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Abstract
This article proposes the concept of “microglial adipobiology” as a new theoretical 
framework for the crosstalk between the adipose tissue and the central nervous 
system in health and disease. It reviews an important mechanistic link, explaining 
the neuropsychiatric complications of obesity, including the role of adipose-secret-
ed signaling proteins (adipokines)  and adipose-derived stem cells in influencing 
microglial function and neuroinflammation. An increasing body of evidence sug-
gests that neuroinflammation mediated by microglia, macrophage-like cells in the 
brain, plays a contributory role in the pathogenesis of various neurodegenerative 
diseases. The specific positive and negative effects of the major types of dietary 
fats are also discussed in the case of obesogenic and ketogenic diets. Furthermore, 
it explores the effects of microglial cells on adipose tissue via modulating the cen-
tral control of energy homeostasis in the hypothalamus and proposes the concept 
of “transgenerational adipobiology” as a framework explaining the neurological 
and metabolic complications of the offspring of obese mothers. Finally, potential 
directions for future therapeutic interventions are considered.  
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Introduction
The modern obesity epidemic is associ-
ated with significantly increased comor-
bidity with a variety of other conditions 
(1), including neurological and psychi-
atric disease (2). These associations, 
together with the concurrent mental 
health crisis (3), raise the question on 
how does the adipose tissue influence 
the brain and the pathobiology of neu-
rological disease. Recent studies in adi-
pobiology have shifted the view of adi-
pose tissue as a mere fat-storage depot 
to a complex endo- and paracrine organ, 
that can affect systemic physiology and 
contribute to the pathogenesis of dis-
ease (4, 5). Importantly, links have been 
shown how the adipose tissue can af-
fect the brain in both health and disease  
(6, 7). 

Inflammation of the central nervous 
system (CNS), termed “neuroinflam-
mation”, is currently considered a key 
mechanism in the pathogenesis of both 
neurologic and psychiatric conditions 
(8). A main player in neuroinflamma-
tion are microglia, the brain’s resident 
phagocytic cells, which due to their ex-
tensive and complex involvement in vir-
tually all CNS conditions are considered 
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“central players” in brain disease (9).
Could the adipose tissue affect the brain via influencing 

microglial cells either directly or indirectly? The present arti-
cle reviews the accumulating evidence from both correlational 
and experimental studies that support this notion, focusing on 
how microglial function can be altered via the contents of an 
obesogenic diet and signaling proteins (collectively designated 
adipokines) secreted from adipose cells, as well as, how, in turn, 
microglial cells can modulate the central control over feeding 
behavior and energy homeostasis, thus influencing the adipose 
tissue. Given these findings, we can propose the concept of “mi-
croglial adipobiology”, establishing the bidirectional adipose-
microglial crosstalk as a new theoretical framework, linking the 
pathobiology of obesity and related neuropsychiatric diseases 
(see also 10).

Obesity and brain disorders: two linked pandemics
Obesity is a major global health concern, affecting more than 
35% of people in the USA (11) and more than 600 million 
adults worldwide (12). Around 60% of the world’s population 
will reach critical body mass index (BMI) values by 2030 (13). 
Importantly, obesity is not merely an accumulation of excessive 
body fat but, rather, a complex systemic pathological state than 
has been linked with increased risk of several medical condi-
tions, including diabetes (14), hypertension (15), cardiovascular 
disease, stroke, and even certain cancers (16).

Mounting evidence has shown an association between obe-
sity and cognitive problems. Obese people have diminished 
cognitive functions on a variety of measures (17–20), including 
impaired executive functions (18,19). Obesity is associated with 
reduced brain volume (23), including in key areas for cogni-
tion such as the hippocampus (24). Obesity is also linked with 
cognitive impairments in old age (25) and is considered a risk 
factor for dementia and Alzheimer’s disease (23, 24). The link 
between obesity and the brain is especially important, given that 
the prevalence of mood disorders has increased significantly in 
the West (28,29) to a point where, today, one in five people meet 
criteria for a common mental disorder (30). 

