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ABSTRACT 

• Restenosis after intravascular inter\>ention is one of 
the most important unsolved clinical and economic prob- 
lems in the management of cardiovascular disease. Although 
neither its pathogenesis nor its prevention are yet defined, the 
early and late histologic appearance of the angioplasty state 
are known. Immediately after angioplasty, theatherotna has 
fissures, and the normal segment of the vessel circumference 
is stretched. There is substantial evidence of intimal injury. 
When restenosis develops at 1-4 months the histologic ap- 
pearance of the restenotic lesion is intimalhypetplasia. Given 
this endpoint, we may theorize that the proximate cause of 
this response is denuding and stretching vascular injury. 
Since the healing response to tissue injury has been studied 
extensively, we can hypothesize the major milestones in the 
temporal sequence of restenosis are platelet aggregation, 
inflammatory cell infiltration, release of growth factors, 
medial smooth muscle cell modulation and proliferation, 
proteogfycan synthesis and extracellular matrix remodelling. 
At each of these steps, there are potential inhibitors. The 
resolution of the problem of restenosis may require both 
removal of atheroma mass and appropriate timing and 
effective delivery of inhibitors of intimal hyperplasia to the 
injury site in adequate concentration. 

INTRODUCTION 

• Between 1980 and 1989, the estimated volume of 
percutaneous transluminal coronary angioplasty (PTCA) 
procedures increased twenty fold from 10,000 to 225,000 
per year. Trend analysts predict the volume will double 
again by the mid 1990 's (1). Restenosis, the major problem 
following angioplasty has been reported from the National 
Heart, Lung, and Blood Institute registry and from indi- 

vidual high volume angioplasty centers to be 25-55% (2- 
6). Beyond the adverse outcome itself this problem has 
serious economic impact, since its treatment is often re- 
angioplasty in economic terms one of every three PTCA 
procedures performed generates the potential need for a 
fourth PTCA. Thus at one of the nation's leading angioplasty 
centers, 37% of the PTCAs were repeat procedures (7). 

Central to the problem of restenosis is that its 
pathogenesis remains uncertain. We believe there is a 
substantial body of research in oncology, atherogenesis, 
and wound healing that is relevant to the pathogenesis of 
restenosis. In this manuscript we will begin by relating 
these data to the time course and histopathology of coro- 
nary restenosis in man. We will then propose a hypotheti- 
cal schema for the pathogenesis of restenosis, and con- 
clude by discussing the possibilities for its prevention. 

THE TIME COURSE OF RESTENOSIS 

• Although a few specific vascular morphologies (e.g., 
long lesions, complete occlusions and disrupted surfaces) 
have a higher probability of restenosis (8), coronary 
angiography has been of little value for predicting in which 
individual lesions restenosis will occur. Serial coronary 
angiography has, however, defined the time course of 
restenosis. Nobuyoshi et al repeated coronary angiography 
in 229 patients at 1,3,6 and 12 months after successful 
PTCA (3). The actuarial restenosis rate was 13 % at one 
month, 43 % at 3 months, and 53 % at one year. They 
concluded that restenosis develops between the first and 
third month post PTCA. This conclusion has been con- 
firmed by Serruys et al who performed quantitative coro- 
nary angiography at a single predetermined followup time 
of 1,2,3, or 4 months in 342 patients (4). Like Nobuyoshi 
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et al, they found the most substantial change in lumen 
diameter occured between the second and thrd months. 
Serruys et al also made the important observation that 
"almost all lesions deteriorate to some extent by 120 days 
post PTCA". Thus, whereas prior angiographic studies 
used categorical cutpoints to define restenosis as present 
or absent, these data suggest that restenosis is an expected 
or "normal" biologic response which varies in magnitude. 
This seemingly semantic distinction may be critical to our 
understanding of restenosis, as we will describe below. 

THE IMMEDIATE AMD LATE CONSEQUENCES OF 

PTCA 

• Angiography is a relatively insensitive method for 
detecting intimal injury (9). Accordingly, coronary 
angioscopy has recently beenused before, during and after 
balloon angioplasty (Table 1). Uchida et al found that 
whereas 64% of PTCA sites appeared angiographically 
normal immediately after PTCA, all had angioscopic 
evidence of intimal trauma (10), a finding confirmed by 
Mizunoet al (11). These angioscopic data are concordant 
with postmortem studies of patients dying within 30 days 
of PTCA, which consistently show that even in 
angiographically successful angioplasty there is a high 
incidence of intimal dissection, hemorrhage and thrombus 
formation (12-25). The largest single study, by Potkin et al, 
found that 95% of angiographically successful angiopla- 
sties had evidence of extensive intimal damage (19). This 
histologic finding presumably is the counterpart of the 
surface dismption with hemorrhage and thrombus forma- 
tion observed by in vivo angioscopy. We can conclude that 
PTCA causes substantial intimal injury that is not detected 
by angiography. 

