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Abstract 
White adipose tissue is currently considered as an active endocrine organ that secretes 
a plethora of factors named adipokines, some of them being of pro-inflammatory na-
ture that likely contribute to the low-level systemic inflammation, a status that is often 
present in metabolic syndrome-associated chronic pathologies such as obesity, type 
2 diabetes, and atherosclerosis. Leptin is historically indisputably one of the most im-
portant adipokine secreted by fat cells, with a variety of physiological roles ranging 
from to the control of metabolism, energy homeostasis and inflammatory response to 
cognition. Leptin is also implicated in the connection between nutritional status and 
immune competence, modulating both the innate and adaptive immune responses 
in normal as well as pathological conditions. It has been shown that conditions char-
acterized by low leptin levels are associated with increased infection susceptibility. 
Conversely, immune-mediated disorders such as autoimmune diseases are associated 
with increased secretion of leptin and production of proinflammatory cytokines. Thus, 
leptin can be easily considered as a frank mediator of metabolic and inflammatory/
immune responses.
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Introduction
White adipose tissue plays a very im-
portant role in the energetic balance 
of mammals. This tissue has been 
specialized along millions of years in 
storing lipids and supplying energy 
stores to the whole body whenever it 
is necessary. In order to face energetic 
requirements, fat cells regulate fatty 
acid mobilization in response to alter-
ations of homeostatic status. However, 
adipose tissue is not only a reservoir 
of fats; it is also an endocrine organ 
able to release hormones, peptides, 
and cytokines collectively named adi-
pokines; they exert relevant actions 
both on metabolism and the immune 
system (1). Leptin is the forerunner 
of adipokines superfamily and it is 
one of the most important hormones 
secreted by adipose tissue (2) whose 
implications in energy homeostasis at 
central level has been previously de-
scribed (3).

Leptin levels signal starvation to 
the body, in that a falling in serum lep-
tin concentration leads to neuroendo-
crine modifications aimed to preserve 
energy stores for vital functions. Thus, 
during fasting period and after reduc-
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tion of body fat mass, there is a decrease in leptin levels that pro-
vokes a reduction of total energy expenditure (4-5). Even these 
effects of low leptin levels are designed to increase the survival 
chances under starving conditions, the fall in leptin levels may 
lead to deep immune suppression (6), in addition to other neu-
roendocrine alterations affecting adrenal axis, and reproductive 
function in both genders (7). In fact, both ob/ob mice (lacking 
leptin gene) and db/db mice (lacking leptin receptor gene) are 
not only obese and diabetic but they present deep immune/en-
docrine alterations observed during starvation (6-8). 

In humans, it has been found that leptin levels are associated 
with immune response in malnourished babies, which have low 
plasma leptin and impaired immune response (9). It is relevant 
to stress that leptin signalling deficiency impairs both humoral 
and cellular immune responses. The long form of leptin recep-
tor Ob-Rb (that is able to transduce the signal) is expressed in 
B and T lymphocytes, suggesting that leptin regulates directly 
the B and T cell responses (10). Modulation of the immune sys-
tem by leptin is exerted at several levels including development, 
proliferation, anti-apoptotic, maturation, and activation levels 
(11). Indeed, leptin receptors have been found in almost all the 
cell blood populations including neutrophils, monocytes, and 
lymphocytes. Leptin receptor belongs to the superfamily of class 
I cytokine receptors and signals through a canonical pathway 
involving the Jak2/STATs transducers. However, other relevant 
signal transduction pathways such as the Shc/GRB2 pathway 
has been described upon activation of leptin receptors long form 
(12).

Leptin activity on the immune system is fundamentally 
proinflammatory. Indeed leptin activates proinflammatory cells, 
promotes T-helper I responses, and mediates the production of 
proinflammatory cytokines, such as tumor necrosis factor-alpha 
(TNF-α), interleukin-1 (IL-1) or IL-6 (13).

