
IZVESTIA JOURNAL OF THE UNION OF SCIENTISTS - VARNA

26 ECONOMIC SCIENCES SERIES, vol.9 №1 2020

Real Time Big Data Analysis by Using Apache Kudu and NoSQL Redis

in Web Applications

Assoc. Prof. Dr. Pavel Petrov

University of Economics - Varna, Varna, Bulgaria

petrov@ue-varna.bg

Prof. Dr. Georgi Dimitrov

University of Library Studies and Information Technologies, Sofia, Bulgaria

g.dimitrov@unibit.bg

Assoc. Prof. Dr. Oleksii Bychkov

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

bos.knu@gmail.com

Abstract

In the recent years data processing in Big Data applications are moving from a batch processing model to a

live streaming processing model. The live streaming processing model allows to process data in a real time or near real

time manner. In many cases, there are need of combining data from various sources - both new generated data and

data previously gathered and archived. In each case a different storage mechanism is appropriate to achieve best

flexibility and to avoid the so-called bottleneck when processing data. In this article we review some of the possibilities

of using Apache Kudu and NoSQL Redis systems which made them suitable to be used together for fast processing of

streaming data.

Keywords: Big Data, Hadoop, Kudu, Redis, NoSQL, Apache, PHP, web applications.

JEL Code: C88, O32 DOI: https://doi.org/10.36997/IJUSV-ESS/2020.9.1.26

Introduction

Apache Hadoop's Hadoop Distributed File System (HDFS) is suitable for efficient storage of

large data. The main feature of storing data in HDFS is that once saved, the data cannot be changed,

and only read and delete operations are possible. Also, the architectural features of HDFS do not

allow effective real-time big data analysis. For real-time analysis (Bulut&Erol, 2018; Petrivskyi et

al., 2020), it is appropriate to use the Apache HBase system, which uses HDFS, but the time to

crawl the recorded data volumes is large. Apache Kudu can be used to overcome these problems

(Fig. 1).

Kudu was established in 2015 by Cloudera as an internal project to create a new columnar

database management system of the NoSQL type and supporting SQL for operational analysis of

rapidly changing big data. In 2016, the source code was distributed under an open license by the

Apache Software Foundation.

The main purpose of Apache Kudu is to work with fast-changing data. There are options for

both quick add operations and for updating and deleting rows in real time. Relatively fast crawls of

columns for real-time analysis of one layer for data storage are performed (Fig. 2).

1. Creating a data model with the analytical tool Apache Kudu

Kudu could be used as so called "cluster coordinator", who keeps track of "alive" servers in

a cluster and redistributes data after server failures (Lipcon et al., 2015; Shook, 2013). It is also

possible to be combined Redis with other Big Data technologies, like ELK and not only Hadoop

(Clouder, 2018).

ИЗВЕСТИЯ НА СЪЮЗА НА УЧЕНИТЕ – ВАРНА

СЕРИЯ ИКОНОМИЧЕСКИ НАУКИ, том 9 №1 2020 27

Figure 1. Apache Kudu's place in relation to HDFS and HBase in big data analysis via

Hadoop.

Source: Apache Kudu Datasheet (2017). https://www.cloudera.com/content/dam/www/

marketing/resources/ datasheets/cloudera-kudu-datasheet.pdf.landing.html.

Figure 2. Architecture of the Apache Kudu.

Source: Introducing Apache Kudu. Architectural Overview. https://kudu.apache.org/docs/

Another interesting use case scenario is selection of datasets for real time dashboards

(Michele et al., 2019; Petrova et al., 2019; Vasilescu et al., 2019).

Big data is composed of three main dimensions: Volume, Variety, and Velocity. The

dimension Velocity refers to the speed of data processing. There are cases where real time or near

IZVESTIA JOURNAL OF THE UNION OF SCIENTISTS - VARNA

28 ECONOMIC SCIENCES SERIES, vol.9 №1 2020

real time speed of processing are required. With the wide spread of big data technology this high-

speed data processing become more popular, but there are limitations on bandwidth and latency for

real time or near real time processing. That is why there are some gaps between an analytics system

and a real end-to-end system (Wang et al., 2017; Marcu et al., 2017; Petrov&Valov, 2019).

