). The model is fitted 

on the logarithmic scale, and 
𝜎2

2
 is a bias correction term when back-transforming prediction 

on logarithmic scale to prediction on original scale. When CLE = 0-1, LA is estimated as 

LA =  [
ln (1−𝑆)

−𝑘
] ∗ 𝜋𝑊2   (S2) 

where again S is the shading coefficient and W is the crown width, and k is the light 

extinction coefficient. When CLE = 2-3, LA is calculated as the average of the leaf area from 
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the above two approaches. The final estimates of LA from these methods are adjusted 

downward based on a constant percentage of crown leaf dieback, which is determined by the 

user. Leaf biomass (LB) is calculated by converting LA estimates using species-specific 

measurements of the leaf dry weight per m2 of leaf area from the i-Tree Database.  

BVOC emissions (E) are calculated based on the methodology from Guenther et al. 

(1995) and Guenther (1997) as: 

𝐸 = 𝐵𝐸 ∗  𝐵 ∗  𝛾     (S3) 

where BE is the base genus emission rate from the i-Tree Database, B is the species leaf dry 

weight biomass, and γ is an environmental correction factor. For isoprene, γ is estimated as 

the product of the temperature (𝛾temp) and light (𝛾PAR) correction factors, where 𝛾temp is 

calculated as:  

𝛾temp =
exp (

𝑐𝑇1∗(𝑇− 𝑇𝑠)

𝑅∗𝑇𝑠∗𝑇
)

0.961+ exp (
𝑐𝑇2∗(𝑇− 𝑇𝑀)

𝑅∗𝑇𝑠∗𝑇
)
    (S4) 

while 𝛾PAR is calculated as:  

𝛾PAR =
𝛼∗𝑐𝐿1∗𝑃𝐴𝑅

√1+𝛼2∗𝑃𝐴𝑅2
       (S5) 

For monoterpenes, γ is only affected by temperature, and is estimated as: 

𝛾 = exp (𝛽 ∗ (𝑇 − 𝑇𝑠))    (S6) 

where 𝑐𝑇1, 𝑐𝑇2, 𝑇𝑀, α, 𝑐𝐿1, and β are empirical constants (see Table 4.1), R is the ideal gas 

constant (8.314 J*K-1*mol-1), 𝑇𝑠 is the standard temperature (303 K), T is the leaf 

temperature (K) which is assumed to be equal to the air temperature, and PAR is the 

photosynthetically active radiation (μmol*m-2*s-1) (Guenther et al., 1995; Guenther, 1997). 

Tree biomass (Bio) is calculated using allometric equations from the literature (Nowak 

et al., 2013). The allometric regression equations for Bio in Eco have the forms: 
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𝐵𝑖𝑜 = 𝑒𝑥𝑝(𝐴 +  𝐵 ∗ 𝐿𝑁(𝐷𝐵𝐻) +
𝜎2

2
)             (S7) 

𝐵𝑖𝑜 = 𝑒𝑥𝑝(𝐴 +  𝐵 ∗ 𝐿𝑁(DBH2  ∗  HEIGHT) +
𝜎2

2
)   (S8) 

𝐵𝑖𝑜 = 𝐴 ∗ (𝐷𝐵𝐻𝐵)                            (S9) 

𝐵𝑖𝑜 = 𝐴 ∗ ((DBH2  ∗  HEIGHT)𝐵)                 (S10) 

where A and B are species-specific coefficients, DBH is the diameter at breast height, 

HEIGHT is the tree total height, and 𝜎2 is the variance of model errors. 
𝜎2

2
 in Eqns S7 and S8 

is a bias correction term when back-transforming prediction on logarithmic scale to 

prediction on original scale. The choices of coefficient values (e.g., A and B) and equation 

forms (e.g., Eqns (S7) – (S10)) depend on the species matching process. For non-matching 

species, the average result from equations of the same genus is used (Nowak et al., 2008). 

The estimates of tree biomass are multiplied by a factor of 0.8 if they are in open-grown 

environments (e.g., street trees, trees in residential and institutional lands) (Nowak, 1994). 

Carbon storage is estimated as half of the forest biomass, and carbon sequestration is 

calculated based on the temporal differences between carbon storage estimates, which are 

influenced by the length of the growing season, site competition, tree condition, and species-

specific allometric equations (Nowak et al., 2013). 
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Chapter 5 Uncertainty analyses of i-Tree Eco: A 

comparative study of 16 cities across the United 

States 

Abstract 

 Urban forest models are increasingly employed to provide estimators of ecosystem 

services. Often the uncertainty associated with these estimators is ignored or underestimated. 

To reveal the characteristics of model uncertainty and how it varies across cities with diverse 

social and ecological settings, we perform an uncertainty analysis of i-Tree Eco, a popular 

urban forest model, in 16 cities across the United States. We develop an uncertainty 

framework that consists of input, sampling and model uncertainty, and apply it to the i-Tree 

Eco modeling process. We employ Monte Carlo simulation to estimate input and model 

uncertainty, bootstrap simulation to quantify sampling uncertainty, and aggregate all three 

sources of uncertainty to derive an estimator of total output uncertainty. We express 

uncertainty magnitude as the coefficient of variation, the ratio of the standard error of the 

estimator to the mean of the estimator. By applying the uncertainty framework to a network 

of 16 cities across the United States, we find that the average magnitude of total uncertainty 

across 16 cities is 12.4% for leaf area, 13.5% for carbon storage, 11.1% for carbon 

sequestration, 40.7% for isoprene emissions, and 25.0% for monoterpene emissions. For leaf 

and carbon estimators, the total uncertainty is primarily driven by sampling uncertainty while 

input and model uncertainties have much smaller effects; the magnitudes of all three sources 

of uncertainty are comparable across 16 cities. In contrast, all input, sampling, and model 
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uncertainties contribute to the total uncertainty for isoprene and monoterpene emission 

estimators, and there are large variations in these three sources of uncertainty across the 16 

cities. The commonalities and variabilities across the cities are discussed to reveal factors that 

may drive the uncertainty magnitudes in particular cities. Such knowledge is important to 

extrapolate and generalize the findings to support future model development and decision-

making.  

