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CONTROL OF GRANULE CELL PRECURSOR PROLIFERATION  
IN THE DEVELOPING CEREBELLUM AND IN MEDULLOBLASTOMA
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The cerebellum is essential for the fine motor control of movement and posture. Due to its apparent simplicity and geometrical
arrangement, the cerebellum provides an excellent model for studying the mechanisms that control development of the central 
nervous system (CNS). The cerebellar cortex is formed from two distinct proliferative zones: one ventricular and one superficial
called the external granule layer (EGL). Massive clonal expansion of granule cell precursors (GCPs) occurs in the EGL, 
and ultimately generates by far the most abundant neuronal population in the CNS. In this review, I describe recent advances 
in understanding the control of GCP proliferation in the developing cerebellum. I also briefly review the uncontrolled GCP
proliferation associated with medulloblastoma, the most common brain malignancy in children.
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INTRODUCTION

The cerebellum plays an important role in motor coordination 
and learning. Moreover, due to its apparent simplicity and 
geometrical arrangement, the cerebellum provides a useful 
model system for studies aimed at understanding how the 
development of the central nervous system (CNS) is controlled. 
The mature cerebellar cortex consists of three layers: the 
molecular layer, the Purkinje cell layer, and the granule cell 
layer (Fig. 1). There are thousands of synaptic connections 
between granule cell axons and Purkinje dendrites in the 
molecular layer. The cell bodies of the granule cells lie in the 
granule cell layer, and the Purkinje cell layer lies between the 
molecular and granule layers.

Granule cells have a characteristic developmental pattern: in 
contrast to most other neurons, which are born near ventricles 
and migrate outward toward the surface of the brain, granule 
cell precursors (GCPs) are generated outside the cerebellum 
and migrate inward. GCPs are generated in the rhombic lip 
and migrate tangentially onto the surface of the cerebellar 
primordium to form the external granule layer (EGL), from 
which the postmitotic granule cells later migrate inward to 
form the inner granule layer (IGL) (1,2). The massive clonal 
expansion of the GCPs begins postnatally in the EGL, and 
leads to the generation of by far the most abundant neuronal 
population of the CNS. The mature cerebellar cortex is 
established during the first three weeks after birth in mice.

© Bulgar ian Society for Cell Biology
ISSN 1310-392X



36

Biomed Rev 16, 2005

Yoshioka

In this review, I focus on the regulation of GCP proliferation 
in the EGL. Since medulloblastoma (MB), the most common 
and aggressive brain malignancy in childhood, is believed to 
arise from GCPs, I will also briefly review recent progress
in MB research from the viewpoint of GCP proliferation 
control.

CONTROL OF GCP PROLIFERATION BY SONIC HEDGEHOG

Studies of mutant mice such as Lurcher and Staggerer 
revealed the importance of Purkinje cells in the regulation of 
GCP proliferation (3,4). Later, cell ablation experiments with 
transgenic mice in which diphtheria toxin was specifically
expressed in Purkinje cells by the L7 promoter, clearly 
indicated that granule cell proliferation depends on the 
Purkinje cells (5), as these transgenic mice had less GCP 
proliferation in the EGL than wild type mice. Subsequently, a 
role for Sonic hedgehog (Shh), which is secreted from Purkinje 
cells, in regulating cerebellar growth and development was 
suggested from studies of Patched (Ptc) antagonizing the 

Shh signal (6-8). In fact, when GCPs were treated with Shh 
to block Ptc activity, GCP differentiation was prevented and 
proliferation stimulated. In contrast, GCP proliferation was 
dramatically reduced by using anti-Shh antibodies to block 
Shh function in vivo (9-11).

Shh is a secreted glycoprotein that plays a key role in the 
patterning of various tissues, including the nervous system 
and the limbs (12,13). Shh binds with high affinity to Ptc, a
transmembrane protein at the cell surface (Fig. 2). Vertebrates 
have two Ptc isoforms, encoded by Ptc1 and Ptc2, and Ptc1 
appears to be active in the CNS (7,14-18). Ptc inhibits another 
transmembrane protein - Smoothened (Smo). The Shh signal 
is initiated by the binding of Shh to Ptc, which relieves Ptc’s 
inhibition of Smo. The signal relayed by Smo leads to the 
activation of the Gli zinc-finger transcription factors Gli1, Gli2,
and Gli3 (19-24). It is unclear whether the Gli proteins mediate 
all the aspects of SHH signaling during vertebrate CNS 
development. However, recently, Bai et al (25) demonstrated, 
using Gli knockout and Gli-lacZ knock-in mice, that at least 

Figure 1. The three layers of the cerebellar cortex in the adult mouse brain. Scale bar, 50 μm.
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in the spinal cord, all the Shh signaling is dependent on Gli 
function. Furthermore, the transcription of Gli1 is dependent 
on both Gli2 and Gli3 in Shh signaling. Corrales et al (26) 
also analyzed Gli knockout and Gli-lacZ knock-in mice and 
showed that positive Shh signaling through Gli2 is required 
to generate a sufficient number of cerebellar GCPs for normal
lobe growth. All the molecules involved in Shh signaling, Ptc, 
Smo and Gli1-3, appear to be expressed in GCPs (9,11).