The data model when working with the analytical tool Apache Kudu is realized through

tables. Tables in Kudu are like tables in traditional DBMSs, and their design is important for high

performance. It is necessary to approach each case individually, as there is no common design

approach that is suitable (Dimitrov et al, 2016; Malkawi et al., 2020) for each table. Important

points in designing the structure of the tables are setting the appropriate data type of the columns,

selecting the primary key and allocating the columns in different tables.

Tables in Kudu are divided into parts called tablets, which are distributed among many

tablet servers. An entire row of a table is always located on one tablet. The way the rows are

distributed on the tablets is set when creating the table.

To choose a suitable partitioning strategy, it is necessary to know the data model and the

expected operations that will be performed with the table - mostly read or mostly write. In

treatments which mainly involve recording, it is appropriate to distribute the recordings between the

tablets so as not to load a single tablet. For a predominant reading, it is appropriate that all data be

located on the same tablet.

The two types of data splitting by tablets are: splitting ranges and splitting by hash value.

When dividing by range, the rows are distributed on the tablets based on a special common

key for multiple rows (Fig. 3). Ranges should not overlap and can be added and removed

dynamically.

Figure 3. Examples of dividing rows by ranges in different tablets.

Source: Apache Kudu Schema Design (2019).

https://kudu.apache.org/docs/schema_design.html

When dividing by hash value, the rows are divided into tablets based on the hash value by

which the rows are placed in one of several groups (Fig. 4). This splitting strategy is appropriate

when the order of the records is irrelevant. In this case, the recording operations are randomly

distributed between the tablets, which reduces the likelihood of obtaining "bottlenecks" in data

processing.

It is also possible to apply a multi-level separation strategy that combines the benefits of the

two types of separation, reducing their disadvantages (Fig. 5).

The main scenarios for using Apache Kudu in big data systems are the following:

- Processing of a constant input data stream in real time. These are situations where new data

arrives frequently and constantly. They must be available in near real time for reading, crawling,

and changing. Apache Kudu could quickly insert and update with efficient column crawling.

ИЗВЕСТИЯ НА СЪЮЗА НА УЧЕНИТЕ – ВАРНА

СЕРИЯ ИКОНОМИЧЕСКИ НАУКИ, том 9 №1 2020 29

- Study of time series. In time series, data groups are organized according to the time in

which they occurred. It is suitable for studying the effectiveness of various indicators over time or

for predicting future behaviour based on past data. Apache Kudu is suitable for working with time

series.

- Creating forecast models. In machine learning using large data sets, the model may need to

be updated and changed frequently. This can happen, for example, while training is taking place

because of a change in the simulated situation. A researcher may want to change one or more

factors in the model (Panayotova et al., 2016; Pashev et al., 2019) to see what happens over time.

Updating a large set of data stored in files in HDFS requires a lot of resources, as each file must be

completely overwritten. In Apache Kudu, data updates are performed in near real time, and the

researcher can adjust the parameter, restart the query, and refresh, for example, a chart in seconds or

minutes, rather than hours or days. Batch or incremental algorithms can also be executed on data in

near real time.

- Combining data in Apache Kudu from existing ("legacy") systems. Businesses generate

data from multiple sources and store it in a variety of systems and formats (Balabanova et al., 2016;

Georgiev et al., 2018; Iliev et al., 2010; Kostadinova et al., 2018). It is possible by using other

subsystems in Hadoop, such as Impala (Quinto, 2018), to use data from different sources and in

different formats without the need to modify existing systems.

Figure 4. Example of dividing rows by hash values into different tablets.

Source: Apache Kudu Schema Design (2019).

https://kudu.apache.org/docs/schema_design.html

Figure 5. Example of dividing into several levels - by ranges and by hash values and

example of dividing into several levels - by hash values and again by hash values.