Key words: urban forestry, forest structure, ecosystem services, model uncertainty, bootstrap, 

Monte Carlo. 

1 Introduction  

Urban forests provide numerous ecosystem services to mitigate environmental 

degradation associated with rapid urbanization, including urban stream degradation, 

increased human exposure to air pollutants, increased temperatures, and increased material 

consumption and energy use (Roy et al., 2012). As a green infrastructure, urban forestry has 

been incorporated into many urban plans to complement existing engineered infrastructure to 

deliver affordable and effective benefits to human beings (Keeler et al., 2019). Many cities 

have launched large urban tree planting initiatives (Pincetl et al., 2013), and many models of 

urban trees have been developed to quantify urban forest structure and ecosystem service 

magnitudes (Lin et al., 2019). These models include mechanistic models (e.g., i-Tree, ENVI-

met, and Computational Fluid Dynamics (CFD) models), and empirical models (e.g., hedonic 

pricing models and contingency valuation). Since many tree-derived ecosystem services 

cannot easily be directly measured, these models provide valuable ways to estimate and 
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quantify the ecosystem services and benefits of these systems. The biophysical metrics (e.g., 

the amount of carbon stored and air pollutants removed) and economic measures (e.g., dollar 

values saved due to improved air quality) provided by models are increasingly incorporated 

into trade-off analyses and decision making. 

Although urban forest models have become increasingly available and case studies 

have been implemented in many locations worldwide, the estimated value of ecosystem 

services and benefits provided by urban forests remain highly uncertain. For example, by 

applying an uncertainty analysis to the i-Tree Eco model in New York City, Lin and Kroll 

(2020) estimated the uncertainty of i-Tree model outputs as 12.8% for carbon storage, 10.1% 

for carbon sequestration, 36.0% for isoprene emissions, and 25.2% for monoterpenes 

emissions. When quantifying the cooling potential of urban greenery using ENVI-met, Tsoka 

et al. (2018) estimated the uncertainty of model output, as indicated by the root mean square 

error derived by comparing modeled results and measured data, as 0.52-4.3℃ for air 

temperature, and 2.7-13.9 ℃ for mean radiant temperature. When employing CFD modelling 

of the aerodynamic effect of trees on urban air pollution dispersion, Amorim et al. (2013) 

found the normalized mean squared error varied from 0.04 to 0.14, depending on model 

settings. 

Overall, the uncertainty assessments of the outputs from urban forest models have been 

limited, and most scientific studies focus on examining output uncertainty from either a 

single case study and/or a single source of uncertainty (Nowak et al., 2008b). A comparative 

study, especially across diverse social, ecological and climatic contexts, is needed to more 

rigorously assess commonalities and ranges of output uncertainty and to systematically 
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examine how these contextual factors affect the magnitudes of output uncertainty. The extent 

to which the magnitudes of uncertainty are dependent on factors such as city size, landscape 

heterogeneity, and diversity of environmental conditions requires a thorough synthesis of case 

studies across different urban settings. Another limitation of the existing studies is that they 

typically perform uncertainty assessments at the last stage of the modeling effort by 

comparing simulated results with measured data (when such data is available), and therefore 

it is challenging to disaggregate the derived magnitudes of output uncertainty due to different 

sources of uncertainty, or to extrapolate these results to other cities without such data. Users 

and decision-makers have limited information about the sources of uncertainty and their 

magnitudes, such as whether total uncertainty is driven by input measurements, sampling 

processes, or model structure. Such knowledge is important to provide guidance for future 

field plot data collection and model development. 

To overcome these gaps and promote a better use of these tools, we perform an 

uncertainty assessment of the output from a popular urban forest model, i-Tree Eco, in 16 

cities across the United States (US). Following a similar methodology as presented in Chapter 

4, we examine the entire i-Tree Eco modeling process from input data collection, to the 

characterization of urban tree structure, to the subsequent estimates of the ecosystem services 

and benefits of urban trees. In this process, we develop and apply an uncertainty framework 

to quantify the magnitudes of input, sampling and model uncertainty, and based on that, 

derive an estimator of total output uncertainty. The objectives of this study are to: (1) estimate 

the total magnitude of uncertainty of i-Tree Eco output; (2) compare the magnitudes of 

different uncertainty sources to assess their relative importance; and (3) generalize these 
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results to see if there are consistent and predictable relationships between uncertainty sources 

across different cities. Urban tree structure considered in this study includes leaf area and leaf 

biomass, and ecosystem services include biogenic volatile organic compound emissions 

(BVOC) (isoprene and monoterpenes), and carbon storage and sequestration. Such a 

comparative study, based on a network of US cities, can help facilitate generalized findings 

and develop improved estimators of output uncertainty. The provided knowledge can improve 

our ability to assess urban forest model outputs and help decision makers and urban forest 

scientists better incorporate model uncertainty into urban forest planning and management.  

2 Study sites and data employed 

2.1 Study sites 

This study examined a network of 16 cities located in 15 states that have urban forest 

inventory field plot data available (Figure 5.1). The study sites are spread across the US and 

cover diverse social and ecological settings. The cities have a range of size and climatic 

conditions, and arid, boreal and temperate systems are represented. Table 5.1 provides a 

summary of the study sites, including the average annual precipitation and temperature, and 

city size. 
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Figure 5.1 The distribution of 16 cities examined in this study 

2.2 Field data 

Field data were sampled and collected based on the i-Tree Eco protocols developed by 

the USDA Forest Service (i-Tree Eco Field Guide, 2019). In each city, circular one-tenth acre 

plots were established using simple random sampling, and within plots, tree variables include 

species, diameter at breast height (DBH), tree height, crown height and width, tree condition, 

crown light exposure (CLE), and percent leaf dieback were measured (Nowak et al., 2008a). 

