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SUMMARY 

• Inbred strains ofWistar rats that spontaneously develop 

high blood pressure are used commonly as models of essential 

hypertension. In two of these strains, the spontaneously hyper- 
tensive rat and the genetically hypertensive rat, there is evi- 

dence for peripheral neurotrophic abnormalities. In the spon- 

taneously hypertensive rat, there is elevated production of 

nerve growth factor, but the numbers of sympathetic and sen- 

sory neurons suggest that there may also be abnormal avail- 

ability of some other neurotrophins early in development. In the 
genetically hypertensive rats, there is apparent decreased sym- 

pathetic access to and increased sensory access to nerve growth 

factor. In neither case is it clear whether or not there is any 

causal relationship between the neurotrophic abnormality and 

genesis of elevated blood pressure. The mechanistic relevance 

of the spontaneously hypertensive rats or the genetically 
hypertensive rats to the clinical syndrome of essential hyper- 

tension is similarly uncertain. However, both of these strains 

constitute interesting and potentially valuable systems for 

studying the neurotrophic regulation of normal development. 

INTRODUCTION 

The great majority of preclinical studies of arterial hyperten- 
sion use one or another of the inbred rat strains that exhibit a 
hereditary predisposition for elevated blood pressure (1). Of 
these genetically hypertensive strains, two have been most 
widely characterized and both of these have been demonstrated 
to possess properties that are of interest to developmental neu- 
robiologists as well as to hypertensiologists. 

The two strains were both developed at nearly the same time. 
In 1958, Smirk and colleagues (2) in New Zealand reported 
the existence of the genetically hypertensive (GH) rat strain, 
which had been produced by repetitive inbreeding from the de- 
scendants of a single pair of Wistar rats selected for above- 
average blood pressures. The absolute arterial pressure levels 
obtained by this process rose by only a few mm Hg with each 
generation, suggesting that numerous polygenes were involved, 
each with only a small effect. This was supported further by 
backcross experiments which indicated the participation of a 
relatively large number of genetic factors (3,4). In 1962, Oka- 
moto and Aoki (5) in Japan described the spontaneously hyper- 
tensive rats (SHR). This was also derived by inbreeding from 
Wistar stock, but differed from the GH in having developed a 
much more substantial degree of hypertension within the first 
few generations and by the fact that backcross experiments 
indicated the involvement of only a small number of genes in 
generating the hypertension (6, 7). 

See Editorial on page 5 

As human essential hypertension appears to be extremely poly- 
genie, the GH seems likely to bear a closer resemblance to the 
clinical situation than does the SHR. Despite this, however, the 
GH rat has been studied relatively little. There are two main 
reasons for this. Because the degree of hypertension exhibited 
was more dramatic in early SHR generations than in GH ones, 
the SHR strain appeared a more attractive proposition for ob- 
taining clear separation of data between hypertensive and con- 
trol animals. Besides, the effective way in which SHR stocks 
were quickly made available for breeding subcolonies, rapidly 
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provided a considerable body of background reference data for 
this strain among the international hypertensiology commu- 
nity. 

Strikingly, the available data indicate that both SHR and GH 
strains are characterized not only by elevated blood pressure, 
which is present at the latest within a few days of birth and rises 
to a plateau over the first 10-12 weeks of postnatal life, but also 
by striking abnormalities in development of some neural crest- 
derived peripheral neuron populations. The purpose of this 
review is to summarize current evidence relating to these 
neurotrophic defects and to assess whether or not they appear 
likely to be causally linked to the development of hypertension. 

PROPERTIES OF THE SPONTANEOUSLY 

HYPERTENSIVE RATS 

•        Peripheral nervous system abnormalities 

•         Is there sympathetic nervous system overactivity? 

The truism that sympathetic nervous system activity contrib- 
utes to absolute arterial blood pressure made sympathetic 
overactivity an obvious candidate as a causal factor in devel- 
opment of hypertension in the SHR. Electrical recording from 
sympathetic multifibre preparations from SHR and from back- 
crosses with its normotensive control, the Wistar-Kyoto (WKY) 
strain, showed that discharge rate was increased in proportion 
to the degree of blood pressure elevation (8-11). Increased sym- 
pathetic drive was also suggested by observations of increased 
catecholamine spillover into plasma in SHR (12) and increased 
tissue turnover of noradrenaline (13). 

