One Approach for Analysis of Fuzzy Linear Hybrid Automata

Georgi P. Dimitrov
Oleksiy S. Bychkov
Pavel S. Petrov

Abstract

The article deals with the stability of a new class of continuous-discrete systems - fuzzy linear hybrid impulse automata. Sufficient conditions of stability are obtained. Stability and stability resistance on the part of variables are proved. The cases of cyclic are described. Research conducted by the method of Lyapunov's functions.

Keywords: Lyapunov's method, stability, hybrid automata, L-stability.
JEL Code: C00

Introduction

As suggested by the work of Lyapunov functions method applies to fuzzy hybrid automatic cyclic. Resistance distinct hybrid machines studied by many authors [1-6]. To investigate the stability offered to check the condition of Lyapunov functions to reduce interchanges machine. In [7, 8] the approach does not require finding solutions hybrid machine. This approach is developed to study the stability of fuzzy impulsive hybrid automata. Fuzzy is considered in terms of [9, 10].

Key definitions and preliminary results

We introduce the following notation.
$\left\|\|-\right.$ - Euclidean norm in the space R^{d} (notation same for all d);

$$
\nabla_{f} V\left(y_{0}\right)=V^{\prime}\left(y_{0}\right) f\left(y_{0}\right), \text { if } V: \mathrm{R}^{d} \rightarrow R \text { i } f: \mathrm{R}^{d} \rightarrow \mathrm{R}^{d} \text { or } f: \mathrm{R}^{d} \rightarrow \mathrm{R}^{d \times l}
$$

1. Definition Fuzzy hybrid machine with fuzzy switching (FHMFS) is a tuple $H A=(Q, Y, P S, g, w, h$, Inv, Init, Jump $)$, in which

- Q - finite set of discrete states;
- $Y=\mathrm{R}^{d}$ - a set of continuous states;
- $P S=\left(X, 2^{X}, P\right)$ - space of capabilities with the normalized degree opportunities;
- $w: \mathrm{R}^{+} \times X_{+} \rightarrow \mathrm{R}^{l}$ - process fuzzy walk in space $P S$;
- $g: Q \times \mathrm{R}^{d} \rightarrow \mathrm{R}^{d}, h: Q \times \mathrm{R}^{d} \rightarrow \mathrm{R}^{d \times l} \quad$ - partially defined functions that help given by continuous machine behavior while in the discrete state; and will mark $g_{q}=y \mapsto g(q, y)$ i $h_{q}=y \mapsto h(q, y)$;
- Inv: $Q \rightarrow Y \backslash\{\varnothing\}$ - a function that defines a plurality of discrete invariance condition;
- Init $\subseteq Q \times Y$ - a set of initial conditions;
- Jump : $Q \times Y \times X \rightarrow 2^{Q \times Y}$ - display, which specifies the transition between discrete states; and the condition $\operatorname{Inv}(q) \subseteq \operatorname{Domg}_{q} \cap \operatorname{Domh}_{q}$ for all $q \in Q$.

2. Definition. Orbit phase, which allowed by FHMFS $H A$ is procession $\chi=(\tau, q, y, x)$, in which $x \in X_{+}, \tau=\left(I_{i}\right)_{i=0}^{N} \in \mathrm{H} T, q:\langle\tau\rangle \rightarrow Q$ - display i $y=\left(y^{i}\right)_{i \in\{\tau\rangle}$ - indexed family of continuous maps $y^{i}: I_{i} \rightarrow Y$, such that:
1) $y^{i}(t) \in \operatorname{Inv}(q(i))$ for all $t \in\left[\tau_{i}, \tau_{i}^{\prime}\right)$, if $i \in\langle\tau\rangle$ and besides, $y^{i}\left(\tau_{i}^{\prime}\right) \in \operatorname{Inv}(q(i))$, if $i=N(\tau)$ i $\tau_{i}^{\prime} \in U(\tau)$;
2) $\left(q(i+1), y^{i+1}\left(\tau_{i+1}\right)\right) \in \operatorname{Jump}\left(q(i), y^{i}\left(\tau_{i}^{\prime}\right), x\right)$ for all $i \in\langle\tau\rangle \backslash\{N(\tau)\}$;
3) function y^{i} locally absolutely continuous on I_{i} and satisfies the equation $\dot{y}^{i}(t)=g\left(q(i), y^{i}(t)\right)+h\left(q(i), y^{i}(t)\right) w(t, x)$ for almost all $t \in I_{i} ;$
4) $\left(q(0), y^{0}(0)\right) \in$ Init. Note that in paragraph 3 features $t^{\prime} \mapsto g_{q(i)}\left(y^{i}\left(t^{\prime}\right)\right)$ i $t^{\prime} \mapsto h_{q(i)}\left(y^{i}\left(t^{\prime}\right)\right)$ is determined to $I_{i} \backslash\left\{\tau_{i}^{\prime}\right\}$, because $y^{i}(t) \in \operatorname{Inv}(q(i))$ for all $t \in\left[\tau_{i}, \tau_{i}^{\prime}\right)$ in paragraph 1.