There is a second, even less readily detected imme- 

Table 1: 
ANGIOSCOPIC DETECTION OF PTCA-INDUCED INJURY 

AUTHOR    n   THROMBI DISSECTION   HEMORRHAGE   NORMAL ANGIO 

 
diate effect of PTCA. Approximately 70% of coronary 
lesions are eccentric, such that the circumference of the 
atherosclerotic vessel consists of two segments: the athero- 
ma and the relatively normal vessel wall. The force of 
balloon dilatation has different effects on the two seg- 
ments. The atheroma, being stiff and noncompressible, 
develops fissures, most commonly at the junction between 
the normal segment of the vessel and atheroma (Fig. 1) 
(16-19). 

The distending force of the balloon also can mark- 
edly increase the length of the normal segment, and may 
be sufficient to tear apart the media (16). This finding is 
important, because the actual increase in cross sectional 
area resulting from even fissures in the atheroma is quite 

 

FIGURE 1: Segments of right coronary artery from a patient who 
died after emergency PTCA followed by bypass surgery for massive 
myocardial infarction. A: Proximal non-treated segment; B) Segment from 
balloon angioplasty site showing of separation of atheroma (a) from 
adjacent normal arterial wall (arrowhead) with dissection of blood through 
disrupted media (arrow) (H&E stain, X25). 

small (19). Thus although most investigators have con- 
cluded that fissuring causes the evident immediate im- 
provement in angiographic lumen diameter after 
angioplasty, it now seems likely that "fissure" hypothesis 
is incomplete. Postmortem fixation obscures the stretch- 
ing effect of balloon dilation because the normal segment 
co'ntracts during fixation (26). Thus the less readily recog- 
nized immediate effect of balloon dilation is stretching of 
the normal segment of the vessel wall (16-18). 

INTIMAL INJURY AND INCREASED SEGMENT 
LENGTH: STIMULI FOR HYPERPLASIA 

• Our central hypotheses is that these two recognized 
mechanisms of immediate increase in arterial diameter 
also are the stimuli to late restenosis. At 1-3 months after 
PTCA when coronary angiography indicates that restenosis 
is developing histologic studies consistently show intimal 
hyperplasia. The intimal hyperplasia is not confined to the 
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FIGURE 2: photomicrographs of intimal hyperplasia: A-after balloon angioplasty; B-in a dermal scar; and C - (shown at lower magnification) on 
a synthetic (Gortex) vascular graft (G). Note the histologic similary of the proliferation (A and B xlOO, Cx40). 

  

atheromatous segment of the vessel circumference and 
often is prominent over the normal segment. This is 
important because both denuding (27,28) and stretching 
injury (29,30) are potent stimuli to intimal hyperplasia of 
normal vessels in animal studies. Thus post-PTCA 
angiographic narrowing and intimal hyperplasia of both 
the normal and atherosclerotic segments suggest that 
restenosis is a generalized response to vascular injury, 
which is not dependent upon the presence of atheroscle- 
rosis. 

This concept that restenosis is due to a localized 
hyperplastic response to injury is supported by in vivo 
human studies. There have now been a number of patients 
who developed restenosis after their first atherectomy, in 
whom the procedure was repeated (31). Examined micro- 
scopically, these tissue samples of restenosis, are quite 
striking. There often is a sharp linear demarcation be- 
tween the residual atheroma and a newly formed layer of 
intimal hyperplasia. Histologically this tissue appears to be 
indistinguishable from post-PTCA intimal hyperplasia. 
Furthermore, tissue with this same histologic appearance 
also develops on the inner surface of isolated Dacron 
grafts in the first three months after placement (Fig. 2) 
(32). Taken together, we may use the foregoing to infer 
that the histologic basis of restenosis after PTCA is intimal 
hyperplasia, which in turn is a normal biologic response to 
vascular injury. 

If restenosis is the vascular manifestation of a 
general biologic responce to tissue injury, then studies of 
the molecular and cell biology of wound healing (33) 
become potentially relevant to its pathogenesis. Wound 
healing is a generalized biologic response that has been 
most extensively studied in the skin and the eye. Healing 

can be described in three overlapping phases (33) inflam- 
mation, granulation and matrix formation (Fig. 3). We will 
first review these three phases, then apply this information 
to develop a hypothetical construct of restenosis. 

