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ABSTRACT

Sulfur is a non-metal macroelement with critical importance for the human body integrity and homeosta-
sis. Sulfur-containing biomolecules exert important functions in redox balance maintenance, enzyme func-
tionality, DNA methylation and repair, modification of extracellular matrix components, and xenobiotic 
metabolism.

Many studies related to the sulfur utilization and metabolism are focused on foods rich in organosulfur 
compounds that are associated with health benefits. It is believed that sulfur-containing mineral water also 
could have beneficial effects on the human health, but this knowledge is currently based on empirical data.

It could be suggested that the intake of sulfurous mineral waters as a part of the everyday diet would have 
measurable effects on the human metabolism.
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INTRODUCTION
Scientific research on the factors influencing 

human health is limited mainly to the lifestyle, diet, 
physical activity, social status and unhealthy habits 
such as smoking and alcohol abuse. Water intake is 
considered mainly from the point of view of ensuring 
the water balance without sufficient consideration of 
the intake of macro- and microelements in regard to 
the mechanisms behind their biological effects. 

Mineral waters are a valuable natural resource, 
rich in essential dietary minerals, and may provide 
important portions of the recommended dietary 
intake of these minerals (1,2,3). Studies report that 
some types of mineral water can significantly con-
tribute to the daily intake of calcium and magne-
sium and may have beneficial effects on bone metab-
olism, water-electrolyte balance and blood pressure 
(4,5,6,7,8).

Sulfur is one of the basic structural elements in 
the human body and its metabolism is extremely im-
portant in terms of the role that this element plays 
in many biochemical processes (9,10,11). It could be 
assumed that the intake of mineral waters contain-
ing hydrogen sulfide and soluble sulfides will have a 
measurable effect on human metabolism even at the 
level of intestinal absorption. 



Scripta Scientifica Pharmaceutica, 2019;6(2):22-30
Medical University of Varna 23

Todorka Sokrateva, Delyan Ivanov, Margarita Mihaylova et al.

The purpose of this study is to provide a brief 
overview of the available literature sources devoted 
to the role of sulfur in human metabolism and nu-
tritional sources of sulfur-containing biologically ac-
tive compounds. Some aspects of the biological ef-
fects of sulfurous mineral waters (SMW) are also 
commented. 

SULFUR IN HUMAN METABOLISM 
AND NUTRITION
Sulfur is one of the seven most abundant ele-

ments in the human body (9,12,13). It plays an essen-
tial role in various processes such as posttranslation-
al modification of endogenous proteins, maintaining 
the integrity of extracellular matrix, synthesis of key 

S-COMPOUND SOURCES BIOLOGICAL SIGNIFICANCE/
EFFECTS REFERENCES

Methionine

Only diet (essential for 
humans and animals): meat 
and meat products, bread and 
other grain products, cheese

• Required for the synthesis of body 
proteins;

• Precursor of SAM for methylation 
reactions in:

- Synthesis of phospholipids, 
epinephrine, creatine;

- Histone methylation (control of 
transcription);

- DNA methylation (epigenetic 
signal for gene expression and cell 
differentiation).

• Ribosomal initiation of protein 
synthesis;

• Precursor for the synthesis of Cys.

(9,11,17-25)

Cysteine
1. Biosynthesis from Met
2. Diet: bread and other grain 

products, meat

• Required for the synthesis of body 
proteins;

• Included in the structure of GSH;
• Precursor for the synthesis of taurine;
• Extracellular reducing agent in the 

structure of plasma proteins;
• Maintains the correct folding of 

proteins by disulfide bonds.

(9,11,21,25-31)

Taurine

1. Diet is the primary source: 
meat, tuna, shrimps, milk

2. Biosynthesis from Met and 
Cys in liver

• Neuromodulatory potential (agonist of 
GABA and glycine receptors in CNS);

• Antioxidant and anti-inflammatory 
activity:

- Neutralization of hypochlorous acid 
generated by myeloperoxidase in 
neutrophils;

- Direct scavenging of reactive oxygen 
species;

- Enhancing the expression and 
activities of antioxidant enzymes.