On the other hand, neurochemical data on levels of neuropep- 
tide tyrosine (NPY) in single sympathetic neurons (14,15) sup- 
port the presence of similar discharge rates in each strain. The 
absolute intracellular level of NPY has been shown to vary pro- 
portionately to neuronal activation rate (16), but similar values 
were found for neurons of age-matched SHR and WKY rats. In 
fact, there is no need to evoke increased firing frequency of in- 
dividual neurons in order to explain the evidence for overall en- 
hancement of sympathetic activity. Similar changes in the pa- 
rameters measured, catecholamine spillover, and multifibre 
recording, would be obtained with increased activation rate of 
a constant axon population or with normal activation rates in 
a larger axon pool. Neurochemical and morphological data 
show that the number of sympathetic neurons is substantially 
increased (25-40%) in SHR relative to WKY rats (14,17) and 
is associated with greater density of terminal vasomotor axons 
(13, 15, 18, 19). Neuron numbers are elevated for both the 
NPY-containing phenotype, which is thought to represent cells 
supplying the cardiovascular system, and for the NPY-negative 
phenotype (15). A morphometric study has indicated that sym- 
pathetic neurons of SHR have larger dendritic fields than those 

of WKY rats and that this characteristics cosegregates with the 
elevated blood pressure (20). However, the sympathetic cell 
bodies themselves are not appreciably different from those of 
WKY rats (15, 20). 

• Defective cell death during sympathetic nervous sys- 

tem development 

During normal development, 30-80% of neurons in different 
parts of the nervous system are lost over the perinatal period 
in a process known as developmental (programmed) cell death 
(apoptosis) (21, 22). An increased population of neurons in 
adulthood could therefore be due either to the initial produc- 
tion of an increased number of neuroblasts or to reduced de- 
velopmental death. In SHR pups, sympathetic cell numbers are 
similar to those in the WKY rat control strain at birth, when 
programmed sympathetic cell death has not begun (15). By con- 
trast, two weeks later, when the period of programmed cell 
death is near its end, the population size is reduced by almost 
50% in WKY rats but by only 22% in SHR, with similar total 
numbers as are seen in adulthood (15). Thus, the elevated 
number of sympathetic neurons in SHR cannot be ascribed to 
an increased number of neuroblasts but must be entirely due 
to reduced cell death. Developmental cell death in the nervous 
system is believed to result from competition within an exces- 
sively large neuron pool for limited amounts of neurotrophic 
factors which are produced by the target cells and gain access 
to the neuron via specific receptors on the axon terminals (21, 
22) (Fig. la). This sequence is therefore important in provid- 
ing an appropriate density of innervation to differently sized 
target tissues. In the case of sympathetic neurons, the neurotro- 
phin involved is the nerve growth factor (NGF) (23, 24). One 
possible explanation for exaggerated survival of developing 
sympathetic neurons in the SHR would therefore be that there 
is enhanced availability of the antiapoptotic factor NGF (22) 
over the critical period of developmental cell death. 

•        Increased nerve growth factor availability 

A number of reports have documented increased levels of both 
NGF and its mRNA in sympathetic target tissues of SHR (25- 
32). Resting NGF secretion from cultured vascular smooth 
muscle cells (SMC) has been found not to be elevated in SHR 
under normal culture conditions (33), but the ability for basal 
secretion from SHR cells appears to be better preserved in a 
serum-free medium than that of WKY rats cells (29). Turtle 
and colleagues have studied in detail the capacities of cultured 
vascular SMC to secrete NGF (29, 34). They have found that 
secretion was stimulated by stretch and by platelet-derived 
growth factor, and that these responses were greater in SHR 
than in WKY rat cells. Furthermore, SHR vascular SMC se- 
crete NGF in response to a-adrenoceptor agonists and NPY, 
while WKY rat cells show little or no response to these sub- 
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Figure 1. Interaction of nerve growth factor (NGF) and 

neonatal sympathetic neurons. NGF is released from 

the sympathetic target tissue and taken up by the sym- 

pathetic axon terminals via a specific receptor complex 
(a). This process is essential for neuronal survival dur- 

ing the period when target contacts are being estab- 

lished. Neuronal death at this time may occur either as 

a consequence of insufficient NGF secretion by the 

target (b) or because of defective receptor-mediated up- 

take (c). 