OTHER FACTORS INVOLVED IN GCP PROLIFERATION

Although the Shh signaling pathway is crucial for the regulation 
of GCP proliferation, other factors are also involved in its 
control. Math1, a basic helix-loop-helix (bHLH) transcription 
factor, is expressed in the rhombic lip from the beginning of 
GCP proliferation (27,28). After the tangential movement 
of GCPs to the EGL, Math1 is selectively expressed in the 
proliferating GCPs, and not in postmitotic granule cells (27, 
29). Strikingly, Math1-deficient mice fail to generate granule
cells and are born with a cerebellum that is devoid of the EGL 

(30), indicating the essential role of Math1 in the genesis of 
granule cells. To date, however, little has been learned about 
how Math1 expression is regulated or what genes are regulated 
by Math1. In addition, the Zic zinc-finger transcription factors
Zic1 and Zic2 have been shown to mark granule cells in the 
developing cerebellum (31-33). In Zic1-deficient mice, the
number of dividing cells in the EGL is significantly reduced
(34), implying a regulatory role for Zic1 in GCP proliferation. 
The same loss-of-function strategy cannot be employed in the 
case of Zic2, because Zic2- knockdown mutant mice die shortly 
after birth (35). However, both Zic1 and Zic2 appear to have 
similar functions in the regulation of cerebellar development 
(33,36).

The chemokine stromal cell-derived factor (SDF-1α) is 
highly expressed in the pia mater of the developing cerebellum, 
and its receptor CXCR4 is expressed in the EGL during 
embryonic development (37-39; also see Lu et al on pages 77-
81 of  this volume). The targeted deletion of murine SDF-1α 
or CXCR4 results in a premature migration of GCPs out of the 

Figure 2. The Shh signaling pathway. In the absence of Shh, the Ptc transmembrane protein represses the activity of the 
transmembrane protein Smo. The binding of Shh to Ptc relieves the repression, leading to the activation of the Gli transcription 
factors, which in turn regulate the transcription of target genes in the nucleus.
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EGL, suggesting a role for SDF-1α-CXCR4 signaling in the 
retention of GCPs in the EGL (37,40). Furthermore, SDF-1α 
has been shown to enhance Shh-induced GCP proliferation 
(41) and to control the axon elongation of cultured cerebellar 
granule neurons (42). It is well known that increased protein 
kinase A (PKA) activity antagonizes the mitogenic effect of 
Shh signaling on GCPs (43-45). However, the relationship 
between PKA and Shh signaling is unclear. Bone morphogenic 
proteins, which are members of the transforming growth factor 
β superfamily, are also reported to inhibit the Shh-mediated 
proliferation of GCPs, through Smad5 signaling (46). 

The Notch signal is a key regulator of cell-fate decisions in 
species ranging from Drosophila to humans (47-49). Murine 
Notch2 is highly expressed in proliferating GCPs in the EGL, 
and it is down-regulated in the postmitotic granule neurons 
in the IGL (50). The expression pattern of Notch2 makes it a 
marker for dividing GCPs residing in the EGL, in addition to 
other markers, such as Math1 and Zic. Activation of Notch2 
signaling either by adding a soluble form of the Notch ligand 
Jagged1 or by overexpressing an active form of Notch2 inhibits 
the differentiation of GCPs by maintaining their proliferative 
state (50), suggesting an involvement of Notch in the control of 
GCP proliferation. In addition, the Shh and Notch2 pathways 
appear to regulate granule cell development through at least 
some common targets, such as the bHLH transcription factor 
Hes1 (50).

HOW IS GCP PROLIFERATION TERMINATED?

The EGL is composed of two distinct zones: the outer EGL 
(oEGL), where GCPs actively proliferate, and the inner EGL 
(iEGL), which contains the postmitotic and pre-migratory 
granule cells. To form the internal granule layer (IGL), the 
proliferating GCPs must undergo several events: cessation 
of the cell-cycle regulation, movement from the oEGL to the 
iEGL, differentiation into granule cells, and migration to the 
final destination (1,2).

