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ABSTRACT

INTRODUCTION: Osteocalcin (OC) is a bone-derived protein that undergoes vitamin K-dependent 
carboxylation. The undercarboxylated form of the protein (ucOC) is released in the circulation during the 
process of bone resorption. Experimental studies on mice and rats have revealed that ucOC is involved in the 
regulation of energy homeostasis, linking in this way the bone, pancreas, and adipose tissue metabolism. 
Experimental studies suggest no hormonal role for the carboxylated form (cOC) of the protein.

AIM: In the current study we aimed to examine the levels of OC in its carboxylated and undercarboxylated 
form in patients with type 2 diabetes and control subjects, and to compare the vitamin K status between the 
two groups. 

MATERIALS AND METHODS: The present cross-sectional study involved a sample of 46 adults type 2 
diabetes patients and a control group of 19 individuals. The carboxylated and undercarboxylated forms of 
OC were measured in serum by using highly sensitive sandwich-type enzyme immunoassay kits. Vitamin K 
status was evaluated by the ratio ucOC/cOC. Student’s two-tailed unpaired t-test was used to compare the 
groups.

RESULTS: UcOC and cOC serum levels were significantly lower in patients with type 2 diabetes compared 
to controls. We found no difference in the vitamin K status between the groups.

CONCLUSION: Our results show that OC might be involved in the regulation of carbohydrate metabolism. 
In humans, it appears that the carboxylation state might not be essential for the hormonal role of the protein 
as in mice and rats.
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INTRODUCTION
Osteocalcin (OC) is the most abundant non-

collagenous protein in the bone matrix. It is syn-
thesized by osteoblasts. Its molecule contains three 
gamma-glutamic acid residues undergoing post-
translational vitamin K-dependent carboxylation. 
The carboxylated residues bind to calcium ions in the 
hydroxyapatite crystals with high affinity and incor-
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to a different rodent species, while cOC seemed to 
be inactive.

The experimental findings of a hormonal role 
for OC were challenging for numerous clinical stud-
ies that aimed to extrapolate it to humans. The hy-
pothesis that OC is involved in the pathogenesis of 
obesity, metabolic syndrome, and diabetes type 2 
was tested repeatedly, but the results were less consis-
tent. Some studies confirmed the hormonal activity 
of ucOC (11-13), others demonstrated beneficial met-
abolic roles for total OC and/or cOC as well (14,15). 

The notion that only ucOC is endowed with 
metabolic activity implies that vitamin K would be 
associated with detrimental effects on carbohydrate 
metabolism, as it is involved in the carboxylation 
process (16). However, epidemiological and clinical 
data suggest that vitamin K is an important mark-
er of good bone and cardio-metabolic health (17-22). 
Moreover, it is considered that many of the diseases 
of aging with social impact can be regarded as a form 
of subclinical vitamin K deficiency, which has been 
found to be widely distributed among the Western 
population (18).

AIM
The aim of the current study was to examine 

the levels of OC in its carboxylated and undercar-
boxylated form in patients with type 2 diabetes and 
control subjects and to compare the vitamin K status 
between the two groups.  

MATERIALS AND METHODS
Participants 
This cross-sectional clinical study involved a 

sample of 46 adults (25 females and 21 males) with 
type 2 diabetes without cardiovascular complica-
tions that were hospitalized in the St. Marina Uni-
versity Hospital, Varna in the period October 2018 
– November 2019, and a control group of 19 subjects 
(11 females and 8 males). The study was approved by 
the local Ethical Committee of the Medical Univer-
sity of Varna.

Measurement of Osteocalcin Concentration
Serum of the patients and control participants 

was collected and stored at -60°C for biochemical de-
termination of OC concentration. Highly sensitive 
sandwich-type enzyme immunoassay (EIA) kits for 
ucOC and cOC were used (Takara Bio, Inc., Japan), 

porate the protein in the bone matrix (1). It has been 
long thought that the only physiological role of OC 
is to regulate bone mineralization and that, like the 
other vitamin K dependent proteins, OC is active in 
its carboxylated form (cOC). The traditional concept 
postulates that the circulating levels of OC reflects 
the bone turnover rate. It is laboratory measured to 
predict the fracture risk and assess the effectiveness 
of antiresorptive therapy (2,3). 

In a state of vitamin K deficiency, the reaction 
of carboxylation is impaired, resulting in a rise in the 
levels of ucOC. In contrast, vitamin K supplementa-
tion reduces the fraction of ucOC (4). Therefore, the 
ratio between the undercarboxylated and carboxyl-
ated form of the protein is assumed to be an inverse 
marker of vitamin K status (5). 