THE INFLAMMATORY PHASE OF WOUND 

HEALING: CELLS  AMD GROWTH FACTORS 

• The inflammatory phase begins with coagulation of 
blood and soluble serum fibronectin to form an extracel- 

 

FIG URE 3: The three phases of wound healing. The inflammatory 
phase begins at the instant of injury and persist for several days. Predomi- 
nant features of this phase are platelet aggregation, deposition of the 
fibronectin extracellular matrix, and infiltration of inflammatory cells. The 
granulation phase overlaps with both the end of the inflammatory phase 
and the beginning of the matrix remodelling phase. The granulation phase 
lasts for 1-2 weeks, and consists predominantly of modulation, migration, 
and proliferation of mesenchymal cells adjacent to the wound site. The 
matrix remodelling phase persists for months. It consists of predominantly 
of proteoglycan deposition, followed by conversation of the extracellular 
matrix to collagen and elastin. 
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lular matrix. Fibronectin has binding domains for both 
inflammatory cells and biologically active substances that 
appear in the early phases of wound healing. At the same 
time platelets aggregate on the wound surface. The acti- 
vated platelets release substances which promote local 
vasoconstriction and thrombus formation, and growth 
factors which activate mesenchymal cells in the vicinity of 
injured tissue. Within a few hours monocytes also appear, 
increasing in number over the first few days. Like platelets, 
monocytes secrete growth factors capable of initiating and 
promoting local tissue mesenchymal cell migration. 

Although their specific roles are incompletely un- 
derstood, there is 1 ittle doubt growth factors released in the 
inflmmatory phase play an important role in the second 
and third phase of wound healing (33-37). Topically 
applied growth factors, e. g., epidermal growth factor (34), 
markedly accelerate wound healing in man. Growth fac- 
tors have many different cellular sources, more than one 
biologic action, overlapping functions, and serve to poten- 
tiate (or inhibit) each other's effects (35,36). With the 
caveat that the field is quite complex and the, table may be 
incomplete we have listed growth factors which may play 
an important role in wound healing and their most impor- 
tant potential roles in restenosis (Table 2). 

TABLE 2: 
POTENTIAL ROLE OF GROWTH FACTORS IN RESTENOSIS 

Growth Factor     Potential Action in Restenosis____________ 
PDGF                   Stimulate SMC migration and proliferation 
FGF Cause endothelial cell and fibroblast prolifera- 
tion 
EGF                     Replace heparin on cell surface, promote SMC 

proliferation 
IGF-1 Promote SMC proliferation and extracellular 

matrix production 
TGF Regulate matrix remodelling, possibly regulate 

other growth factors 

Platelet derived growth factor (PDGF), released 
from the alpha granules of platelets, is a potent stimulus to 
smooth muscle cell migration and proliferation (38,39). 
The action of PDGF may not be confined to the early 
period of inflammation, however, since it also is secreted 
by activated macrophages and smooth muscle cells. Al- 
though PDGF can stimulate smooth muscle cell prolifera- 
tion independently, it almost certainly does not act alone 
after tissue injury. PDGF and fibroblast growth factor 
(FGF) make cells "competent" to be acted upon by a 
second class of growth factors that cause "progression" to 
actual DNA synthesis. The latter group include, epidermal 
growth factor (EGF) and insulin like growth factor I (IGF- 
1) (40-43). Fibroblast growth factor (FGF) is one of the 
most potent known stimuli to endothelial cell proliferation 
(40). FGF lacks signal peptide sequences suggesting it is 
not secreted by cells; it may be activated during the process 
of binding and release from heparin or other extracellular 
matrix components. Other growth factors, such as EGF 

and IGF-1 stimulate mesenchymal cell proliferation 
(41,42), and EGF competes with heparin for the same 
cellular binding site (42). Transforming growth factor 
(TGF) beta may function either as a growth stimulator or 
a growth inhibitor for different cell types. It also has the 
ability to regulate differentiated cell function and is prob- 
ably the most important growth factor in regulation of the 
extracellular matrix by vascular smooth muscle cells (44- 
47). TGF beta activates gene expression of proteoglycans 
and collagen, decreases the synthesis of proteolytic en- 
zymes that degrade matrix proteins, and increases the 
synthesis of cell receptors for matrix proteins (44). Indeed, 
extracellular matrix synthesis induced by other growth 
promoters (PDGF, EGF, and FGF) is less than 20% of 
that induced by TGF beta (45). Synthesis of chondroitin 
sulfate, the dominant extracellular matrix protein early in 
intimal hyperplasia, is increased twentyfold by TGF beta 
(46). 

