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Abstract 

This paper studies how four primary-school in-service teachers develop the mathematical practices of 

conjecturing and proving. From the consideration of professional development as the legitimate peripheral 

participation in communities of practice, these teachers’ mathematical practices have been characterised by using 

a theoretical framework (consisting of categories of activities) that describes and explains how a research 

mathematician develops these two mathematical practices. This research has adopted a qualitative methodology 

and, in particular, a case study methodological approach. Data was collected in a working session on professional 

development while the four participants discussed two questions that invoked the development of the 

mathematical practices of conjecturing and proving. The results of this study show the significant presence of 

informal activities when the four participants conjecture, while few informal activities have been observed when 

they strive to prove a result. In addition, the use of examples (an informal activity) differs in the two practices, 

since examples support the conjecturing process but constitute obstacles for the proving process. Finally, the 

findings are contrasted with other related studies and several suggestions are presented that may be derived from 

this work to enhance professional development. 

Keywords: conjecturing, proving, primary-school in-service teachers, professional development, research 

mathematicians  

Abstrak 

Artikel ini mempelajari tentang bagaimana empat guru sekolah dasar mengembangkan latihan mengajar 

matematika dari dugaan dan pembuktian. Berdasarkan pertimbangan pengembangan profesional sebagai 

partisipasi periferal yang sah dalam komunitas pembelajaran, latihan mengajar matematika guru ini telah 

dicirikan dengan menggunakan kerangka kerja teoretis (terdiri dari kategori kegiatan) yang menggambarkan dan 

menjelaskan bagaimana seorang peneliti matematika mengembangkan dua latihan mengajar matematika ini. 

Penelitian ini menggunakan metodologi kualitatif dan khususnya pendekatan metodologi studi kasus. Data 

dikumpulkan dalam sesi pelatihan pengembangan profesional sementara empat peserta membahas dua 

pertanyaan yang meminta pengembangan pembelajaran matematika dari dugaan dan pembuktian. Hasil 

penelitian ini menunjukkan adanya aktivitas informal yang signifikan ketika keempat partisipan berspekulasi, 

sementara beberapa aktivitas informal telah diamati ketika mereka berusaha untuk membuktikan hasil. Selain itu, 

penggunaan contoh (kegiatan informal) berbeda dalam dua latihan mengajar, karena contoh mendukung proses 

dugaan tetapi merupakan hambatan untuk proses pembuktian. Akhirnya, temuan ini dibandingkan dengan studi 

terkait lainnya dan beberapa saran disajikan yang mungkin berasal dari pekerjaan ini untuk meningkatkan 

pengembangan profesional. 

Kata kunci: melakukan konjektur (dugaan), membuktikan, guru SD, pengembangan profesional, meneliti 

matematikawan 

How to Cite: Fernández-León, A., Gavilán-Izquierdo, J.M., & Toscano, R. (2021). A Case Study on How Primary-

School in-Service Teachers Conjecture and Prove: An Approach from the Mathematical Community. Journal on 

Mathematics Education, 12(1), 49-72. http://doi.org/10.22342/jme.12.1.12800.49-72 

 

In mathematics education, research into mathematical practices is receiving increasing attention. This growth 

in interest is, on the one hand, motivated by studies from the philosophy of mathematics that focus on the 

processes of construction of mathematical knowledge (Lakatos, 1976; Tymoczko, 1998) and, on the other 

hand, by suggestions of a curricular nature that explicitly indicate the inclusion of mathematical practices as 



50  Journal on Mathematics Education, Volume 12, No. 1, January 2021, pp. 49-72 

 

academic mathematical content (National Council of Teachers of Mathematics, 2000; National Governors 

Association Center for Best Practices & Council of Chief State School Officers, 2010; RAND Mathematics 

Study Panel, 2003; U.K. Department of Education, 2014). Throughout this paper, mathematical practices 

(disciplinary practices in Rasmussen, Wawro, & Zandieh, 2015) are considered as being those mathematical 

activities developed by research mathematicians when building mathematical knowledge during their 

research. The present study focuses on the mathematical practices of conjecturing and proving, for their 

distinguished role in the teaching and learning of problem-solving (Chong, Shahrill, & Li, 2019) and in view 

of their relevance for the development of mathematical knowledge (Turrisi, 1997).  Indeed, the existing 

literature brings to light the significance of these practices as a means for in-depth learning in all the 

mathematical areas, whereby students’ engagement in these activities can significantly influence their 

mathematical training, thereby giving them a wide background for conceptual understanding (Stylianides & 

Ball, 2008; Watson, 1980). 

Research into mathematical practices developed specifically by in-service teachers, which may yield 

valuable information for the improvement of the teaching and learning of such practices, is a field that could 

be further explored (Ball, Thames, & Phelps, 2008; Carrillo-Yañez et al., 2018). This research field may 

contribute, among others, towards the design of professional development activities, towards the professional 

noticing of mathematical practices, and consequently towards the promotion of students’ understanding of 

these practices and towards their engagement therein. In this respect, several interesting contributions focus 

on conjecturing and proving, and include: the research by Knuth (2002), which analyses teachers’ 

conceptions of the role and nature of proof; the study by Ko (2010), which reviews mathematics teachers’ 

conceptions of proof and discusses possible implications for educational research; the paper by Melhuish, 

Thanheiser, and Guyot (2018) on professional noticing of the mathematical practices of generalising 

(conjecturing) and justifying (argumentation and proof); and the research by Lesseig (2016), which studies 

teachers’ conjecturing, generalising and justifying behaviour when becoming involved in a classic number 

theory task that invokes these three mathematical practices. Other recent contributions on this topic by 

Astawa, Budayasa, and Juniati (2018) and by Oktaviyanthi, Herman, and Dahlan (2018) have studied the 

process of future mathematics teacher cognition in constructing mathematical conjecture and the way in 

which future mathematics teacher can prove the limit of a function by formal definition, respectively. In 

summary, mathematics in-service teachers must know how to make conjectures and provide proofs to foster 

these mathematical practices in their students, which motivates this research field and, in particular, the 

present study. Therefore, this paper studies the mathematical practices of primary-school in-service teachers 

and, specifically, focuses on the way in which these teachers develop the mathematical practices of 

conjecturing and proving in a professional training context. 

