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Abstract
From many years the in!ammation is considered as one important determinant of 

susceptibility to intoxication by xenobiotic exposure. In!ammation and vaccination in 

most cases are connected with immune system stimulation and release of cytokines, 

adipokines, reactive oxygen species, nitric oxide, proteases, and lipid metabolites. That 

was accompanied by di"erent extend of down-regulation of the main xenobiotic/drug 

metabolizing enzyme system cytochrome P450 (CYP) both in the liver and the adipose 

tissue. We need more knowledge of possible changes in the pharmacokinetics respec-

tively in e"ectiveness and side e"ects of drugs used in chronically ill patients in case of 

occurrence of acute viral or bacterial infection in them or after the application of di"er-

ent vaccines. This would contribute signi#cantly to the optimization of personal drug 

therapy avoiding toxicity or lack of e"ectiveness. Here we tried to summarize some of 

the main experimental and clinical data of altered drug metabolizing enzyme system in 

the case of changes in the immune system due to in!ammation or vaccination. 
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Introduction
Numerous experimental and clinical 

data suggest that the major system 

(host defense) that protects humans 

from infectious organisms interacts 

with the principal system that a�ords 

protection from chemicals including 

drugs (drug metabolizing enzymes). 

�is interaction has the potential to 

produce severe and occasionally life-

threatening complications in drug 

therapy during episodes of infectious 

disease or other pathological changes 

of immune system. �e loss of cy-

tochrome P450 is now considered to 

be a multifactorial and frequent conse-

quence of stimulation of immune sys-

tem a!er infection and in"ammation 

(1-6). In most cases that is accompa-

nied with no other signs of toxicity of 

a�ected organs (liver, kidney, brain). 

Few examples exist for cases with re-

duced in"ammation and immunosup-

pression a!er induction of cytochrome 

P450: dioxins (CYP 1A1,CYP 2B1)(7), 

phenobarbital (CYP 2C, CYP 2B, CYP 

3A4) (8,9), rifampicin (CYP 3A4)(10), 

clo#brate and beza#brate (CYP 4A)

(11).
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Experimental evidences
In animal models, cytochrome P450 is depressed by various 

types of: (i) bacterial infections - Listeria monocytogenes (12), 

Actinobacillus pleuropneumoniae (13), Chlamydia trachomatis 

(14), (ii)  viral infection - Encephalomyocarditis virus (15), mu-

rine retrovirus LP-BM5 (16), in"uenza virus (17),  (iii) parasitic 

infections - Fasciola hepatica (18), Plasmodium berghei (19),  

and (iv) Bacillus Calmette–Guerin (BCG) (20) and B. pertussis 

(21) vaccines. 

 Likewise, in experimental diseases such as rat ajuvant pol-

yarthritis (22, 23). Of note, 48 hours a!er the production of an 

in"ammatory reaction generated by the subcutaneous  admin-

istration of turpentine in rabbit both hind legs, the tolbutamide 

total body clearance was markedly decreased due to reduced 

concentration of hepatic cytochrome P450 (24). Acute adeno-

virus hepatitis in mice resulted in selective down-regulation of 

acetominophen (APAP) metabolizing P450s in liver (CYP 1A2 

and CYP 2E1), decreased formation of APAP toxic metabolites 

and thus decreased the risk of APAP hepatotoxicity (25). 

 �e cytochrome P450 down-regulation is time, dose and im-

mune stimulus dependent. It coincides with the maximum im-

mune response in genetically sensitive animals. Inhibition of 

drug metabolism appeared mainly a!er stimulation of cellular 

immunity and interferon production (26).

Clinical evidences
�ere are many documented examples of compromised drug 

metabolism in humans with impaired immune system a!er 

in"ammation (e.g., in"uenza, adenovirus) or vaccination (27). 