The temporal sequence of growth factor expression 
after injury, however, is not yet defined. In our study of 
growth factor mRNA expression after aortic balloon in- 
jury in the rat, we found a twofold increase in PDGF B- 
chain mRNA and a ninefold induction of IGF-1 mRNA 
expression beginning at day 3, peaking at day 7 and 
returning to baseline at 2 weeks (48). Cromack et al have 
found a substantial increase in TGF beta in healing tissue 
during the same time period (49). Thus the local tissue 
level of at least three growth factors is markedly increased 
during wound healing. While both the cell sources and the 
details of the interactions among these factors and other 
cytokines remains to be defined, it is quite likely that 
locally produced growth factors are a major stimulus for 
mesenchymal cell migration, proliferation and extracellu- 
lar matrix production after tissue injury. 

THE GRANULATION PHASE OF WOUND 
HEALING: CELLULAR PROLIFERATION 

• The beginning of local tissue cell migration into the 
wound site is a convenient marker for the onset of the 
granulation phase of wound healing (so called because 
large numbers of newly formed capillaries on the surface 
impact a granular appearance). The fibronectin extracel- 
lular matrix facilitates migration of epithelial or endothe- 
lial cells from the wound margin, and fibroblasts or smooth 
muscle cells from adjacent tissue. Both cell types prolifer- 
ate. The epithelial or endothelial cells cover the wound 
surface; the fibroblast and/or smooth muscle cells synthe- 
size new extracellular matrix components, particularly 
hyaluronic acid and proteoglycans. 

The most prominent cell in intimal hyperplasia is 
the smooth muscle cell. Control of smooth muscle cell 
proliferation is determined by the actions of mitogens (e.g. 
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PDGF, IGF-1) and the opposing effects of inhibitors 
including TGF beta. Viewed microscopically, the smooth 
muscle cell has two phenotypes. The contractile pheno- 
type is a quiescent cell with numerous myofilaments. In the 
normal arterial media it provides both vasomotion and 
structural support to the vessel. The synthetic phenotype 
has abundant synthetic organelles (e.g. free ribosomes, 
Golgi apparatus, rough endoplasmic reticulum). This phe- 
notype is secretory: in particular, it produces extracellular 
matrix proteoglycan and collagen. Contractile phenotype 
smooth muscle cells in cell culture are unresponsive to 
growth factors, whereas appropriately treated synthetic 
phenotype cells are responsive (50). When tissue is in- 
jured, a proportion of the nearby quiescent contractile 
smooth muscle cells modulate to the more primitive 
synthetic phenotype which then migrate to the injured 
area. 

The mechanisms responsible for modulation of the 
smooth muscle phenotype are not known. Both endothe- 
lial cells and growth factors probably play an important 
role. Quiescent endothelial cells inhibit smooth muscle 
cell growth, but lose this property when they are prolifer- 
ating. The inhibitory effect is probably meditated by a 
heparin-like factor of endothelial cell origin, which at- 
taches to the basal lamina of certain mesenchymal cells 
(51). It is possible that removal of heparin from the smooth 
muscle cell surface makes it responsive to growth factors 
(52,53). When the cell is responsive, PDGF alone can 
stimulate smooth muscle cell migration (38), and several 
growth factors can stimulate smooth muscle cell prolifera- 
tion. The stage of cellular proliferation in response to 
injury lasts roughly a week. It begins to terminate as the 
surface of the wound is covered by migrating cells, and the 
third phase of healing begins. 

THE MATRIX REMODELLING PHASE OF 
WOUND HEALING:PROTEOGLYCAN 
SYNTHESIS 

• The third phase, extracellular matrix deposition 
and remodeling, continues for months. When the wound 
surface is covered by a cell layer, mesenchymal cells which 
migrated into the wound area slow their proliferation and 
begin to produce large amounts of proteoglycan which 
replaces fibronectin as the major extracellular matrix 
component. As the remodelling phase progresses, the 
proteoglycan is in turn replaced by large fibrous bundles 
of type I collagen and elastin. Proteoglycans are a diverse 
group of structurally related macromolecules that are 
found in the extracellular matrix and in association with 
the basement and plasma membrane of cells. The common 
structural elements are a protein backbone to which are 
attached one or more linear glycosoaminoglycans. Al- 
though proteoglycans constitute only about 5% of the 
normal vessel dry weight, they are prominent in the 

