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Adipose tissue
In the last 20 years, the physical, men�
tal and economic burden of obes�
ity and related diseases is reaching 
pandemic proportions. Arguably, we 
have learned more about the molecu�
lar control of food intake and energy 
homeostasis. It is an intricate feedback 
system in which food intake and ener�
gy expenditure are balanced through 
brain-adipose, brain-gut, entero-insu�
lar and reward circuits. 
	 White and brown adipose tissue 
(WAT and BAT) are morphologi�
cal and functional expressions of a 
dynamic system, consisting of adi�
pocytes and non-adipocyte cellular 
elements, including stromal, vascular, 
nerve and immune cells (1). Adipose 
tissue (“WAT” will be assumed from 
hereon) also contains cells that have 
the ability to differentiate into several 
lineages including neuronal cells. By 
sending and receiving different types 
of protein and non-protein signals, 
adipose tissue communicates via 

Abstract
Adipose tissue is a sophisticated module, consisting of adipocytes and non-adipocyte 
cellular elements including stromal, vascular, nerve and immune cells. There is at 
present evidence that sharing of ligands and their receptors constitutes a molecular 
language of the human’s body, which is also the case for adipose tissue and hypo-
thalamus-pituitary gland. Historically, Nikolai Kulchitsky’s identification of the entero-
chromaffin cell in 1897 formed the basis for the subsequent delineation of the diffuse 
neuroendocrine system (DNES) by Friedrich Feyrter in 1938. In DNES paradigm, the 
secretion of hormones, neuropeptides and neurotrophic factors is executed by cells 
disseminated throughout the body, for example, Kulchitsky (enterochromaffin) cells, 
testicular Leydig cells, and hepatic stellate cells. Here we propose that the adipose tis-
sue might be a new member of DNES. Today (dnes, in Bulgarian), adipose tissue is “get-
ting nervous” indeed: (i) synthesizes neuropeptides, neurotrophic factors, neurotrans-
mitters, hypothalamic hormones/releasing factors and their receptors, (ii) like brain 
expresses endocannabinoids and amyloid precursor protein and, for steroidogenesis, 
the enzyme aromatase (P450arom), (iii) adipocytes may originate from the neural crest 
cells, and (iv) adipose-derived stem cells  may differentiate into neuronal cells. Further 
molecular profiling of adipose tissue may provide new biological insights on its neu-
roendocrine potential. Overall this may frame a novel field of study, neuroadipobiol-
ogy; its development and clinical application may contribute to the improvement of 
human’s health.  
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We dance round in a ring and suppose,
But the Secret sits in the middle and knows.

Robert Frost
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endo- and paracrine way with many organs in the body (Fig. 
1). In effect, brain-adipose network plays a pivotal role in the 
regulation of food intake and energy balance (2) as well as hy�
pothalamic-pituitary cells produce “adipotrophins” (see below). 
It is increasingly recognized that adipose tissue expresses not 
only metabolic, but also secretory phenotype, synthesizing and 
releasing more than 100 signaling proteins designated adipok�
ines (2-5). These are implicated in the regulation of energy, lipid 
and glucose homeostasis, inflammation, immunity and vascular 
tone as well as the pathogenesis of  cardiometabolic and neuro�
degenerative diseases. 

Neuroendocrinology of adipose tissue 
While numerous studies have demonstrated that brain can con�
trol adipose tissue functions, it is only now becoming apparent 
that the control is bidirectional, that is, the adipose tissue can 
control brain neuroendocrine functions. For instance, (i) many 
neuropeptides and neurotrophic factors and their receptors are 
shared by the adipose tissue and brain (2-9), (ii) the adipokines 
leptin, adiponectin, resistin and fasting-induced adipose factor 
(angiopoietin-like protein 4) and their receptors are expressed 
in the brain (10-15), (iii) a subset of adipocytes may originate 
from the neural crest cells (16), and (iv) in cocultures of 3T3-
L1 adipocytes with neurons, adipocyte-derived apolipoproteins 