Mental illness is considered the pandemic of the 21st century 
and the next global health challenge (3). Indeed, obesity has also 
been associated with psychiatric conditions like depression and 
anxiety (31–35). There is even evidence that our modern diet 
may be a key contributing factor to mental health (36,37), hence, 
the field of “nutritional psychiatry” has been established (38). 
The association between the two big modern pandemics, obe-
sity and mental illness, raises the need to investigate for possible 
mechanistic links between the two.

Inflammation as a common mechanism in obesity and 
brain disease
Accumulating evidence in the past two decades has resulted in 
several paradigm shifts (5), challenging the classic view of adi-
pose tissue as a mere lipid storage. Currently, adipose tissue is 
considered a dynamic endocrine and paracrine organ producing 
over 600 signaling proteins collectively designated adipokines (4, 
7, 39). Adipokines have been shown to possess a dazzling array 
of biological functions, including control over feeding behavior, 
energy homeostasis, inflammation, immunity, cognition, insulin 
resistance and the pathogenesis of cardiometabolic and other dis-
eases (4, 6, 40, 41). Since many adipokines have effects in the CNS 
and can ultimately contribute to the regulation of cognition and 
behavior, the field of neuroadipocrinology has emerged emerged 
and the adipose tissue has been considered as “a third brain” (5, 6). 

Obesity is not a mere accumulation of the adipose tissue, but 
is associated with chronic systemic low-grade inflammation due 
to infiltration and activation of macrophages in adipose tissue. 
As a consequence, the adipose tissue in obesity is marked by 
increased secretion of pro-inflammatory adipokines (42) and 
reduced secretion of anti-inflammatory and metabotrophic 
ones such as adiponectin (42), nerve growth factor (NGF) and 
brain-derived neurotrophic factor (BDNF) (10, 43). This leads 
to increased levels of inflammatory markers in the serum and 
multiple metabolically active peripheral tissues and organs, in-
cluding the brain (44–47). This type of inflammation is consid-
ered atypical due to the lack of Galenus’ signs such as rubor et 
tumor cum calore et dolore (redness, swelling, heat and pain), 
which usually are associated with an immune response (48, 49).

On a similar note, the classical neuron-centered views of CNS 
disease have been challenged with accumulating evidence on 
the involvement of the immune system in brain pathology (50). 
Nowadays, inflammation of the nervous system (“neuroinflam-
mation”) is considered a leading mechanism in the pathogenesis 
of CNS conditions, including Alzheimer’s and Parkinson dis-
ease, stroke, traumatic brain injury, as well as mood disorders 
(50–53). With respect to the latter, significantly elevated levels 
of all major kinds of cytokines were detected in blood samples 
from patients with depression, anxiety, bipolar, and obsessive-
compulsive- and posttraumatic stress disorder, schizophrenia, 
and autism (8). Major molecules involved include soluble inter-
leukin receptors, interleukin antagonists, tumor necrosis factor-
alpha (TNF-α), soluble TNF receptor, IFN-γ, chemokines, and 
matrix metalloproteinases (MMP) (8). Under experimental 
conditions, animals injected with proinflammatory cytokines 
like TNF-α have been shown to exhibit sickness behavior in a 
dose- and time-related manner (54). 
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Microglia are central players in brain disease
An increasing body of evidence suggests that neuroinflam-
mation mediated by microglia play an important role in the  
pathobiology of various neurodegenerative diseases. Microglia, 
the resident phagocytic cells in the brain, are a part of the glial 
system of non-neuronal elements in the CNS and account for 
around 10% of all cells in the brain (55). During development, 
microglia arise from  erythromyeloid precursors in the yolk sac 
which migrate and colonize the embryonic brain (56–60). Un-
der physiological conditions, microglia possess numerous high-
ly-branched elongated fine processes (61), which they use to 
actively survey their cell-specific territory, monitoring the CNS 
environment for infection or injury. 

Accumulating evidence in recent years has revealed crucial 
microglial functions beyond the immune response to pathology, 
namely, involvement in the regulation of cognitive processes like 
learning and memory. During development, microglia regulate 
neurogenesis, as well as synaptogenesis and neural network for-
mation (62, 63). Postnatally, they have been shown to contact pr-
esynaptic and postsynaptic neuronal elements and contribute to 
synapse regulation, including synaptogenesis and pruning (64, 
65). Microglia monitor neuronal activity and neurotransmitter 
release (66, 67), especially in the context of sensory deprivation 
and stimulation, as well as specific learning and memory tasks 
(68, 69). 