Source: Apache Kudu Schema Design (2019).

https://kudu.apache.org/docs/schema_design.html

IZVESTIA JOURNAL OF THE UNION OF SCIENTISTS - VARNA

30 ECONOMIC SCIENCES SERIES, vol.9 №1 2020

2. Basic administrative operations with Redis

NoSQL systems are suitable for building heavily loaded web applications. They provide

very high speeds for searching, retrieving, and writing data, sometimes many times higher than that

offered by relational database systems. In recent years, they have also been used to store and

process large amounts of data ("Big Data") in the range of tens of petabytes to several exabytes.

Data in most NoSQL systems is stored in the so-called. hash tables and the basic operations

that can be performed are relatively simple: SET - setting a key value; GET - return value by key;

DELETE - delete a key value. On some systems (usually storing data only in RAM), you can also

set the lifetime of the key, after which the key and its corresponding value are automatically

deleted.

Among the most popular NoSQL systems is Redis (REmote DIctionary Server,

http://redis.io/), which is a free software server system that stores data in RAM. According to a

study by the Austrian consulting firm solidIT, which maintains the site http://db-engines.com, in the

period 2012-2020, the most popular open source key-value NoSQL system is Redis.

Not only single (scalar) values (numbers and strings) can be stored as values, but also

different types of data, such as hashes, lists, sets, sorted sets, array of bits, etc.

To work with Redis, it is necessary to download and install a suitable installation package

for the respective operating system. For the operating system, it is recommended to use the UNIX /

GNU / Linux version, but there are also various precompiled versions for Windows that can be used

in application development. Under Windows, it is not necessary to perform a classic installation, as

there are variants of the system such as "portable apps" and the procedure is simpler: for example, a

64-bit version can be downloaded from the Microsoft Archive page at github.com

(https://github.com/microsoftarchive/redis). After downloading, for example, the file Redis-x64-

3.2.100.zip (about 5 MB), it can be unzipped in a custom directory and thus the installation process

ends. After unpacking, the main files in the directory are the following:

- redis.windows.conf - an example text configuration file for setting server settings, for

example, which IP address and port number to "listen" (accept requests) from the server; the

maximum amount of memory to occupy the application; log file settings; work directories;

replication, etc .;

- redis-server.exe - the application itself - Redis server - takes up about 1 MB;

- redis-cli.exe - client program for connection to the server;

- redis-benchmark.exe - program for testing the speed of operations.

After starting the server (redis-server.exe), the home screen displays service information.

The server can be accessed through the client program (redis-cli.exe) and commands can be entered

(see Fig. 6).

We will briefly pay attention at the most used commands, which can initially be submitted

for execution through the client program (redis-cli.exe), and later will be used in PHP programs

(Petrov, 2008). To begin with, the connection to the server can be checked using the PING

command, where the server must respond with PONG, if everything is normal:

127.0.0.1:6379> PING

PONG

Other useful administrative commands are:

INFO - displays information about the settings and statistics for the server.

SELECT DB_NUMBER - sets any active database. The default is the one with number 0.

There are usually 16 databases initially.

DBSIZE - returns the number of keys in the current database.

CONFIG GET DATABASES - returns the number of databases.

FLUSHALL - deletes all keys from all databases.

FLUSHDB - deletes all keys from the active database.

MONITOR - displays in real time all requests to the server. It is good to use a client in a

ИЗВЕСТИЯ НА СЪЮЗА НА УЧЕНИТЕ – ВАРНА

СЕРИЯ ИКОНОМИЧЕСКИ НАУКИ, том 9 №1 2020 31

separate window.

Figure 6. Work screen of redis-cli.exe.

The data can be set to a lifetime in seconds with the EX (EXpire) parameter. The following

example sets the value of the x key, which will be deleted after 1 second. With a longer lifetime, the

TTL (Time To Live) command can be used to check how much time is left before the key is

deleted. The SETNX (SET if Not eXists) command sets a new key value, but only if it did not

previously exist. As we have already said, in addition to single values, data structures can also be

stored in Redis. When working with these data types, both commands like those given above and

some new commands specific to the data type are used. In front of the command name there is a

letter that indicates what type of data it refers to: H - for hash (Hash), L - for list (List), S - for set

(Set), Z - for sorted set (sorted set) and etc.