 

Conjecturing and Proving Activities 

Conjecturing and proving constitute two mathematical practices that have been extensively 

studied by the research community over the years. Consequently, many authors from various fields have 



Fernández-León, Gavilán-Izquierdo, & Toscano, A Case Study on How Primary-School …           51 

 
 
referred to these practices and have assigned them different connotations. For this reason, this section 

begins by specifying certain terminology to frame this research. As mentioned earlier, the term 

mathematical practice is employed to refer to the mathematical activities developed by research 

mathematicians when they build mathematical knowledge during their research. In particular, the term 

research mathematician refers to those researchers who have a Ph.D. and have published research papers 

in mathematics. Furthermore, conjecturing and proving are the mathematical practices that generate 

conjectures and proofs respectively. Specifically, a conjecture is assumed to be a statement that can be 

true or false, appears reasonable, “has not been convincingly justified and yet it is not known to be 

contradicted by any examples, nor is it known to have any consequences which are false” (Mason, 

Burton, & Stacey, 1982, p. 58). Moreover, the definition of proof by Weber and Mejia-Ramos (2011) is 

adopted: “the socially sanctioned written product that results from mathematicians’ attempts to justify 

why a conjecture is true” (p. 331). 

In reviewing the literature, many studies can be encountered that advocate conjecturing and proving 

as two mathematical and very closely related practices which constitute two sides of the same coin. Several 

significant authors who support this consideration include: Peirce (Turrisi, 1997) and Lakatos (1976), from 

the philosophy of mathematics; and Polya (1954), Alibert and Thomas (2002), Boero and collaborators 

(Boero, 2007; Boero, Garuti, & Lemut, 2007), and Rasmussen et al. (2015), from mathematics education. 

All these authors highlight, from different points of view, that these two mathematical practices are 

interrelated and are essential for the construction of mathematical knowledge. For these reasons, the joint 

study of these two mathematical practices is considered in this paper. 

In this study, the theoretical framework that is employed to analyse the data consists of several 

categories of activities that were identified to characterise how research mathematicians’ conjecture and 

prove (Fernández-León, Gavilán-Izquierdo, & Toscano, 2020). The use of this framework for this 

research is justified below. In this work, professional development is considered as the legitimate 

peripheral participation in communities of practice (Lave & Wenger, 1991). This theoretical perspective 

maintains that a teacher learns mathematics when he/she engages in research mathematicians’ standard 

practices by approaching the way in which research mathematicians themselves participate. For this 

reason, knowing how research mathematicians develop mathematical practices may be conducive to 

describing and explaining how in-service teachers develop such practices. In particular, a 

characterisation of a research mathematician’s mathematical practices of conjecturing and proving 

(Fernández-León et al., 2020) is employed in this paper to study how several primary-school in-service 

teachers conjecture and prove. Indeed, research mathematicians’ mathematical practices are also a 

source of information to improve the teaching and learning of these practices at any academic level, 

since they report on “what it is that we want students to learn and how instruction should be designed” 

(Weber & Dawkins, 2018, p. 70). In recent decades, many other studies that try to gain an accurate 

understanding of how research mathematicians develop mathematical practices have been conducted. 

For instance, Burton (1998, 2004) proposes a model regarding how mathematicians learn mathematical 
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practices through their own research, while Ouvrier-Buffet (2015) and Martín-Molina, González-

Regaña, and Gavilán-Izquierdo (2018) study the mathematicians’ mathematical practice of defining, 

and Weber (2008) researches into the mathematicians’ practice of proving.  

The characterisation of the mathematical practices of conjecturing and proving given by Fernández-

León et al. (2020) is now described. This characterisation arises from a case study with a single research 

mathematician. The characterisation encompasses categories of activities that describe and explain how 

that particular research mathematician conjectures and proves. To be precise, Fernández-León et al. (2020) 

found five categories of conjecturing activities (C.H.a, C.H.b, C.H.c, C.V.a, C.V.b) and six categories of 

proving activities (P.H.a, P.H.b, P.V.a, P.V.b, P.V.c, P.V.d). The letter C in the code of certain categories 

refers to the act of conjecturing and the letter P refers to proving. In their paper, Fernández-León et al. 

(2020) consider the constructs of horizontal mathematising and vertical mathematising of Rasmussen, 

Zandieh, King, and Teppo (2005) to organise the mathematical activities (the categories) that are identified 

when conjecturing and proving. Rasmussen et al. (2005) slightly adapt these two constructs introduced by 

Treffers (1987), who uses them to describe the so-called progressive mathematisation. Thus, the codes of 

the aforementioned categories also include either the letter H, if the category of activities is of a horizontal 

nature, or V, if the category is of a vertical nature. Rasmussen et al. (2005) use these two constructs 

(horizontal and vertical mathematising) to describe how certain students develop the mathematical 

practices of defining, symbolising, and algorithmatising and thus characterise their so-called advancing 

mathematical activity. On the one hand, horizontal mathematising “is mainly related to initial or informal 

ways of reasoning” (Fernández-León et al., 2020, p. 3) and, on the other hand, “vertical mathematising 

refers to those activities built on horizontal activities with the aim of creating new mathematical ideas or 

realities” (Fernández-León et al., 2020, p. 3). A brief description is now offered of each of the categories 

of the theoretical framework (see Tables 1 and 2). Firstly, the categories of activities related to the 

mathematical practice of conjecturing are described. 
 

Table 1. Categories of conjecturing activities (Fernández-León et al., 2020) 

C
o
n

je
c
tu

r
in

g
 

Horizontal mathematising Vertical mathematising 

C.H.a) Detecting patterns: this category of 

activities refers to the experimentations with 

mathematical objects (such as a square, a function, 

and a vector space) in relation to a certain 

characteristic or observable property. In order to be 

precise, this category refers to such logical 

reasoning and informal activities with 

mathematical objects that give rise to the detection 

of a certain pattern in a specific mathematical 

context. 

C.V.a) Formalising patterns: this 

category refers to the generalisation 

and formalisation of a pattern 

observed when experimenting with 

mathematical objects in relation to 

a certain observable property. 