Consider fixed FHMFS $H A=(Q, Y, P S, g, w, h$, Inv, Init, Jump $)$.
Let $\operatorname{Orb}(H A)$ - set of phase orbit machine $H A, \varphi_{w}$ - distribution function process fuzzy walk w.
3. Definition. Steady state $H A$ called point $y_{*} \in Y$, that:

1) $\operatorname{Jump}\left(q, y_{*}, x\right) \subseteq Q \times\left\{y_{*}\right\}$ fir all $q \in Q$ i $x \in X_{+}$;
2) for each $\chi=(\tau, q, \bar{y}, x) \in \operatorname{Orb}$, that $y^{0}\left(\tau_{0}\right)=y_{*}$, all display $y^{i}, i \in\langle\tau\rangle$ are constant and taking values y_{*}. Let $\operatorname{St}(H A)$ - set of stationary states $H A$.
4. Definition. Steady state $y_{*} \in \operatorname{St}(H A)$ called persistent with level of α, where $\alpha:(0,+\infty) \rightarrow[0,1)$ - function defined in a neighborhood of zero, if for any number $\varepsilon>0$ is a number $\delta>0$, such that, for all phase orbit $\chi=(\tau, q, y, x) \in \operatorname{Orb}(H A)$, where $y=\left(y^{i}\right)_{i \in(\tau)}$ i $\tau=\left(I_{i}\right)_{i \in\{\tau\rangle}$, that $\left\|y^{0}\left(\tau_{0}\right)-y_{*}\right\|<\delta$ i $P\{x\}>\alpha(\varepsilon)$, the condition $\left\|y^{i}(t)-y_{*}\right\|<\varepsilon$ for all $i \in\langle\tau\rangle \mathrm{i} t \in I_{i}$.

Let $\operatorname{St}(H A)$ - set of stationary states $H A$.
Let $D F\left(\mathbf{R}^{d}\right)$ - class of all partially defined continuous functions $f: \mathrm{R}^{d} \rightarrow \mathrm{R}^{+}$, which are continuously differentiable on the inside of your domain.

For each partially defined function $f: \mathbf{R} \rightarrow \mathbf{R}$ denoted $\operatorname{Infin} v(f)$ partially defined function $g: R \rightarrow R$, given the conditions

- $g(y)=\inf \{x \in \mathrm{R} \mid f(x) \leq y\}$, if $y \in \mathrm{R}$ and a set $\{x \in \mathrm{R} \mid f(x) \leq y\}$ not empty and bounded above;
- $g(y)$ not determined otherwise.

Let $H L o\left(H A, y_{*}\right)$ set of tuples $\left(\alpha,\left(V_{q}\right)_{q \in Q},\left(v_{q}\right)_{q \in Q}\right)$, in which
$-\alpha:(0,+\infty) \rightarrow[0,1)$ - function defined in a neighborhood of zero,

- $\left(V_{q}\right)_{q \in Q}$ - family of functions indexed class $D F\left(\mathrm{R}^{d}\right)$,
- $\left(v_{q}\right)_{q \in Q}$ - indexed family of predefined functions $v_{q}: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$, defined in a neighborhood of zero (Including zero), and the conditions in which $\psi=\operatorname{Infin} \psi(\alpha)$:

Lo1) $\left\{y_{*}\right\} \cup O_{q} \subseteq \operatorname{Dom}_{q}$ for all $q \in Q$, where O_{q} - some open superset $\operatorname{Inv}(q)$, and if $\left(q_{2}, y_{2}\right) \in \operatorname{Jump}\left(q_{1}, y_{1}, x\right)$ for some $q_{1}, q_{2} \in Q, \quad y_{1}, y_{2} \in Y$ and $x \in X_{+}$, then $y_{1} \in \operatorname{DomV}_{q_{1}}$ i $y_{2} \in \operatorname{Dom}_{q_{2}} ;$

Lo2) $v_{q}(0)=0$ i $v_{q}(w)>0$ for all $w \in \operatorname{Domv}_{q} \backslash\{0\}$;
Lo3) $V_{q}\left(y_{*}\right)=0$ for all $q \in Q$;
Lo4) if $V_{q}(y) \leq v_{q}(w)$ for some $y \in \operatorname{Dom}_{q}$ and $w \in \operatorname{Dom}_{q}$, then $\left\|y_{*}-y\right\| \leq w$;
Lo5) for all elements $q \in Q, x \in X_{+}$and $y \in \operatorname{Inv}(q)$, such that $P\{x\} \in \operatorname{Dom} \psi$ and $V_{q}\left(y_{1}\right)>v_{q}(\psi(P\{x\}))$, defined by the inequality

$$
\left.\nabla_{g_{q}} V_{q}(y) \leq-\frac{1}{\kappa_{w}} \sqrt{\varphi_{w}^{-1}(P\{x\})} \nabla_{h_{q}} V_{q}(y) \right\rvert\, .
$$