What is specific about the hash (associative array) as a value in Redis is that both the key

and the value are strings. To distinguish the keys that are in the value from the master key to which

they are associated, they are called fields. Many commands are used to work with single pairs of

value fields: HSET, HSETNX, HGET, HDEL, HEXISTS, HINCRBY, HINCRBYFLOAT, etc.

Lists, as a data structure in Redis, are an ordered set of elements (generally strings), each of

which has a serial number in the list - an index. List operations are the same as dynamic array

operations (in some programming languages, the Vector and ArrayList classes). There are different

options for inserting items into a list: LSET, LINSERT, RPUSH / LPUSH, RPUSHX / LPUSHX,

LLEN, LINDEX, LRANGE, RPOP / LPOP, LREM, LTRIM and others.

Sets are like lists, except that they contain unique elements. In addition, sets do not have an

index and order. They implement the concept of set in mathematics in a programmatic way. The

main operations are: SADD, SREM, SPOP, SRANDMEMBER, SISMEMBER, SMEMBERS,

SCARD, SMOVE, SUNION  BxAxxBA = | , SUNIONSTORE, SINTER

 BxAxxBA = | , SINTERSTORE, SDIFF  BxAxxBABA ==− | ,

SDIFFSTORE and others.

Sorted sets are like sets in that they consist of unique elements. They are similar to lists, as

the elements are arranged - each element is assigned a real number (score), which is used to arrange

the elements. This number is often called weight or priority depending on the context. The main and

specific operations with sorted sets related to the handling of elements and their weights are:

ZADD, ZREM, ZCARD, ZSCORE, ZRANK / ZREVRANK, ZINCRBY, ZCOUNT,

ZLEXCOUNT, ZRANGE / ZREVRANGE, ZRANGEBYLEX / ZREXRANYRANBY

ZREMRANGEBYLEX, ZREMRANGEBYSCORE, ZUNIONSTORE, ZINTERSTORE, etc.

IZVESTIA JOURNAL OF THE UNION OF SCIENTISTS - VARNA

32 ECONOMIC SCIENCES SERIES, vol.9 №1 2020

3. Using Redis in PHP programs

To work in PHP with Redis, in addition to a working server, it is necessary to install the so-

called PHP client. There are different client options (for a full list of Redis clients see: Clients,

https://redis.io/clients), of which two options are recommended: PhpRedis (A PHP extension for

Redis, https://github.com/phpredis/phpredis, http://windows.php.net/downloads/pecl/

releases/redis/) and Predis (Windows and feature-complete Redis client for PHP and HHVM,

https://github.com/nrk/predis). Using PhpRedis involves installing additional libraries and making

several changes to configuration files. For this reason, it is easier to use the Predis client, which is

fully implemented in PHP and only needs to copy the directory in which its files are located.

 The installation procedure for the Predis client is as follows:

1. Download the latest version of Predis from https://github.com/nrk/predis/releases (for

example predis-1.1.1.zip).

2. From the archive file (for example predis-1.1.1.zip) the "src" directory is copied to the

directory where the PHP program that will work with Redis is.

3. The directory "src" is renamed with a more meaningful name - "Predis".

4. In the PHP program with the operator "require" the file 'Predis/Autoloader.php' is loaded

and the static method register () is called from the Autoloader class. Objects of the Predis \ Client

class can then be created, and methods for working with the Redis server can be called.

The following program shows the basics of using Redis:

<? php

require 'Predis/Autoloader.php'; // load file

Predis/Autoloader::register(); // the static method is executed

$r = new Predis\Client (); // create a new object

$r->set('key1', 'test123'); // key1 is set to test123

$v = $r->get ('key1'); // returns the value of the key key1

print $v; // the value of $v is output to standard output

?>

When the program is distributed to other computers, it is necessary to include the

subdirectory where the Redis client is.

Below is the program redis.php, which is a complex example of working with Redis.

Method names can be written in lowercase or uppercase and are the same as Redis command

names. In the example, we intentionally use capital letters to make it easier to see the methods

associated with Redis commands.