The number of field plots varied by city, ranging from 39 plots in Pittsburgh, PA to 745 plots 

in Chicago, IL. Inside each plot, the inventoried tree numbers also show a large variability, 

varying from 0 to 71 trees. The summarized information for plots and trees is also provided 

in Table 5.1, including the year the field plots were sampled, the number of field plots and 

total number of trees in the field plots, the species richness across plots, and the range of 

diameter at breast height (DBH) for the sampled trees. 
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Table 5.1 The sampled plot and tree information for 16 cities 

City, State 
Average annual  

precipitation (cm) 

Average annual  

temperature (C) 

City size  

(ha) 
Year 

No. sampled 

 plots 

No. sampled  

trees 

Species 

 richness 
DBH range (cm) 

Atlanta, GA 119.6 16.3 34139 1997 205 2506 93 2.5-130 

Austin, TX 87.1 20.8 158013 2015 207 2553 62 2.5-185 

Boston, MA 112.3 9.8 14279 1996 217 955 82 2.5-144 

Casper, WY 31.8 7.4 5466 2006 234 235 47 2.5-116 

Chicago, IL 84.3 9.8 59805 2007 745 1795 102 2.0-116 

Gainesville, FL 120.4 20.4 12174 2007 93 1414 84 5.1-241 

Golden, CO 62.2 4.1 2447 2007 115 196 60 2.5-80 

Houston, TX 115.1 20.6 173270 2004 332 2001 68 12.7-128 

Los Angeles, CA 47.5 17.7 121774 2007/08 348 685 139 2.5-114 

Milwaukee, WI 87.4 8.7 25057 2008 216 1169 82 2.5-114 

Minneapolis, MN 77.2 9.4 15112 2004 110 282 41 2.5-117 

New York, NY 117.3 13.3 78647 2013 296 1075 139 2.5-122 

Omaha, NE 77.7 10.6 29873 2008/09 189 1005 26 2.5-145 

Phoenix, AZ 20.4 23.9 134701 2013 204 270 65 2.5-89 

Pittsburgh, PA 88.4 11.1 609 2010 39 501 62 2.5-114 

Washington, DC 119.6 13.2 15915 2004 201 1002 106 2.2-180 

2.3 Environment data 

We obtained weather variables from the National Solar Radiation Database (NSRDB) 

(https://nsrdb.nrel.gov/). The weather variables considered in this study included temperature 

and solar radiation. The NSRDB consists of several serially complete collections of hourly 

and ½ hour values of meteorological data, including the Physical Solar Model (PSM) and the 

Meteorological Statistical Model 3 (MTS3). Although the MTS3 has a total of 1454 stations 

across the US, it still provides limited coverage for our study sites. To fully capture the spatial 

variability of meteorological data, we employed the PSM. The PSM covers the United States 

from 1998 to 2018, and has a temporal resolution of ½ hour and spatial resolution of 4 km by 

4 km. The dataset is developed using a physical model, satellite products, and meteorological 

station data, and is updated over time as better technologies and new data sets become 

available (Habte et al., 2017; Sengupta et al., 2018). We downloaded the weather variables 

https://nsrdb.nrel.gov/
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inside the city administrative boundary for the same year when the field data were collected 

for each city, and converted the ½ hour data to hourly data by averaging. We ran our 

simulation at an hourly time step using weather data for July of that year, which is typically 

the hottest month of the year in the US. For Atlanta, GA and Boston, MA, the plot data were 

collected in 1997 and 1996, respectively. We used the PSM data in 1998, the earliest available 

dataset, in these two cities. In each city, these data sets were assumed to be applicable to all 

plots in city. 

3 Methods 

3.1 Uncertainty analysis 

Following the methodology of Lin and Kroll (2020), we used an uncertainty framework 

to quantify input, sampling, and model uncertainties, and an estimator of total uncertainty. 

Input uncertainty is mainly due to measurement errors of tree structure, and the spatial 

variability of weather variables. Sampling uncertainty comes from using the field plot data to 

assess the characteristics of the entire study area. Model uncertainty is due to the uncertainty 

of the employed model equations and parameters. To facilitate a comparison across different 

estimators of model outputs, the uncertainty magnitude is expressed as the coefficient of 

variation (CV), the ratio of the standard error of the estimator to the mean of the estimator. 

Similar to Lin and Kroll (2020), we employed Monte Carlo (MC) simulation to quantify 

input and model uncertainties, and bootstrap resampling to quantify sampling uncertainty. For 

both Monte Carlo and bootstrap simulations, we repeated the experiment 1000 times to 

calculate the CV. 
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3.1.1 Input uncertainty 

A sensitivity analysis of i-Tree Eco modeling processes performed by Lin et al. (2020) 

identified the primary drivers of i-Tree Eco model output. Based on that analysis, we 

examined the impact of the variability of tree crown height, crown width, and DBH, as well 

as the spatial variability of temperature and photosynthetically active radiation (PAR). The 

measurement errors of tree structure were derived from the USDA Forest Service’s Forest 

Inventory and Analysis (FIA) national core field guide using the method explained in Lin and 

Kroll (2020). Specifically, for crown height and crown width, the CVs of the measurement 

error were 0.0608 and 0.05, respectively; for DBH, the standard deviations (SDs) of the 

measurement error were 0.051 inches, 0.102 inches, and 0.153 inches for DBH varying from 

1- 20 inches, 20-40 inches, and 40-60 inches, respectively. These estimators of measurement 

error indicate that measurements of larger trees tend to have higher absolute errors.  

For weather variables, spatial variability across the entire city, rather than the errors in 

actual measurements, generally dominates input uncertainty. By employing all available 

NSRDB data within the city and assuming a serially correlated normal distribution for the 

errors in temperature and PAR (Situ et al., 2014; Zheng et al., 2010), we derived input 

uncertainty of weather variables by the following process. First, the mean of each weather 

variable at a specific hour on a specific day was calculated as: 

μ𝑖,𝑗 =
∑ 𝑇𝑖,𝑗,𝑘

𝑛
𝑘=1

𝑛
     (1) 

where 𝑇𝑖,𝑗,𝑘 is the weather variable (either temperature or PAR) on day i and hour j at the kth 

station, and n is the total number of stations. Second, the overall SD of the weather variable 

(σ) was estimated as a function of the SD for a specific hour of the day (𝜎𝑖,𝑗) where: 
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𝜎𝑖,𝑗 = √
∑ (𝑇𝑖,𝑗,𝑘−𝜇𝑖,𝑗)2𝑛