In 1996, an American research group, aiming to 
clarify the role of OC in bone, generated OC knock-
out mice (6). The result was surprising – the OC defi-
cient animals were obese, had impaired glucose me-
tabolism and higher bone mass (7). Since then, mul-
tiple studies have confirmed and further developed 
the concept that OC regulates energy homeostasis 
and thus links the bone, pancreas, and adipose tissue 
in a regulatory loop. OC has been qualified as a hor-
mone, secreted by bone and acting on pancreatic beta 
cells and adipocytes. OC is decarboxylated during 
the process of bone resorption and released into the 
systemic circulation in its undercarboxylated form 
(ucOC). It was suggested that ucOC was mediating 
the metabolic function of this hormone (7). This was 
later confirmed by showing that intermittent injec-
tions of ucOC was able to improve glucose metabo-
lism and to prevent type 2 diabetes in mice (8).

In a previous study of ours, we tested whether 
OC would behave in a similar manner also in rats. 
We measured the levels of both OC forms in Wis-
tar rats with high-fat high-fructose (HFHF) diet-in-
duced metabolic syndrome and found serum con-
centration of ucOC to be lower in the metabolic ani-
mals than in the controls. There was no difference in 
the cOC concentration (9). We next showed that the 
pharmacological reduction of ucOC level by chron-
ic alendronate treatment was associated with impair-
ment of glucose metabolism in intact rats and rats 
fed HFHF diet (10). Thus, we provided evidence that 
the hormonal function of ucOC could be extended 
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following the producer’s instructions. Every kit uti-
lized two mouse monoclonal antibodies against OC, 
one of which was coated onto the plate and the oth-
er was peroxidase-labeled. The first one recognized 
specifically the measured protein (ucOC or cOC, re-
spectively). The peroxidase-labeled anti-OC mono-
clonal antibody was required for the reaction be-
tween peroxidase and the substrate added (H2O2 and 
tetramethylbenzidine) resulting in color develop-
ment with intensities proportional to the respective 
amount of ucOC and cOC present in the samples. 
The amount of the proteins was quantitated by mea-
suring the absorbance using an ELISA reader LKB 
5060-006 (LKB Instruments, Australia) at 450 nm.

Statistics 
Results were presented as a mean ± standard er-

ror of the mean (SEM). The groups were compared 
by Student’s two-tailed unpaired t-test. Differences 
were considered significant at p<0.05. The statisti-
cal software GraphPad Prism 5 was used (GraphPad 
Software, Inc.).

RESULTS
The levels of ucOC and cOC are presented on 

Fig. 1. The concentration of ucOC (Fig. 1A) in the se-
rum of controls was 4.301±0.69 ng/mL. The patients 
with type 2 diabetes had significantly lower level of 
ucOC – 2.994±0.27 ng/mL (p=0.0365). The serum 
level of cOC (Fig. 1B) was 9.839±0.10 ng/mL in the 

control group and significantly lower in the diabetic 
group – 7.883±0.36 ng/mL (p=0.0237). 

The ratio of ucOC and cOC, used as an indica-
tor of vitamin K status, is presented on Fig. 2. It was 
0.4643±0.06 in the control group and 0.4117 ± 0.04 
in the diabetic group, the difference being insignifi-
cant (p=0.4835).

DISCUSSION
The current study demonstrated that both 

ucOC and cOC levels were reduced in our diabetic 
patients. Our results partly agree with those of San-
chez-Enriquez et al. (11) and Takaya et al. (23) who 
report, similarly to us, lower levels of ucOC in pa-