Specifically, a previously observed 

pattern is generalised to formulate a 

conjecture. 
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C.H.b) Testing conjectures: this category includes 

those experimentations carried out with specific 

mathematical objects that satisfy the hypotheses of 

a conjecture to check whether this conjecture does 

hold. 

C.H.c) Modifying statements: this category refers to 

the experimentations with the components of an 

already existing conditional proposition (regardless 

of whether it has been proved or not, that is, either 

a proved proposition or a conjecture) that involve 

the modification of its hypotheses or conclusion. 

Specifically, this experimentation involves 

proposing possible changes in the hypotheses or 

thesis of a certain statement. The reasons behind a 

proposal of changes may be of a different nature. 

For instance, the finding of a counterexample for a 

conjecture may motivate the consideration of 

changes in parts of a statement and the study of 

which of those changes are possible. 

C.V.b) Formalising modifications 

of statements: this category refers to 

the formalisation of the 

modifications of the hypotheses or 

the conclusion of an already 

existing conditional proposition 

(regardless of whether it has been 

proved or not). Notice that this 

formalisation gives rise to a 

conjecture. 

 

The categories of activities related to the mathematical practice of proving are now described in 

Table 2. 

Table 2. Categories of proving activities (Fernández-León et al., 2020) 

P
r
o
v

in
g

 

Horizontal mathematising Vertical mathematising 

P.H.a) Detecting techniques or tools within 

proofs: this category involves a careful study 

and examination of the characteristics and 

steps of other proofs related to the proof to 

be constructed. In order to be precise, this 

category refers to the search for proof 

techniques or tools used in other proofs that 

may fit in well with the new proof. 

P.H.b) Detecting patterns in examples: this 

category includes experimentations with 

mathematical objects, which satisfy the 

hypotheses of a certain conjecture, with the 

P.V.a) Selecting and applying proving 

methods: this category involves the 

selection and application of proving 

methods (by contraposition, by 

contradiction, by induction, etc.). 

P.V.b) Using proof techniques or tools 

found within other proofs: this category 

involves the application and use of proof 

techniques or tools found in other proofs. 

P.V.c) Applying known results: this 

category of activities appears when known 
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aim of detecting patterns that may be 

extended to the general setting where the 

conjecture to be proved is formulated. 

results are applied in order to build chains 

of logical implications. 

P.V.d) Formalising findings with examples: 

this category refers to the extension and 

formalisation of the calculations and 

experimentations with certain mathematical 

objects that satisfy the hypotheses of a 

given conjecture. Those patterns that were 

previously detected in examples are 

formalised, thereby giving rise to part of the 

mathematical proof that is being 

constructed. 

 

This paper focuses on the study of the way primary-school in-service teachers conjecture and 

prove and tackles the following research question: how can the mathematical practices of conjecturing 

and proving of primary-school in-service teachers be characterised by using the categories of activities 

from the theoretical framework?  

 

METHOD  

Participants and Context 

The participants of this study were four primary-school in-service teachers (whose students were 

between 6 and 12 years old), named Julia, Poppy, Ivy, and Rose (pseudonyms). Poppy and Ivy were 

teachers who had more than 20 years of experience, while Rose and Julia were newly qualified teachers. 

Each of the four had attained a three-year Bachelor’s degree in Primary Education and had completed a 

complementary course on the teaching and learning of mathematical problem-solving. It should be borne 

in mind that the Bachelor’s degree in Primary Education attained by these participants included an 

approach to mathematical proofs (both numerical and geometrical) in its curriculum, although of a low-

level. 

These teachers voluntarily participated in a professional training context where they worked 

together with educator-researchers from a Spanish University with the aim of improving their teaching 

of mathematics. These four teachers authorised that the data collected during this professional training 

context may be used for research purposes. 

 

Data 

The data of this study has been extracted from the annexes of the Ph.D. thesis by Muñoz-Catalán 

(2009). While reading this dissertation for other purposes, one of the authors of the present paper 

informed the others that said dissertation included the transcripts of certain conversations between four 
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primary-school in-service teachers that could be interesting and useful for their research, since these 

conversations included these teachers’ reasoning and reflections when constructing conjectures and 

proofs. 

For this reason, we studied in detail the data included in that dissertation and, finally, considered 

for research, as data of this study, the transcript of a working session where the participants (the four in-

service teachers described above) and the educator-researchers discussed two questions of a 

questionnaire (also designed by Muñoz-Catalán, 2009) on professional development. These two 

questions, laid out below (see Table 3), invoke the mathematical practices of conjecturing and proving.  

Table 3. Questions 8 and 11 from a questionnaire on professional development (Muñoz-

Catalán, 2009, vol. I, p. 232)  

QUESTION 8: Is the following statement true: “The sum of a multiple of 2 and a multiple of 10 is a 

multiple of 10”? 

 Yes, because 20+40 is a multiple of 10. 

 Yes, because it holds true for the following examples: 10+10, 20+10, 50+20. 

 No, because the result of the sum 2+10 is not a multiple of 10. 

 I would need a mathematical proof because there are cases where it holds true and cases where 

it does not. 

QUESTION 11: Prove whether the following statement is true: “The sum of a multiple of 2 and a 

multiple of 10 is an even number”. 

 

Notice here that, although most of the questions in the questionnaire (which included 30 

questions) studied teachers’ professional identities and their conceptions on the teaching and learning 

of mathematics, Muñoz-Catalán (2009) also took the opportunity to ask about professional knowledge 

and, specifically, about content knowledge (in Questions 8 and 11).    

 

Data Analysis 

A description of the process of analysis is now given. Firstly, each researcher individually 

distinguished events in the data, which are excerpts of the transcript which report on at least one 

mathematical activity in which the participants are engaged when conjecturing or proving. 

Subsequently, each researcher analysed the identified events by using the characteristics that describe 

each category of activities of the theoretical framework (see Tables 1 and 2). Specifically, when an 

identified event was totally in line with the description of a category, that event was characterised by 

that category. In those cases where the identified event was related to (but not totally in line with) the 

characteristics of a certain category of activities, the slight differences between the event and the 

category were highlighted. It should be borne in mind that no event in the data related to the 
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mathematical practices of conjecturing and proving has been detected that is not related (at least 

partially) to any category of the theoretical framework. 

