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APPLICATION OF CARBON NANOTUBES FOR CONTROLLED
RELEASE OF GROWTH FACTORS OR ENDOCANNABINOIDS:
A BREAKTHROUGH IN BIOMEDICINE
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Carbon nanotubes (CNT5), the nanostructures with immense potential in various scientific fields such as the regenerative medicine,
have emerged as innovative nanosreservoirs with multimodal functionality and application in theranostic settings. The superior
mechanical properties, high thermoelectrical conductivities, or improved solubility and biocompatibility have made CNT5 as
suitable candidates for biosensing, high-resolution imaging, tissue engineering, and delivery of a variety of compounds with poor
solubility or short half-life. These advanced nanovectors which promote neuronal growth and functional connectivity, have shown
great theranostic potential in the central nervous system disorders. Several pioneering works have shown the ability of CNTs for
controlled release of drugs or growth factors into the brain. Over the last decade, the neurotrophic and metabotrophic effects
of nerve growth factor, brain-derived neurotrophic factor and endocannabinoid system and their involvement in the mechanism
of action of a wide variety of drugs have been the focus of intense research. In order to overcome the rapid degradation and/or
non-specific distribution of nerve growth factor or endocannabinoids, conjugation with CNTs has led to the prolonged effects
of these modulating factors. Based on their unique properties, the appropriate application of functionalized CNTs may indeed
revolutionize the current biomedical interventions that has been highlighted in the present review. Biomed Rev 2016; 27: 41-49
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INTRODUCTION

able drugs do not reverse the condition and the neurosurgical

Treatment of neurological disorders has remained as one of
the most challenging areas of medicine. Traumatic injuries to
the central nervous system (CNS) including the spinal cord
injury (SCI) and traumatic brain injury (TBI) may lead to the

progressive or irreversible  damages. The currently avail-

approaches are usually associated with various complica-
tions and remarkable costs. Furthermore, application of the
artificial transplants or transplanted organs necessitates the
lifelong immunosuppression (1). During the last few decades,
nanotechnology has emerged as a rapidly developing interdis-
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ciplinary approach with a vast discovery area in the basic or
clinical research. Indeed, application of this highly advanced
technology has expanded our knowledge about the molecular
mechanisms of the neurological disorders. The highly efficient
nanotech-based vehicles have been designed to transport a
wide variety of molecules across the blood-brain barrier (BBB)
(2) which prevents the entrance of large molecules or hydro-
philic drugs into the brain (3). Among the precisely engineered
nanomaterials, carbon nanotubes (CNTs) have emerged as the
innovative nanostructures with multimodal functionality and
application in theranostic settings. CNTs with high surface
reactivity, electrothermal conductivity, biocompatibility, and
intrinsic diagnostic capability have been successfully used for
biosensing, high-resolution and non-invasive imaging, tissue
engineering, and efficient delivery of drugs or biomolecules
(4-6). Moreover, CNT-neurotrophin conjugates are able to
promote neurite outgrowth and connectivity of neuronal
networks (3, 5).

In recent years, neurotrophic and metabotrophic effects of
nerve growth factor (NGF), brain-derived neurotrophic fac-
tor (BDNF) and endocannabinoid system (eCBs) and their
involvement in the pathogenesis and therapy of neurodegen-
erative and cardiometabolic diseases have been the focus of
intense research (7-13). Meanwhile, rapid degradation, poor
solubility, or non-specific distribution of NGF or endocan-
nabinoids (14, 15) may negatively affect their effectiveness
that necessitates the development of suitable carriers to provide
longer lasting effects for these modulators. In this respect,
application of CNTs has shown promising results that will be
discussed herein.