  

extracellular matrix of intimal hyperplasia. Three major 
vascular proteoglycans are chondroitin sulfate (CSPG), 
dermatan sulfate (DSPG) and heparin sulfate (HSPG). 
Smooth muscle cells synthesize CSPG and DSPG, which 
are the predominant proteoglycans in the extracellular 
matrix of the healing wound. Both intimal denudation and 
stretching increase proteogycan synthesis. CSPG and 
DSPG are central to wound healing because they promote 
by TGF beta (56). In contrast endothelial cells synthesize 
predominantly HSPG, which is not controlled by TGF 
beta (57). The HSPG in the endothelial cell basal lamina 
probably controls the phenotype of the smooth muscle 
cell. Since heparin competes with EGF for smooth muscle 
cell binding sites, it is possible that HSPG exerts its 
inhibitory effect by preventing growth factor access to the 
cell surface (53). Alternatively, the antiproliferative effect 
of heparin may be due to its ability to potentiate the 
biologic activity of TGF beta by dissociating it from its 
carrier protein that normally renders it inactive (54). 
HSPG is present in quiescent smooth muscle cell cultures 
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FIGURE 4: At-

herectomy speci- 
men from the 
femoral artery of a 
patient who de- 
veloped reste- 
nosis after bal- 
loon angioplasty. 
A. Hematoxylin 
and eosin stained 
specimen show- 
ing 3 zones: S-a 
superficial zone 
of smooth muscle 
cell proliferation 
(restenosis); L- 
theacellularlipid 
core of the pla- 
que, and F-the 
deeper fibrous 
region. 
B. Alcian blue/ 
PAS stain show- 
ing localization 
of acid mucupo- 
lysaccharide ma- 
terial (proteo-) to 
the re- 
gion of intense 
smooth muscle 
cell proliferation 
(arrow) (x40). 
glycan 
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but absent in proliferating cell cultures (52). Although 
antiproliferative, heparin also markedly stimulates the 
synthesis of proteoglycans by smooth muscle cells (55). 

THE MECHANISM OF RESTEHOS1S: TESTABLE 

HYPOTHESES 

• We can place restenosis into this wound healing 
schema since angioscopy and postmortem studies estab- 
lish that vascular injury is extensive after balloon 
angioplasty. The serial angiography studies of Nobuyoshi 
et al, and Serruys et al establish the appearance of restenosis 
during the third phase of extracellular matrix formation 
and remodelling (3,4). Autopsy and atherectomy data 
establish that the histology of the restenotic tissue consists 
of synthetic smooth muscle cells distributed within a large 
mass of extracellular matrix (12,31). Special histologic 
stains show that much of the extracellular matrix is 
proteoglycan (Fig. 4). 

We also know that growth factors are expressed at 
the vascular injury site, and that these factors stimulate 
smooth muscle cell proliferation and extracellular matrix 
synthesis. Thus although the mechanism of vascular 
restenosis is not known, we can construct a hypothesis for 
the temporal sequence of restenosis using these data (Fig. 
5). 

muscle cells (51,52). Removal of heparin leads to a change 
in smooth muscle cell phenotype and makes the cell 
receptive to the action of growth factors (50,53). The 
heparin released into the extracellular space also binds 
PDGF, EGF and FGF locally (58) increasing the local 
concentration of growth factors. Fibronectin released 
from plasma forms an early extracellular matrix that, with 
coagulated blood, fills the fissured areas on the vessel 
surface (33). 

Days 2-4: On day 2 a proportion of the smooth 
muscle cells in the media begin to increase DNA synthesis 
(59). PDGF, TGF, and other growth factors released early 
from platelets and later from macrophages (35), may 
induce this transformation. Smooth muscle cells prolifer- 
ate first in the media (50). By day 4, the smooth muscle 
cells begin to migrate to the injured area, and endothelial 
cells migrate from the lateral edge of the damaged blood 
vessel surface (53,59). A principal growth factor for endo- 
thelial migration may be FGF(40). The migration of cells 
induced by growth factors is facilitated by fibronectin and 
hyaluronic acid in the extracellular matrix (60-62). 