𝑘=1

𝑛−1
    (2) 

and 

σ = √
∑ ∑ 𝜎𝑖,𝑗

224
𝑗=1

31
𝑖=1

31∗24
    (3) 

As we ran our simulation on an hourly time step for the month of July at each study area, the 

denominator in Eqn (3) is 31 (days) * 24 (hours). Third, we obtained the residual error term 

for the weather variable by accounting for an hourly autocorrelation structure using an 

autoregressive model of order one (Salas, 1980):  

𝜀𝐼 = ∅1 ∗ 𝜀𝐼−1 + 𝜀𝜀𝐼
      (4) 

where 𝜀𝐼 is the input uncertainty of the weather variable at time t, ∅1 is the lag-1 

autocorrelation derived from the hourly data from all available NSRDB, and 𝜀𝜀𝐼
 is a random 

error term of the input uncertainty of a weather variable which is assumed to be normally 

distributed with a mean of 0 and a standard deviation of σ. A thousand sequences of 𝜀𝐼 were 

then simulated through our model for the month of July, and the standard deviation and CV of 

model outputs across all one thousand simulations were then calculated.  

3.1.2 Sampling uncertainty 

For sampling uncertainty, we employed a bootstrap simulation to quantify the 

uncertainty magnitude. Specifically, we resampled the entire number of plots in each city 

with replacement for 1000 iterations, and then calculated model output for each iteration. 

Using the results for all 1000 iterations, the standard error for each i-Tree Eco output 

estimator can be estimated (Efron, 1982), from which the CV for model outputs can be 

estimated.  
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3.1.3 Model uncertainty 

Model uncertainty is represented as either errors or variability associated with the 

employed model equations and the model parameters. Specifically, i-Tree Eco estimates leaf- 

and carbon-related outputs using empirical allometric regression models. There are varying 

degrees of fitting errors when developing these equations, and prediction errors when 

applying these equations in new locations. We employed the mean square error (MSES) 

associated with these regression equations to represent the fitting errors. In addition, to 

capture the mean prediction errors, we incorporated the MSES to estimate model uncertainty 

(�̂�𝑀
2 ) 

�̂�𝑀
2  =𝑀𝑆𝐸𝑠 ∗ (

1

𝑛
+  

(𝑋0−�̅�)2

∑(𝑋𝑖−�̅�)2)      (5) 

where n is the sample size used to develop the regression model, X0 is the value of the 

explanatory variable for which the prediction is to be made, and X̅ is the mean of the 

explanatory variables, Xi, used to develop the regression model. In Eqn (5), we only have 

access to the MSE values associated with the original regression equations, and therefore we 

assumed that the data used to develop the equation had the same properties as the sampled 

field plot data (thus deriving Xi and X̅ from the field plot data). The model uncertainty was 

then quantified by applying Monte Carlo simulation to Eqn (5). We first randomly sampled 

an error term, S, from a normal distribution with mean equal to zero and variance equal to 

the original MSES value for that allometric equation. We then replaced 𝑀𝑆𝐸𝑠 by S in Eqn 

(5), calculated a value for the model error term, M, from this equation, added this value back 

to the original allometric equations, and then applied these equations to all trees using that 

specific allometric equation. We repeated the iteration 1000 times to calculate the CV for 
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each output estimator.  

i-Tree Eco estimates BVOC emissions based on the processes and protocols developed 

by the US Environmental Protection Agency (Hanna et al., 2005). The process consists of 

two steps: (1) estimating standardized emissions by multiplying the base genus emission rate 

by leaf biomass; and (2) converting standardized emissions to actual emissions based on 

environmental correction factors. These standard processes are also adopted by several other 

models, such as the Model of Emissions of Gases and Aerosols from Nature (Situ et al., 

2014), and the Global Biosphere Emissions and Interactions System (Zheng et al., 2010). 

Therefore, rather than examining uncertainty of the modeling processes, we focused on the 

uncertainty derived from model parameters. We assumed that model parameters following 

specific distributions, used MC to randomly sample parameter values, and then estimated 

BVOC emissions with these parameter values. The CVs were then calculated using the output 

from 1000 iterations. The assumed distributions of these parameters were obtained from the 

literature (Hanna et al., 2005) and are presented in Table 5.2. 

Table 5.2 Statistical information of main model parameters to estimate BVOC emissions 

Parameter Original value in Eco Unit Distribution Mean SD 

cT1 95000 J*mol-1 Lognormal 95000 20000 

cT2 230000 J*mol-1 Lognormal 230000 150000 

TM 314 K Normal 314 3 

cL1 1.066 dimensionless Normal 1.06 0.2 

α 0.0027 μmol-1*m2*s Lognormal 0.0027 0.0015 

β 0.09 K-1 Lognormal 0.09 0.02 

3.1.4 Total uncertainty 

In addition to estimating the input, model and sampling uncertainties for each Eco output 

estimator, we also calculated the total uncertainty. Assuming the input, model and sampling 
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uncertainty is independent, we estimate the CV of total uncertainty as: 

𝐶𝑉𝑇𝑜𝑡𝑎𝑙 =
√(𝐶𝑉𝐼𝑛𝑝𝑢𝑡∗𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)

2
+(𝐶𝑉𝑀𝑜𝑑𝑒𝑙∗𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)2+(𝐶𝑉𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔∗𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)

2

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒
    (6) 

4 Results 

Table 5.3 displayed the results for uncertainty analyses for leaf area (LA) and leaf 

biomass (LB) estimators. The uncertainty magnitudes were expressed by the CV values. 