• Bile acid conjugation;
• Stimulates bile acid synthesis and 

reduces serum cholesterol levels;
• Osmoregulation and membrane 

stabilization in skeletal muscles and 
myocardium.

(32-40)

Table 1. Natural S-compounds, their sources and scientific data in support of their biological effects:
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sulfur-containing metabolites, detoxification pro-
cesses, and many others. In the structure of sulfur-
containing amino acids, it is related to the activity of 
enzymes containing SH-groups in its active center, 
as well as to the maintenance of native conformation 

of proteins by disulfide bonds. In addition, sulfur is a 
component required for sulfation reactions in detox-
ification processes.

The primary dietary source of sulfur are pro-
teins and particularly the two sulfur-containing 

Glutathione Biosynthesis from Cys, 
glutamate and glycine

• Pivotal role in reducing oxidative stress 
and maintaining redox balance: 

- Direct scavenger of diverse oxidants;
- Cofactor of antioxidant enzymes;
- Neutralization of free radicals 

produced in Phase I of xenobiotic 
metabolism. 

• A compound for conjugation of 
xenobiotics in Phase II of xenobiotic 
metabolism;

• Regeneration of vitamins C and E;
• A potent chelator of heavy metals in 

brain and liver;
• Protects mitochondrial DNA from 

oxidative damage;
• Protects cells from aging processes;
• Regulatory factor in the immune 

system;
• Reservoir for Cys.

(30,41-46)

Hydrogen sulfide Metabolism of Met and Cys

• Antioxidant and anti-inflammatory 
activities;

• Neuromodulator in central and 
peripheral neuronal system;

• Neuroprotective potential; 
• Smooth muscle relaxation by opening of 

ATP-sensitive K+ channels; 
• Protecting factor against mucosal 

injury.

(7,47-60)

Organosulfur 
compounds from 
plants

Broccoli, cauliflower, cabbage, 
Brussel sprouts, watercress, 
garlic, onion

• Anticancer activity:
- Modulation of the xenobiotic-

metabolizing enzymes (carcinogens 
are less active or more rapidly 
excreted);

- Direct binding of toxins to the SH 
group. 

• Cardioprotective potential:
- Reducing thromboxane formation by 

platelets;
- Reducing blood cholesterol, 

triglyceride levels and systolic blood 
pressure.

• Antibacterial action;
• Anthelmintic action;
• Protection against nephropathy and 

vascular complications in type 2 
diabetes. 

(14,15,61-71)
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amino acids methionine (Met) and cysteine (Cys). 
It is believed that these amino acids, along with tau-
rine, provide most of the sulfur amount needed for 
maintaining the body’s homeostasis (11). 

Apart from their role as building monomers for 
protein synthesis, the sulfur-containing amino ac-
ids Met and Cys are precursors for synthesis of im-
portant sulfur-containing metabolites such as gaso-
transmitter hydrogen sulfide (H2S), the powerful re-
dox buffer glutathione (GSH), the universal methyl 
donor S-adenosylmethionine (SAM), the amino acid 
taurine known to play various metabolic functions as 
well as the universal donor of sulfate and a mandato-
ry co-substrate in sulfating reactions 3’-phosphoade-
nosyl 5’-phosphosulfate (PAPS).

A significant amount of nutritional studies has 
been devoted to organosulfur compounds in edible 
plants such as garlic and crucifers, suggesting that 
their anticancer and antioxidant activities are due to 
the potential of these compounds to induce or inhib-
it the expression of detoxification enzymes (14,15,16).

Some of the most significant biological effects 
of natural sulfur-containing compounds (S-com-
pounds), supported by scientific data, are summa-
rized in Table 1.