Under pathological conditions, microglia “activate” and 
undergo a series of changes, including adopting an amoeboid 
morphology with enlargement of the soma and shortening and 
thickening of primary processes, moving toward the site of in-
jury, increased proliferation and phagocytic ability, as well as se-
cretion of pro-inflammatory molecules (70). 

However, microglial activation has implications beyond nor-
mal immunological defense and can become neurotoxic (71, 
72). Disruptions in neuronal networks during development due 
to perturbations in synaptic pruning and modification by mi-
croglia has been linked to diseases such as autism and schizo-
phrenia (73). A staggering amount of evidence has elucidated 
multiple mechanisms of microglial involvement in conditions 
such as Alzheimer’s disease, amyotrophic lateral sclerosis, mul-
tiple sclerosis, glaucoma, and neuropathic pain (9,74). As key 
players in neuroinflammation, microglia have been associated 
with virtually all neurological conditions (75) and are now con-
sidered “central players” in brain disease (9).

It should be noted that, although, ramified microglia have 
been classically termed “resting”, however, this is confusing and 
does not reflect their physiological roles. Indeed, with the grow-
ing body of evidence about the physiological effects of ramified 
microglia, they have been termed “never resting” (76). By “rest-

ing” it should be understood not a lack of activity but, rather, a 
current lack of involvement in neuroinflammation. Thus, ana-
lyzing microglial morphology is a way to assess their activation 
during neuroinflammation. Ramified cells are correlated with 
anti-inflammatory processes (77) while amoeboid cells are as-
sociated with CNS inflammation or injury (78–80).

Peripheral inflammation can activate microglia and 
inflame the brain 
It is well established that peripheral inflammation can reach the 
brain, activate microglia (54, 81) and contribute to the patho-
genesis of neurological and psychiatric disorders (51). Among 
commonly studied markers contributing to this process are the 
pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 (51). These 
molecules can reach the brain via several routes (51).They can 
enter in areas of the CNS missing blood-brain barrier (BBB) 
such as the circumventricular organs, choroid plexus, and parts 
of the hypothalamus (82, 83). The BBB itself is made leaky by 
pro-inflammatory cytokines, including TNF-α, and in turn, be-
comes permeable to them (84). Moreover, these molecules can 
enter the brain via the vagus nerve projecting to the nucleus of 
the solitary tract which is connected with the hypothalamus 
and amygdala (85). Given that inflammatory cytokines in the 
periphery can stimulate microglia and cause neuroinflamma-
tion and that obesity is associated with a systemic inflammatory 
state, the logical question arises about the possibility of micro-
glia mediating the obesity-associated neurological and cognitive 
damage.

One possible mechanism, by which microglial cells can im-
pact cognition in obesity is dysregulation of synaptic plasticity. 
In rats, obesity leads to cognitive deficits, accompanied with 
changes in microglial morphology and synapse loss in the me-
dial prefrontal cortex (86). It has also been shown that microglia 
from obese mice are activated and internalize synaptosomes at 
higher rates compared to non-obese controls (87). However, it 
is not clear which process comes first: does obesity itself dam-
age synapses which are then phagocytosed by microglia, or does 
obesity activate microglia which, in turn, engulf otherwise func-
tional synapses (46). Several studies have attempted to address 
this question. 

Cope et al have demonstrated that partial knockdown of the 
fractalkine receptor prevented both microglial activation and 
cognitive decline in diet-induced obesity in male rats. Moreover, 
pharmacological inhibition of microglial activation prevented 
dendritic spine loss and cognitive degradation. Obesity-asso-
ciated cognitive decline was ameliorated via pharmacological 
blockade of microglial phagocytosis (46). Hao et al have demon-
strated that dietary obesity reversibly induces synaptic stripping 
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by microglia and impairs hippocampal plasticity. Interestingly, 
only a partial attenuation of obesity via diet-reversal was needed 
for a complete normalization of hippocampal function and the 
spatial relationships between microglia and synapses, showing a 
non-linear relationship between total body adiposity and neuro-
inflammation (87). 