Leptin, inflammation and innate immunity
Consistent with the role of leptin in the mechanisms of immune 
response and host defense, circulating leptin levels are increased 
in infective processes and experimental models of inflammation 
(14-15). Studies of rodents with genetic alteration in leptin or 
leptin receptors revealed a strong deficit in macrophage phago-
cytosis and on the expression of proinflammatory cytokines both 
in vivo and in vitro, whereas exogenous leptin administration 
upregulated both phagocytosis and the production of cytokines 
(16-17). Leptin deficiency increases susceptibility to infectious 
and inflammatory stimuli and is associated with dysregulation 
of cytokine production (17-18). Though, leptin levels increase 
acutely during infection and inflammation, and may represent 
a protective component of the host response to inflammation 

(19). Recently, Guilak et al (20) carried experiments in leptin 
deficient (ob/ob) and leptin receptor deficient (db/db) female 
mice to test the hypothesis that obesity may result in increased 
knee osteoarthritis (OA), systemic inflammation, and altered 
subchondral bone morphology. Authors concluded that extreme 
obesity due to impaired leptin signaling induced alterations in 
subchondral bone morphology without increasing the incidence 
of knee OA. In addition, adiposity in the absence of leptin sig-
naling is insufficient to induce systemic inflammation and knee 
OA in female C57BL/6J mice. These results imply a pleiotropic 
role of leptin in the development of OA by regulating both the 
skeletal and immune systems (20).

Human leptin was found to stimulate proliferation and ac-
tivation of human circulating monocytes in vitro, promoting 
the expression of several markers of macrophage activation. 
Moreover, leptin (i) increases the expression of monocytes sur-
face markers (21,22), (ii)  enhances the stimulatory effect of 
lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) 
on the proliferation and activation of human monocytes,  (iii) 
stimulates the production of proinflammatory TNF-α and IL-
6  by monocytes (21), and (iv) increases chemokine expression 
in cultured murine macrophage, through activation of long 
form of leptin receptor and via the JAK2-STAT3 pathway (23). 
Noteworthy, in lung macrophages leptin increases leukotriene 
synthesis (24).

Leptin regulates monocyte function as assessed by in vitro 
experiments evaluating free radical production; it was shown to 
stimulate the oxidative burst in control monocytes (25). In ad-
dition, leptin binding at the macrophage cell surface increases 
lipoprotein lipase expression through oxidative stress- and PKC-
dependent pathways. In this line, leptin has been found to in-
crease oxidative stress in macrophages (26). Finally, leptin might 
act as a monocyte/macrophage chemoattractant by inducing in 
vitro chemotactic responses (27), by mediating the inflamma-
tory infiltrate composition (28) and by inducing tissue factor ex-
pression in human peripheral blood mononuclear cells (29). On 
the other hand, human leptin seems to downregulate oxidative 
burst in previously activated monocytes (25).

Leptin has been found to augment the production of several 
cytokines and interleukins whereas it decreases MIP-1α pro-
duction by dendritic cells. In the same way to leptin effect on 
monocytes, it increases the survival of dendritic cells, and it may 
also increase the expression of specific surface molecules (30). 
Leptin is able to induce functional and morphological changes 
in human dendritic cells driving them towards Th1 priming 
and promoting cell survival via the PI3K-Akt signaling pathway 
(31).  Leptin receptor deficient mice displayed a marked reduc-
tion of co-stimulatory molecules and a Th2-type cytokine pro-
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delayed hypersensibility, suppression of skin allograft rejection, 
and inhibition of footpad swelling by antigen recall (7,39-41). 
Lord et al (6) demonstrated that mouse lymphocytes express 
the long form of leptin receptor, and that leptin modulates in 
these cells cytokine production. In addition, leptin also regu-
lates the number and activation of T lymphocytes. The prolifera-
tive response to leptin in mice seems to be produced in naïve 
T cells (CD4+CD45RA+), whereas it has been shown that lep-
tin inhibit proliferation of memory T cells (CD4+CD45RO+) 
(6). Leptin provides a survival signal in double positive T cells 
(CD4+CD8+) and simple positive CD4+CD8- thymocytes dur-
ing thymic maturation (8). Furthermore, this adipokine induces 
the expression of adhesion molecules in CD4+ T cells, such as 
VLA-2 (CD49b), or ICAM-1 (CD54) (6-13).