Finally, a contrast analysis was carried out between the assignments of events to categories 

conducted by each researcher. Those assignments that were common to the three researchers were 

accepted, and the non-common ones were discussed, in order to reach a consensus.  

 

RESULTS AND DISCUSSION 

This section is devoted to answering the research question of this inquiry and to discussing the 

findings. The classification of activities given in Fernández-León et al. (2020) is employed to describe 

and explain how four primary-school in-service teachers develop the mathematical practices of 

conjecturing and proving. Specifically, several relevant events identified in the transcript that are related 

to these two mathematical practices are shown. This section is divided into four subsections. In the first 

two subsections, each of those events has been characterised by using the categories of activities of the 

theoretical framework. In each event shown, those words that connect such an event with the category 

that characterises it have been underlined. In the third subsection, the slight differences found between 

the characteristics of some events and the descriptions of certain categories have been highlighted and 

analysed. In this case, the words that connect each event with the category to which it is partially related 

have been underlined, although these events are not actually characterised by any category. In order to 

facilitate the reading of the results, the labels Q.8 or Q.11 have been assigned to most of the events that 

are shown, depending on whether the event is related to Question 8 or Question 11 (see Table 3). 

Moreover, the statement “The sum of a multiple of 2 and a multiple of 10 is a multiple of 10” shown in 

Q.8 will be referred to as C.8, while the statement “The sum of a multiple of 2 and a multiple of 10 is 

an even number” given in Q.11 will be referred to as C.11. In this paper, C.8 and C.11 are assumed to 

be conjectures since, for the participants, these statements fulfil the conditions given in the definition of 

conjecture (see Conjecturing and Proving Activities subsection). Finally, in the fourth subsection, the 

findings of this study have been discussed. 

In this paper, the findings are reported through the separation of the activities of the participants 

that are linked to the mathematical practice of conjecturing from those that are related to the 

mathematical practice of proving and, specifically, by following the order of the categories presented in 

Tables 1 and 2.    

 

How Primary-School In-Service Teachers Develop the Mathematical Practice of Conjecturing  

Evidence is first provided of horizontal mathematising activities of the participants related to the 

practice of conjecturing.  

C.H.a) Detecting patterns. This category of activities has been identified when the participants 

experimented with specific numbers while carrying out arithmetic operations with them and, as a 

consequence of this experimentation, the participants detected a pattern. 
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A representative protocol of this category identified in the data is given below. In this protocol, 

Ivy was striving to answer Q.11. Since she did not know how to prove C.11, she started off by testing 

this conjecture with numerical examples. In those examples, she observed a property that was different 

from the statement of C.11. 

71. Ivy: No, I said I don’t know how to prove it; the only thing I can say is that I have checked, I 

have observed it, in the sense that I have seen, I have sounded it out, I have seen what 

happens and later I have obtained a deduction from what I have observed: that an even 

number plus another even number is always even. But of course, it is what I have checked, 

I have not made a complete list with all the numbers and I have seen that it always happens 

in this way: even number plus even number results in an even number. (Q.11) 

In this protocol, Ivy was repeating a reasoning previously given in line 16 of the transcript, where 

she explicitly said that “[16. Ivy: ] I have written that I don’t know how to prove it, I just know how to 

check them, and after observation and deduction from my observation, I say that an even number plus 

another even number is another even number”. Although both ways of reasoning (see lines 16 and 71 of 

the transcript above) were given in the process of proving of C.11, it may be seen that Ivy started off by 

testing C.11 (“I have checked”) and that later she detected a pattern from a list of numbers (“I have 

observed it, in the sense that I have seen […], I have seen what happens, […] I have not made a complete 

list with all the numbers and I have seen that it always happens in this way”). Specifically, from the 

expressions “I have seen what happens, […] I have not made a complete list with all the numbers and I 

have seen that it always happens in this way”, it has been inferred that Ivy had realised, after observing 

a list of numbers, that something special or worthy of note might be taken into account (the pattern). 

Moreover, it has been noted that Ivy finished her contribution by formalising the detected pattern in a 

conjecture (see the C.V.a category below). In this excerpt of the transcript, the detected pattern indicates 

a property that is different from the statement she was trying to prove (C.11) and the formalisation of 

such a property (when stating the conjecture) has been essential for us to link this horizontal 

mathematical activity to the category Detecting patterns. 

There now follows certain protocols that show the appearance of the category Testing conjectures 

in the data. 

C.H.b) Testing conjectures. This category of activities has been identified when the participants 

checked a previously given conjecture (C.8 or C.11) by using calculations with different numbers that 

satisfied the hypotheses of that conjecture. 

Four representative protocols of this category identified in the data are now shown. In this case, 

more examples are given to illustrate different consequences of the testing process. In the first three 

protocols, the teachers were trying to check whether C.8 was true. In the last protocol, Ivy was testing 

conjecture C.11. 
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1. Poppy: I first wrote down that I would need a mathematical proof because there are cases where 

it holds true and cases where it doesn’t, but because I was sounding out, […], then I said 

no, because the result of the sum 2+10 is not a multiple of 10 and then I said that the 

moment it does not hold true for a case, a mathematical proof cannot be given. […]. 

(Q.8) 

35. Julia: Let’s see, a multiple of 2 plus a multiple of 10, and now the 11th [she refers to Question 

11] says that it has to be even and I find the fact of being even very logical but that it is 

multiple of 10 implies fulfilling many conditions, I will have to take 2 out as common 

factor. This is obvious because even numbers, by definition, are multiples of 2 but a 

multiple of 10 is more complicated because to be a multiple of 10, this written here in 

parentheses [x + 5y] will have to be 5 or a multiple of 5 and this is more complicated. 