<?php

require 'Predis/Autoloader.php';

Predis\Autoloader::register();

$r = new Predis\Client();

try {

 $r->connect();

} catch (Exception $e) {

 print 'No connection to Redis server!';

 exit;

}

print '<pre>';

print_r($r->PING()); //PONG

print_r($r->SELECT(3)); //OK

print_r($r->SET('key1', 'value1')); //OK

print_r($r->GET('key1')); //value1

print_r($r->EXISTS('key1')); //1

print_r($r->DEL('key1')); //1

ИЗВЕСТИЯ НА СЪЮЗА НА УЧЕНИТЕ – ВАРНА

СЕРИЯ ИКОНОМИЧЕСКИ НАУКИ, том 9 №1 2020 33

print_r($r->GET('key1')); //null

print_r($r->FLUSHDB()); //OK

print_r($r->DBSIZE()); //0

print_r($r->QUIT());

?>

Conclusion

The combined use of Apache Kudo and Redis opens interesting possibilities in terms of

optimizing real-time operations. Both systems have advantages that make them suitable for use in

different situations. It is feasible the input data received in real time to be stored and processed in

Kudu. A middleware application could fetch the results from Kudu and store the data in REDIS

system. From the programmer's point of view, it will be easier that the end user web application

(written for example on PHP - Petrov et al., 2019; Petrov et al., 2020) to work directly with REDIS

instead with Kudu. Thus, the rich analytical possibilities that Hadoop provides can be relatively

easily used by a web application with which end users work directly.

References

1. Apache Kudu Datasheet (2017). [Online] Available from:

https://www.cloudera.com/content/dam/www/marketing/resources/datasheets/cloudera-kudu-

datasheet.pdf.landing.html [Accessed 10/10/2020]

2. Apache Kudu Schema Design (2019). [Online] Available from:

https://kudu.apache.org/docs/schema_design.html [Accessed 10/10/2020].

3. Balabanova, I., Georgiev, G., et al. (2016). Classification of Teletraffic Service Devices by K-

NN, ANFIS and ANN Classificators. IEEE International Black Sea Conference on

Communications and Networking (BlackSeaCom), pp.1-5.

doi:10.1109/BlackSeaCom.2016.7901585

4. Bulut F., & Erol M.H. (2018). A Real-Time Dynamic Route Control Approach on Google Maps

using Integer Programming Methods. International Journal of Next-Generation Computing,

9(3), pp.189-202.

5. Clouder, A. (2018). Combining Redis with Hadoop and ELK for Big Data. [Online] Available

from: https://www.alibabacloud.com/blog/combining-redis-with-hadoop-and-elk-for-big-

data_582482 [Accessed 10/10/2020]

6. Dimitrov, G., Panayotova, G., Garvanov, I., et al. (2016). Performance analysis of the method

for social search of information in university information systems. In 3rd International

Conference on Artificial Intelligence and Pattern Recognition (AIPR), Lodz, Poland, IEEE,

pp.149-153. doi:10.1109/ICAIPR.2016.7585228

7. Georgiev G., Balabanova I., et al. (2018). Identification of Sine, Squire, Triangle and Saw-tooth

Waveforms with Uniform White and Inverse F Noises by Adaptive Neuro - Fuzzy Interface

System. Journal of Engineering Science and Technology Review. 11(3), pp.128–132.

doi:10.25103/jestr.113.17

8. Iliev, P., Salov, V., & Petrov, P. (2010). Virtualni sistemi. Varna: Nauka i ikonomika,

9. Introducing Apache Kudu. Architectural Overview. [Online] Available from:

https://kudu.apache.org/docs/ [Accessed 10/10/2020]

10. Kostadinova, I., Toshev, R., et al. (2018). Temporal Analysis of the Pedagogical Adoptions use

and Application of the Augmented and Virtual Reality Technologies in Technical Subject

Areas. In 11th Annual International Conference of Education, Research and Innovation,

ICERI2018 Proceedings, Seville, Spain: IATED, pp.4387-4393.