Of particular interest are the inflammatory changes in the 
brain’s center of metabolic control, the hypothalamus, especially 
the arcuate nucleus of the mediobasal hypothalamus (MBH). 
Due to its leaky BBB, this nucleus serves as a sensor of circulat-
ing signals, allowing direct microglial exposure to blood-borne 
molecules (88, 89). De Souza et al were the first to show an asso-
ciation between diet-induced obesity and hypothalamic inflam-
mation (90). The study demonstrated that in rats, a 4-month 
period of high-fat diet (HFD) feeding leads to activation of in-
flammatory pathways such as NF-κB and JNK in the MBH with 
the production of pro-inflammatory cytokines TNF-α, IL-1β, 
and IL-6. These findings were later replicated and extended in 
rodents, humans, and non-human primates (89,91–98). 

Interestingly, HFD leads to hypothalamic inflammation due 
to over-expression of pro-inflammatory cytokines with acti-
vation and proliferation of microglia rapidly, even within the 
course of 24h (91), weeks before the onset of obesity and the 
associated metabolic disturbances (91,99), suggesting that hypo-
thalamic inflammation is a response to nutrients rather than pe-
ripheral inflammation. Importantly, the gliosis observed in the 
hypothalamus under HFD feeding is reversible for a short time 
(2-3 weeks) and it has been suggested that it serves a protective 
role against “injury” induced by overload of dietary fat (49,91). 

Dietary fats can modulate microglial function
Evidence suggest that, in respect to macronutrient content, diets 
high in fat, especially, saturated fats, lead to obesity and meta-
bolic syndrome (100,101), as well as hypothalamic inflamma-
tion (102). Moreover, under obese conditions, the adipose tissue 
releases large amounts of non-esterified saturated fatty acid in 
the circulation (103), which can cross the blood brain barrier 
(BBB) (104) and stimulate both neurons and glial cells (105). 
The direct and indirect effects of different lipids on microglial 
function have been extensively reviewed by Leyrolle et al (106). 

Based on the number of double bonds, three main families 
of fatty acids can be distinguished, namely the saturated (SFA), 
monounsaturated (MUFA) or polyunsaturated (PUFA) fatty ac-
ids (106). Differences in the effects of each family on microglial 
function have been demonstrated.

Microglia and saturated fatty acids
Obesity-inducing diets are high in SFA, particularly palmitate 

(106). After ingestion, SFA can reach the brain, where they are 
taken up by microglia and induce hypothalamic inflammation 
(93). This is supported by in vitro studies, showing increased 
pro-inflammatory activity of cultured microglial cells (93, 107–
110). Saturated fatty acids activate microglia via various toll-like 
receptors (TLRs) (111). In particular, after palmitic acid stimu-
lation, the TLR4-initiated signaling pathway induces cytokine 
release from microglia with subsequent neuronal damage in the 
hypothalamus, which, in turn, disrupts the circuitry controlling 
homeostatic eating (48, 112). Microglial depletion cancels SFA-
induced inflammation in hypothalamic slices, and, remarkably, 
enhances leptin signaling and reduces food intake (93).  

Microglia and monounsaturated fatty acids 
In contrast to SFA, MUFA such as oleate does not trigger the 
release of pro-inflammatory cytokines of cultured microglia 
(93). Oleate has also been shown to prevent 7-ketocholesterol-
induced cytotoxicity (113). The anti-inflammatory effects of 
oleate can be partially explained by the higher affinity of MUFA 
compared to SFA for the transcription factor peroxisome prolif-
erator-activated receptor, that is involved in anti-inflammatory 
processes (114). 