This fact holds true in some cases but not in all [in the transparency this is shown as 

follows (see Figure 1)]. (Q.8)  

 

 

Figure 1. Hand-written note included in line 35 in the transcript 

 

98. Julia: Anyway, this case is too specific because it holds true in fewer cases than where it does 

not hold. Normally, it holds true for number 5 and number 10, but it does not hold for 

6, 7, 8 nor for 9, that is, there are many cases where it does not hold true, double, 

compared with those where it holds. Then, I don’t see either much need of more proof, 

this was seen as very clear, that there are proofs where something must be adapted 

because it is much more questionable, maybe in this case when one proves two million 

times, then you realise but since this case was so clear. (Q.8) 

71. Ivy: […]; the only thing I can say is that I have checked, […] I have sounded it out, I have 

seen what happens and later I have obtained a deduction from what I have observed: 

[…]. But of course, it is what I have checked, I have not made a complete list with all 

the numbers […]. (Q.11) 

In the first protocol, Poppy tried to answer Q.8. With this aim, she tested the conjecture C.8 with 

the numerical example offered as third possible answer to Q.8 (see the expression 2+10 in Table 3). 

Consequently, she found a counterexample and rejected C.8. 

In the second and third protocols, Julia studied under which additional conditions on the 

hypotheses of C.8, that conjecture could be true. First, it should be highlighted that she had previously 
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noticed, at the beginning of the working session, that C.8 did not hold since she had found a 

counterexample by looking at the third possible answer to Q.8. In the first of these two protocols, Julia 

stated that the fact of being a multiple of 10 (see the thesis of C.8) “implies fulfilling many conditions”. 

For this reason, she tried to find which additional conditions on the hypotheses of C.8 would be 

necessary to ensure that the sum of a multiple of 2 and a multiple of 10 was a multiple of 10. In particular, 

she based on the symbolic expressions used in the proof of C.11 to formulate a new conjecture, “[x +

5y] will have to be 5 or a multiple of 5” (for every natural number 𝑦), which provided details about the 

new additional conditions on the hypotheses of C.8. Moreover, she said that this new conjecture was 

true “in some cases but not in all”, which has allowed us to infer that she had tested the new conjecture. 

In the third protocol, Julia explicitly mentioned the numbers she had used to test the conjecture C.8 and 

specified in which cases that conjecture held (5 and 10) and in which cases it did not hold (6, 7, 8, 9). 

Here, it is significant that she highlighted the need for more than one numerical example to reject the 

examined conjecture. Notice that such a type of behaviour has been also found in many other protocols 

of the transcript. 

Finally, in the last example, it may be seen that Ivy tested the conjecture C.11 when she stated 

that “I have checked, […] I have sounded it out”. 

A representative protocol that shows the appearance of the category Modifying statements in the 

data is now given.  

C.H.c) Modifying statements. This category has been identified when the participants 

experimented with the components of an existing conditional proposition (C.8, C.11 or other 

propositions that appear in the data), by modifying its hypotheses or conclusion.  

In the following protocol, Julia suggested additional conditions that could be assumed on the 

hypotheses of C.8. 

35. Julia: […] implies fulfilling many conditions, […] multiple of 10 is more complicated because 

to be a multiple of 10, this written here in parentheses [x + 5y] will have to be 5 or a 

multiple of 5 and this is more complicated. This fact holds true in some cases but not in 

all [in the transparency this is shown as follows (see Figure 1)]. (Q.8)  

In this protocol, already shown and described above, Julia proposed an extra condition on the 

hypotheses of C.8 that would guarantee that a new, although weaker, result would be true (if x + 5y is 

multiple of 5 then 2x + 10y is multiple of 10). To be precise, she suggested that the sum of a multiple 

of 2 (2𝑥) and a multiple of 10 (2 ∙ 5𝑦) would be a multiple of 10 in the case that 𝑥 + 5𝑦 were multiple 

of 5. This last condition, which appeared in the proof process of C.8, was an extra condition on the 

hypotheses of C.8. We feel that Julia did not formalise that possible modification on the hypotheses of 

C.8 since she might not have realised that she was carrying out that modification. That is, while she was 

striving to prove C.8, she realised that the conclusion of that conjecture was too strong in the light of 

the written algebraic expressions she was working with. However, she might not be aware that the new 
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condition considered in the proof could imply that she had proved a new result. More data would be 

needed to establish stronger conclusions on this matter. 

The evidence of vertical mathematising activities of the participants linked to the practice of 

conjecturing is laid out below. 

C.V.a) Formalising patterns. This category has been identified when the participants of this study 

generalised and formalised a certain previously detected pattern. 

In this protocol, Ivy formalised a pattern detected from a list of numbers.  

71. Ivy: […] I have obtained a deduction from what I have observed: that an even number plus 

another even number is always even. […] I have not made a complete list with all the 

numbers and I have seen that it always happens in this way: even number plus even 

number results in an even number. (Q.11) 

In this case, it can be observed that Ivy had formalised the pattern detected while testing 

conjecture C.11 by giving a new conjecture (see an exhaustive description of this protocol at the 

beginning of this subsection). Figure 2 shows the new conjecture. 

 

 

Figure 2. Hand-written note found in the data that shows the formalised pattern. Notice that the 

term “par” in the note means “even” 

 

Notice that this last new conjecture has a very similar structure to conjecture C.11. This may be 

due to the fact that Ivy detected the referred pattern, which was later formalised, when she was testing 

conjecture C.11. However, there is insufficient data to assert that the construction of the new conjecture 

(see Figure 2) was based directly on the modification of the statement of C.11. For this reason, this 

protocol has not been included as empirical evidence of the category Modifying statements. 

C.V.b) Formalising modifications of statements. This category has been identified when the 

participants formalised, in a new conjecture, the modifications they had previously considered on the 

hypotheses or conclusion of an existing statement.  

The following protocol shows how Ivy included a new condition on the thesis of a statement to 

gain confidence that such a statement was true.  

122. Ivy: Sometimes yes, and sometimes no; I have not stopped to look at it, what happens is that 

an odd number plus another odd one is even, but it may be any even number, it does not 

have to be just the even-number multiples of 8. 

This protocol is part of the discussion among the participants about the veracity of a conjecture 

posed by an educator-researcher during the analysed session, which states the sum of a multiple of 5 and 
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a multiple of 3 is a multiple of 8. In this protocol, Ivy gave a new conjecture, which has been called C’, 

that claims that the sum of two odd numbers is an even number that is not necessarily a multiple of 8. It 

is important to observe what happened in lines 116 and 117 of the transcript to understand how the 

conjecture C’ arose.  

