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It is well known that processes of sugar oxidation are closely related to energy
balance in the organism and disorders of the regulation of these processes cause
pathological conditions (2).

Insulin is a main factor regulating blood glucose content. That is why as a
first step to qualitative description of the regulatory mechanism it is appropriate
to restrict our considerations within a two-dimensional model, i. e. to discuss
a model in which two basic variables take part, namely blood glucose level — x,
and insulin level — y. These quantities can be measured and managed in clini-
cal practice.

M. J. Davies (3) has proposed a two-dimensional phenomenological model
of the blood glucose regulation mechanism. The author has paused on a linear
differential model in which a non-zero blood glucose equilibrium level x, was
accepted. An essential disadvantage of the model was the acceptance of zero
insulin equilibrium level y,=0 while it has been experimentally proved in pract-
ice that there existed a non-zero one. If we accept that at a given moment sys-
tem has reached an equilibrium state, i. e., x=x, and y=y,, Davies’ model can
not explain the normal functioning of a healthy organism because constant energy
consumption by the muscles is realized by means of glucose dissimilation by in-
sulin.

The aim of the present work is to eliminate the disadvantage mentioned above
proposing a mathematical model adequately describing real processes. Such a
model could enable the comparison between theory and experiment that is not
realized by Davies himself (3). Besides the new model proposed renders account
of the so-called rapid insulin response of the pancreas in cases of blood glucose
increase over its equilibrium level reported by G. M. Grodsky (4).

In our model, equilibrium state of the system is characterized by blood glub-
cose level on an empty stomach x, and non-zero insulin level y,. When one disturb-
es the balance of the system as a result from the action of several independent
mechanisms the system tends to restore its equilibrium state.

In our model proposed these mechanisms are described by means of a system
of two common linear differential equations determining the rate of changing of
blood glucose level [1] and that of insulin [2], respectively:

dx

- =—ayta, (xo—x) 0 (xo—x)+asz (1) (1],

where 0 (x,—x) is the step function. !

In equation [1] the separate terms denote as follows: glucose metabolism by
insulin in muscular, adipose and other tissues; liberation of carbohydrate resourc-
es from the liver; and, at last, sugar entry by food.

Following Davies’ model (3) we accept the function z (t) of the form:
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where the value of parameter «k» (parameter of retardation) depends on food
nature and t, is the moment of its taking.
The equation 2 looks like:

o =—byba(x—x) 8(x—xo)Thal(t) Bx—x) (21,

where the first term (—b,y) corresponds to free insulin inactivation in alive
organism and the rest two terms describe the so-called slow and rapid response
of insulin secretion during a more prolonged glucose stimulation (over 0.5+ 1 min),
respectively (4).

During the first stage (rapid response) about 2 per cent of pancreatic insulin
is secreted while during the next one-hour period — another about 20 per cent.
The rapid response can be satisfactorily described by means of Gaussian curve,
and, therefore, the function f(t) of equation [2], can be written in the form:
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where t, is the time interval required by the rapid response to reach its max-
imal value after the moment of its starting. According to the aforementioned
author (4), we accept t;=2 min and o=t,/3 because the main part of the Gaus-
sian curve is limited within the interval t,=30.

The method presented above was applied with the description of the experi-
mental results from the standard oral and intravenous glucose tolerance tests
(OGTT and IvGTT, respectively) already published elsewhere (1). Numerical
procedure after the method «prognosis-correction» (5) was used and realized on
microcomputer in order to solve the system of two equations [1] and [2]. It was
established that the model fitted best with experimental data in the case of the
following parameter values (table 1) which were positive by definition.

In our model, parameter K=0.20 in glucose tolerance tests.

Table 1

Parameter values of the model fitness

Sensitivity of the gradient to designation value
A. glucose to:
— insulin presence in muscular, adipose and other tissues ay 0.309x 1072
— low blood glucose level - 2, S a3, 0.600< 103
— food intake : . . ag 0.438==10%
B. insulin to:
— insulin level g by 0.240 % 10*
— high blood glucose level (delayed response) - by . 0.271X 103
— high blood glucose level (rapid response) bs 0.359x 1071

Both figures 1 and 2 show theoretical curves obtained (with dense lines)
concerning OGTT and IvGTT, respectively. Straight lines parallel to x-axes
correspond to equilibrium levels x,=4 mmol/l and y,=50 pmol/l of blood glu-
cose and insulin, respectively.

Our data demonstrate that the two-dimensional model described above ag-
rees well with experimental results not only qualitatively, but also quantitati-
vely, indeed.
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We can conclude that by means of parameter changing this model can des-
cribe pathological conditions (e. g. diabetes mellitus), too. Besides by adding
of an additive term into equation [2] one can optimize therapeutic regimen by

insulin injections.
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ABYXMEPHASI MATEMATHAYECKAS MOAEJIb PETYJAAUHOHHOIO MEXAHHU3MA
FA0KO3bl KPOBH ¥ YEJIOBEKA

H. Bones, P. Ilonves, C. Kpoicmes, 1. Mumes

PE3IOME

[Mpensioxkena AByXMepHass MareMaTHYeCKas MOje/ib PervJsLUHOHHOrO MeXaHH3Ma KpOBfA-
HO# TVII0KO3bl B 3]l0DOBOM OPTaHH3Me IIDH HOPMaJbHEIX YCJAOBHSX. YCTAHOBJEHH CYLIeCTBOBaHHe
HeHyJIeBOrO PaBHOBECHOTO yPOBHS HHCYJIHHA, KaK H GbICTPbIfi HHCY/JIHHOBbIN OTBET MOAXKENYAOY-
BOJ KeJle3bl NIPH IMOBBIIEHHH KOJNHYECTBA IJIIOKO3bl KPOBH Haj paBHOBeCHOM ypoBHeM. Mojenb
NpUMEeHsiiach NPH ONMHCAHHHM 3KCNePUMEHTAaNbHBEIX Pe3yJbTaTOB CTAHIAPTHOrO OpajibHOTO H Be-
HO3HOTO III0K030TO/IepaHCHBIX TecTOB. [IpH MOMOLUH YHCJIEHHOIH NPOLEAYPH Ha MHKPOKOMIIbIOTPE
6blA ofe/1aH OTGOP TeX CTOHMOCTel MapaMeTPOB MOJEJH, IPH KOTOPHIX OHA ONTHMAJBHO CorJacyer-
€A C 3KCNepPHMEHTAJTbHLIMH JaHHBIMM,