Microglia and polyunsaturated fatty acids
The two main PUFA families are n-3 and n-6 PUFA (115). It is 
considered that n-3 PUFA and their derivatives are rather anti-
inflammatory while n-6 PUFA and their derivatives are pro-in-
flammatory (116). An important hallmark of the modern West-
ern diet is a decrease of the n-3/n-6 PUFA ratio (117). This is of 
practical importance, since it has been shown that diet enriched 
with n-3 PUFA may be able to inhibit neuroinflammation (118). 
Linoleic acid, a n-6 PUFA has been shown to reverse the inflam-
matory responses induced by palmitic acid treatment in micro-
glial cells (119). In mice, lifelong dietary n-3 PUFA deficiency 
leads to alterations in microglia composition (120). Several n-3 
PUFA have been shown to attenuate microglial activation due to 
various challenges (121–130), possibly due to inhibition of the 
inflammatory signaling cascades NFκB, and MAPK and activa-
tion of the anti-inflammatory factors PPAR, retinoid X recep-
tor (RXR) and the G-protein coupled receptor 120 (GPR120) 
(106,116,131–133). PUFA have also been shown to modulate 
microglial phagocytic activity against Aβ particles, myelin de-
bris, synaptic elements and apoptotic neurons (67, 106, 134, 
135). Deficiency of n-3 PUFAs during development has been 
shown to increase pro-inflammatory gene expression in the hip-
pocampus and decrease microglial motility (130). Furthermore, 
n-3 PUFA inhibit LPS-stimulated cytokine production by mi-
croglia in vitro (132, 136). 
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Do dietary fats really cause brain damage? 
The interpretation that dietary fats, particularly saturated fats, 
are an adverse stimulus, leading to brain damage should be 
taken with caution (137). Why would the brain be vulnerable 
to injury by such an acute and common stimulus (137)? Many 
mammals evolved to thrive on diets high in pro-inflammatory 
saturated fat as early as the newborn stage due to the high-fat 
content of mother’s milk (137). Hypothalamic microgliosis is 
increased by higher consumption of saturated fats but this is 
not the case with unsaturated or short-chain fatty acids even 
when calories and fat content are held constant (93). This, plus 
the reversibility of saturated fat-induced hypothalamic micro-
gliosis, suggests that this is a response to the overconsump-
tion of specific nutrients, rather than “injury” (137). Further-
more, Gao et al have shown that a high-carbohydrate HFD 
induced hypothalamic inflammation but this is not the case 
in a  low-carbohydrate, high-fat diet (101). Baufeld et al have 
demonstrated that the pro-inflammatory reaction of micro-
glia to HFD reverses after 8 weeks, suggesting a switch to an 
anti-inflammatory phenotype (138). Similar observations have 
been reported previously (139). Importantly, there was no ex-
cessive reaction of microglia when stimulated by plasma from 
HFD-fed animals (138). These differences in observations can 
be accounted by variations in the experimental design (138), 
particularly in terms of using neonatal versus adult microglia, 
which are considered functionally different populations (140). 
Furthermore, postmortem analysis of human brains revealed 
significant microglial alterations in the hypothalamus of obese 
subjects, however, no such changes were observed in the cortex 
(138).

The picture gets even more complicated when we take the ke-
togenic diet into account.

The ketogenic diet is high in fat but also neuroprotective 
The ketogenic diet has been originally used in the treatment of 
epilepsy since the beginning of the 20th century (141). It has a 
very high fat content with low carbohydrate and protein levels, 
thus shifting the metabolism to producing ketone bodies from 
fatty acids stored in the adipose tissue, as an energy source. Ace-
toacetate (ACA) and beta-hydroxybutyrate (BHB) are the main 
ketone bodies and can pass the BBB (141). The ketogenic diet 
has been shown to exert effects beyond covering the energy 
needs, including the regulation of synaptic transmission, neu-
rotransmitter concentration, and optimization of mitochondrial 
function (141). As such, it has been considered neuroprotective 
in the context of many neurological disorders (142). 

Suppression of microglial activation has been associated with 
the neuroprotective effects of the ketogenic diet (143–145). In-

deed, microglia have the ability to metabolize both ACA and 
BHB (146), and several mechanisms have been proposed re-
garding the anti-inflammatory effects of ketones on these cells. 
Beta-hydroxybutyrate can increase the ramification of microglia 
both in vitro and in vivo (141, 147). 

