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• Insulin action initiated by insulin binding to its cog- 
nate receptor is performed via phosphorylation of tyrosines on 
substrate proteins by the receptor tyrosine kinase domain. This 
process involves autophosphorylation of tyrosine residues in 
the cytoplasmic domain of the receptor (1). A comparable ac- 
tion is mediated by nerve growth factor (NGF) and epidermal 
growth factor (EOF) receptors (2,3). Few articles have been 
directed to the morphological regional distribution in the brain 
of phosphotyrosine, using antibodies. The first extensive 
description that proved a topographical distribution for 
phosphotyrosine in the rat brain was conducted by Marani 
and Maassen (4). It was shown that alternating areas positive 
and negative for phosphotyrosine could be described. These 
areas showed different localizations that were in good agree- 
ment with the biochemical results obtained by others (5,6). 
Moreover, fetal and postnatal series confirmed the results (6) 
that phosphotyrosine content is extremely high in the devel- 
oping brain as compared to the mature brain. In the mature 
brain, the phosphotyrosine localization is also found in the 
neuropil, not only in neurons. High concentrations of phospho- 
tyrosine in a regional distribution are found in the rat rhinen- 
cephalon, the cortex, the basal ganglia (mainly in neostriatum 
and substantia nigra), hypothalamus and the habenular nu- 
clei. In the hippocampus, the positivity for phosphotyrosine 
can be detected in the pyramidal cells and the neuropil. The 
hippocampal subdivisions of CA-1 and CA-3 can be weakly 
discerned (4). Topographical studies of the distribution of in- 
sulin receptor substrate-1 (IRS-1), growth factor receptor- 

bound protein-2 (GRB-2) or its adaptor molecule and substrate 
of insulin receptor kinase (She) that complexes to GRB-2 and 
conducts insulin action towards the ras complex (Fig.l) (7) 
are absent for the brain. 

This Dance Round deals with the presence of signaling inter- 
mediates involved in insulin action as studied by antibodies 
against phosphotyrosine, IRS-1 and GRB-2 in the cat and 
human basal forebrain and hypothalamus. 

• The basal forebrain contains the cholinergic neurons 
designated as the groups Chl-Ch4, also known as the magno- 
cellular forebrain system (8-14). This system is known for its 
involvement in Alzheimer's disease (13,15-30), especially the 
Ch4 group, corresponding to the nucleus of Meynert (31-33). 
The basal nucleus of Meynert undergoes pathologic changes 
also in several other severe disorders, like Parkinson's disease 
(16,17,26), Korsakoff s disease (16,26), Pick's disease (34), 
Down's syndrome (35), olivopontocerebellar atrophy (36) and 
in Huntington's disease (37). In the Huntington's chorea also 
an increase of CD15 (3-fucosyl-N-acetyl-lactosamine) (38,39) 
epitope positivity in astrocytes in the magnocellular basal fore- 
brain system was described (40). Here we report that these 
magnocellular neurons demonstrated in the human brain have 
a relatively high expression of IRS-1 and GRB-2, indicating 
that these cells are phosphotyrosine activated not only by the 
NGF receptor but also by the insulin receptor. 
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Figure 1. The insulin action pathway (simplified after Ref.7, and prepared by Ms Simone Mulder). After stimulating the 

receptor tt-subunits, the fi-subunits are phosphorylated. (1.) This leads to phosphorylation ofIRS-1. (2.) GRB-2, which 

is linked to son-of-sevenless (SOS) protein, links to IRS-1 and to She. (3.) This process activates SOS and links it to 

GRB-2, thus activating ras by replacing GDP with GTP. (4.) The ras starts the pathway to modulate the growth and gene 

expression. The a-subunit is indicated by horizontal lines, and the fl-subunit by diamonds. . ,.--.-, -. ;,., . 
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IRS-1 and GRB-2 were expressed in E. coli as fusion 
protein, and antibodies against these proteins were raised in 
rabbits as described earlier (41). Their specificity was tested 
(Fig. 2). For the preparation and the specificity of the rabbit 
phosphotyrosine-binding antibody, see (4). 

Human brains without any detectable neurological and psy- 
chiatric diseases were obtained from the Leiden Universiy 
Department of Pathology and Department of Anatomy. Three 
normal brains from patients (64-70 years old) were used, from 
which the basal forebrain was removed. Left and right parts 
were separately sectioned. All brain sections were collected 
and 1 to 5 sections stained forNissl, Kliiver-Barrera (42), IRS- 
1 ,GRB-2 and phosphotyrosine, respectively. Previously pre- 
pared dense series of coronal sections from two human brains 
(C3305, C3495) stained alternately with the Nissl and Kliiver- 
Barrera methods were used for the cytoarchitectonic orienta- 
tion. 