Leptin increases T cell response, shifting cytokine responses 
towards a Th1 phenotype in mice (8). The effect of leptin polar-
izing T cells towards a Th1 response seems to be mediated by 
stimulating the synthesis of IL-2, IL-12 and IFN-gamma and the 
inhibition of the production of IL-10 and IL-4 production (29). 
In addition to the above reviewed immune regulatory actions, 
recent evidence shows that leptin acts as a proinflammatory cy-
tokine. It has been shown that different inflammatory stimuli, 
including IL-1, IL-6 or LPS, regulate leptin mRNA expression 
as well as circulating leptin levels (14). Furthermore, leptin is 
produced by inflammatory-regulatory cells, suggesting that 
leptin expression could trigger or participate in the inflamma-
tory process through direct para- or autocrine actions (42). It 
has been demonstrated that leptin-deficient mice showed resist-
ance or less susceptibility to the development of both innate and 
adaptive immune-mediated inflammatory diseases, including 
experimentally induced colitis, experimental autoimmune en-
cephalomyelitis (EAE), type I diabetes and experimentally in-
duced hepatitis (1). The leptin-dependent resistance to the de-
velopment of innate immune-mediated inflammation remains 
unknown, but it has been reported an imbalance between pro- 
and anti-inflammatory cytokines (43) which suggests that leptin 
is able to modify monocytes/macrophages cytokine secretion 
pattern through a STAT-3 activated pathway (44). In models of 
adaptive immune-mediated inflammation, leptin deficiency im-
plies an imbalance between TH1 and TH2 lymphocytes (10), caus-
ing an altered cytokine secretion which could lead to the above 
mentioned resistance to inflammation. In any case, the precise 
role of leptin in the development of inflammation remains in-
completely understood.

It has been reported that T cells from leptin-resistant (db/db) 
mice were unable to develop colitis when transferred to T cell 
deficient-mice (45). Furthermore, circulating leptin is elevated 
in experimental models of intestinal inflammation, showing a 

file, with poor capacity to stimulate allogenic T cell proliferation. 
To note the activity of the PI3K/Akt pathway as well as STAT-3 
and IkappaB-alpha in dendritic cells of db/db mice is also down-
regulated. Furthermore, the low number of dendritic cells in db/
db bone marrow culture was attributed to a significant increase 
in apoptosis rate, which is also associated with dysfunctional ex-
pression of Bcl-2 family genes (32).

Human polymorphonuclear neutrophils (PMN) have been 
found to express leptin receptor in vitro and in vivo and it is 
likely to act as a survival cytokine for PMN (33-34). Leptin has 
a stimulating effect on intracellular hydrogen peroxide produc-
tion in PMN, although this effect seems to be mediated by the 
activation of monocytes (35). Leptin could upregulate cell sur-
face expression of the adhesion molecules ICAM-1 but suppress 
ICAM-3 and L-selectin in eosinophils. Moreover, leptin could 
also stimulate the migration of eosinophils, and provoke the re-
lease of inflammatory cytokines (36).

      Leptin receptors can signal also in Natural Killer (NK) 
cells, given that leptin activates STAT3 phosphorylation in these 
cells. Consistent with the role of leptin regulating NK cells, db/
db mice have been found to have impaired NK cell function (37-
38). Leptin actions in NK cells include cell differentiation, matu-
ration, activation, and cytotoxic activity (16). Leptin increases 
both the development and the activation of NK cells, by increas-
ing IL-12 production and by reducing the expression of IL-15 
(37-38). Further, leptin mediates the activation of NK cells in-
directly by modulation of IL-1 by monocytes and macrophages 
(29).

Leptin, inflammation and adaptive immunity
Most of the data about the role of leptin in adaptive immunity 
came from studies carried on in ob/ob mice. These mice have a 
diminished sensitivity of T cells to triggering stimuli. In addi-
tion, these animals show thymus atrophy and other lymphoid 
organs (6-8), with a reduction in the number of circulating T 
cells, and an increase in the number of monocytes.  The ability of 
exogenous leptin in preventing thymic atrophy is due to a direct 
antiapoptotic effect on T cells (8). Thus, leptin administration 
increases thymic expression of important soluble thymocyte 
growth factors such as IL-7. Leptin has also a trophic role in sus-
taining thymic epithelium and promoting thymopoiesis. 