116. Educator-researcher: Your argument is: “odd plus odd is not even” [he/she writes down in 

the transparency: odd + odd ≠ even]. 

117. Ivy: No, no, odd plus odd is even, but it does not have to be a multiple of 8.  

Specifically, the new conjecture C’ arose from the following process: in line 116, the educator-

researcher deduced that Ivy, in her previous appearances, was asserting that “odd plus odd is not even”. 

Later, in line 117, Ivy denied that assertion and gave the new conjecture C’ by modifying the previous 

assertion deduced by the educator-researcher. It can be observed that Ivy created C’ in two almost 

simultaneous steps: the first part of the conjecture (the sum of two odd numbers is an even number) 

appeared when Ivy modified the educator-researcher’s assertion (“odd plus odd is not even”) by 

referring to a mathematical property (“odd plus odd is even”) that she already knew. Furthermore, the 

second part of the conjecture (that is not necessarily a multiple of 8) was closely related to the conclusion 

of the conjecture posed by the educator-researcher that she was originally trying to prove (the sum of a 

multiple of 5 and a multiple of 3 is a multiple of 8).     

 

How Primary-School In-Service Teachers Develop the Mathematical Practice of Proving  

Evidence of horizontal mathematising activities of the participants of this study related to the 

practice of proving is first provided. 

P.H.a) Detecting techniques or tools within proofs. This category has been identified when one 

of the participants reflected on the steps and characteristics of one existing proof with the aim of finding 

techniques or tools that could fit in well with the construction of a new proof.  

In this protocol, Julia analysed the steps of a proof of C.11 with the aim of proving C.8. 

44. Julia: Look, both statements are the same, the sum of a number multiple of 2 and another 

number multiple of 10; a multiple of 2 is 2x and a multiple of 10 is 10y; the sum of both 

numbers [writing down the sign + between both algebraic expressions (see Figure 3)]. 

Then what I have done is to take out 2 as common factor, so yes it is an even number 

since 2 times anything is always even, because an even number, by definition, is always 

going to be multiple of 2. And the other has the same statement, it says: the sum of a 

number multiple of 2 and another number multiple of 10, that is similar to this one, has 

to result in a multiple of 10. Therefore, for this [pointing out the expression 2(x + 5y) 

in the transparency (see Figure 3)] to be a multiple of 10 what I have thought is that if 

10 is equal to 2 ∙ 5 then x + 5y has to be equal to 5 or a multiple of 5. (Q.8) 
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Figure 3. Julia’s hand-written note that shows her steps to prove C.8 

 

At the beginning of this protocol, Julia described the main steps that she had followed to prove 

C.11. She subsequently carefully reflected on these steps with the aim of finding techniques that could 

fit in well with the proof of C.8. To be precise, it can be observed at the end of the protocol that she tried 

to apply the scheme of the proof of C.11 to prove C.8 but did not succeed. This behaviour is highlighted 

again in P.V.b. 

The evidence of vertical mathematising activities of the participants of this study linked to the 

practice of proving is laid out below. 

P.V.b) Using proof techniques found within other proofs. This category has been identified when 

one of the participants used techniques of one existing proof in order to prove a new result.  

In this protocol, Julia applied techniques found in a proof of C.11 to prove C.8. 

44. Julia: Look, both statements are the same, […]. And the other has the same statement, it says: 

the sum of a number multiple of 2 and another number multiple of 10, that is similar to 

this one, has to result in a multiple of 10. Therefore, for this [pointing out the expression 

2(x + 5y) in the transparency (see Figure 3)] to be a multiple of 10 what I have thought 

is that if 10 is equal to 2 ∙ 5 then x + 5y has to be equal to 5 or a multiple of 5. (Q.8) 

In particular, in this protocol she decomposed numbers into prime factors and takes out common 

factors. Furthermore, it may be observed that she was aware of what should happen to ensure that this 

more complicated case (the proof of C.8) would work. However, we feel that the complexity of 

formalising such ideas (the fact that 𝑥 + 5𝑦 is a multiple of 5) meant that, as mentioned earlier in this 

paper, she did not raise any new conjecture related to them. 

Certain protocols can now be presented that show the appearance of the category Applying known 

results in the data. 

P.V.c) Applying known results. This category has been identified when the participants applied 

certain mathematical properties or results to build chains of logical implications.  

In the following protocols, the teachers applied mathematical properties or results to complete the 

proof of C.11. 

19. Julia: I have considered that an even number by definition is a multiple of 2 and, 

therefore 2x + 2 ∙ 5y = 2(x + 5y); then it is multiple of 2. (Q.11) 

24. Rose: And the sum of two even numbers is always an even number. (Q.11) 

In the first example, Julia applied the Fundamental Theorem of Arithmetic that states every 

natural number can be written as a product of prime numbers, together with the property of taking out 
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common factors. In the second example, Rose applied a known result to finish a chain of logical 

implications that proved the conjecture C.11. To be precise, Rose firstly applied, in line 20, the 

Fundamental Theorem of Arithmetic to decompose 2 and 10 into the product of prime factors. She 

explicitly stated there that “[20. Rose: ] I have written down 2x +, I have decomposed number 10 as 

5 ∙ 2 and then, I have written down that 2x + 5 ∙ 2y is equal to another number, equal to z, […]”. 

Subsequently, instead of taking out common factors in the same way as Julia had carried out (see the 

preceding protocol), Rose directly applied a known result, “the sum of two even numbers is always an 

even number”, to the algebraic expression 2𝑥 + 5 ∙ 2𝑦 to conclude that C.11 was true. It is important to 

notice here that several of the techniques or tools that the participants applied in this context of 

divisibility to answer the questions (Q.8 and Q.11) coincided with the application of classic theorems 

(such as the Fundamental Theorem of Arithmetic) or properties that are often used in this branch of 

mathematics. 