Since LB was calculated by multiplying LA and a species-specific constant value, LA and LB 

displayed almost identical results. The following description focused on LA. For LA, the 

magnitudes of total uncertainty across 16 cities averaged 12.4%, and ranged from 8.1% to 

18.5%. For LA estimator, sampling uncertainty primarily contributed to the magnitude of 

total uncertainty, while input and model uncertainties had much smaller impacts. The 

maximum magnitudes for both input and model uncertainties for LA estimator were less than 

2% across all 16 cities. In contrast, the magnitudes of sampling uncertainty were greatly 

higher, with average values being 12.3% for LA. In addition, Sampling uncertainty varied 

largely across different cities. For LA, the range is from 8.0% (Chicago, IL) to 18.5% 

(Austin, TX).  
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Table 5.3 Uncertainty magnitudes for leaf area and leaf biomass 

  Leaf area (CV: %)   Leaf biomass (CV: %) 

City, State Input  Sampling Model Total 
 

Input  Sampling Model Total 

Atlanta, GA 0.4 9.2 1.4 9.3 
 

0.4 8.7 1.4 8.8 

Austin, TX 1.6 18.5 0.7 18.5 
 

1.0 13.9 0.7 14.0 

Boston, MA 0.5 9.7 1.6 9.9 
 

0.5 9.7 1.7 9.8 

Casper, WY 1.1 15.2 1.2 15.3 
 

1.2 16.3 1.5 16.4 

Chicago, IL 0.4 8.0 1.4 8.1 
 

0.4 8.0 1.5 8.1 

Gainesville, FL 0.6 13.5 1.0 13.6 
 

0.6 12.0 1.0 12.1 

Golden, CO 1.1 17.1 1.7 17.2 
 

1.1 18.5 1.9 18.6 

Houston, TX 0.3 9.4 1.5 9.6 
 

0.4 9.9 1.5 10.0 

Los Angeles, CA 0.7 8.9 1.6 9.1 
 

0.7 8.8 1.7 8.9 

Milwaukee, WI 0.6 9.8 1.3 9.9 
 

0.7 10.4 1.4 10.5 

Minneapolis, MN 0.9 11.4 1.1 11.5 
 

0.9 11.7 1.2 11.8 

New York, NY 0.7 11.0 1.7 11.3 
 

0.7 10.9 1.8 11.1 

Omaha, NE 0.6 11.8 0.9 11.8 
 

0.6 14.3 1.0 14.3 

Phoenix, AZ 0.8 13.0 1.8 13.1 
 

0.9 14.5 1.8 14.6 

Pittsburgh, PA 0.9 15.4 0.3 15.4 
 

0.9 15.6 0.3 15.6 

Washington, DC 0.7 14.1 0.5 14.1 
 

0.7 13.3 0.5 13.4 

Mean 0.7 12.2 1.2 12.4 
 

0.7 12.3 1.3 12.4 

Standard deviation 0.3 3.1 0.5 3.1   0.3 3.1 0.5 3.0 

Table 5.4 contained the results for carbon storage and sequestration. The average 

magnitude of total uncertainty across 16 cities for carbon storage was 13.5% (ranging from 

8.7% to 19.1%), while for carbon sequestration the average total uncertainty was 11.1% 

(ranging from 6.9% to 17.5%). Among the three sources of uncertainty, sampling uncertainty 

played the most dominant role, model uncertainty had a small influence, and input 

uncertainty had a negligible effect. By comparing the magnitudes of sampling, input, model 

and total uncertainties for carbon storage and sequestration, we can clearly see that total 

uncertainty was primarily impacted by sampling uncertainty.  
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Table 5.4 Uncertainty magnitudes for carbon storage and sequestration 

  Carbon storage (CV: %)   Carbon sequestration (CV: %) 

City, State Input  Sampling Model Total 
 

Input  Sampling Model Total 

Atlanta, GA 0.0 9.1 0.8 9.1 
 

0.0 8.5 0.8 8.5 

Austin, TX 0.0 10.0 0.4 10.0 
 

0.0 7.9 0.4 7.9 

Boston, MA 0.0 10.7 1.0 10.7 
 

0.0 9.0 1.0 9.0 

Casper, WY 0.1 19.1 1.4 19.1 
 

0.0 14.6 1.7 14.7 

Chicago, IL 0.0 8.7 0.7 8.7 
 

0.0 6.8 0.7 6.9 

Gainesville, FL 0.0 18.1 0.6 18.1 
 

0.0 15.2 0.7 15.2 

Golden, CO 0.1 18.1 1.5 18.2 
 

0.0 15.3 2.1 15.5 

Houston, TX 0.0 10.4 0.5 10.4 
 

0.0 8.5 0.5 8.5 

Los Angeles, CA 0.0 10.4 0.8 10.4 
 

0.0 8.3 2.0 8.5 

Milwaukee, WI 0.0 14.2 1.1 14.3 
 

0.0 9.5 1.3 9.6 

Minneapolis, MN 0.1 15.9 2.2 16.0 
 

0.0 12.6 2.4 12.8 

New York, NY 0.0 12.6 1.6 12.8 
 

0.0 10.0 1.2 10.1 

Omaha, NE 0.0 13.0 1.2 13.0 
 

0.0 10.5 1.1 10.5 

Phoenix, AZ 0.1 15.9 0.5 15.9 
 

0.0 12.3 0.6 12.4 

Pittsburgh, PA 0.0 16.5 1.6 16.6 
 

0.0 17.3 2.4 17.5 

Washington, DC 0.0 12.1 1.2 12.2 
 

0.0 9.9 2.6 10.3 

Mean 0.0 13.4 1.1 13.5 
 

0.0 11.0 1.4 11.1 

Standard deviation 0.0 3.5 0.5 3.5   0.0 3.2 0.8 3.2 

 

For BVOC emissions, the total uncertainty average was 40.7% (range is from 30.4% to 

57.6%) for isoprene and 25.0% (range is from 16.7% to 32.9%) for monoterpenes (Table 5.5). 

The magnitudes of uncertainty for BVOCs were much larger than the corresponding values 

for both leaf and carbon estimators. All three sources of uncertainty played important roles 

for estimating total uncertainty for BVOC emissions. When examining the average values of 

uncertainty for isoprene, the order of uncertainty magnitude was model (26.8%) > sampling 

(24.0%) > input (17.3%); for monoterpene emissions, the order of average uncertainty 

magnitude was sampling (17.8%) > input (12.2%) > model (11.1%).  