stances. Stimulated NGF secretion seems to involve the pro- 
tein kinase C (PKC) pathway, as acute application of phorbol 
ester increases secretion while downregulation of PKC with 
maintained phorbol ester application inhibits secretion. Secre- 
tion is also inhibited by the cyclic AMP/protein kinase A (PKA) 
system (34). These second messenger pathways appear to be 
disturbed in the SHR. Both downregulation of PKC and acti- 
vation of PKA increase basal NGF secretion, while there is no 
effect on secretion from WKY rat cells (34). Similarly, appli- 
cation of a purinoceptor agonist stimulates NGF secretion from 
SHR, but not WKY rat cells (29). 

• What is the stimulant for excessive NGF secretion in 

vivo? 

Undoubtedly, the capacity of a tissue to produce NGF would 
be expected to be proportional to its bulk. Therefore, the fact 
that hypertension is accompanied by vascular medial over- 
growth could be a contributory factor (35). Traditionally, the 

vascular hypertrophy and hyperplasia associated with genetic 
hypertension has been assumed to be a response to the elevated 
transmural tension resulting from blood pressure elevation (36). 
However, several studies have shown that dissociation of these 
parameters is possible. Thus, doses of angiotensin II (All) 
blockers or angiotensin-converting enzyme (ACE) inhibitors 
which produce only moderate reduction in blood pressure can 
completely prevent vascular changes (37, 38). Reduced arte- 
rial wall thickness was also seen after ACE inhibitor treatment 
in renal-clip hypertensive rats, although no reduction in blood 
pressure occurred, and in normotensive rats (39). In addition, 
crossbreeding experiments using SHR- and WKY rat-related 
substrains have demonstrated that vascular hypertrophy is 
possible without blood pressure elevation (17). 

Turtle's studies (29, 34) mentioned previously indicate that SHR 
arterial SMC, at least under in vitro conditions, secrete exces- 
sive amounts of NGF in response to sympathomimetics and to 
stimuli which are known to be causally implicated in SMC 
growth. Such a situation would therefore be compatible with 
the possibility of a positive feedback loop, whereby increased 
sympathetic traffic and increased blood pressure would induce 
progressively more arterial wall growth and a progressively 
denser sympathetic innervation (29). On the other hand, stud- 
ies of age-related changes in tissue catecholamines indicate that 
the sympathetic hyperinnervation is if anything denser, rela- 
tive to vessel mass, soon after birth than it is in adult SHR 
animals (40). Furthermore, local surgical denervation of a SHR 
artery early in life does not reduce overgrowth of the vessel wall 
as hypertension develops (41). These observations would not 
seem to favor the concept of a positive feedback loop relating 
sympathetic input, vessel growth and NGF availability. 

Renal cross-transplantation between WKY rats and SHR 
showed that recipients of SHR kidneys develop hypertension 
even when the donors have been maintained normotensive 
throughout life (42-44). This suggests a role for some renal 
factor(s) in generating elevated blood pressure and chronic 
interference with All production or action early in life is well 
documented to cause persistent reduction of SHR blood pres- 
sure to close to normal values (45-50). Angiotensin II is known 
to stimulate protein synthesis and to be mitogenic in cultured 
vascular SMC (51, 52) and to enhance NGF gene expression 
in the same preparation (25). Furthermore, All has a greater 
stimulant effect on growth of cultured vascular SMC from SHR 
than those from WKY rats (53), aortic SMC and fibroblasts 
from SHR show elevated rates of proliferation compared with 
WKY rats (54) and some, but not all̂  studies have found el- 
evated plasma renin or All in young SHR (55,56). Additional 
evidence for an influence of All on NGF gene expression comes 
from studies showing that chronic administration of All to 
young WKY rats elevated vascular NGF to levels similar to 
those found in SHR, while administration of All receptor an- 
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tagonists to young SHR reduced vascular NGF to the levels 
found in WKY rats (31). 