We introduce the following notation (where $q_{1}, q_{2} \in Q, u \in(0,1]$):

$$
\begin{aligned}
& J\left(q_{1}, q_{2}, u\right)=\left\{\left(y_{1}, y_{2}\right) \mid \exists x \in X: P\{x\}>\right. \\
& \left.>u \wedge\left(q_{2}, y_{2}\right) \in \operatorname{Jump}\left(q_{1}, y_{1}, x\right)\right\} \\
& E=\left\{\left(q_{1}, q_{2}\right) \in Q \times Q \mid \exists x \in X: P\{x\}>0 \wedge\right. \\
& \left.\wedge \exists\left(y_{1}, y_{2}\right):\left(q_{2}, y_{2}\right) \in \operatorname{Jump}\left(q_{1}, y_{1}, x\right)\right\}
\end{aligned}
$$

Theorem 1. (the cyclic stability of stationary states) Let $H A$ - FHMFS a cyclic discrete switching states $\hat{q}_{1} \rightarrow \hat{q}_{2} \rightarrow \ldots \rightarrow \hat{q}_{n} \rightarrow \hat{q}_{1}$. Suppose that for steady state $y_{*} \in \operatorname{St}(H A)$ there is a tuple $H L=\left(\alpha,\left(V_{q}\right)_{q \in Q},\left(v_{q}\right)_{q \in Q}\right) \in H L o\left(H A, y_{*}\right)$.
Suppose the following conditions:

1) for each arc $\left(q_{1}, q_{2}\right) \in E$ there is a number $\delta_{q_{1} q_{2}}>0$ and display $\vartheta_{q_{1} q_{2}}:\left[0, \delta_{q_{1} q_{2}}\right] \rightarrow \mathrm{R}^{+}$ such that $\vartheta_{q_{1} q_{2}}(0+)=\vartheta_{q_{1} q_{2}}(0)=0$ for all elements $u \in D$ and pairs $\left(y_{1}, y_{2}\right) \in J\left(q_{1}, q_{2}, u\right)$ performed inequality

- $V_{q_{2}}\left(y_{2}\right) \leq v_{q_{2}}(\psi(u))$, if $V_{q_{1}}\left(y_{1}\right) \leq v_{q_{1}}(\psi(u))$,
- $V_{q_{2}}\left(y_{2}\right) \leq \vartheta_{q_{1} q_{2}}\left(V_{q_{1}}\left(y_{1}\right)\right)$, if $V_{q_{1}}\left(y_{1}\right) \in\left[0, \delta_{q_{1} q_{2}}\right]$ i $V_{q_{1}}\left(y_{1}\right)>v_{q_{1}}(\psi(u))$;

2) $\lambda\left(\hat{q}_{1} \hat{q}_{2} . . \hat{q}_{n-1} \hat{q}_{n} \hat{q}_{1}\right) \leq_{S D} \lambda\left(\hat{q}_{1}\right)$, there is s^{\prime}-condition.

Then steady state y_{*} automaton $H A$ is steady with a level $\bar{\alpha}$.

Pulse fuzzy hybrid machines

We prove a theorem on the stability of the stationary states of cyclical pulse FHMFS.
Theorem 2. Let the machine pulse, $\left(V_{q}\right)_{q \in Q}$ - functions family of class $D F_{0}^{\infty}\left(\mathrm{R}^{d}, y_{*}\right)$, such, that $O_{q} \subseteq \operatorname{DomV}_{q}$ for each $q \in Q$, where O_{q} - some open superset $\operatorname{Inv}(q)$, and for all $q_{1}, q_{2} \in Q$, $y_{1}, y_{2} \in Y, x \in X_{+}$, such that $\left(q_{2}, y_{2}\right) \in \operatorname{Jump}\left(q_{1}, y_{1}, x\right)$, performed $y_{1} \in \operatorname{Dom} V_{q_{1}}$ i $y_{2} \in \operatorname{Dom} V_{q_{2}}$. Let $\left(v_{q}\right)_{q \in Q}$ - family of display $v_{q}: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$, such that $v_{q}(0)=0$ i $0<v_{q}(w)<V_{q}(y)$ for all $w>0$ i $y \in \operatorname{Dom}_{q}$ such that $\left\|y_{*}-y\right\|>w$.