Finally, it should be emphasised that certain categories of activities of the theoretical framework 

were not identified in the data: P.H.b, P.V.a and P.V.d. However, regarding P.H.b and P.V.d, it was 

observed that at least one participant of this study was aware that the educator-researcher behaved in 

accordance with the description of such categories when carrying out proving activities. The following 

example illustrates this.  

133. Julia: This proof is in reverse. It starts from a specific case, you have not done it in the same 

way as the other proof.  

In this protocol, Julia realised that the educator-researcher drew from particular cases (specific 

examples) to construct a proof (see Figure 4), which was a different method compared to that which the 

participants had carried out before.  

 

 

Figure 4. An educator-researcher’s hand-written note found in line 132 

 

More on Proving  

There is a group of events identified in the transcript which, while providing information on how 

the participants prove, has not been characterised by any category, since none of these events fulfil all 

the characteristics of a category. However, it is interesting to note that each of these events is partially 

related to some category of the theoretical framework, since there may always be found certain 

similarities and also some differences between the characteristic of an event and the description of the 
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related category. For this reason, these events cannot be directly characterised by the related category. 

For instance, the following protocol is closely related with the P.H.a category, although its 

characteristics are slightly different to the description of this category.  

17. Poppy: I was also testing [as Ivy did in line 16] but, maybe with an equation I can do 

something, and I also did it […]. (Q.11) 

In this protocol, Poppy was considering the technique of using “equations” (a word that she seems 

to use as a synonym of algebraic expression) to prove statements related to divisibility in natural 

numbers: a topic studied in her Bachelor’s degree. In particular, this protocol shows how primary-school 

in-service teachers may sometimes consider proof techniques that they already know while trying to 

prove certain new mathematical statements. It should be borne in mind that Ivy had not been observed 

as finding the referred proof technique in another proof, as the P.H.a category considers. For this reason, 

this event has not been characterised by this category. 

Other examples are shown in the two protocols below. In this case, these protocols are closely 

related with the P.V.b category, although their characteristics are slightly different to those in the 

description of this category.  

19. Julia: I have considered that an even number by definition is a multiple of 2 and, 

therefore 2x + 2 ∙ 5y = 2(x + 5y); then it is multiple of 2. (Q.11) 

66. Poppy: Yes, I have said: 2n + 10n, but later I said: well, number 10 can be decomposed; then 

I wrote 5 to take out the common factor. (Q.11) 

In these two protocols, the participants used the techniques of decomposing numbers into prime 

factors or of taking out common factors when proving certain results. Notice that both techniques are 

widely used in divisibility. It should also be emphasised that, in these two protocols, not only had the 

two techniques described above been observed but also the technique of translating a statement into 

symbolic language (mathematical symbols). This technique encompasses the translation of the 

hypotheses or conclusion of a statement into symbolic language in the proof process of such a statement. 

For instance, in line 19, Julia considered the definition of an even number and wrote down its translation 

(the algebraic expression 2𝑥) with the aim of proving a statement. Specifically, this technique has been 

found several times in the data when the participants tried to prove conjectures (C.8, C.11, or other 

conjectures that the educator-researchers posed), and translated the statements of such conjectures into 

mathematical symbols. 

In addition, these two protocols show that primary-school in-service teachers sometimes employ 

proof techniques that they already know while trying to prove certain new mathematical statements. As 

before, it should be borne in mind that Julia and Poppy had not been observed to have found the referred 

proof techniques in another existing proof, as the P.V.b category demands. 
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In line 19 of the transcript, another interesting event may be highlighted. Specifically, the event 

“I have considered that an even number by definition is a multiple of 2 […] 2(x + 5y); then it is multiple 

of 2.” is closely related with the P.V.c category, although the characteristics of this event are slightly 

different to the description of this category of activities. In this event, Julia firstly took into account the 

definition of an even number to be aware of what she had to obtain in order to prove C.11. Subsequently, 

she wrote down algebraic expressions related to the hypotheses of C.11 “2x + 2 ∙ 5y = 2(x + 5y)”, and 

finally she applied the definition of even number in order to conclude that C.11 was true. This event 

shows that primary-school in-service teachers may sometimes apply definitions or similar statements 

(axioms) when building chains of logical implications. It should be noted that, in this event, Julia did 

not apply a known result but a known definition, which allowed her to construct a chain of logical 

implications in a similar way to that in which the P.V.c category describes.    

 

Some Reflections on the Results 

In this paper, the mathematical practices of conjecturing and proving of four primary-school in-

service teachers have been characterised. The various categories of activities of the theoretical 

framework identified in the data have helped us to describe and explain how these teachers develop 

these two mathematical practices. Moreover, we have highlighted that certain events identified in the 

data are related to specific categories of activities, although those events present certain characteristics 

that differ from the characteristics of the categories to which they are related. Thus, the findings reported 

in this work report that not all the mathematical activities developed by primary-school in-service 

teachers when conjecturing and proving may be exhaustively explained by the categories of activities 

defined in the study by Fernández-León et al. (2020). Notice also that three categories of activities of 

the theoretical framework have not been identified in the data (P.H.b, P.V.a, and P.V.d) and that these 

three categories are linked to the mathematical practice of proving. 

Furthermore, it is also highlighted that the majority of the events identified in the data and 

subsequently categorised with the theoretical framework are of a horizontal nature, that is, they mainly 

include informal ways of reasoning. In fact, the main behaviour that guides the participants’ practice of 

conjecturing is that of the use of examples. In particular, they use mathematical objects that satisfy the 

hypotheses of certain statements to test said statements, which help these teachers to reject such 

statements or convince themselves of their truth. As a consequence of the testing process, these teachers 

sometimes observe regularities that motivate the appearance of new conjectures. These findings show 

the potential of exploration with examples when conjecturing (Huang, 2016; Lesseig, 2016; Morselli, 

2006). In previous studies conducted with pre- and in-service teachers (see, for instance, Knuth, 2002; 

Martin & Harel, 1989), the role of empirical evidence in obtaining conviction regarding the truth of a 

statement is also highlighted. In particular, Knuth (2002) indicates that teachers “reach a stronger level 

of conviction” (p. 401) by testing with specific mathematical objects. In the present work, it can even 

be observed that the participants sometimes show confusion between the process of testing with specific 
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mathematical objects and the mathematical proof, a fact that must not be overlooked, since “teachers’ 

use of examples to verify statements contributes to students’ belief that testing a number of examples is 

sufficient proof” (Lesseig, 2016, p. 23). Nevertheless, what it can be concluded is that the participants 

of this study consider the experimentation with mathematical objects an important role in the 

development of the mathematical practices of conjecturing and proving (Lesseig, 2016; Lynch & 

Lockwood, 2019; Morselli, 2006). 