Despite this abundant evidence for a causal link between All, 
arterial mitogenesis, NGF availability and sympathetic over- 
growth, however, several lines of evidence suggest that the 
situation is more complex than it appears at first. First comes 
the increased catecholamine spillover restricted to certain re- 
gional vascular beds in SHR (12). Notably, spillover is not el- 
evated in skeletal muscle, despite the fact that its bed consti- 
tutes a major site of ongoing sympathetic discharge related to 
maintenance of total peripheral resistance. This finding argues 
against generalized sympathetic overgrowth and, therefore, 
against generalized overproduction of NGF; and is consistent 
with biochemical findings that tissue mRNA

NaF
 and sympa- 

thetic innervation density are not uniformly elevated in all 
sympathetic target tissues (19,29, 57). It is difficult, therefore, 
to see how either NGF oversecretion or sympathetic nerve 
overgrowth in this situation can be secondary to the effect of a 
circulating mitogen such as AIL The alternative of tissue All 
acting as a local mitogen within SHR vascular tissues is simi- 
larly made unlikely by the apparent absence of elevated tissue 
peptide levels (56). 

As well, while cross-suckling of SHR pups on WKY dams 
results in lowered blood pressure, suckling WKY pups on SHR 
dams does not induce hypertension (58), once again indicat- 
ing that even if circulating molecule(s) are causally involved, 
additional factors are also vital. In addition, the blood pressure 
reduction caused by ACE inhibition is reversed by simultaneous 
administration of aldosterone or salt and this reversal induces 
arterial wall growth in proportion to the degree to which blood 
pressure rises (47). These data suggest that the role of All in 
establishment of hypertension in the SHR may be through ef- 
fects on sodium balance and that the arterial overgrowth is, after 
all, secondary to blood pressure elevation rather than to a spe- 
cific action of AIL This conclusion is also consistent with re- 
cent evidence that the extent of vessel wall regression is simi- 
lar following hypotensive treatment with calcium channel 
blockers as it is with All receptor antagonists (59). 

: ••        Abnormalities of spinal sensory development  

The spinal sensory neurons originate, as do the sympathetic 
ganglionic neurons, from neuroblasts of the neural crest and 
some of them depend, as do the sympathetics, on NGF for pro- 
tection from developmental cell death. This NGF-dependent 
sensory population comprises the small-diameter neurons with 
nonmyelinated axons that transduce nociceptive information 
and which, in many cases, contain one or both of the neuropep- 
tides substance P (SP) and calcitonin gene-related peptide (60- 
64). By contrast, the larger spinal sensory neurons which trans- 
duce mechanoceptive and proprioceptive information are in- 

sensitive to NGF, being dependent instead for developmental 
protection on brain-derived neurotrophic factor and neurotro- 
phin-3, respectively (65). Enhanced developmental availabil- 
ity of NGF would therefore be expected to selectively increase 
polymodal sensory neuron survival. In fact, while there is a 
substantial overall increase in spinal sensory neurons in SHR, 
to a similar extent to that seen in the sympathetic system, bio- 
chemical data indicate an absend involvement of the polymodal 
population (66). Rather, morphometric assessment indicates 
that there is, paradoxically, selective involvement of the larger, 
NGF-insensitive cells (15). 