�e magnitude of cytochrome P450 depression in humans is 

highly variable, and it has been proposed that high initial drug 

levels may predispose infected individuals to exaggerated phar-

macological responses as a result of the down regulation of the 

drug metabolizing enzymes. �ese interactions continue to 

cause problems, such as toxicity, during drug treatment in pa-

tients with infections; following vaccination; in cancer patients 

receiving interferon or cytokine therapy, and in situations where 

host defense is activated. It is not surprising that the most cases 

found with impaired drug metabolism a!er vaccination were 

patients on chronic anticonvulsant and theophylline treatment 

where frequent drug monitoring control is obligatory. �at 

concerns incidents of increased carbamazepine (28) and other 

anticonvulsants toxicity as phenytoin, lorazepam and chlordi-

azepoxide (29-31) few days a!er immunization. In man, acute 

viral infections of the upper respiratory tract, bacterial pneu-

monia and BCG vaccination (see Peter Ghenev’s Dance round 

in this volume of Adipobiology) are able to reduce the clearance 

of theophylline by down-regulating multiple isoforms of the he-

patic cytochrome P450. �eophylline plasma levels in bronchitis 

children increased during in"uenza epidemics. Quinine blood 

levels (32) as well as the theophylline plasma half-life (33) were 

increased during Plasmodium falciparum malaria infections. 

HIV infection was related to an increase in variability of drug 

metabolizing enzymes (34,35). Patients with rheumatoid arthri-

tis showed a three and four fold higher systemic exposure of ve-

rapamil and simvastatin compared to healthy volunteers (36).

Mechanisms of alteration of drug biotransformation 
during infections and in"ammation
When discussing the numerous possible factors responsible for 

impairment of drug biotransformation and especially of cy-

tochrome P450 system in cases with immunostimulation, it is 

important to note that (i)  the activity and expression of P450 

depends on the nature of in"ammatory mediators, and (ii) dif-

ferent CYP isoforms are a�ected to varying degrees by di�erent 

in"ammatory challenge (37).

 Mechanisms of cytochrome P450 depression by immu-

nostimulation seems to imply the secretion of pro-in"ammatory 

mediators like cytokines (IL-1, IL-2, IL6, TNFα)(38,39), inter-

ferones (α, β, γ) (6), prostaglandin (PG) E1, PGE2, and PGF2 al-

pha (40), NF-B by immune cells and bacterial endotoxins (LPS), 

which contribute for decreased CYP protein synthesis through 

transcriptional suppression and mRNA destabilization (41). 

In"ammatory mediators down regulate also inducible P450 

expression by in"uencing di�erent intracellular receptors path-

ways as aryl hydrocarbon receptor (AhR), PPARα, the consti-

tutive androstane receptor (CAR) and the pregnane X receptor 

(PXR). Interleukin-6 is most important of them, down-regulates 

liver CYP3A4 through translational induction of C/EBPβ-LIP 

(liver-enriched transcriptional inhibitory protein), which com-

petes with and antagonizes constitutive C/EBP (enhancer bind-

ing proteins) transactivators (39). Gene expression of Cyp3a11 

is reduced by activation of Toll-like receptors (TLRs) in mice 

treated with Gram-negative or Gram-positive bacterial compo-

nents, LPS or lipoteichoic acid (LTA) respectively (42). Toll-Inter-

leukin 1 Receptor Domain-Containing Adaptor Protein (TIRAP) 

is involved in TLR2-mediated drug metabolizing enzymes (DME) 

regulation in vivo and in isolated primary hepatocytes, but not 

in regulation of cytokine expression in the liver (43); for TLR4-

resistin interaction, see Gertler’s review in this volume of Adipo-

biology). On the other hands the alteration of mouse constitutive 

CYPs‘ expression levels during in"ammation varies according to 

the immunostimulation pathway, the anaphylaxis-induced in-

"ammation had less e�ect than LPS-induced in"ammation (44). 
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 With signi#cant importance for safety antigoagulant therapy 

of millions of patients, were the #ndings from several control 

clinical studies, that warfarin kinetics and e%cacy were not 

changed a!er vaccination with in"uenza vaccine (45). �is #nd-

ings could be explained with the failure of INFγ  to decrease 

mRNA level of CYP2C cytochromes (main enzymes metabo-

lizing warfarin)(46). Immunostimulants would also activate di-

rectly or indirectly (via MAF secretion) macrophages or Kup�er 

cells leading to the secretion of reactive oxygen species (ROS) 

and NO (47,48) and ultimately to the loss of mRNACYP (49). In 

this context there are some experimental evidences that safer 

immunostimulator should be a drug with some antioxidant 

properties (50).