Let for all $q \in Q, x \in X_{+}$i $y \in \operatorname{Inv}(q)$ such that $P\{x\} \in \operatorname{Dom} \psi$ and $V_{q}\left(y_{1}\right)>v_{q}(\psi(P\{x\}))$ performed inequality

$$
\nabla_{g_{q}} V_{q}(y) \leq-\frac{1}{\kappa_{w}} \sqrt{\varphi_{w}^{-1}(P\{x\})} \nabla_{h_{q}} V_{q}(y) \| .
$$

Then let, for all arc $\left(q_{1}, q_{2}\right) \in E$ there is a number $\delta_{q_{1} q_{2}}>0$ and display $\vartheta_{q_{1} q_{2}}:\left[0, \delta_{q_{1} q_{2}}\right] \rightarrow \mathrm{R}^{+}$such that $\vartheta_{q_{1} q_{2}}(0+)=\vartheta_{q_{1} q_{2}}(0)=0$ and for all elements $u \in D$ and payers $\left(y_{1}, y_{2}\right) \in J\left(q_{1}, q_{2}, u\right)$ inequalities
a) $V_{q_{2}}\left(y_{2}\right) \leq v_{q_{2}}(\psi(u))$, if $V_{q_{1}}\left(y_{1}\right) \leq v_{q_{1}}(\psi(u))$,
б) $V_{q_{2}}\left(y_{2}\right) \leq \vartheta_{q_{1} q_{2}}\left(V_{q_{1}}\left(y_{1}\right)\right)$, if $V_{q_{1}}\left(y_{1}\right) \in\left[0, \delta_{q_{1} q_{2}}\right]$ i $V_{q_{1}}\left(y_{1}\right)>v_{q_{1}}(\psi(u))$.

Suppose that values $d_{i}(u, v) \in \mathrm{R}^{+}, i=\overline{1, n}$ by all $(u, v) \in D \times\left[0, v_{\text {max }}\right]$ and inequality $d_{n}(u, v) \leq \max \left\{v_{q_{1}}(\psi(u)), v\right\}$ for all $(u, v) \in D \times\left[0, v_{\max }\right]$, where

$$
\begin{aligned}
& d_{1}(u, v)=\sup \left\{\begin{array}{l}
V_{q_{2}}\left(y_{2}\right) \mid\left(y_{1}, y_{2}\right) \in J\left(\hat{q}_{1}, \hat{q}_{2}, u\right) \wedge \\
\wedge V_{\hat{q}_{1}}\left(y_{1}\right) \leq \max \left\{v_{\hat{q}_{1}}(\psi(u)), v\right\}
\end{array}\right\} ; \\
& d_{2}(u, v)=\sup \left\{\begin{array}{l}
\left.\begin{array}{l}
v_{q_{3}}\left(y_{3}\right) \mid\left(y_{2}, y_{3}\right) \in J\left(\hat{q}_{2}, \hat{q}_{3}, u\right) \wedge \\
\wedge \\
V_{q_{2}}
\end{array} y_{2}\right) \leq \max \left\{v_{\hat{q}_{2}}(\psi(u)), d_{1}(u, v)\right\}
\end{array}\right\} ; \\
& d_{3}(u, v)=\sup \left\{\begin{array}{l}
V_{q_{4}}\left(y_{4}\right) \mid\left(y_{3}, y_{4}\right) \in J\left(\hat{q}_{3}, \hat{q}_{4}, u\right) \wedge \\
\wedge V_{q_{3}}\left(y_{3}\right) \leq \max \left\{v_{q_{3}}(\psi(u)), d_{2}(u, v)\right\}
\end{array}\right\} ; \ldots \\
& d_{n}(u, v)=\sup \left\{\begin{array}{l}
V_{\hat{q}_{1}}\left(y_{1}\right) \mid\left(y_{n}, y_{1}\right) \in J\left(\hat{q}_{n}, \hat{q}_{1}, u\right) \wedge \\
V_{q_{n}}\left(y_{n}\right) \leq \max \left\{v_{\hat{q}_{n}}(\psi(u)), d_{n-1}(u, v)\right\}
\end{array}\right\} .
\end{aligned}
$$

Then steady state y_{*} pulse cycle of FHMFS $H A$ stable with level α.
Proof. We verify the conditions of the theorem (1). Prove that $\left(\alpha,\left(V_{q}\right)_{q \in Q},\left(v_{q}\right)_{q \in Q}\right) \in H L o\left(H A, y_{*}\right)$. The condition of the theorem implies that the conditions Lol, Lo3, Lo5 run. Conditions Lo2 performed as $v_{q}(w)>0$ at $w>0$ i $v_{q}(0)=0$. Condition Lo4 performed, by the theorem if $\left\|y_{*}-y\right\|>w$, it $V_{q}(y)>v_{q}(w)$.