These results, like those discussed previously, are difficult to 
reconcile with the concept that there is a generally increased 
NGF availability in the SHR. One possible explanation would 
be that there is a surge in secretion of this neurotrophin only 
during a restricted developmental time window, outside that 
which determines survival of the polymodal sensory neurons 
(66). Alternatively, the enhanced survival of both sympathetic 
and sensory neurons could be related to some neurotrophic in- 
fluence other than that of NGF. Recent studies have shown that, 
although sympathetic neurons depend entirely on NGF for 
survival during late development, they depend at an earlier 
developmental stage on neurotrophin-3 and/or brain-derived 
neurotrophic factor (67). Enhanced availability of one of these 
neurotrophins in utero might therefore lead both to direct pro- 
tection of large sensory neurons from developmental cell death 
and to more rapid maturation and hence better viability of sym- 
pathetic neurons. 

•        Interpretation in the context of hypertension 

Even if the causal relationship between All, NGF and sympa- 
thetic overactivity were to be verified, the link to hypertension 
still remains obscure. A variety of evidence suggests that ab- 
normalities external to this axis may be implicated in blood 
pressure elevation. As well as the data mentioned previously, 
arguing an essential role of disordered sodium balance (47), 
chronic treatment of young SHR with a vasopressin antagonist 
has been reported to produce effects that were closely similar 
to those seen with ACE inhibitors or All receptor antagonists, 
with substantial attenuation of hypertension which was sus- 
tained after cessation of treatment (68). 

Genetic studies have shown that the NGF gene cosegregates 
with the inheritance of hypertension (32, 69) and that it lies 
close to other loci on chromosome 10 that are associated with 
blood pressure regulation, including the gene for ACE (70). On 
the other hand, there appears to be no cosegregation of the NGF 
gene and the vascular hypertrophy that accompanies hyperten- 
sion (71). Nemoto and colleagues (31, 69) have also reported 
a structural abnormality in the signal peptide of the low-affin- 
ity NGF receptor (p75

NOFR
) in SHR. This abnormality has been 

  

Bell 46 

BiomedRev 6,1996 



Neurotrophins and genetic hypertension 

  

found to cosegregate with hypertension in one study (69), but 
not in another (72). The functional significance of these find- 
ings remains uncertain. It is not known how the signal peptide 
abnormality affects the function of the p75

NGFR
. Furthermore, 

this function is itself ambiguous. The high-affinity tyrosine 
kinase A (trkA) receptor, rather than the p75

NOFR
, is the recep- 

tor type which is essential for NGF entry into the axon termi- 
nal and which, therefore, mediates the neuroprotective role of 
NGF (22, 73). Under some conditions, the biological efficacy 
of the trk receptor may be enhanced by p75

NGFR
 activation (74- 

76) but, under other circumstances, the functional presence of 
p75

NGFR
 appears to be implicated in the process of cell death 

rather than being involved with cell protection (76, 77). 

Assessment of the SHR literature is complicated by the fact that 
comparison between data from different laboratories is often 
difficult, due to uncertainties concerning the properties of the 
control WKY rats (78, 79). This is perhaps inevitable with 
animals that have been bred in many sites over nearly 40 years, 
but is accentuated by the fact that, while SHR were made gen- 
erally available only after having been fully inbred, the WKY 
rats were released before inbreeding was complete; a decision 
which led to WKY stocks possessing at least two quite differ- 
ent genotypes (80). A further level of complexity resulting from 
this variability has been the introduction of other normoten- 
sive strains, for example the Sprague Dawley and the DonRyu 
inbred Wistar rats, as controls for the SHR. While these strains 
may be appropriate controls for particular experiments, it would 
be a considerable leap of faith to assume that they uniformly 
share similar differences with the SHR, those which have been 
documented previously for the WKY rats. 

Sympathetic overgrowth per se is hardly likely to elevate va- 
somotor tone and hence elevate peripheral resistance, because 
under normal circumstances the baroreceptor reflexes restore 
homeostasis. If verification of this was needed, it comes from 
experiments utilizing NGF treatment of normotensive animals, 
which have demonstrated that massive sympathetic overgrowth 
is not accompanied by altered blood pressure (81, 82). Hence, 
whatever distortions of events influencing sympathetic main- 
tenance of peripheral resistance are invoked, these can lead to 
hypertension only where the central nervous system pathways 
that control blood pressure are also disrupted. This central 
disruption, therefore, inevitably becomes the crucial etiologi- 
cal factor. The brain of the SHR possesses a variety of quanti- 
tative neurochemical differences to that of the WKY rat (83), 
but it is not clear how these differences relate to the state of hy- 
pertension: some may be a consequence of elevated blood pres- 
sure and some may relate to the behavioral abnormalities ex- 
hibited by the SHR, which are not genetically linked to hyper- 
tension (20). In this context, it is of interest that transplanta- 
tion of embryonic SHR hypothalamic neurons into the 
hypothalami of WKY rats causes permanent elevation of blood 