Moreover, high BHB levels can decrease proinflammatory 
cytokine release (148). Beta-hydroxybutyrate can activate the 
hydroxy-carboxylic acid receptor 2 (HCA2), expressed by mi-
croglia (149) and inhibit neuroinflammation (150), possibly 
via inhibition of NF-kB activation (150). Beta-hydroxybutyrate 
activates G-protein-coupled receptors 109A (GPR109A) and 
inhibits histone deacetylases (146, 147, 150, 151). This attenu-
ates the NF-kB pathway, resulting in reduced pro-inflammatory 
cytokine production (152). 

Another possible mechanism for the beneficial effects of ke-
togenic diets can be the lower formation of advanced glycation 
end products (AGEs) due to low dietary glucose levels. AGEs are 
non-enzymatic modifications of proteins and lipids from reac-
tions with sugars (146). Microglia have been shown to express 
receptors for AGEs (146), which stimulate pro-inflammatory 
signaling pathways (153, 154).

Adipose tissue can influence microglia via adipokines 
When discussing the interplay between the adipose tissue and 
microglia in the regulation of metabolism and the mechanisms 
of obesity-related complications, it is of interest whether micro-
glia can sense blood-borne molecules other than nutrients, es-
pecially adipose-derived signals. Indeed, such molecules exist, 
enabling the adipose-microglia crosstalk. 

Leptin
Leptin is the prototypic adipokine,  which has multiple func-
tions including the regulation of appetite, body weight and en-
ergy homeostasis (155); and can enter the brain (156). Elevated 
levels of leptin reduce appetite and body weight (3). Obesity is 
associated with leptin resistance due to either a defect in leptin 
receptor’s intracellular signaling or decreased leptin transport 
across the BBB (155, 157–159). 

The mutant strain of mice (ob−/ob−) are genetically deficient 
in leptin, suffer from extreme obesity (155) and are often used 
as an experimental model for obesity research. Leptin has been 
shown to exert effects on microglia (137, 160). Mice lacking 
leptin or its receptor have lower microglial density in the MBH 
(99), which is reversible to wild-type levels when restoring the 
leptin signal (99). In both obesity and experimental leptin resist-
ance, leptin levels are elevated also in the hippocampus, a key 
structure involved in cognition, which is associated with micro-
glial activation (161). Interestingly, voluntary exercise increases 



Adipobiology 10, 2019

Microglial adipobiology: A new concept30 PERSPECTIVE

leptin sensitivity and, in turn, decreases microglial activation 
and pro-inflammatory signaling in the hippocampus (161). In 
both obesity and experimental leptin resistance, leptin levels are 
elevated in the hippocampus (161). Mice lacking leptin have de-
fective neurite growth in the hypothalamus (162), which can be 
possibly attributed to impaired microglial activity (82). Indeed, 
leptin has been shown to regulate microglial phagocytosis (163). 

However, some studies have challenged the existence of a di-
rect action of leptin on microglia (137). Possible indirect mecha-
nisms involve neuron-glial interactions in the MBH (137) and 
activation of astrocytes by leptin, which, in turn, activate micro-
glia (161). 

Adiponectin
Adiponectin is the most abundant adipokine (164,165), involved 
in a variety of physiological processes, including the regulation 
of energy metabolism, vascular physiology, and inflammation 
(166, 167). It is generally considered an anti-inflammatory mol-
ecule, and its low plasma levels have been linked to chronic in-
flammation (168,169). Adiponectin can cross the BBB and reach 
the brain, where it can exert actions on both neurons and glia, in-
cluding microglia (167) via its receptors, AdipoR1 and AdipoR2 
(166,170,171). Adiponectin has anti-depressant (172) and anti-
inflammatory (173) properties in mice. It has also been shown 
to be a candidate mediator of the positive effects of exercise and 
environmental enrichment on neurogenesis, mood, and cogni-
tion (174). Nicolas et al have shown that elevated adiponectin 
levels in the brain regulate microglial phenotype and activation, 
leading to reduction in neuroinflammation and depressive-like 
behavior in mice (167). These effects are possibly mediated by 
the AdipoR1/NF-kB signaling pathway and reduction of IL-1β, 
IL-6, and TNF-α synthesis by globular adiponectin in particu-
lar (167). On the other hand, adiponectin deficiency enhances 
microglial responsiveness to pro-inflammatory challenges, thus 
increasing brain susceptibility to inflammation (167). Further-
more, adiponectin has been shown to be a major contributor 
to the antidepressant effects of enriched environment via its ac-
tions on microglia (174)