The condition of the theorem implies the condition (1) Theorem 1.
Verify the condition 2 of the Theorem (1). As mentioned
$d_{i}(u, v) \in \mathrm{R}^{+}, i=\overline{1, n}$ for all $(u, v) \in D \times\left[0, v_{\text {max }}\right]$, then for all arcs $\left(q_{1}, q_{2}\right)$, we have
$\left(\bar{c}\left(q_{1}\right) \cdot \bar{c}\left(q_{1}, q_{2}\right)\right)(u, v)=$
$\sup s\left(\left(q_{1}, q_{2}\right), u, \bar{c}\left(q_{1}\right)(u, v)\right)=d_{i}(u, v)$
where s - display with definition of markup λ. $d_{n}(u, v)=\left(\bar{c}\left(\hat{q}_{1}\right) \cdot \bar{c}\left(\hat{q}_{1}, \hat{q}_{2}\right) \cdot \bar{c}\left(\hat{q}_{2}\right) \cdot \bar{c}\left(\hat{q}_{2}, \hat{q}_{3}\right) \cdot \ldots\right.$
Then $\left.\bar{c}\left(\hat{q}_{n}\right) \cdot \bar{c}\left(\hat{q}_{n}, \hat{q}_{1}\right)\right)(u, v) \leq \max \left\{v_{q_{1}}(\psi(u)), v\right\}$
for all $(u, v) \in D \times\left[0, v_{\text {max }}\right]$. Then $\max \left\{v_{q_{1}}(\psi(u)), d_{n}(u, v)\right\} \leq \max \left\{v_{q_{1}}(\psi(u)), v\right\}$, and $\bar{c}\left(\hat{q}_{1}\right)\left(u, d_{n}(u, v)\right) \leq c\left(\hat{q}_{1}\right)(u, v)$ where for all $(u, v) \in D \times\left[0, v_{\text {max }}\right]$ performed
$\lambda\left(\hat{q}_{1} \hat{q}_{2} \ldots \hat{q}_{n-1} \hat{q}_{n} \hat{q}_{1}\right)(u, v) \leq \lambda\left(\hat{q}_{1}\right)(u, v)$.
Then, by definition, $\leq_{S D}$ (for fixed a $v_{\text {max }}$ and set D), performed
$\lambda\left(\hat{q}_{1} \hat{q}_{2} \cdot \hat{q}_{n-1} \hat{q}_{n} \hat{q}_{1}\right) \leq_{S D} \lambda\left(\hat{q}_{1}\right)$.
Thus the conditions of the theorem (1) performed as steady state y_{*} of the machine $H A$ stable with level α.

The theorem is proved.
Let $d^{\prime} \leq d$ - natural number, where d - the dimension of space contiguous states HA. Let $L \in \mathrm{R}^{d^{d^{\prime}} \times d}$ - matrix of rank d^{\prime}. Consequently ρ_{L} - pseudo metrics on R^{d}, defined by equity $\rho_{L}(x, y)=(L x-L y)^{T}(L x-L y)$.

Definition 5. Steady state $y_{*} \in \operatorname{St}(H A)$ is L-stability with level α, where $\alpha:(0,+\infty) \rightarrow[0,1)$ - function, which is defined in a neighborhood of zero, if for any number $\varepsilon>0$ there is a number $\delta>0$, such, that for all phase orbits $\chi=(\tau, q, \bar{\eta}, x) \in \operatorname{Orb}(H A)$, where $y=\left(y^{i}\right)_{i \in\{\tau\rangle}$ and $\tau=\left(I_{i}\right)_{i \in\{\tau\rangle}$, such that $\left\|y^{0}\left(\tau_{0}\right)-y_{*}\right\| \leq \delta$ i $P\{x\}>\alpha(\varepsilon)$, condition $\rho_{L}\left(y^{i}(t), y_{*}\right) \leq \varepsilon$ for all $i \in\langle\tau\rangle$ and $t \in I_{i}$.

IZVESTIA JOURNAL OF THE UNION OF SCIENTISTS - VARNA

Theorem 3. Let $H A$ - FHMFS with a cyclic discrete switching states $\hat{q}_{1} \rightarrow \hat{q}_{2} \rightarrow \ldots \rightarrow \hat{q}_{n} \rightarrow \hat{q}_{1}$. Let for steady state $y_{*} \in \operatorname{St}(H A)$ there is a tuple
$H L=\left(\alpha,\left(V_{q}\right)_{q \in Q},\left(v_{q}\right)_{q \in Q}\right) \in H L o^{L}\left(H A, y_{*}\right)$.
Suppose the following conditions:

1) for each switch $q_{1} \rightarrow q_{2}$ there is a number $\delta_{q_{1} q_{2}}>0$ and display $\vartheta_{q_{1} q_{2}}:\left[0, \delta_{q_{1} q_{2}}\right] \rightarrow \mathrm{R}^{+}$ such that $\vartheta_{q_{1} q_{2}}(0+)=\vartheta_{q_{1} q_{2}}(0)=0$ and for all elements $u \in \operatorname{Dom} \psi$ and payers $\left(y_{1}, y_{2}\right) \in J\left(q_{1}, q_{2}, u\right)$ inequality

- $V_{q_{2}}\left(y_{2}\right) \leq v_{q_{2}}(\psi(u))$, if $V_{q_{1}}\left(y_{1}\right) \leq v_{q_{1}}(\psi(u))$,
$-V_{q_{2}}\left(y_{2}\right) \leq \vartheta_{q_{1} q_{2}}\left(V_{q_{1}}\left(y_{1}\right)\right)$, if $V_{q_{1}}\left(y_{1}\right) \in\left[0, \delta_{q_{1} q_{2}}\right]$ i $V_{q_{1}}\left(y_{1}\right)>v_{q_{1}}(\psi(u))$;

2) $\lambda\left(\hat{q}_{1} \hat{q}_{2} . . \hat{q}_{n-1} \hat{q}_{n} \hat{q}_{1}\right) \leq_{S D} \lambda\left(\hat{q}_{1}\right)$, there is s^{\prime}-condition.