Days 5-10: In extensive injury about 30% of the 
local smooth muscle cells migrate from the media to the 
intima, but only about half of the cells that migrate to the 
wound area proliferate (63). Once in the myointimal 

  

THE MECHANISM OF RESTENOSiS: A HYPOTHESIS 

  

 

  

FIGURES: A hypothetical schema for restenosis following injury to the vascular surface. The names of the phases of wound healing have been retained 

to support the analogy between the two phenomena. 

  

Day 1: Since the atheroma is inelastic, much of the 
dilating force of the balloon is transmitted to the normal 
segment of the vascular circumference. When the dilating 
force exceeds the limit of the normal segment to stretch, 
tearing begins. Often this occurs at the junction between 
normal and atherosclerotic tissue, of the atheroma itself 
develops fissures (13,19). The internal elastic lamina and 
media may be torn apart (16-18). Platelets aggregate at 
these sites of vascular injury. The platelets release a 
plethora of substances among which are growth factors 
(58) and an endoglycosidase which cleaves heparin 
proteoglycan from the surface of endothelial and smooth 

space, the smooth muscle cells begin to produce chodroitin 
sulfate and dermatan sulfate proteoglycan (62). This 
proteoglycan gradually replaces the fibronectin as the 
dominant component of the extracellular matrix (62). By 
day 5, transforming growth factor beta, the most potent of 
the growth factors regulating extracellular matrix forma- 
tion (45), begins to increase substantially in the injured 
tissue (49). Depending on the area of denudation, endo- 
thelial cells cover the injured surface by about day 7 
(63,64). If the area of denudation is small (e.g., less than 
1 cm.long) intimal hyperplasia does not ensue (65). Thus, 
there is probably a critical time (5-7 days) or lesion size in 
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which endothelial coverage can precede maximum smooth 
muscle cell proliferation. Conversely, larger areas can 
remain chronically devoid of endothelial cells (66). 

Days 10-120: As the endothelial cells cover the 
injured blood vessel surface, they cease proliferating, and 
begin to synthesize heparin proteoglycan (55). Adjacent 
smooth muscle cells avidly bind the heparin (quiescent 
smooth muscle cells bind ten times more heparin than 
proliferating cells) (52). The smooth muscle cells become 
unresponsive to the proliferative effects of growth factors 
(51). Since smooth muscle cell proteoglycan synthesis is 
independent of migration and proliferation, however, 
extracellular matrix production does not necessarily cease 
(57). Restoration of blood vessel surface integrity sharply 
reduces loss of proteoglycan from the injured surface, 
(67), and proteogycan rapidly accumulates in the 
myointimal space. The injured blood vessel surface devel- 
ops the histologic appearance of intimal hyperplasia: 
smooth muscle cells scattered through a loose extracellu- 
lar matrix (31). 

By two weeks the synthetic smooth muscle cells in 
the extracellular matrix have begun to revert back to the 
contractile phenotype (53,66). There is, however, a strik- 
ing difference in behaviour depending upon their physical 
location intimal smooth muscle cells adjoining a de- 
endothelialized surface have fifty times the proliferation 
rate of those adjacent to a reendothelialized surface (59). 
By 6 weeks the volume of myofilaments as percentage of 
cytoplasmic volume (an index of the contractile pheno- 
type) is midway in its return to its value in the resting state. 
Depending on the magnitude of injury and possibly other 
factors, intimal hyperplasia reaches a peak at 4-12 weeks 
(68-71). As smooth muscle cell proliferation diminishes 
while proteoglycan synthesis continues, the volume of 
intimal hyperplasia mass occupied by the smooth muscle 
cell diminishes (69). The return to contractile phenotype 
is paralleled by a change in the extracellular matrix:1 

proteoglycan is gradually replaced by collagen (72). In the 
relatively normal segments of the vessel, this fibrotic 
remodelling and the restoration of responsiveness to vaso- 
constrictive stimuli (73,74) may contribute to the 
angiographic phenomenon of narrowing in normal seg- 
ment proximal to the diseased segment, which often 
accompanies restenosis (4). 

Day 120-135: By 180 days the relative percentage of 
contractile phenotype smooth muscle cells has returned to 
the resting state level (53,75), and the restenotic response 
is probably largely complete. In the small minority of 
blood vessels with areas of chronic endothelial denuda- 
tion, however, smooth muscle proliferation continues at 
levels many times of the resting state (6% per day vs resting 
0.1% per day) (59). Thus in a small percentage of lesions 
restenosis may become evident between six and 12 months 
(3). 