enhance neuritogenesis and synaptogenesis (17). 
	 Vice versa, adipose tissue produces (i) neuropeptide tyro�
sine (NPY), substance P, calcitonin gene-related protein and 
other neuropeptides (18-25), and (ii) glutamate and gamma-
aminobutyric acid (GABA) neurotransmitters, N‑methyl-D-as�
partate (NMDA) and GABA receptors, and vesicular glutamate 
transporters (26,27). Moreover, macrophages, mast cells and 
other immune cells associate with both adipose tissue (3) and 
pituitary gland (28).
	 Further, most pituitary hormones and hypothalamic releas�
ing factors, termed “adipotrophins” (29), express their receptors 
in adipose tissue, creating hypothalamic-pituitary-adipose axis 
(29,30) as well as some hypothalamic releasing factors are pro�
duced by adipose tissue (31,32); recently, pineal-adipose network 
is also appreciated (see Ranĉić et al’ s abstract in this volume 
of Adipobiology). Also, various neurotrophic factors including 
nerve growth factor (NGF), brain-derived neurotrophic factor 
(BDNF), ciliary neurotrophic factor (CNTF), vascular endothe�
lial growth factor, insulin-like growth factor, and angiopoietin 
are synthesized and released from adipose tissue (20,25,33-37). 
	 While NGF was first discovered by Rita Levi-Montalcini in 
1951 as nerve growth stimulating protein produced in largest 
amount by the mouse submandibular glands (38), it appears to�
day that the adipose tissue may also be a major biological source 
of NGF and other neurotrophic factors (reviewed in 39,40). 
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Figure 1.  A drawing illustrating both secretory and receptive nature of adipose tissue (AT). At secretory level, AT-derived sig-
naling molecules communicate via   multiple pathways such as endocrine (arrows 1,4,5, from up-down), paracrine (arrow 2) 
and autocrine (arrow 3, curved) as well as via exosomes (multivesicular body-derived microvessels) and ectosomes (plasma 
membrane-shedding microparticles) (see references 5,89; for exosomes/adiposomes, see 90). At receptive level, AT possesses 
receptors for various ligands. Modified from 63.
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Noteworthy, semaphorin (Sema3A) and its receptor neuropi�
lin-1 (41), and pantophysin, a protein related to the neuroendo�
crine-specific synaptophysin (42), are expressed in adipose tis�
sue as well as neural and glial markers in neurally differentiated 
adipose-derived stromal cells (43-45).
	 Another neuroendocrine feature of adipose tissue might be its 
own production of both steroids and endocannabinoids. There 
is at present clear evidence that adipose tissue, like brain and its 
aromatase (P450arom) and neurosteroids, produces adiposter�
oids (see 3,46; the term “adiposteroids” has been introduced by 
Masuzaki H et al in 2004). Endocannabinoids and their recep�
tors, recently extensively studied in food intake control and re�
ward phenomena, are expressed in both hypothalamus/pituitary 
gland and adipose tissue (47). 
	 Last but not least, it has been recently disclosed a metabolic 
paradigm for Alzheimer’s disease pathogenesis including the 
role of obesity, cholesterol and adipokines in neurodegeneration 
(48-50). Also, it is increasingly clear that the hypothalamus is 
not the only site of leptin action, nor food intake is the only bio�
logical effect of leptin. Rather, leptin is a pleiotropic adipokine 
that supports learning and memory and has neurotrophic activ�
ity (14,15,51-53; also Arieh Gertler in this volume of Adipobiol-
ogy; for apelin, a new adipokine, see 54,55). Other neurotrophic 
factors produced by adipose tissue (20,25,33-37,39,40) may also 
contribute to neuroprotection in various neuropsychiatric dis�
eases (reviewed in 56).

From enterochromaffin cells to adipose tissue
Historically, Nikolai Konstantinovich Kulchitsky (1856-1925) 
has identified the enterochromaffin cells found in the crypts of 
Lieberkuhn of gastrointenstinal mucosa, in 1897. This discovery 
formed the basis for the subsequent delineation of the diffuse 
neuroendocrine system (DNES) by Friedrich Feyrter in 1938 
(reviewed in 57,58); examples of DNES include Feyrter’s Hellen 
Zellen (clear cells) in pancreas and gut, testicular Leydig cells 
(59), hepatic stellate cells (Ito cells) (60) and other cells dissemi�
nated throughout the body.. 
	 Dancing around the accumulating evidence of synthesis and 
release of multiple neuronal and neuroendrocrine factors and 
expression of their receptors and various neural markers (Table 
1-3), we propose that adipose tissue might be a new member of 
DNES.
	 Today (dnes, in Bulgarian, Serbian, Polish and Slovak), adi�
pose tissue is “getting nervous” indeed (61). Metaphorically, this 
talented tissue is increasing dramatically its intelligence quo�
tient (IQ) (62). As well as the gut is considered a second brain 
(58), the adipose tissue may likely function as a third brain (63). 
Although “absence of proofs is not proof of absence”, further 
neuroendocrine profiling of adipose tissue is required. It may 
provide new biological insights on some “newcomers” such as 
NGF, BDNF, CNTF, nitric oxide (64, also Tunçel et al in this vol�

Table 1. 
Neuronal and neuroendocrine factors in adipose tissue

Neuropeptides
Agouti protein (2-5)*
Neuropeptide tyrosine (NPY) (20,25)
Calcitonin gene-related peptide (18)
Adrenomedullin (18)
Somatostatin (19)
Insulin-like growth factor (20)
Substance P (21)
Kisspeptin (22)
Neuromedin B (23)
Neurotensin (24)
Mineralocorticoid-releasing factors (31)
Corticotropin-releasing hormone (CRH) (32)
Stresscopin and urocortin (CRH-like peptides) (32)
Apelin (54; cf. 55)
Nesfatin-1 (67)

Neurotrophic factors
Leptin (2-5; cf. 15,51-53)
Apolipoprotein D, E3 (17)
Nerve growth factor (20,25,33,36)
Brain-derived neurotrophic factor (34,35,88)
Angiopoietin-1 (37)
Vascular endothelial growth factor (39)
Ciliary neurotrophic factor (20,39)
Glial cell line-derived neurotrophic factor (39,88)
Steroids (3,46; cf.81-83)
Metallothioneins (65, cf. 66)

Neurotransmitters
Noradrenaline (1)
Glutamate (26)
Gamma-aminobutyric acid (GABA) (26)

* References are indicated in parentheses.
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ume of Adipobiology), metallothioneins (65, cf. 66), neuropep�
tides B and W and nesfatin-1 (67), and the anti-aging protein 
klotho (68). Onwards, this may open a novel field of research, 
neuroadipobiology. Systems biology approach integrating neu�
roendocrinology, neuroimmunology and neuroadipobiology 
may indeed contribute to the improvement of human’s health 
and longevity.

Conclusion
In 1999 Albee Messing published in Hepatology (volume 29, 
pp 602-603) Editorial entitled “Nestin in the Liver – Lessons 
from the Brain”. He wrote: “Most neuroscientists manage to get 
through each day without thinking of the liver even once… but 
I think that is about to change.” This may also be the case for 
adipose tissue.
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