pressure, while there was no effect on blood pressure when 
WKY rat neurons were transplanted into WKY rat hypothalami 
(84). In the absence of further information about the circuitry 
involved, however, it is impossible to interpret these results 
properly. 

PROPERTIES OF THE GENETICALLY 

HYPERTENSIVE RATS 

• Many characteristics of the genetically hypertensive 

rats differ from those of the spontaneously hypertensive rats 

As with the SHR, hypertension in the GH rat appears at the 
latest within a few days after birth, progressing to reach a pla- 
teau by around age of 12 weeks (85, 86). In many other char- 
acteristics, however, the GH rat is strikingly differs from the 
SHR. Cultured vascular SMC show similar rates of division for 
GH and its control (N) strain, by contrast with the elevated rep- 
lication rate in SHR vs WKY rats, although stimulation of thy- 
midine incorporation by All is elevated in GH rats (87-89). 
Vascular SMC content of free ionized calcium is elevated in 
SHR but normal in GH rats (90). While sodium influx into SHR 
red blood cells is greater than in WKY ones, there is no differ- 
ence between GH and N erythrocytes (91). Furthermore, salt 
absorption from the intestine rises with age in SHR but remains 
constant in GH rats (85) and SHR but not GH rats show pref- 
erence for high salt intakes, which is reflected in higher total 
body levels of sodium and 24hr exchangeable sodium in SHR 
vs WKY rats but not in GH vs N (85, 92, 93). 

•        Peripheral nervous system abnormalities 

                 Abnormal sympathetic cell death       

Although vascular overgrowth is similar in both GH and SHR, 
the relationship between this phenomenon and the sympathetic 
nervous system is quite different for each strain. While the 
numbers of sympathetic neurons are increased in SHR, those 
in GH rats are by approximately 25% less than those in the nor- 
motensive controls (94). Furthermore, while NPY-positive and 
NPY-negative neurons are increased to equal proportions in 
SHR, the reduction seen in GH rats is specific for NPY-con- 
taining cells (94). As these cells constitute about half the total 
sympathetic pool, there is of the order of 50% reduction of 
NPY-positive neurons in adult GH animals. At birth, sympa- 
thetic cell numbers are similar in GH and N pups, the differ- 
ence appearing over the time of developmental cell death be- 
tween 3-14 days postnatally (95). Thus, as with the SHR, the 
difference in neuron numbers is due to an abnormal degree of 
cell death rather than to abnormal production of sympathetic 
neuroblasts, although while there is reduced death in SHR, the 
process is exaggerated in the GH rat. This could be due to re- 
duced NGF availability over the cell death period (Fig.lb). 
Consistent with this, treatment of GH pups over the first post-   
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natal week with doses of NGF that are insufficient to rescue 
dying cells in control animals restores GH neuron numbers to 
normal (61). 

•        Abnormal spinal sensory cell death  

Sympathetic cell number reduction in GH rats is accompanied 
by augmented numbers of SP-containing spinal sensory neu- 
rons and concomitant increased peripheral innervation density 
by SP sensory axons (96-98). Like the exaggerated sympathetic 
cell death, the sensory overgrowth is prevented by neonatal 
NGF treatment, suggesting a common cause (61). Superficially, 
it may appear paradoxical that a reduction in NGF availabil- 
ity sufficient to prejudice sympathetic neuron survival would 
simultaneously increase survival of another NGF-sensitive 
population. Nevertheless, it is well-documented that experi- 
mental reduction of sympathetic neuron numbers early in life 
causes overgrowth of SP-positive sensory neurons (60,63,64). 
This is probably due to the fact that the sympathetic neurons 
are normally more efficient in gaining access to the available 
NGF, so limiting sensory survival; when the density of sym- 
pathetic inputs is reduced, more NGF is made available to the 
sensory population (Fig. 2). The finding of reduced sympathetic 
and increased sensory survival in GH rats seems most likely 
to reflect an analogous situation. 