Adipose-derived stem cells can influence microglia
Adult stem cell therapy involves the transplantation of either 
embryonic stem cells or induced pluripotent stem cells, hoping 
that these can rejuvenate damaged tissue by differentiating into 
other viable cell types (175). However, this method is associated 
with high costs, methodological difficulties, and ethical chal-
lenges (176). 

A proposed alternative are adult stem cells, which, despite 
their more limited multipotentiality and self-renewal capabili-

ties, can be obtained from all tissues (175). The adipose tissue 
is an abundant source of such cells, termed adipose-derived 
stem cells (ADSC), containing over 500 times more mesenchy-
mal stem cells than bone marrow (177). These cells have been 
shown to be able to differentiate into multiple other cell types 
(175,178,179) and are able to modulate inflammation (180–182). 

Huang et al have shown that ADSC can survive a long time 
after transplantation and are able to suppress microglial activa-
tion induced by LPS, which prevented dopaminergic neuron 
loss in the substantia nigra in a Parkinson’s disease model. Inter-
estingly, the anti-inflammatory modulatory effects of ADSC on 
microglia took a long time to manifest, which in the case of the 
study was around 4-6 months (178). 

The importance of such studies is that they show how the adi-
pose tissue can influence microglial function via mechanisms 
beyond molecular signaling. 

The other direction: microglia can influence 
 adipose tissue 
The idea of adipose tissue’s influence on microglia, although un-
intuitive, makes sense in light of the current systemic inflamma-
tory concept of obesity. However, the adipose-microglia cross-
talk becomes even more interesting if we consider the other 
direction: can microglia influence the adipose tissue? In light of 
the current evidence, we can imagine how microglia can modu-
late neuroinflammation in the hypothalamus and, in turn, affect 
feeding behavior and energy homeostasis.

The adipose tissue signals the current availability of nutrients 
via adipokines to the hypothalamus, which, in turn, controls 
energy homeostasis, feeding behavior and metabolic rate (183). 
Hypothalamic inflammation, particularly in the MBH, has been 
shown to modulate the control of insulin resistance, as well as 
energy intake and expenditure (184,185). Surprisingly, homeo-
static feeding circuits in the hypothalamus are regulated by 
peptides and hormones which can also modulate neuroinflam-
mation (48, 111). If microglia are either depleted or their activa-
tion is suppressed pharmacologically, mice fed a HFD show de-
creased food intake and gain less weight. A possible mechanism 
is that reducing inflammation enhances leptin signaling (93). In-
terestingly, the opposite has also been shown: activating micro-
glia leads to stimulation of food intake and weight gain in mice 
fed a normal non-obesogenic diet (186). Microglia of mice fed 
a high-carbohydrate high-fat diet secrete TNF-α which disrupts 
pro-opiomelanocortin-producing anorexigenic neurons in the 
MBH (187). Obesity is associated with dysfunction of these neu-
rons (188,189). Moreover, in rats, Cx3cr1-driven microglia and 
monocyte ablation leads to disruption of the gustatory circuitry 
at the hypothalamic paraventricular nucleus, which, in turn, re-
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sults in anorexia and weight loss (190). 
Central application of an antimitotic agent inhibits microglial 

expansion in the hypothalamic arcuate nucleus, restores leptin 
sensitivity and limits food intake and consequent weight gain 
(191). Disruption of hypothalamic microglia via subcutaneous 
application of liraglutide or canagliflozin in obese insulin-resist-
ant mice improves insulin resistance, glucose homeostasis, and 
decreases fat and triglyceride content (192, 193).  

Transgenerational microglial adipobiology
There is accumulating evidence that maternal obesity can affect 
the long-term health of the offspring (194–197). Maternal nutri-
tion as well can influence the energy homeostasis of offspring 
even into adulthood (198, 199). Can microglial activation ex-
plain this “metabolic programming”?