Acute deficiency of leptin has potent effects on the immune 
system, in some cases higher than that observed in ob/ob mice. 
Indeed, acute hypoleptinemia in mice induces a strong decrease 
in the total number of thymocytes, and a strong increase of the 
number of apoptotic cells much more than that observed in 
ob/ob mice. Both ob/ob and db/db mice show defects in cell-
mediated immune response which lead to impaired reaction of 
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correlation with the degree of inflammation, and an association 
with the development of anorexia (46). It has also been shown 
that serum leptin levels are elevated in adult males with acute 
ulcerative colitis, and that inflamed colonic epithelial cells se-
crete leptin to the intestinal lumen, where it is able to activate the 
NF-kB (47). These data suggest that leptin plays a key role in in-
testinal inflammation as well as in the development of anorexia 
associated to this inflammatory state. 

Concerning EAE, it has been shown that ob/ob mice are re-
sistant to the development of this model of multiple sclerosis. 
This resistance is abolished by the administration of leptin, 
which is accompanied by a switch from a TH2 to TH1 pattern 
of cytokine release (48).  In addition, and in concordance with 
these reports, it has been noticed that the onset of the disease 
is preceded by an increase of circulating leptin (49). Further-
more, it has been demonstrated that acute starvation, which is 
accompanied by a decrease in circulating leptin levels, delays the 
onset of the disease and attenuates the symptoms. Recently, it 
has been shown that leptin levels are negatively correlated with 
CD4+ CD25+ regulatory T cells during multiple sclerosis, sug-
gesting that this negative association may have major implica-
tions in the pathogenesis of multiple sclerosis, as well as in the 
development of different autoimmune diseases characterized by 
TH1 autoreactivity (49). Noteworthy, Matarese et al (42) showed 
that leptin is expressed by both macrophages and T cells infil-
trated into the central nervous system (CNS) during EAE. This 
interesting report indicates that leptin is produced by immune 
cells during acute EAE, and suggests that this hormone could be 
participating in the development of CNS inflammatory diseases 
not only in an endocrine fashion but also by an auto- or para-
crine way.  However, it has been recently demonstrated that T 
cell-derived leptin has only a marginal role in the regulation of 
the inflammatory process (50). The authors showed that there 
were no differences between ob/ob and wild type T cells regard-
ing their ability to induce inflammation, suggesting that other 
sources of leptin, different than T-cells, must be critical in lep-
tin modulation of inflammatory responses. The reason for these 
discrepant findings remains unclear, but might be related to dif-
ferences in experimental settings (i.e the model of autoimmune 
encephalitis, and the transfer model of colitis), and deserves 
further investigations. In addition, a recent report by Palmer et 
al (51) pushes on the importance of the global neuroendocrine 
alterations, rather than local effects of leptin on T-cells, in the 
immune defects observed in ob/ob and db/db mice. Indeed, to 
study the relative contributions of direct and indirect effects of 
leptin on the immune system in a normal environment, these 
authors generated bone marrow chimeras by transplantation 
of leptin receptor-deficient db/db, or control db/+, bone mar-

row cells (BMC) into wild-type (WT) recipients. According this 
experimental set, the size and cellularity of the thymus, as well 
as cellular and humoral immune responses, were similar in db/
db to WT and db/+ to WT BMC. Thus, authors suggested that 
the immune phenotype of db/db mice is not explained by a cell 
autonomous defect of db/db lymphocytes. Conversely, thymus 
weight and cell number were decreased in the reverse graft set-
ting in WT to db/db BMC, indicating that expression of the lep-
tin receptor in the environment is important for T cell develop-
ment. Finally, normal thymocyte development occurred in fetal 
db/db thymus transplanted into WT hosts, indicating that direct 
effects of leptin are not required locally in the thymic microen-
vironment. 

Leptin’s actions have also been investigated in other models 
of immune-inflammation. In non-obese diabetic (NOD) female 
mice, increased serum leptin levels have been reported pre-
ceding the onset of the disease (52). Furthermore, it has been 
demonstrated that leptin administration increases both inflam-
matory infiltrates and IFN-gamma production in peripheral T 
cells, which speeds-up the destruction of pancreatic beta-cells, 
and anticipates the onset of the disease, suggesting that leptin 
promotes the development of type 1 diabetes through a TH1 re-
sponse. Finally, it has been shown that leptin administration 
increases both inflammatory and platelet responses in humans 
during caloric deprivation (53). In addition, it has been dem-
onstrated that leptin increases susceptibility to hepatotoxicity 
through its regulation on T cell activation and cytokine secre-
tion (54).