SULFUROUS MINERAL WATERS: 
WHAT DO WE KNOW AND WHAT 
LIES AHEAD?
Sulfur containing mineral waters have a long 

history of use in the treatment of various clinical 
conditions and some of their healing effects are at-
tributed to possible antioxidant and anti-inflam-
matory activities (72-79) The application of SMW 
is recommended for treatment of various pathologi-
cal conditions such as liver, gastrointestinal, urologi-
cal and cardiovascular disorders (80-82). Also, SMW 
baths are applied for relief of atopic dermatitis, psori-
asis, infected wounds (16,17,75,83-85), and degenera-
tive osteoarthritis (74,86-89). 

The mineral water from the Varna basin is clas-
sified as sulfurous because of its H2S content (89). 
According to Vladeva and Kostadinov, 1996 (90) the 
mineral water from the most actively used boreholes 
in the Varna basin has a neutral pH and is defined 
as low-mineralized and appropriate for everyday 
use (90-92). Recently new data were obtained assess-

ing the content of the biologically active compounds 
such as potassium, dissolved sulfides and free hydro-
gen sulfide (S2, SH-, H2S), selenium and chromium 
(93). 

The role of sulfurous active compounds con-
tained in thermal waters, in particular, and the ef-
fects of drinking therapies involving H2S-rich wa-
ters on the human metabolism are poorly studied. 
Knowledge about the healing properties of Var-
na mineral waters are based currently on empirical 
data describing their health effects when used as a 
daily drinking water in kidney and gastrointestinal 
disturbances. 

Hydrogen Sulfide
It is considered that the beneficial effects of sul-

fur thermal therapies in the treatment of osteoar-
thritis are due to dissolved H2S and soluble sulfides 
therein. In the recent years the interest in H2S has in-
creased because of data accumulation in support of 
its beneficial effects on the human health.

Like nitric oxide (NO) and carbon monox-
ide (CO), H2S is a lipophilic molecule with signal-
ing functions that passes freely through membrane 
structures and can be measured in blood serum and 
tissues where it is present in concentrations of the or-
der of 50 µM (94). H2S is produced in most tissues but 
was estimated in highest amounts in the brain, car-
diovascular system, liver, and kidney (95). It is con-
sidered as a gasotransmitter with various biological 
effects, such as vasodilation, neurotransmission, an-
giogenesis, pro-and anti-inflammatory effects, and 
others (54,96,97). By its chemical nature, hydrogen 
sulfide is a good reducing agent, which determines 
its potential antioxidant role. In addition, hydro-
gen sulfide is a highly reactive molecule and readi-
ly reacts with active oxygen and nitrogen forms, thus 
neutralizing them (54,58). Another mechanism of 
its antioxidant action involves stimulating cysteine 
transport and glutathione synthesis (52). Effects of 
hydrogen sulfide on various signaling pathways have 
been reported, such as stimulation of ATP-depen-
dent potassium channels (50), activation of adenylate 
cyclase cascades, influence of extracellular signaling 
kinase (ERK), and inhibition of inducible NO syn-
thase (iNOS) under inflammatory stimuli (58,98,99).

In addition to its anti-inflammatory action, 
several pharmacological studies have demonstrated 
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the protective role of endogenous and exogenous H2S 
against ulcerogenesis, induced by nonsteroidal an-
ti-inflammatory drugs (8,47,49,100). Based on these 
intriguing results, new hybrid H2S-releasing drugs 
have been developed with safer gastrointestinal pro-
file (8).

CONCLUSION
The pivotal importance of S-compounds in 

many complex biochemical and physiological mech-
anisms could be a basis for the interpretation of ben-
eficial effects observed during SMW applications. 
It could be expected that the thermal waters rich in 
H2S will have an impact on many metabolic process-
es commensurable with the beneficial effects of oth-
er, well-studied natural sources of sulfur-containing 
compounds.
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