Exposure to HFD in both rodents and non-human primates 
activates the maternal immune system, leading to increased 
brain inflammatory markers in the offspring (96, 200-202). Fur-
thermore, the offspring of mice fed a HFD during both preg-
nancy and lactation have increased microglial activation (200, 
203), despite the lack of any challenges in their diet. Maternal 
programming by exposure to a cafeteria diet induced a plasma 
lipotoxic profile in the offspring. This lead to microglial activa-
tion and disrupted ghrelin sensitivity which was associated with 
overfeeding behavior after fasting (204). 

Interestingly, n-3 PUFA supplementation from the onset of 
pregnancy until weaning has been shown to modify the fatty 
acid content and phospholipid class distribution in the off-
spring’s microglia (120).

Summary and future directions
This article introduces the concept of “microglial adipobiology” 
as a framework, explaining how the bidirectional adipose-to-
microglia crosstalk can account for the neuropsychiatric com-
plications seen in obesity, as well as, how microglial function can 
affect food intake, energy homeostasis, and, ultimately, adipose 
tissue function (Fig. 1). Several mechanistic links have been re-
viewed. First, obesity leads to inflammation of the adipose tis-
sue, which releases pro-inflammatory cytokines, which cross the 
BBB, activate microglia and induce neuroinflammation. Second, 
dietary fatty acids have been shown to affect microglial function 
in both positive and negative ways, depending on the fat’s quan-
tity and type. Third, due to obesity, the adipose tissue alters its 
secretory profile of several important adipokines, including lep-
tin, adiponectin, NGF and BDNF, which too can enter the brain 
and change microglial function. Fourth, under experimental 
conditions, adipose-derived stem cells can affect microglia, not 
only showing a possible adipose-to-microglia mechanism for 

communication but also opening a new possibility for stem cell-
based neurotherapies. Fifth, microglia can affect obesity and 
adipose tissue function via modulating the hypothalamic con-
trol over feeding behavior and energy metabolism. Finally, the 
concept of “transgenerational microglial adipobiology” is pro-
posed as a way of explaining how maternal obesity and high-fat 
feeding can activate the offspring’s microglia and, in turn, their 
neurodevelopment, behavior, and metabolism.

The proposed framework reveals several possibilities for ther-
apeutic applications. First, the pro-inflammatory adipose-to-
microglia signaling, including specific adipokines such as leptin, 
adiponectin, NGF and BDNF is a potential target for pharmaco-
logical interventions, aimed at reducing neuropsychiatric com-
plications in obesity. Second, understanding how the different 
types of dietary fatty acids specifically affect microglia can lead 
to relatively easy ways to control neuroinflammation via target-
ed nutritional interventions. Third, considering the other direc-
tion, namely the microglia-to-adipose signaling, we can propose 
a new method for the management of obesity via targeting mi-
croglia in the MBH, thus, affecting the central control of energy 

Figure 1. Schematic presentation of a summary of microglial 
adipobiology. Diet can modulate microglial activation either 
directly via the specific effects of certain dietary components, 
or indirectly via inducing obesity and the associated adipose 
tissue inflammation, which favors a pro-inflammatory adipo-
kine secretory profile, causing neuroinflammation. Microglia, 
in turn, can influence the central control over energy homeo-
stasis in the hypothalamus, thus affecting feeding behavior 
and, ultimately, adipose tissue function.  AT, adipose tissue; 
HT, hypothalamus; SFA, saturated fatty acids; MUFA, monoun-
saturated fatty acids; PUFA, polyunsaturated fatty acids.
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homeostasis. Finally, all future interventions can be used to pre-
vent the adverse cognitive and metabolic outcomes seen in the 
offspring of obese mothers.

As evidence for the associations between obesity, adipose tis-
sue and the brain continues to accumulate, our knowledge ex-
pands rapidly and we risk losing the forest for the trees, thus, 
we need a theoretical framework that can help organize the “big 
data” in the field. The concept of microglial adipobiology is such 
a perspective aiming to clarify at least one line of reasoning, and 
may, hopefully, provide a basis for future hypotheses. 
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