Fig. 1. Levels of ucOC and cOC

Fig. 2. Ratio of ucOC and cOC
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tients with type 2 diabetes compared to controls. A 
recent research, involving patients with metabol-
ic syndrome without type 2 diabetes, found that the 
patients with ucOC levels below the 25th percentile 
showed worse cardiometabolic profile and higher 
cardiovascular and type 2 diabetes risk. Therefore, 
the authors suggest that the circulating ucOC could 
serve as a tool to estimate the cardiovascular and type 
2 diabetes risk in patients with metabolic syndrome 
(12). In contrast, Thrailkill et al. compared the levels 
of both forms of OC in patients with type 1 diabe-
tes and healthy controls and found no differences be-
tween the groups. However, the authors established 
an association of ucOC serum concentrations with 
either endogenous production or exogenous admin-
istration of insulin. The authors assume that ucOC 
is, at least in part, regulated through insulin-medi-
ated events (24). Such a regulatory mechanism was 
demonstrated in mouse and human osteoblasts by 
Ferron et al. (25). Insulin, by activating its receptors 
on osteoblast membrane, stimulated bone resorption 
thus promoting OC decarboxylation and release into 
the systemic circulation. The decreased insulin sen-
sitivity in type 2 diabetes impaired insulin-depen-
dent regulation of OC release and resulted in reduced 
circulating level of ucOC. In patients with type 1 di-
abetes, insulin sensitivity was generally unaltered. 
The preserved function of insulin receptors may ex-
plain the lack of differences in ucOC levels between 
diabetic patients and controls observed by Thrailkill 
et al. (24). According to the experiments conduct-
ed on OC deficient mice, ucOC, by activating spe-
cific G-protein coupled receptors in pancreatic beta 
cells, stimulates insulin secretion and beta-cell pro-
liferation (26). Such receptors have not been proven 
thus far in human beta-cells. However, many clinical 
studies, summarized in a meta-analysis by Liu et al., 
have revealed a negative correlation of serum ucOC 
concentration with fasting blood glucose and glycat-
ed hemoglobin level (13). The action of ucOC on hu-
man beta cells was confirmed by Sabek et al. (27) and 
Thrailkill et al. (24) who found association of high-
er ucOC levels with markers of endogenous insulin 
secretion (C-peptide and C-peptide/glucose ratio). In 
summary, the majority of clinical trials support the 
statement that ucOC acts as a bone-derived regulator 
of glucose homeostasis, and can be used as a marker 
of impaired carbohydrate metabolism.

Because experimental research suggests that 
ucOC is the hormonally active form of OC (7), most 
of the latest clinical studies are focused on ucOC se-
rum concentration and its impact on the glucose ho-
meostasis in humans. However, earlier studies have 
utilized more frequently the total OC; the above-
mentioned meta-analysis (13) concludes that total 
OC is also negatively correlated with fasting plasma 
glucose and HbA1c in humans.

Less data is available about the potential con-
nection of cOC with glucose homeostasis. Shea et al. 
report an association of elevated cOC, but not ucOC 
levels with lower insulin resistance in nondiabetic pa-
tients (15). An association of cOC with improved in-
sulin sensitivity is reported also by Hwang et al., who 
found that both cOC and ucOC were associated with 
improved glucose tolerance. According to this study, 
the ucOC level is associated with enhanced beta-cell 
function, and cOC – with improved insulin sensitiv-
ity in middle-aged male subjects (14). In agreement 
with these data, Razny et al. found that the cOC lev-
el was reduced in obese compared to nonobese sub-
jects, and that ucOC was lower in prediabetic indi-
viduals compared to healthy obese volunteers (28). 
Knapen et al. (29) demonstrated that higher carbox-
ylation of OC was significantly correlated with low-
er body weight, BMI, and fat mass of the trunk in 
healthy postmenopausal women. Lu et al. (30) con-
ducted a family-based study across three generations 
on non-diabetic women to examine the age-specif-
ic associations of OC forms with glucose and adipo-
kines. Among the few correlations found was the in-
verse one between cOC and leptin in mothers. 

In the current study, we have established that 
both forms of OC were lower in patients with type 2 
diabetes compared to controls. These results suggest 
that in humans the action of OC might be indepen-
dent of its carboxylation status. 

Vitamin K dietary intake affects the process 
of OC carboxylation. Truong et al. have compared 
the ucOC levels, presented as a percentage of the to-
tal OC, in volunteers at different age consuming a 
phylloquinone-restricted diet followed by a phyllo-
quinone-supplemented diet. The authors report that 
in all participants in the study, regardless of age and 
sex, ucOC percentage was increased by phylloqui-
none depletion and decreased by phylloquinone re-
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pletion (4). Observational studies report that high di-
etary vitamin K intake and circulating phylloqui-
none level are associated with reduced risk of obesity 
(19) and type 2 diabetes (20-22). Vitamin K supple-
mentation improves the carbohydrate metabolism in 
healthy subjects of different age and in patients with 
prediabetes or diabetes type 2 (31,32), but evidence 
shows that vitamin K can have beneficial effects also 
through mechanisms different from gamma-glu-
tamic carboxylation (33). In our study, we looked for 
a difference in the vitamin K status between the con-
trol and the diabetic group by comparing the ucOC/
cOC ratio. We hypothesized that the patients with 
diabetes would present with subclinical vitamin K 
deficiency and, correspondingly, we expected a high-
er ucOC/cOC ratio in the diabetic group vs. the con-
trol subjects. However, no such difference in the vita-
min K status was found between the studied groups. 

CONCLUSION
In the current study, the levels of both carbox-

ylated and undercarboxylated osteocalcin were re-
duced in patients with type 2 diabetes compared to 
controls. Our results confirmed the involvement of 
this bone-derived protein in the regulation of car-
bohydrate metabolism. In humans, it is possible that 
the state of carboxylation may not be the determi-
nant factor for the hormonal role of osteocalcin.
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