POTENTIAL DIRECTIONS FOR PREVENTION OF 

RESTEHOSIS 

• The preceding hypothetical construct suggest that 
there are many rate-limiting steps in the development of 
intimal hyperplasia and by inference, a number of sites for 
potential intervention. Some of these rate limiting steps 
have already been tested in clinical trials; no intervention 
has so far been sufficiently successful to warrant 
widerspread use. Before discussing possible interven- 
tions, therefore, we need to examine critically several 
potential limitations of previous clinical trials. 1) The 
relationship of dose and duration of the agent delivered at 
the injury site may have been inappropriate, for instance, 
thrombocytopenia substantially inhibits intimal hyperplasia 
in animals (76), yet antiplatelet agents have been ineffec- 
tive in man. Since the half-time for platelet aggregation 
after injury is measured in hours (77), it is possible that a 
brief, intravenous infusion of a platelet antagonist in this 
period would be more effective than lower dose, long term 
oral administration. 2) The timing of drug administration 
may have been inappropriate. For instance, heparin inhib- 
its intimal hyperplasia in animals, but not in man. Heparin 
binds growth factors at the injury site early after injury, and 
may thereby facilitate cell migration and proliferation. 
Since heparin also inhibits smooth muscle cell prolifera- 
tion in the third phase of wound healing either late or 
continued administration of heparin might be much more 
effective than brief intravenous therapy immediately after 
injury. 3) It is not always immediately apparent what 
therapeutic effect is desirable. For instance, given that 
growth factors accelerate wound healing through stimula- 
tion of mesenchymal cell proliferation, it is not clear if this 
effect should be facilitated or inhibited. Within these 
limitations, potential therapie and their rationale are 
listed in Table 3. 

TABLE 3: POTENTIAL THERAPIES IN RESTENOSIS 
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THE INFLAMMATORY PHASE: PLATELET 
INHIBITORS AND AHTIIHFLAMMATORY AGENTS 

U The biologic rationale for platelet antagonists is 
strong. Platelets initiate the healing response to injury (76- 
78) by release of growth factors (including PDGF and 
TGF beta) from their alpha granules. In addition they are 
the source of the endoglycosidase that cleaves heparin 
from the smooth muscle cells, a potentially critical step in 
smooth cell phenotypic modulation. Further, throm- 
bocytopenia inhibits intimal hyperplasia after vascular 
injury in atherosclerotic animals possibly through reduced 
smooth muscle migration to the injury site (79). Carefully 
conducted clinical trials of aspirin and dipyridamole, 
however, have been unsuccessful. Schwartz et al reported 
a randomized blind placebo controlled study of long term 
oral aspirin-dipyridamole combination (330 mg-75 mg 
tid) combined with a 24 hour interval of intravenous 
dipyridamole in 376 patients. At 4-7 months post-PTCA, 
followup angiography showed that 38% of treated patients 
and 39% of placebo patients had restenosis (80). Thronton 
et al compared long term oral 325 mg aspirin to a coumadin 
dose sufficient to maintain 2-2.5 times the control value. 
The restenosis rate in the 126 patients aspirin cohort was 
27%, a level not different from the coumadin-treated 
group, and within the range of cu rrently reported restenosis 
rates (81). In addition to the aforementioned limitations of 
dose and duration, it is possible that these negative results 
reflect the dual effect of aspirin on throboxane and 
prostacyclin metabolism. Thromboxane A2 receptor an- 
tagonists could circumvent this limitation. Finally, newly 
developed monoclonal antibodies to platelet receptors, 
such as the Ilb/IIIa receptor for fibrinogen, produce- 
transient and potent antihemostatic effects. Platelet aggre- 
gation can be effectively eliminated, with return over 48 
hours, in dose dependent manner (78). The potential value 
of such therapies has not been tested in man. 

The rationale for use of antiflammatory agents is 
that they inhibit both cell accumulation and/or activation 
at the injury site. Reduction of the number of activated 
cells could decrease expression of growth factors, inhibit- 
ing the subsequent sequence of smooth muscle cell pheno- 
typic modulation, migration, proliferation and extracellu- 
lar matrix formation. Cortisol inhibits smooth muscle cell 
protein synthesis and proliferation in cell culture (82), and 
the combination of steroids with heparin inhibits smooth 
muscle cell proliferation in animals (83). Liu et al, how- 
ever, report that the administration of steroids for one 
week post PTCA did not reduce the restenosis rate (84). 
Cyclospirin A inhibits T-lymphocyte activation. These 
cells may regulate the expression of growth factors by 
smooth muscle cells after vascular injury (85). Cyclospirin 
A produced a highly significant reduction in both smooth 
muscle cell number and extracellular matrix production in 

the denuded rat endothelium (85). Omega 3 fatty acids, 
which have both antiinflammatory and antiplatelet ac- 
tions, have been reported to reduce restenosis in some 
clinical trials but not in others (86-90). The potential value 
of antiinflammmatory agents, therefore, remains entirely 
unresolved. 