Thus steady state y_{*} machine $H A L$-resistant with level α.
Present conditions L - resistant with level α fuzzy impulsive hybrid automata.
Let $H L o^{L}\left(H A, y_{*}\right)$ - set of tuples $\left(\alpha,\left(V_{q}\right)_{q \in Q},\left(v_{q}\right)_{q \in Q}\right)$, in which:
$-\alpha:(0,+\infty) \rightarrow[0,1)$ - function, which is defined in a neighborhood of zero;

- $\left(V_{q}\right)_{q \in Q}$ - indexed family of functions of class $D F\left(\mathrm{R}^{d}\right)$;
- $\left(v_{q}\right)_{q \in Q}-$ - indexed family of functions $v_{q}: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$, defined in a neighborhood of zero (included zero).

Let conditions Lo1, Lo2, Lo3, Lo5 and in addition, such condition (instead Lo4):
Lo4') if $V_{q}(y) \leq v_{q}(w)$ for some $y \in \operatorname{Dom}_{q}$ and $w \in \operatorname{Dom}_{q}$, then $\left\|L y_{*}-L y\right\| \leq w$.
Theorem 4. (about L-resistant steady states not cyclical pulse FHMFS). Let automata HA not pulse, $\left(V_{q}\right)_{q \in Q}$ - family of functions of class $D F_{0}^{\infty}\left(\mathrm{R}^{d}, y_{*}\right)$, such that $O_{q} \subseteq \operatorname{Dom} V_{q}$ for each $q \in Q$, де O_{q} - some open superset $\operatorname{Inv}(q)$, and for all $q_{1}, q_{2} \in Q, y_{1}, y_{2} \in Y, x \in X_{+}$, such that $\left(q_{2}, y_{2}\right) \in \operatorname{Jump}\left(q_{1}, y_{1}, x\right)$, performed $y_{1} \in \operatorname{Dom}_{q_{1}}$ and $y_{2} \in \operatorname{Dom}_{q_{2}}$.

Let $\left(v_{q}\right)_{q \in Q}$ - family reflections $v_{q}: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$,
such as $v_{q}(0)=0$ and $0<v_{q}(w)<V_{q}(y)$ for all $w>0$ i $y \in \operatorname{Dom}_{q}$, such that $\left\|L y_{*}-L y\right\|>w$.

Suppose that for all $q \in Q, \quad x \in X_{+}$and $y \in \operatorname{Inv}(q)$, such that $P\{x\} \in \operatorname{Dom\psi }$ and $V_{q}\left(y_{1}\right)>v_{q}(\psi(P\{x\}))$ performed inequality

$$
\nabla_{g_{q}} V_{q}(y) \leq-\frac{1}{\kappa_{w}} \sqrt{\varphi_{w}^{-1}(P\{x\})} \nabla_{h_{q}} V_{q}(y)
$$

Suppose that for all arcs $\left(q_{1}, q_{2}\right) \in E, u \in D$ and $\left(y_{1}, y_{2}\right) \in J\left(q_{1}, q_{2}, u\right)$, such that $V_{q_{1}}\left(y_{1}\right) \leq v_{q_{1}}(\psi(u))$, performed $V_{q_{2}}\left(y_{2}\right) \leq v_{q_{2}}(\psi(u))$. Suppose also, that values $d_{i}(u, v) \in \mathrm{R}^{+}, i=\overline{1, n}$ definite for all $(u, v) \in D \times\left[0, v_{\max }\right]$ and inequality $d_{n}(u, v) \leq \max \left\{v_{q_{1}}(\psi(u)), v\right\}$ performed for all $(u, v) \in D \times\left[0, v_{\text {max }}\right]$, where

$$
d_{1}(u, v)=\sup \left\{\begin{array}{l}
V_{\hat{q}_{2}}\left(y_{2}\right) \mid\left(y_{1}, y_{2}\right) \in J\left(\hat{q}_{1}, \hat{q}_{2}, u\right) \wedge \\
\hat{\hat{q}}_{1} \\
\left.y_{1}\right) \leq \max \left\{v_{\hat{q}_{1}}(\psi(u)), v\right\}
\end{array}\right\} ; d_{2}(u, v)=\sup \left\{\begin{array}{l}
V_{\hat{q}_{3}}\left(y_{3}\right) \mid\left(y_{2}, y_{3}\right) \in J\left(\hat{q}_{2}, \hat{q}_{3}, u\right) \wedge \\
\wedge V_{\hat{q}_{2}}\left(y_{2}\right) \leq \max \left\{v_{\hat{q}_{2}}(\psi(u)), d_{1}(u, v)\right\}
\end{array}\right\} ;
$$