Mature male mongrel cats used for C7 nerve avulsion experi- 
ments (43) were perfused with a Karnovsky fixative. The brain 
and spinal cord were dissected free and the brains were stored 
for three to six months in the same fixative. The same anti- 
bodies were used as in human material. 

Frozen sections were incubated for 24 hrs with the first anti- 
body in a moist chamber. The second antibody, peroxidase 
conjugated, was used for two hours, followed by a DAB/per- 
oxide incubation for 15 minutes. For an extensive description 
of the used immunocytochemistry, see (4). 

• In cats, the magnocellular cholinergic forebrain sys- 
tem is prominent and one might definitely distinguish the 
Chl-Ch4 groups (11; Usunoff el al, unpublished data). How- 
ever only part of their cells display a moderate to weak immuno- 
positivity for IRS-1, GRB-2 and phosphotyrosine. On the other 
hand, strong immunoreaction is present in both neurosecre- 
tory magnocellular hypothalamic nuclei: nucleus paraven- 
tricularis and nucleus supraopticus (Fig.3,4). From the lateral 
wedge of the supraoptic nucleus a strand of immunopositive 
neurons extends laterally, ventral to the entopeduncular nucleus 
(the internal pallidum in subprimate species) and dorsal to 
the optic tract. There is mainly a perikaryal localization of 
finely granulated reaction products for IRS-1, GRB-2 and 
phosphotyrosine. The reaction product is followed into the 
proximal dendrites, and occasional immunopositive axons are 
encountered too. 

The normal distribution of the magnocellular neurons in hu- 
man basal forebrain shows the same appearance in our series 
as in previous descriptions (8,12,14,31,33,40). Briefly, the 
magnocellular basal complex starts rostrally with quite few 
neurons located in the medial septal nucleus (Chl group), and 

ventral to them, within the vertical limb of the Broca's diago- 
nal band is the more substantial Ch2 group. The latter merges 
imperceptibly with the more loosely arranged Ch3 group, which 
however contains larger neurons than the Chl and Ch2 groups. 
The largest neurons are found in the most prominent group, 
i.e. the Ch4, comprising five subgroups: anteromedial 
(Ch4am), anterointermediate (Ch4ai), anterolateral (Ch4al), 
intermediate (Ch4i), and posterior (Ch4p). Rostromedially, 
Ch4am is continuous with the Ch3 group and the Ch4 neu- 
rons spread caudolaterally ventral to the internal and external 
pallidal segments, within the substantia innominata. The bulk 
of the Ch4 group is encountered at the level of the pars tecta 
columnae fornicis and from the level of the anterior thalamic 
pole diminishes in caudal direction. Ch4p disappears at the 
level of the mamillary bodies. Few Ch4 neurons invade the 
medial and lateral pallidal laminae. 

The presence of the antibodies against phosphotyrosine, IRS- 
1 and GRB-2 was established in the magnocellular neurons 
(Fig.5). However, the appearances of positive dendrites in these 
human neurons were absent, presumably due to the post- 
mortem effects. Due to the prolonged fixation, the cellular ap- 
pearance was restricted to the central part of the neurons. Den- 
dritic hills were always negative. The nuclei stand out clearly 
only in a few cases. 

The overall topographical distribution for phosphotyrosine, 
IRS-1 and GRB-2 confined extremely well to the parts of the 
magnocellular forebrain areas as depicted by others: the me- 
dial septal nucleus, the nucleus of the diagonal band, and the 
five subdivisions of the basal nucleus of Meynert. 

• This article shows that the insulin receptor signaling 
pathway is present in the magnocellular forebrain system in 
humans and cats. Destruction of this system has always been 
contributed to a possible deficiency of the NGF receptors (13, 
44-46). However, proving the presence of the insulin receptor 
signaling system opens the possibility that also over this path- 
way cell death in this area can be induced. 