Which CYP isoforms are more a#ected after immune 
stimulation? 
Decreased activities of liver CYP 1A1 (51), 1A2, 2A6, 2B6 and 

3A4 are the most a�ected in infected rats. In humans CYP2A6, 

CYP2A7, CYP2C19 and CYP3A4 (52) were down-regulated in 

HBV- and/or HCV-infected livers compared with normal liv-

ers. In"uenza virus vaccination down regulate CYP 1A2 expres-

sion (29). In human immunode#ciency virus-positive patients 

CYP 2D6 expression was also decreased (53).Some liver enzyme 

activities as CYP 2E1 and CYP 4A, alcohol dehydrogenase and 

N-acetyltransferase were even found to be increased (54) and 

some subfamily (CYP 2B and 3A) to be decreased (55) in AA or 

LPS treated rats. LPS treatment induced renal CYP 4A mRNAs 

in mice and rats (thus increased the levels of ω–hydroxylated 

products of fatty acids) and hepatic CYP4A in rats only (56,57). 

Increased CYP3A4, CYP3A5, and P-gp mRNA expression levels 

were also detected in Crown disease (CD) nonin"amed duo-

denal biopsies which lead to elevated #rst-pass metabolism of 

drugs thus explained high inter-individual di�erences in CD 

pharmacotherapy (58).

Novel immunotherapeutics and CYP-mediated 
metabolism 
Cytokines or agents known to modulate cytokines should be 

evaluated in in vivo studies with relevant CYP substrates, par-

ticularly when used in combination with small molecules, and 

most importantly, with small molecules with narrow therapeu-

tic indexes. �e same is true for the promising novel anticancer 

agents that up regulate immune responses. �ese agents, either 

alone or in combinations, may cause systemic immune-related 

adverse events, with potential clinical implications for use of 

concurrent agents metabolized by CYP and other pathways 

(59).

Obesity, immune system and drug toxicity
Today. the link between obesity, immuiny and in"ammation is 

well documented (60, 61). Likewise, various CYPs were found to 

be expressed in the adipose tissue which appears to be a “post-

liver” major organ involved in the activity of xenobiotic/drug me-

tabolizing enzymes (62-64). Impaired immune response in ani-

mals and humans a�ected by obesity, leading to increased risks 

of infection. Population studies have shown the same things. For 

instance, hospitalized patients a�ected by obesity are more likely 

to develop secondary infections and complications, such as sep-

sis, pneumonia, bacteremia, and wound and catheter infections. 

Overall, it appears that obesity may increase risk for bacterial and 

viral infections. Mortality of obese patients with severe sepsis was 

also higher than non-obese patients. In many cases, the basis for 

these di�erences is the di�erent degrees of gene expression. �us, 

analysis of gene expression in brains of lean and obese mice af-

ter intraperitonial injection with LPS demonstrated more than 

10 times di�erences in lipid transport, insulin receptors and cy-

tochrome P450 enzymes proteins between both groups (65). An 

important parallel between obesity related pathology of adipose 

tissue and liver pertains to the emerging role of macrophages (66). 

It is well known that the phagocytic activity and secretory capacity 

of Kup�er cells were highly correlate with increased immune re-

actions and down regulated expression of some liver cytochrome 

P450’s. In the same time the inhibition of Kup�er cell by GdCl3 

(gadolinium chloride ) exerted antiobesity e�ects in high fat-fed 

mice (67). All this shows that obese persons are not only more 

susceptible to infections, but with greater risk for adverse drug 

reactions due to impair drug metabolism and kinetics.

Concurrent in"ammation as a determinant  
of susceptibility to toxicity from xenobiotic agents 
Concurrent in"ammation should be considered as a potentially 

important determinant of susceptibility to intoxication from en-

vironmental chemicals, drugs and other xenobiotic agents. �at 

is, when exposure to certain xenobiotics coincides with a period 

of in"ammation, an individual may be at greater risk for adverse 

e�ects (68).

Conclusion 
We need more knowledge of possible changes in the phar-

macokinetics respectively in e�ectiveness and side e�ects of 

medicines used in chronically ill patients in case of occurrence 

of acute viral or bacterial infection in them or a!er the applica-

tion of di�erent vaccines. �is would contribute signi#cantly to 

the optimization of personal drug therapy avoiding toxicity or 

lack of e�ectiveness.
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