• Is nerve growth factor availability or utilization abnor- 
mal? 

Resting NGF secretion by cultured GH rat vascular SMC is sub- 
stantially lower than in cells from the control N strain (99), con- 
sistent with the possibility that the reduced sympathetic survival 
is related to reduced NGF availability. However, for this to 
result in exaggerated sensory neuron protection, developmen- 
tal sensitivity to NGF would have to continue later for the sen- 
sory than for the sympathetic pool, so allowing a fall in com- 
petition from the sympathetics while the sensors are still able 
to respond to the protective influence of NGF. From what is 
known of the time courses of developmental cell death in neu- 
ral crest-derived systems, the window for spinal sensory death 
appears to be if anything earlier than that for the sympathetics, 
so this scenario is not entirely convincing. An alternative and 
perhaps more likely possibility is that the environmental NGF 
availability is normal, but that the sympathetic neurons cannot 
utilize it fully, perhaps because of reduced numbers of axonal 
trk receptors (Fig. Ic). The specificity of excessive death of the 
NPY-positive sympathetic phenotype could be interpreted as 
also favoring an abnormality of neuronal function rather than 
of NGF production. However, as NPY-containing cells are 
predominantly small (100) and therefore have small-diameter 
axons, they may be less efficient at transporting NGF and hence 
more susceptible to altered NGF availability, regardless of 
whether this were due to a neuronal or an extraneuronal lesion. 

 
Figure 2. Consequences of competition for limited ac- 
cess to nerve growth factor (NGF) between developing 

sympathetic and spinal sensory neurons, in which the 

sympathetic neurons are more efficient. In this scheme, 

a sample of three sympathetic (large) and three sensory 
(small) neurons are competingfor 12 NGF access sites. 

In order to survive, each sympathetic neuron requires 

three and each sensory neuron requires two of these 

sites. Under normal conditions (a), two of the three sen- 

sory neurons die because of lack of NGF availability. 

If, however, only one of the three sympathetic neurons 
is removed (b), then sufficient NGF access sites are 

freed to allow all sensory neurons to survive. 
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•        Interpretation in the context of hypertension          

As with the SHR, the question must be asked whether the neu- 
ral abnormalities seen in the GH rat bear any causal relation- 
ship to development of hypertension. Tissue catecholamine 
turnover studies (101) and studies of neuronal tyrosine hy- 
droxylase activity under normal conditions and following de- 
centralization (16) suggest that sympathetic drive is similar in 
GH to that in the normotensive control strain. Relative to the 
absolute level of blood pressure, therefore, this implies that 
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there is sympathetic overactivity . One factor in this could be 

the overgrowth of SP-positive sensory neurons. The overgrowth 

includes massive proliferation of SP terminal axons around 

sympathetic motoneurons (96) and, as SP is known to cause 

long-lasting depolarization of these cells (102), this might 

constitute a basis for enhancement of sympathetic ganglionic 

transmission (96). Although the functional wiring of this sys- 

tem is uncertain, it is pertinent to note that neonatal destruc- 

tion of the peripheral SP neurons with capsaicin in normoten- 

sive animals has been found to result in resting hypotension 

and impaired baroreflex responses (103), implying some posi- 

tive role for these sensory inputs in ongoing neural control of 

peripheral resistance. Data are not available to indicate whether 

the central nervous system pathways mediating cardiovascu- 

lar control are normal in GH rats (85). 