The magnocellular basal forebrain system is related in its de- 
ficiencies to the chorea of Huntington indicated by the increase 
in CD15-positive astrocytes (40). This autosomal dominantly 
inherited disorder (47,48) is characterized primarily by pro- 
gressive neuronal loss of the neostriatal GABAergic medium 
spiny neurons (47,49-54). Other brain areas are also affected 
(cerebral cortex, thalamus, neurosecretory hypothalamic nu- 
clei), and the hypothalamic lateral tuberal nucleus displays a 
strikingly severe cell loss (55-57). 

The Alzheimer's disease, on the other hand, is mainly related 
to cortical cholinergic differentiation and to a destruction of 
the magnocellular forebrain area, especially the nucleus of 
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Figure 3. 3D-reconstruction of the overall localization of the magnocellular neurons positive for IRS-1 within the cat 

hypothalamic neurosecretory nuclei. 

  

Meynert (15-30), where the corticopetal cholinergic magno- 
cellular neurons are located (8-14). But, again, milder changes 
are to be found in many brain regions (57-61). Therefore, as 
Kremer (57) stated, "it is hard to pinpoint the "cause" of the 
disruption to a single hypothalamic structure", or to a basal 
forebrain structure. As to endocrine aspects of hypothalamic 

and basal forebrain structures, the same holds. Impaired glu- 
cose tolerance and increased levels of circulating insulin in 
patients with chorea of Huntington have been described (62- 
65), but also denied (57,66-68). None of these patients showed 
clinical signs of diabetes mellitus. 

  

Figure 2. Panel A: Immune staining of IRS-1 in total cell lysate after Western blotting. A14 cells, a NIH 3T3 derived cell 

line overexpressing insulin receptors, were stimulated with 1 jlM insulin for 10 minutes (lane 3) or kept unstimulated (lane 

2). Cells were lysed and 30 fig of protein was applied onto an SDS-polyacrylamide gel and proteins were transferred to 

nitrocellulose filters. The filter was incubated with antibody against IRS-1 (rabbit) at a dilution of 1:2000. Visualization of 

the antibody was by peroxidase conjugated anti-rabbit IgG (goat, supplier Promega) followed by enhanced chemical 

luminescence (ECL, supplier Amersham). Before insulin stimulation, IRS-1 was stained as a single band at 180 kD. Insulin 

induces phosphorylation of a fraction of IRS-1 on multiple Tyr-residues, leading to a mobility shift of a fraction of the 

protein. (Lane 1 contains molecular weight markers). Panel B: Immune precipitation of Shc-GRB-2 complex by She- 

antibodies. A14 cells were kept unstimulated (lane 2) or stimulated with l^M insulin (lane 1). The protein She complexes 

to GRB-2 after insulin stimulation were lysed and She was immune precipitated with She-antibodies (rabbit, dilution 1:50) 

Immune complexes were isolated by protein A sepharose beads. The immune complex was analyzed for coprecipitating 

GRB-2 as outlined in panel C. It is demonstrated that insulin incubation induces coprecipitation of GRB-2. Panel C: 

Detection of GRB-2 in total cell lysates ofA14 cells. 30 [lg of total cell lysate was applied onto a SDS-polyacrylamide gel 

and the protein was transferred to nitrocellulose filters. The filter was incubated with GRB-2 antibodies (rabbit) at dilu- 

tions of 1:5000, 1:2500 and 1:1000, respectively, from left to right. Bound antibodies were visualized by ECL as described 

in panel A. 
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Figure 4. Photomicrograph of cat magnocellular GRB-2- positive neurons near the optic tract, (a) Nissl overview of half 

hypothalamic area, with arrows indicating regions ilustrated in b and c. ENT - entopenduncular nucleus, (b) medial part 

of the supraoptic nucleus with GRB-2-positive neurons, (c) more lateral part of the supraoptic nucleus with GRB-2-positive 

neurons. 
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In Alzheimer's disease patients, lowered fasting and postpran- 
dial glucose values (69) as well as an altered correlation be- 
tween glucose and insulin levels after 24 hours fasting were 
reported (70). 

Although disturbances of the basal forebrain magnocellular 
area in chorea of Huntington and in Alzheimer's disease are 
related to changes in glucose homeostasis, their presence could 
not firmly be proven. Moreover, changes in glucose homeosta- 
sis are till now not related to insulin receptor mechanisms in 
the brain, while the involvement of the insulin signaling path- 
way in Alzheimer's disease is also not proven. 

Nevertheless, the existence of this insulin signaling system in 
the magnocellular forebrain system is an important finding, 
which requires check its presence or absence in the same fore- 
brain areas in chorea of Huntington and in Alzheimer's dis- 
ease. 
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