THE GRANULATION PHASE: CYTOTOXICS AND 

GROWTH FAC- TOR ANTAGONISTS 

• The rationale for use of cytotoxics is that some can 
destroy smooth muscle cells. A logical choice in this 
category might be agents shown to be effective in 
myosarcomas. The combination of actinomycin and 
vincristine is quite effective in destroying proliferating 
smooth muscle cells. Barath et al used that combination to 
destroy proliferating malignant smooth muscle cells after 
balloon denudation in animals (91). There have been no 
clinical trials of cytotoxic agents in restenosis. 

The rationale for use of growth factor antagonists is 
that they could inhibit smooth muscle cell modulation, 
migration, or proliferation. Proliferating smooth muscle 
eels at 2 weeks post balloon injury produce ten times the 
amount of PDGF as non proliferating cells (39), and 
messenger RNA tissue concentrations of its competence 
factor, IGF-1 are equally increased in injured areas (48). 
Monoclonal antibodies and antagonists to receptors for 
various growth factors may inhibit cell growth in vitro (92), 
but none have yet been tested in animals or man. Heparin 
is particularly promising because it effectively prevents 
smooth muscle proliferation in cell culture, and intimal 
hyperplasia in animals (93,94). Nevertheless heparin is 
also a potent stimulus to extracellular matrix production. 
The antiproliferative and anticoagulant domains of hepa- 
rin are different, so that it is possible to construct an 
antiproliferative, non-anticoagulant form of heparin (95). 
Thus, although heparin has not yet been shown to be 
effective in preventing restenosis in man (96), it is possible 
that ongoing clinical trials with higher doses of non- 
anticoagulant heparin may prove to be effective. Finally, 
angiotensin-converting enzyme inhibitors have recently 
been reported to prevent myointimal proliferation after 
vascular injury in rats (97), presumably through their 
ability to block angiotensinll-mediated induction of PDGF- 
A gene expression in aortic smooth muscle cells (98). 
Their potential role in humans remains to be defined. 

THE EXTRACELLULAR MATRIX PHASE 

ANTISECRETORY AGENTS 

• There are a variety of unrelated agents which are 
capable of inhibiting synthesis of extracellular matrix. 
Both colchicine (99) and DMSO (100) reduce the number 
of secretory organelles in smooth muscle cells. This effect 
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is associated with significant reduction in extracellular 
matrix production. Retinoids also inhibit extracellular 
matrix production in the animal model (101,102), and are 
being tested in fibroproliferative disorders such as keloid 
formation (102). Possibly because the role of the extracel- 
lular matrix in restenosis has not been recognized, the 
antisecretory agents have not yet been formally tested for 
prevention of restenosis. 

OTHER MEANS OF PREVENTING RESTEHOSIS 

• There are a number of agents that may prevent 
intimal hyperplasia through actions that are riot clearly 
understood. Lovastatin, prostaglandin and calcium an- 
tagonists, for instance, all inhibit smooth muscle cell 
proliferation and/or migration (103-108). Vascular stents, 
while not preventing the intimal hyperplasia component of 
restenosis, eliminate elastic recoil and may be particularly 
effective when the residual coronary lumen diameter is 
large, e.g., >3mm. 

Even with a clear understanding of the pathogenesis 
of restenosis and the subsequent development of pharma- 
cologic methods to reduce the hyperplasia response to 
injury, it seems unlikely that this effect alone will resolve 
the problem of restenosis. Assuming restenosis is due to 
the combined effects of intimal hyperplasia and elastic 
recoil, inhibition of intimal hyperplasia will probably be 
most effective when combined with partial or complete 
removal of atheroma mass. Several methods for removing 
atheroma mass including atherectomy (109) and excimer 
laser angioplasty (110,111) are now in large scale coronary 
angioplasty trials. Atherectomy requires use of a balloon 
and does not eliminate the stretching stimulus; the excimer 
laser and other mechanical ablation devices (112) do not 
require a balloon. The resolution of restenosis most likely 
will be achieved, we believe, by the combined effects of 
inhibition of intimal hyperplasia and removal of atheroma 
mass. 
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