$$
\begin{aligned}
& d_{3}(u, v)=\sup \left\{\begin{array}{l}
V_{\hat{q}_{4}}\left(y_{4}\right) \mid\left(y_{3}, y_{4}\right) \in J\left(\hat{q}_{3}, \hat{q}_{4}, u\right) \wedge \\
\wedge V_{\hat{q}_{3}}\left(y_{3}\right) \leq \max \left\{v_{\hat{q}_{3}}(\psi(u)), d_{2}(u, v)\right\}
\end{array}\right\} ; \ldots . . \\
& d_{n}(u, v)=\sup \left\{\begin{array}{l}
V_{\hat{q}_{1}}\left(y_{1}\right) \mid\left(y_{n}, y_{1}\right) \in J\left(\hat{q}_{n}, \hat{q}_{1}, u\right) \wedge \\
\wedge V_{\hat{q}_{n}}\left(y_{n}\right) \leq \max \left\{v_{\hat{q}_{n}}(\psi(u)), d_{n-1}(u, v)\right\}
\end{array}\right\} .
\end{aligned}
$$

Thus steady state y^{*} not pulse cycle FHMFS $H A$ is L-resistant with level $\bar{\alpha}$.
Proof. We verify the conditions of the theorem (3). Prove that $\left(\alpha,\left(V_{q}\right)_{q \in Q},\left(v_{q}\right)_{q \in Q}\right) \in H L o^{L}\left(H A, y_{*}\right)$. The condition of the theorem implies that the conditions Lo1, Lo3, Lo5 run. Conditions Lo2 performed as $v_{q}(w)>0$ at $w>0$ i $v_{q}(0)=0$. Condition Lo4' executed because by theorem if $\left\|L y_{*}-L y\right\|>w$, then $V_{q}(y)>v_{q}(w)$.

The condition of the theorem implies implementation of the first inequality of condition 1 Theorem (3).

Verify the implementation of the other inequality of condition 1 of theorem (3). Granted
$\delta_{q_{1} q_{2}}=v_{q_{1}}(0)>0$ and define the mapping $\vartheta_{q_{1} q_{2}}:\left[0, \delta_{q_{1} q_{2}}\right] \rightarrow \mathrm{R}^{+}$equality
$\vartheta_{q_{1} q_{2}}(v)=\sup \left\{V_{q_{2}}(y) \mid y \in \operatorname{Dom}_{q_{1}} \cap\right.$
$\left.\cap \operatorname{Dom}_{q_{2}} \wedge V_{q_{1}}(y) \leq v\right\}$.
Note that this value is determined for $y_{*} \in \operatorname{Dom}_{q_{1}} \cap \operatorname{Dom} V_{q_{2}}$ and finite and function $V_{q_{2}}$ locally limited, and set $V_{q_{1}}(y) \leq v$ limited (for $v>0$) because $V_{q_{1}}$ allows unlimited extension. Because $V_{q_{1}}(y)>0$ at $y \neq y_{*}$, to $\vartheta_{q_{1} q_{2}}(0)=0$. Because $\vartheta_{q_{1} q_{2}}$ monotonic, then $\vartheta_{q_{1} q_{2}}(0+)$ identified. Verify that $\vartheta_{q_{1} q_{2}}(0+)=0$. Really $\inf _{\varepsilon>0} \vartheta_{q_{1} q_{2}}\left(v_{q_{1}}(\varepsilon)\right)=0$, Because function $V_{q_{1}}$ continuous on its domain i $V_{q_{1}}\left(y_{*}\right)=0$. But if $\vartheta_{q_{1} q_{2}}(0+) \neq 0$, then $\vartheta_{q_{1} q_{2}}(0+)>0$ and then $\inf _{\varepsilon>0} \vartheta_{q_{1} q_{2}}\left(v_{q_{1}}(\varepsilon)\right)>0$, it $v_{q_{1}}(\varepsilon)>0$ at $\varepsilon>0$. Consequently $\vartheta_{q_{1} q_{2}}(0+)=0$.

If $\left(y_{1}, y_{2}\right) \in J\left(q_{1}, q_{2}, u\right)$ for some $u \in D$ i $V_{q_{1}}\left(y_{1}\right) \leq \delta_{q_{1}} q_{2}$, then $y_{1}=y_{2}$, automata is not pulse $y_{1} \in \operatorname{Dom}_{q_{1}} \cap \operatorname{Dom} V_{q_{2}}$. Then $V_{q_{2}}\left(y_{2}\right) \leq \vartheta_{q_{1} q_{2}}\left(V_{q_{1}}\left(y_{1}\right)\right)$ by definition $\vartheta_{q_{1} q_{2}}$.