For both isoprene and monoterpene emissions, sampling uncertainty had the largest 

standard deviation (SD) across the 16 cities (last row in Table 5.5). For isoprene emissions, 

input uncertainty had a larger SD than model uncertainty, while the opposite was observed for 
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monoterpene emissions. This is probably because input uncertainty is due to the spatial 

variability of both temperature and PAR for isoprene emissions, while only spatial variability 

of temperature affects input uncertainty for monoterpene emissions. When looking at input 

uncertainty of isoprene emissions, the majority of cities had similar magnitudes except for 

Omaha, NE. This is probably because the spatial variability of PAR in Omaha, NE (SD 539.7

μmol/m2/s) is much larger than that of other cities in this study (SD of approximately 100-

250μmol/m2/s). For the input uncertainty of monoterpene emissions, the average magnitude 

across 16 cities was 12.1%. The lowest input uncertainty of monoterpenes, 7.9%, was in 

Golden, CO, which is due to the low spatial variability of temperature (SD of 0.9 °C 

compared with an average SD of 1.2 °C for other cities) in this relatively small city. 

Surprisingly, the SD of model uncertainty for isoprene emissions, which is derived 

from 5 model parameters, was less than that for monoterpene emissions, which is only due to 

the change of one model parameter. This relatively large SD for model uncertainty of 

monoterpene emissions is primarily driven by several cities (e.g., Austin, TX and Houston, 

TX) that have relatively small CVs. When looking at model uncertainty of these two cities, 

the variability due to the model parameters is comparable to other cities. However, the 

majority of genera in Austin, TX have low base emitting rates (< 1 ug/g/hr), and the majority 

of trees in Houston, TX have very low leaf biomass. i-Tree Eco calculates BVOC emissions 

by multiplying genus base emitting rates, leaf biomass volumes and environmental correction 

factors; a narrow distribution of either base emitting rates or leaf biomass volumes could 

result in a low magnitude of model uncertainty.  
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Table 5.5 Uncertainty magnitudes for isoprene and monoterpene emissions 

  Isoprene emissions (CV: %)   Monoterpene emissions (CV: %) 

City, State Input  Sampling Model Total 
 

Input  Sampling Model Total 

Atlanta, GA 16.2 11.2 23.4 30.5 
 

12.0 10.0 5.8 16.7 

Austin, TX 14.6 34.6 22.5 43.8 
 

11.1 13.0 2.4 17.3 

Boston, MA 17.3 17.9 31.6 40.3 
 

11.8 13.8 17.9 25.5 

Casper, WY 15.1 20.2 25.0 35.5 
 

11.1 29.3 10.1 32.9 

Chicago, IL 19.3 21.0 29.2 40.9 
 

13.4 10.1 15.5 22.8 

Gainesville, FL 14.1 17.7 23.6 32.7 
 

10.3 15.4 6.0 19.5 

Golden, CO 11.1 30.6 27.5 42.6 
 

7.9 29.0 13.4 32.9 

Houston, TX 16.2 11.3 23.1 30.4 
 

11.8 15.4 5.2 20.1 

Los Angeles, CA 23.4 17.0 26.5 39.2 
 

16.5 15.4 12.4 25.8 

Milwaukee, WI 16.6 26.9 31.1 44.4 
 

11.4 14.8 17.4 25.5 

Minneapolis, MN 16.1 45.3 31.6 57.6 
 

10.6 19.7 17.8 28.6 

New York, NY 16.9 18.3 26.0 36.0 
 

11.9 19.0 11.5 25.2 

Omaha, NE 33.0 30.2 28.1 52.8 
 

18.0 16.4 13.9 28.0 

Phoenix, AZ 12.9 37.9 27.0 48.3 
 

12.9 26.1 7.2 30.0 

Pittsburgh, PA 16.2 27.5 25.8 41.0 
 

11.5 20.6 11.1 26.1 

Washington, DC 17.2 16.8 26.0 35.3 
 

12.1 17.0 10.6 23.4 

Mean 17.3 24.0 26.7 40.7 
 

12.1 17.8 11.1 25.0 

Standard deviation 5.0 9.7 3.0 7.6   2.3 5.9 4.8 4.9 

 

5 Discussion 

It is either infeasible or cost prohibitive to measure tree variables (e.g., leaf area and 

leaf biomass) and tree-derived ecosystem services, especially across an entire city. Urban 

forest models provide valuable tools to estimate tree structure and their ecosystem services. 

Although the estimators provided by the models are beneficial to the planning and 

management of urban trees, they contain uncertainty. For the total uncertainty of leaf and 

carbon estimators, our results indicate this uncertainty is primarily driven by sampling 

uncertainty (Tables 5.3 and 5.4). In contrast, for isoprene and monoterpene emissions, the 

relationships between total uncertainty and each source of uncertainty across our 16 study 

cities are more complicated. As shown in Figure 5.2, the ratios of each source of uncertainty 
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to total uncertainty varied greatly across the 16 cities for both isoprene and monoterpene 

emissions. These large variations prevent an effective generalization across cities.  

 

Figure 5.2 The ratios between each source of uncertainty and total uncertainty for BVOC 

emissions across 16 cities 

 

In addition to the regression fitting errors, various aspects of applying these equations 

could also increase model uncertainty. Each equation is developed based on observational 

data that have specific ranges and are collected at specific locations. As we are not privy to 

the data from which these equations were developed, we may be applying these equations to 

predict values outside the range of the data used to develop them and in different climatic 

conditions, both of which are likely to increase the magnitude of uncertainty (McPherson et 

al., 2016). In addition, the selection of allometric equations can also contribute to uncertainty. 

The selection of an incorrect equation (due to species misidentification) or an average genus 

equation (due to the lack of a species-specific model) is likely to introduce errors in model 

predictions (Van Breugel et al., 2011). When quantifying carbon estimators for open-grown 

trees, i-Tree Eco adopts a correction factor of 0.8 to forest-derived equations. The correction 

factor is based on a study on urban trees in Chicago that open-grown trees have on average 
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20% less biomass than traditional forest trees (Nowak, 1994). However, several studies 

reported that this standard correction approach may result in either over-estimation or under-

estimation of carbon storage (McHale et al., 2009; Aguaron and McPherson, 2012). More 

studies related to urban tree versus rural tree carbon storage are warranted.  