The literature on students’ difficulties with proofs has documented a variety of persistent 

misconceptions held by the students (Stylianides & Stylianides, 2018). One such misconception is that 

a single example is insufficient to reject an assertion or mathematical property, and another is the fact 

that the verification of a property in some particular cases is enough to guarantee its general validity. 

The results of this study with primary-school in-service teachers show that these two misconceptions 

persist with certain teachers. This fact reveals a pernicious circle where students maintain these two 

misconceptions from school or high school even when they become in-service teachers themselves, and 

they then continue transmitting the same misconceptions to their own students. We suggest that giving 

opportunities for professional development on these mathematical practices may help to break this 

vicious circle. For instance, the results of this study underline the need for the promotion of aspects of 

a more formal nature of the practice of conjecturing (vertical mathematising activities) and of aspects 

of the practice of proving such as the use of examples that guide the proving process but do not constitute 

a proof. From our learning approach, it is stated that learning in the processes of professional 

development aims, through the peripheral participation, to alter the way in-service teachers develop 

mathematical practices to the way the mathematicians’ community of practice develops such practices 

(Blömeke, Kaiser, König, & Jentsch, 2020; Lave & Wenger, 1991; Podkhodova, Snegurova, Stefanova, 

Triapitsyna, & Pisareva, 2020; Yilmaz, 2020), always taking into consideration that there are differences 

between both contexts (Weber, Inglis, & Mejia-Ramos, 2014). 

The literature has also documented that primary-school in-service teachers often face similar 

difficulties that students and pre-service teachers face, not only with proofs but also with many other 

mathematical contents (see, for instance, Ubuz & Yayan, 2010). For this reason, we agree with Ubuz 

and Yayan (2010) when stating that “an important step to improving subject matter knowledge should 

be better subject matter preparation for primary teachers” (p. 799). We also believe that addressing 

difficulties in the content knowledge of primary-school teachers (see, for instance, Oflaz, Polat, Altaylı 

Özgül, Alcaide, & Carrillo, 2019) would shed light on where to focus so that teachers to acquire essential 

content knowledge to teach in the various mathematical domains (regarding proving as mathematical 

content, see, for instance, Siswono, Hartono, & Kohar, 2020; van Dormolen, 1977). In this way, studying 

teachers’ activities when they strive either to prove mathematical assertions or to formulate conjectures 

constitutes the first step and exploring the reasons behind the difficulties found when conjecturing and 

proving would be an interesting topic for further research. 
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Moreover, it is also interesting to make a comment regarding line 71 of the transcript (see C.H.a 

category above). In this protocol, where Ivy explains how she poses the conjecture: the sum of two even 

numbers is an even number, it may be identified a chain of categories of activities (chain of progressive 

mathematisations in Rasmussen et al., 2005) that explicitly shows how the theoretical framework is able 

to explain the way primary-school in-service teachers develop the mathematical practice of conjecturing. 

This chain begins when Ivy tests C.11 (C.H.b) and this chain continues when she later observes a pattern 

in her calculations (C.H.a) that it is not immediately deducible from C.11. Moreover, it can be seen that 

this observed pattern is formalised in a new conjecture: the sum of two even numbers is an even number 

(C.V.a). As mentioned in a previous subsection, the fact that the new statement has a similar structure 

to that of C.11 could inform us that Ivy has based the construction of the new conjecture on the statement 

of C.11. However, more data would be required to conclude that the C.H.c or C.V.b categories appear 

in line 71. The chain of categories found in this protocol reveals possible interconnections between the 

categories of activities of the theoretical framework and shows how vertical activities build on horizontal 

activities. Furthermore, this chain, which shows conjecturing activities while a participant is proving a 

statement (C.11), is a clear example of what Lesseig (2016) calls a “cycle of empirical exploration, 

conjecturing, generalizing and justifying” (p. 18). In line 71, Ivy reasons “through examples to generate 

additional conjectures and generalizations” (Lesseig, 2016, p. 18).  

 

CONCLUSION 

This work characterises how four primary-school in-service teachers develop the mathematical 

practices of conjecturing and proving. Melhuish et al. (2018) have recently affirmed that a “teacher must 

be able to notice mathematical reasoning forms such as justifying and generalizing” (p. 2) (herein named 

proving and conjecturing). In this regard, the results of this study highlight aspects of these practices 

(such as the use of examples or the need for more formal mathematical activities) which might report 

on professional development so that in-service teachers would be able to notice different forms of 

mathematical reasoning (Hidayah, Sa’dijah, Subanji, & Sudirman, 2020; Lesseig, 2016) in order to 

foster mathematical practices in the classroom.   

Furthermore, other mathematical tasks that invoke the same mathematical practices (conjecturing 

and proving), although from different mathematical fields (such as analysis and geometry), should be 

considered in order to complement this exploratory study. We also maintain that the mathematical 

practices of conjecturing and proving of more primary-school in-service teachers should be studied to 

achieve findings of a more representative nature. We consider that the limited data of this study may 

have influenced how useful the theoretical framework has been in describing how these primary-school 

in-service teachers conjecture and prove. Outside the scope of the theoretical framework, we have only 

observed that the participants sometimes consider and employ proof techniques that they already know 

and that they sometimes apply definitions or similar statements (axioms) when building chains of logical 

implications. Nevertheless, we believe that these latter findings constitute a starting point for the 
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broadening of the theoretical framework defined by Fernández-León et al. (2020), although for this 

purpose more research mathematicians should be studied, since the categories of activities were 

generated by that population. Indeed, we hypothesise that more research on this topic could reveal new 

mathematical activities when conjecturing and proving that motivate the appearance of new categories 

thereof.   
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