11. Lipcon, T., Alves, D., Burkert, D., et al. (2015). Kudu: Storage for fast analytics on fast data.

Cloudera, inc, 28. [Online] Available from: https://kudu.apache.org/kudu.pdf [Accessed

10/10/2020]

IZVESTIA JOURNAL OF THE UNION OF SCIENTISTS - VARNA

34 ECONOMIC SCIENCES SERIES, vol.9 №1 2020

12. Malkawi, R., Saifan, A. A., et al. (2020) Data Mining Tools Evaluation Based on their Quality

Attributes. International Journal of Advanced Science and Technology, 29(3). pp.13867-13890.

13. Marcu, O. C., Costan, A., Antoniu, G., et al. (2017). Towards a unified storage and ingestion

architecture for stream processing. In 2017 IEEE International Conference on Big Data (Big

Data), IEEE, pp.2402-2407.

14. Michele, P., Fallucchi, F., & De Luca, E. W. (2019). Create Dashboards and Data Story with the

Data & Analytics Frameworks. In Research Conference on Metadata and Semantics Research,

Springer, pp.272-283.

15. Panayotova, G., Dimitrov, G., et al. (2016). Modeling and data processing of information

systems. In 3rd International Conference on Artificial Intelligence and Pattern Recognition

(AIPR), Lodz, Poland, IEEE, pp.154-158. doi:10.1109/ICAIPR.2016.7585229

16. Pashev, G., Rusenova, L., Totkov, G., & Gaftandzhieva, S. (2019). Business Process Modelling

& Execution Application in Work Education Domain. TEM Journal, 8(3), pp.992-997.

doi:10.18421/TEM83-42

17. Petrivskyi, V., Dimitrov, G., Shevchenko, V. et al. (2020). Information Technology for Big

Data Sensor Networks Stability Estimation. Information and Security, 47(1), pp.141-154.

doi:10.11610/isij.4710.

18. Petrov, P. (2008). Sarvarno programirane. Varna: Nauka i ikonomika.

19. Petrov, P., & Valov, N. (2019). Digitalization of Banking Services and Methodology for

Building and Functioning of Fintech Companies. Izvestia Journal of the Union of Scientists -

Varna. Economic Sciences Series, 8(1), pp.110-117. doi:10.36997/IJUSV-ESS/2019.8.1.110

20. Petrov, P., Buevich, A., Dimitrov, G., et al. (2019). A Comparative Study on Web Security

Technologies Used in Bulgarian and Serbian Banks. In 19 International Multidisciplinary

Scientific Geoconference SGEM 2019: Conference Proceedings, 19(2.1), pp.3-10.

21. Petrov, P., Dimitrov, P., et al. (2020). Using the Universal Two Factor Authentication Method

in Web Applications by Software Emulated Device. In 20 International Multidisciplinary

Scientific Geoconference SGEM 2020: Conference Proceedings, 20(2.1), pp.403-410.

doi:10.5593/sgem2020/2.1/s07.052

22. Petrova, S., Stefanov, S., Ivanov, S., Sergeev, A., & Getova, I., (2019). Information systems

used in Bulgarian university libraries as online public access catalogs. International

Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology

Management, SGEM, 19(2.1), pp.353-360. doi:10.5593/sgem2019/2.1/S07.046

23. Quinto, B. (2018). High Performance Data Analysis with Impala and Kudu. In Next-Generation

Big Data. Apress, Berkeley, CA. pp.101-111

24. Shook, A. (2013). Making Hadoop MapReduce Work with a Redis Cluster. [Online] Available

from: https://tanzu.vmware.com/content/blog/making-hadoop-mapreduce-work-with-a-redis-

cluster [Accessed 10/10/2020]

25. Vasilescu, C., Suciu, G., & Pasat, A. (2019). A New Method to Help the Human Resources

Staff to Find the Right Candidates, Based on Deep Learning. In The International Scientific

Conference eLearning and Software for Education, "Carol I" National Defence University, v.3,

pp.240-246. doi:10.12753/2066-026X-19-170

26. Wang, K., Bian, B., Cao, P., & Riess, M. (2017). Experiences and Lessons in Practice Using

TPCx-BB Benchmarks. In Technology Conference on Performance Evaluation and

Benchmarking, Springer, pp.93-102.