  Compared with the empirical approaches for leaf and carbon estimators, i-Tree Eco 

quantifies BVOC emissions based on mechanistic processes. This mechanistic approach is 

based on a comprehensive database of genus based emission rates. Our reported magnitudes 

of model uncertainty of BVOC emissions are based on examining variability of model 

parameters while ignoring the uncertainty of the base emission rate database. The results of 

this experiment indicate that the magnitudes of model uncertainty derived from model 

parameters could be low if the study area primarily has species with a similar base emission 

rate.  

Input variables for i-Tree Eco include tree structure and meteorological variables. The 

input uncertainty due to tree structure measurements is most likely low because we adopted 

the criteria of the USDA Forest Service’s FIA national core field guide to represent tree 

structure uncertainty. The criteria are set up for experienced urban forestry practitioners. 

Many urban forest programs employ citizen scientists to collect tree attribute data (Roman et 

al., 2017), which may result in larger measurement errors and input uncertainty than the 

results reported in this study. In addition, some circumstances, such as multi-stemmed trees, 

leaning trees, and trees on slopes, may also increase measurement errors. More studies and 

criteria to measure tree structure for these special cases are needed (Magarik et al., 2020). 

Unlike tree structure measurements, meteorological variables contribute greatly to input 
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uncertainty. i-Tree Eco first estimates standardized BVOC emissions at a temperature of 30 

°C and a PAR flux of 1000μmol*m-2*s-1, and then converts these emissions by multiplying 

by temperature and light and correction factors which are calculated based on local 

temperature and PAR values, which are impacted by the spatial uncertainty of these variables.  

For all 16 cities, sampling uncertainty for BVOC emissions is larger than that for leaf 

and carbon estimators, while the sampling uncertainty for leaf and carbon estimators have 

similar magnitudes. The plots across most cities have a wide range of tree densities. Tree 

variables that most impact leaf and carbon estimators are crown height and width, and DBH, 

respectively. For BVOC emissions, the sampling process results in the variability of both leaf 

biomass estimators and genus based emission rates; the differences of base emission rates 

across species can be up to a factor of 70 for isoprene, and 8 for monoterpenes (Nowak et al., 

2002). These two confounded effects result in relatively large sampling uncertainty for 

BVOC emissions.  

6 Conclusions 

This study developed an uncertainty framework to quantify the magnitudes associated 

with input, sampling, and model uncertainties. We developed and applied an uncertainty 

framework to a network of 16 cities across the US to examine the uncertainty magnitudes and 

variability of several forest structure and ecosystem services estimators from i-Tree Eco. The 

average magnitude of total uncertainty across 16 cities is 12.4% for leaf area, 12.4% for leaf 

biomass, 13.5% for carbon storage, 11.1% for carbon sequestration, 40.7% for isoprene 

emissions, and 25.0% for monoterpene emissions. For leaf and carbon estimators, the total 
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uncertainty is primarily driven by sampling uncertainty while input and model uncertainties 

have much smaller effects; the magnitudes of all three sources of uncertainty relative to the 

total uncertainty are comparable across the 16 cities. In contrast, all input, sampling, and 

model uncertainties contribute to the total uncertainty for isoprene and monoterpene emission 

estimators, and there are large variations in these three sources of uncertainty across 16 cities. 

Our findings for input, sampling, and model uncertainties have important implications 

for future field data collection, sampling design, model development and application. We 

suggest improving the spatial representation of meteorological variables, and establishing 

measurement criteria to reduce the uncertainty of field measurements. Since sampling 

uncertainty is important for all i-Tree Eco estimators, future studies on improving sampling 

strategies for field data collection and utilizing auxiliary information to reduce sampling 

uncertainty are warranted. Regarding model uncertainty, we suggest developing urban- and 

species-specific allometric relationships when not available. We believe our analyses and our 

suggested future directions could improve our understanding of model output as well as how 

to incorporate model output in decision-making, and advance the science of urban forest 

modeling.  
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Chapter 6 Conclusions and future directions 

1 Conclusions 

This dissertation first presents a thorough review of urban forest models, and then 

performs sensitivity and uncertainty analyses for an urban forest model, i-Tree Eco. By 

employing field plot data, meteorological variables, and air pollution data, i-Tree Eco can 

quantify urban forest structure (e.g., leaf area and leaf biomass) and numerous forest-related 

ecosystem services (e.g., biogenic volatile organic compounds (BVOCs) emissions, carbon 

storage and sequestration, and air pollution removal). For the sensitivity analyses, we 

evaluated the relative impact of tree structure measures and meteorological variables on 

model outputs using Morris one-at-a-time and variance-based decomposition methods. For 

the uncertainty analyses, we assessed the uncertainties associated with input data, sampling 

methods and employed models by bootstrap and Monte Carlo simulations.  

In Chapter 1, four hypotheses related to urban forest models and the sensitivity and 

uncertainty of i-Tree Eco were formulated. Below, each of these hypotheses is presented, and 

conclusions based on results from the experiments in Chapters 2 -5 are formulated.  

Hypothesis 1: All the urban forest models are equally applied and are used to 

estimate similar ecosystem services. 

In Chapter 2, we reviewed case studies of urban forest modeling practices over the 

past two-decades. Based on the identified 242 peer-viewed papers and 476 case studies, we 

performed a comparative analysis of the similarities and differences among urban forest 

models. We reached the conclusion that the most commonly used models are the i-Tree 
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toolset, ENVI-met, computational fluid dynamic models, and the Hedonic price model. In 

addition to the popularity of model, other characteristics of model applications were also 

summarized as follows: (1) the spatial distribution of case studies is primarily clustered in the 

US, Europe, and China, with the most popular units to model being streets and parks; (2) 

uncertainty assessments of urban forest models is limited; (3) spatially explicit models are 

critically important for estimating ecosystem services as well as for environmental 

management; (4) most case studies focus on the biophysical benefits of urban forests with 

few studies estimating economic and social benefits; and (5) linkages between urban forests 

and their social-psychological and health effects are less common due to subjectivity and 

uncertainty in expressing and quantifying human cultures, attitudes and behaviors. The 

review in Chapter 2 suggested that it is important to perform sensitivity and uncertainty 

analyses to increase the credibility of the modeling processes and to facilitate the effective 

use of model outputs in urban forest decision-making. The results presented in Chapter 2 lead 

to a rejection of this hypothesis; all urban forest models are not equally applied. 