Verify the condition 2 of the Theorem (3). As mentioned $d_{i}(u, v) \in \mathrm{R}^{+}, i=\overline{1, n}$ defined for all $(u, v) \in D \times\left[0, v_{\max }\right]$, then for all $\operatorname{arcs}\left(q_{1}, q_{2}\right)$,
$\left(\bar{c}\left(q_{1}\right) \cdot \bar{c}\left(q_{1}, q_{2}\right)\right)(u, v)=$
$=\sup s\left(\left(q_{1}, q_{2}\right), u, \bar{c}\left(q_{1}\right)(u, v)\right)=d_{i}(u, v)$,
де s-image from definition markup λ. Then
$d_{n}(u, v)=\left(\bar{c}\left(\hat{q}_{1}\right) \cdot \bar{c}\left(\hat{q}_{1}, \hat{q}_{2}\right) \cdot \bar{c}\left(\hat{q}_{2}\right) \cdot \bar{c}\left(\hat{q}_{2}, \hat{q}_{3}\right) \cdot .\right.$. .
$\left.\bar{c}\left(\hat{q}_{n}\right) \cdot \bar{c}\left(\hat{q}_{n}, \hat{q}_{1}\right)\right)(u, v) \leq \max \left\{v_{q_{1}}(\psi(u)), v\right\}$
For all $(u, v) \in D \times\left[0, v_{\text {max }}\right]$. Thus $\max \left\{v_{q_{1}}(\psi(u)), d_{n}(u, v)\right\} \leq \max \left\{v_{q_{1}}(\psi(u)), v\right\}$, and then
$c\left(\hat{q}_{1}\right)\left(u, d_{n}(u, v)\right) \leq c\left(\hat{q}_{1}\right)(u, v)$
For all $(u, v) \in D \times\left[0, v_{\max }\right]$ performed
$\lambda\left(\hat{q}_{1} \hat{q}_{2} \cdots \hat{q}_{n-1} \hat{q}_{n} \hat{q}_{1}\right)(u, v) \leq \lambda\left(\hat{q}_{1}\right)(u, v)$.
Then by definition $\leq_{S D}$ (for fixed a $v_{\max }$ and set D), performed
$\lambda\left(\hat{q}_{1} \hat{q}_{2} \cdot \hat{q}_{n-1} \hat{q}_{n} \hat{q}_{1}\right) \leq_{S D} \lambda\left(\hat{q}_{1}\right)$.
Thus conditions of (theorem 3) are satisfied, then steady state y_{*} automata $H A \in L$-resistant
with level α.
The theorem is proved.

Conclusion

The paper examines the properties of fuzzy hybrid machines. For modeling of fuzziness used approach based on the theory of possibilities. The questions of stability and resistance on the part of variables (L-resistance) solutions fuzzy hybrid machines with cyclic changes in local conditions mentioned. Change happens when states achieved a certain trajectory set. The corresponding theorems proved.

References

1. Branicky M., Stability of switched and hybrid systems, in Proc. 33-rd Conf. Decision and Control, Lake Buena Vista, FL, Dec. 1994, p. 3498--3503.
2. Daafouz J, Riedinger P. and Iung C. Stability Analysis and Control Synthesis for Switched Systems: A switched Lyapunov function approach //IEEE transactions on automatic control. 2002. V.47. N 11. P.1883-1887.
3. Lin H., Antsaklis P.J. Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results // IEEE Transactions on Automatic Control. 2009. V.54. N 2. P. 308-322.
4. Rejeb J. B. , Morărescu I. C. , Girard A. and Daafouz J. , "Stability analysis of singularly perturbed switched and impulsive linear systems," 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, 2016, pp. 5521-5526.
5. Yang Li and H . Zhang, "Piecewise quadratic stability analysis combined with time information for hybrid system," 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, 2016, pp. 1905-1909.
6. Wang Y., Roohi N., Dullerud G. E., Viswanathan M., "Stability Analysis of Switched Linear Systems defined by Regular Languages," in IEEE Transactions on Automatic Control, vol.PP, no.99, pp.1-1
7. Bychkov A.S., Research stability trivial phase orbit hybrid machines // Bulletin of Kiev University. Series: Cybernetic -2005.-No6. - c.4-8
8. Bychkov A.S., About researching of impulse hybrid automata stability // Mathematical machines and systems, 2007, №1. - C. 27-33.
9. Bychkov A.S Бичков O.C., Kolesnikov K.S. Building (PN) -model theory opportunities // Bulletin of Kiev University, Series: Mathematics and Physics №1, 2007. - c. 134-138.
10. Bychkov A.S On the theory and application possibilities // Reports of NAS of Ukraine -№5, 2007. - c.7-12

Contacts

Prof. Georgi P. Dimitrov, PhD
University of Library Studies and Information Technologies, Sofia, Bulgaria geo.p.dimitrov@gmail.com

Assoc. Prof. Oleksiy S. Bychkov, PhD
Taras Shevchenko National University of Kyiv, Ukraine
Faculty of Information Technology
bos.knu@gmail.com
Assoc. Prof. Pavel S. Petrov, PhD
University of Economics - Varna, Bulgaria
petrov@ue-varna.bg