Several components of the extracellular matrix (ECM) 
are instrumental in regulating GCP proliferation and 
differentiation. Laminin, an ECM glycoprotein, and its 
receptors (α6 and α7 integrins) are primarily expressed in the 
oEGL, whereas another ECM glycoprotein vitronectin and 
its receptors (αv integrins) are highly expressed in the iEGL 
(51,52). This sharp contrast in localization raised the possibility 
that laminin and vitronectin regulate distinct aspects of granule 
cell development. Indeed, laminin has been shown to enhance 
significantly the Shh-mediated GCP proliferation in primary
cultures (51,52). A targeted disruption study provided evidence 
that α6β1 and α7β1 integrins are crucial for GCP proliferation 

(52). Conversely, vitronectin can overcome the Shh-induced 
proliferation. Vitronectin phosphorylates and activates the 
transcription factor CREB (51), a major target of PKA that 
antagonizes the mitogenic activity of Shh. Furthermore, 
the overexpression of CREB was found to be sufficient to
induce the neuronal differentiation of granule cells, even 
in the presence of Shh (51). Thus, when GCPs move to a 
vitronectin-rich environment such as the iEGL, the vitronectin 
could function to terminate their proliferation through the 
PKA-CREB pathway, and to start their differentiation. The 
cyclin-dependent kinase (Cdk) inhibitor p27/Kip1 has been 
suggested to possess a similar function along with vitronectin 
in the regulation of GCP proliferation (53). p27/Kip1 is 
strongly expressed in the iEGL, and weakly in the oEGL. In 
addition to this inverse correlation of p27/Kip1 expression 
with GCP proliferation activity, GCPs in p27/Kip1-deficient
mice show enhanced proliferation compared with the GCPs 
from wild-type mice. Therefore, p27/Kip1 is likely to play a 
role in GCP differentiation by switching off the proliferation 
program (53).

MEDULLOBLASTOMA

MB is the most common brain malignancy in children. Recent 
studies have highlighted a deregulation of Shh signaling 
pathways in MB.

Basal cell nevus syndrome (BCNS), also known as 
Gorlin’s syndrome, is an autosomal dominant disorder 
characterized by high rates of both basal cell carcinoma and 
MB. The identification of human Ptc1 mutations in BCNS 
patients raised the possibility that MB is associated with 
uncontrolled Shh-Ptc signaling (54,55). This causal link was 
confirmed by the development of MB in mice heterozygous
for Ptc1 mutation (56). Ptc1-null mice cannot be used as a 
model system, because they die during embryogenesis (56). 
Considering the inhibitory activity of Ptc in the Shh signaling 
pathways, it is easy to imagine that the mutation or deletion 
of Ptc causes the constitutive activation of Shh signaling. In 
addition, Ptc1 itself is target of Gli proteins, which are crucial 
mediators in Shh signaling. Thus, the negative feedback of the 
Shh pathway is also impaired in animals lacking Ptc function. 
However, because only 15%-20% of Ptc1+/− mice develop MB 
and the wild-type Ptc1 allele is expressed in the majority of 
tumors, additional genetic alterations are likely to be required 
for the full development of MB (see below; 57-59).

The most frequently affected genomic region in human 
MB (30%-50%) is chromosome 17p (60,61). However, none 
of the Shh signaling genes, such as Shh, Ptc1, or Gli1-3, is 
located in the 17p region, and Ptc mutations account for a 
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minority of the cases, approximately 10% (57,59). Therefore, 
the culprit gene(s) in this region is unknown. Recently, Gulino 
et al identified a candidate gene, REN, which maps to 17p13.2 
(62). REN was originally identified as a novel gene involved in
neural progenitor cell differentiation (63). The allelic deletion 
of REN occurs in 39% of sporadic human MB cases (62). 
REN is expressed at higher levels in the non-proliferative 
cerebellar layers (iEGL and IGL) than in the proliferative 
oEGL. REN overexpression promotes the growth arrest of 
GCPs and increases the proportion of GCPs expressing the 
Cdk inhibitor p27/Kip1 (64). Furthermore, REN antagonizes 
the Gli-mediated transactivation of Shh target genes (62,64). 
Collectively, the tumor suppressor REN appears to function 
to restrain the Shh-sustained proliferation of GCPs from the 
oEGL to the iEGL, and the loss of REN could release the 
restraint on Shh pathways, leading to MB.

CONCLUSION

Recently, much progress has been made in understanding the 
control of GCP proliferation in the developing cerebellum. In 
particular, Shh signaling undoubtedly plays key roles in the 
regulation of GCP proliferation. A more precise understanding 
of the Shh pathways, especially the intracellular signaling 
that regulates them, will yield important insights into the 
mechanisms that control development of the mammalian 
CNS, and will provide more target molecules for therapies 
to treat MB.
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