Hypothesis 2: All input variables contribute equally to the uncertainty of model 

outputs. 

Chapter 3 employed a Morris one-at-a-time method and a variance-based 

decomposition method to analyze the relative impact of different i-Tree Eco inputs on 

outputs, and bin regression analyses to characterize the input-output relationships. Based on a 

case study in New York City in 2013, we made conclusions that: (1) genus has the largest 

influence on BVOC emissions by determining base emission rates and its high interactions 

with other input factors; (2) carbon storage shows a convex relationship with diameter at 
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breast height (DBH), while carbon sequestration is sensitive to DBH, crown light exposure, 

and tree condition in a linear manner; and (3) dry deposition velocity is sensitive to leaf area 

index and relative humidity in a nearly linear fashion, and sensitive to temperature and PAR 

in a concave manner. Model outputs are affected by not only model inputs but also by model 

development (e.g., the adopted model equations and model parameters) and model 

applications (e.g., sampling strategy). It is necessary to fully and systemically explore various 

aspects of modeling practices to quantify the total uncertainty of model output estimators. 

The results presented in Chapter 3 lead to a rejection of this hypothesis; the impact of input 

variables on i-Tree Eco output varies widely.  

Hypothesis 3: All three sources (input, model and sampling) of uncertainty 

contribute equally to the total uncertainty estimators. 

Chapter 4 developed an uncertainty framework to assess the uncertainties throughout 

the i-Tree Eco modeling process from input dataset collection, to urban forest 

characterization, to subsequent estimators of ecosystem services. This includes input, 

sampling and model uncertainties. We quantified uncertainty magnitudes by employing 

bootstrap and Monte Carlo simulations, and aggregated the three sources of uncertainty to 

derive an estimator of total uncertainty. Through a case study in New York City in 2013, we 

found the magnitude of total uncertainty is estimated as 11.3% for leaf area, 11.1% for leaf 

biomass, 12.8% for carbon storage, 10.1% for carbon sequestration, 36.0% for isoprene 

emissions, 25.2% for monoterpene emissions, 71.3% for nitrogen dioxide removal, 80.5% for 

sulfur dioxide removal, and 58.5% for ozone removal. For leaf and carbon estimators, the 

total uncertainty was driven by sampling uncertainty while input and model uncertainties 
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have negligible effects. For BVOC emissions, all three sources of uncertainty contribute 

similarly to total uncertainty. For air pollution removal, the total uncertainty is driven 

primarily by both input and model uncertainties, while sampling uncertainty has a more 

moderate influence. The results presented in Chapter 4 and 5 lead to a rejection of this 

hypothesis; for leaf area, leaf biomass, carbon storage and carbon sequestration, sampling 

uncertainty overwhelms input and model fitting uncertainty. 

Hypothesis 4: The characteristics of three sources of uncertainty (input, model 

and sampling) are consistent across 16 US cities. 

Chapter 5 applied the same framework and methodology developed in Chapter 4 to a 

network of 16 cities across the US that have diverse social and ecological settings. The results 

show that the average magnitudes of total uncertainty across 16 cities are 12.4% for leaf area, 

13.5% for carbon storage, 11.1% for carbon sequestration, 40.7% for isoprene emissions, and 

25.0% for monoterpene emissions. For leaf and carbon estimators, the total uncertainty is 

primarily driven by sampling uncertainty, while input and model uncertainties have much 

smaller effects on total uncertainty. The magnitudes of all three sources of uncertainty are 

similar across the 16 study cities. In contrast, input, sampling, and model uncertainties 

contribute to the total uncertainty for isoprene and monoterpene emission estimators, and 

there are large variabilities in these three sources of uncertainty across the 16 study cities. 

The results presented in Chapter 5 lead to a rejection of this hypothesis; the three sources of 

uncertainty vary widely across our study cities. 
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2 Future directions 

This dissertation focuses on sensitivity and uncertainty analyses for i-Tree Eco. We 

focused not only on model development, but also on input data collection, sampling 

processes, and model application. Because model outputs and their uncertainty are affected 

by every component of the modeling practices, our efforts were to attempt to assess the 

contributions of different drivers of model output uncertainty. Although we focus on 

evaluating i-Tree Eco, the developed methods and framework could be applied to other urban 

forest models which have similar structure and function, and the findings and conclusions 

have general implications for urban forest modeling practices. Based on a systematic 

literature review and case studies in 16 cities, we can make the following suggestions for 

urban forest modeling: 

(1) Improve the spatial representation of meteorological weather and air pollutant 

concentration monitors. For some environmental variables (e.g., photosynthetically active 

radiation) that cannot be directly measured, it is important to develop improved methods for 

estimating these variables. Advances in remote sensing technologies may improve the spatial 

representation and estimation of some of these variables. 

(2) Improve sampling strategies for field data collection, and examine the effects of 

different sampling strategies. For example, it is beneficial to compare the relative impacts of 

sampling method and sampling intensity, and the resulting uncertainty from the sampling 

strategy. Users should balance the cost of increased sampling with the resulting decrease in 

sampling uncertainty.   

(3) Establish tree structure measurement criteria for citizen scientists. 
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(4) Develop urban-specific and species-specific allometric equations to quantify leaf 

and carbon estimators, and compare allometric equations in i-Tree with other locally 

developed equations. 

(5) Improve our understanding of the various roles model parameters play in the dry 

deposition process, and perform experiment to validate models of dry deposition removal by 

urban trees. 

(6) Perform comparative studies of urban forest services and benefits in a wide area of 

study sites, including cities outside the US, to examine the consistency of model 

performance, assess commonalities in model outputs, and explore the ranges of model output 

uncertainty. In addition, it is also important to reveal major driving factors that drive the 

uncertainty magnitudes in particular cities, so that the results can be extrapolated and used in 

other cities.  

(7) Perform numerous case studies where there are measurements to verify model 

outputs. For example, urban flux towers can be built to verify the accuracy of air pollution 

removal effects of i-Tree Eco. Such measurement networks are critical to the development of 

model improvement and the assessment of model estimators.  
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