Leptin receptor is highly expressed on the cell surface of reg-
ulatory T - T(reg) - cells. Leptin can act as a negative signal for 
the proliferation of human Foxp3 (+) CD4 (+) CD25 (+) T(reg) 
cells. In vitro neutralization with leptin monoclonal antibody 
(mAb), during anti-CD3 and anti-CD28 stimulation, resulted 
in T(reg) cell proliferation, which was IL-2 dependent. Together 
with the finding of enhanced proliferation of T(reg) cells ob-
served in leptin- and ObR-deficient mice, these results suggest a 
potential for therapeutic interventions in immune and autoim-
mune diseases (55, for other diseases, see 56-58). These authors 
(55) also reported that in monocytes, leptin induces expression 
and secretion of the IL-1 receptor using the MAPK pathway that 
activates NF-κB. Likewise, the expansion of T(reg) cells follow-
ing anti-leptin neutralization is mediated by the induction of 
ERK 1/2 phosphorylation (59).

Conclusions
Leptin plays an important role in the activation of the immune 
system, and it is a mediator of inflammation. In this context, lep-
tin is unquestionably one of the mediators responsible for the 
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low-grade systemic inflammation that is present in the patho-
genesis of cardiometabolic diseases including atherosclerosis, 
hypertension, obesity, type 2 diabetes and metabolic syndrome. 
Hence, leptin may be considered a potential therapeutic target 
in some clinical situations, such as proinflammatory states or 
autoimmune diseases. 

During the last 16 years, leptin has been proven to be a plei-
otropic factor that is able to signal, among several organs, the 
amount of energy stores and to regulate neuroendocrine axes, 
immune function, and energy substrates metabolism. Several 
lines of evidence indicates that leptin (or its synthetic or semi-
synthetic analogues) can be a useful therapeutic target in a vari-
ety of dysfunction, most of them characterized by the hormonal 
deficiency such as amenorrhea or lipodystrophy. Other potential 
therapeutic targets, such as infertility and anorexia, are currently 
under intense investigation and hold promising options. A novel 
intriguing pharmacological perspective is represented by the 
development of a class of drugs that could act as leptin sensi-

tizers are anticipated with great expectations. Another emerging 
aspect regarding leptin as potential therapeutic target is coming 
from the idea of leptin as a factor enhancing the production of 
proinflammatory factors in cartilage and as an agent contribut-
ing to the obesity-associated increased risk for osteoarthritis. 
Results coming from our laboratory and others suggest that 
manipulation of leptin levels is a promising novel mechanism 
to be directed in the search and development of novel anti-in-
flammatory and anti-erosive compounds having the good ef-
ficacy. So, the control of the amount of bioavailable leptin by 
using a specific soluble receptor (in a similar strategy than that 
used with TNF-α in rheumatoid arthritis) might be a good way 
to avoid undesired leptin actions in autoimmune-inflammatory 
diseases. The blockade of leptin receptor, by using monoclonal 
humanized antibodies or leptin mutants able to bind the leptin 
receptor without activating it, could be another potential way to 
antagonize leptin actions (57,58). Obviously, it will be needed 
that these antibodies will not influence food intake to avoid the 

Figure 1. Schematic representation of the pleiotropic nature of leptin on the immune system.
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development of hyperphagia and obesity. However, the fact that 
leptin actions on food intake are exerted at central level after 
crossing the BBB while its effects on inflammation are exerted at 
peripheral level opens up this possibility. Unfortunately, the cur-
rent anti-leptin therapy has been developed focusing prevalently 
on leptin actions as an adipostatin, which implies trespassing the 
BBB. So that, very little is known about protein-based anti-leptin 
therapy at present. Nonetheless, considering that most of leptin 
effects on immunity and inflammation are mediated through 
peripheral receptors, it is conceivable that the development of 
the above mentioned strategies could be useful as a novel thera-
peutic approach. The applications of leptin continue to grow and 
will hopefully soon be used therapeutically.
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