Vascular SMC of GH rats appear not to exhibit the generally 
increased responsiveness to mitogenic stimuli that is typical 
of the SHR. In cell culture, however, they do exhibit a height- 
ened growth response to All (85). In view of the possibility that 
All is causally linked to vascular SMC production of NGF (see 
discussion above in relation to the SHR) it would be of consid- 
erable interest to measure NGF secretion from GH rat arterial 
SMC. As the NGF-dependent reduction in sympathetic neu- 
rons may be due to a neuronal receptor defect, there is no longer 
any reason to presume that NGF production is decreased in this 
strain. Indeed, it is quite possible that, as in SHR, there is in- 
creased NGF production in GH vasculature and that this, as 
well as reduced competition from sympathetics, contributes to 
the overgrowth seen in the sensory polymodal neurons. How- 
ever, there is no evidence at present to either support or refute 
such a possibility. As with the SHR, chronic ACE inhibition 
or All receptor blockade in young GH animals produces long- 
lasting attenuation of hypertension and reduction of arterial 
wall growth (104,105) but, once again as with the SHR, chronic 
calcium receptor antagonist treatment causing similar blood 
pressure reduction also has a similar effect on wall bulk (104, 
105). This suggests that the effects of interfering with the an- 
giotensin pathway may be due to the effect on blood pressure 
rather than to any specific etiological involvement of AIL It is 
also worth noting that crossbreeding studies indicate that, by 
contrast with the situation in the SHR, the ACE allele does not 
cosegregate with blood pressure in the GH rat (106). 

Paradoxically, the excessive perinatal death of sympathetic 
vasomotor neurons in the GH rat might also contribute to its 
hypertensive condition. Removal of sympathetic innervation 
has been shown to lead to hyperplasia and hypertrophy (107- 
109) and increased collagen production (110) in a number of 
smooth muscle tissues, suggesting that these nerves normally 
exert a restraining effect on muscle growth (111). It is there- 
fore possible that the reduced sympathetic innervation density 

could be a factor in stimulating vascular wall growth in the 
young GH rat, so helping to enhance peripheral resistance and 
blood pressure. 

CONCLUSIONS 

The neurotrophic abnormalities which have been shown in 
SHR and GH rats may be important from two aspects. First, they 
may help elucidate a coherent mechanistic sequence by which 
blood pressure becomes elevated in these strains and, perhaps, 
in hypertensive patients. Certainly, the extensive analysis of 
other properties of these animals over 30 years has not advanced 
our understanding of essential hypertension to nearly the extent 
that had been hoped. Indeed, the current state of the field sug- 
gests that the abnormalities which have been most highlighted 
as potentially important in the rat may bear little relation to the 
clinical situation. For example, Harrap and coworkers found 
that, in contrast to the association seen in SHR, there was no 
evidence for coinheritance of the gene for ACE with a predis- 
position for hypertension in a Caucasian population (112). 
Investigation of novel aspects of developmental biology may 
therefore offer an essential reprieve for the status of the geneti- 
cally hypertensive rat as a model for human disease. 

Even if no definitive mechanistic insights into hypertension are 

forthcoming, these animals provide two interesting situations 

in which there is disruption of the normal endogenous neurotro- 

phic systems during development. As such, they offer a valu- 

able adjunct to other ways of manipulating neurotrophic effects, 

such as by gene deletion. In particular, they may throw light 

on hitherto undocumented roles of specific neurotrophins. In 

this regard, and bearing in mind recent documentation of the 

variety of novel effects of NGF in non-neural areas, such as the 

immune system (23, 113-120) it will be important to reexam- 

ine the possible links between neurotrophin abnormalities and 

the multiplicity of tissue abnormalities that have been reported 

for the SHR and GH rats. These include altered ionic fluxes 

across the membranes of a number of cell types (91, 121-123) 

and the defective coupling of renal tubular dopamine receptors 

to second messenger systems (124). So far, these defects have 

been regarded only in relation to their putative involvement in 

genesis of hypertension. Now, however, they are known to exist 

in an animal known to also possess a neurotrophic abnormal- 

ity. It is possible that further analyses will lead to recognition 

of hitherto unsuspected roles for endogenous NGF in normal 

development. 
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