CARBON NANOTUBES: THE GENERAL ASPECTS

The strongest materials yet discovered, CNTs are categorized
as single- and multi-walled CNTs (SWCNTs and MWCNTs,
respectively). Unlike their tiny diameters, the length of CNTs
may be extended to hundreds of micrometers. Such an ex-
traordinary length-to-diameter ratio may result in a precise
detection of biological or chemical compounds and high drug
loading (16). Because of their small size, CNTs may be easily
distributed and react with living cells (17). Due to the highly
reactive surface, CNTs bind to a wide variety of molecules in-
cluding the drugs, genes, proteins, and markers (18) that might
be of great theranostic significance. In the neuronal tissue or
muscles, CNTs have been used as stimulants or sensors (19).
CNTs may also be used as the glucose sensors because of their
ability to control far-infrared luminescence (20) and suppress
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the bacterial proliferation (21) that might be useful in infectious
diseases. At initial stages in cancers, CNTs are able to detect
the expression of biomarkers and inhibit tumour growth by
enhancement of permeability and retention of anticancer agent
(22). CNT composites with high drug encapsulation efficiency
have been used for prolonged drug release (23). Interestingly,
real-time monitoring of drug delivery is possible due to the
intrinsic spectroscopic properties of CNTs (24).

Regarding the potential toxicity of CNTs, inflammatory
reactions may occur in the case of structural defects of CNTs.
Meanwhile, these reactions are usually mild and short-lasting
as CNTs are rapidly eliminated from the body due to their
small size (25). In general, the efficiency and adverse effects
of CNTs, like other nanomaterials, depend on their mode of
application. In a 2-year bioassay, MWCNTs have shown no
carcinogenicity (26). Regarding the cortical neurons, pluronic-
coated CNTs not only did not induce degeneration in vitro or
in vivo, but also reduced pluronic toxicity (27). In the clinical
settings, carbon-based biomaterials have been used for a long
time without serious adverse reaction (28). In general, surface
modification of CNTs make them more soluble, bioactive, and
biocompatible leading to the reduced cytotoxicity of these
nanostructures (29).

APPLICATION OF CARBON NANOTUBES IN REGENERATIVE
MEDICINE: THE FOCUS ON NEUROLOGICAL DISORDERS

The limited efficacy of the current treatment strategies against
the neurodegenerative disorders may adversely affect patient’s
compliance and quality of life. For instance, silicon implants in
the cerebral cortex or neuroprosthetics may be surrounded by
astroglial scars leading to a significantly reduced efficiency of
electrical stimulation (30). Furthermore, polymer-based nerve
growth conduits may be associated with limitations due to
their low biocompatibility or unfavourable physicochemical
properties (31). These problems have evoked tremendous ef-
forts towards the development of novel therapeutic approaches
to improve neural repair or motor functional recovery. In this
respect, application of CNTs in regenerative medicine has
attracted a growing interest. Development of the CNT-based
devices has led to the regeneration of damaged neurons or
facilitation of drug delivery across the BBB. Because of their
high biocompatiblility and electroconductivity, CNT-based
scaffolds are able to induce the regeneration of Schwann
cells, differentiation of embryonic stem cells into the neurons,
and improve neuronal performance (32- 34). In this context,
interfacing the hippocampal neurons with CNTs has led to



Carbon nanotube-released growth factors or endocannabinoids 43

the strong potentiation of spontaneous synaptic activity.
Furthermore, culturing of cortical neurons on CNT clusters
resulted in the formation of a well-organized neural network
(35) suggesting the suitability of CNTs for neural applications.
Interestingly, the interaction between neurons and CNTs may
lead to the activation of intracellular signalling cascades. For
instance, CNTs-induced neurite outgrowth is associated with
the activation of extracellular signal-regulated kinase and
phospholipase C signalling pathways, respectively (36).

The ability of CNTs to modulate the electrochemical events
in the neural networks has represented them as the attractive
nanodevices for neuromodualtion. In Alzheimer’s disease
which is the most common cause of severe memory problems
in the elderly, the currently available treatments have shown
limited efficacy. Because of the cholinergic deficit, the suitable
treatment options should increase the cholinergic neurotrans-
mission (37). Since acetylcholine has a short half-life and does
not readily cross the BBB (37), CNTs may be used as the carri-
ers of acetylcholine. In an experimental model of Alzheimer’s
disease, acetylcholine-loaded SWCNTs have restored the
cognitive function, while, free acetylcholine showed no effect
(38). MWCNTs have been used as the high-resolution probes
for visualizing the amyloid-p (AP) fibrils (39). Furthermore,
CNT-based biosensors provide the possibility for real-time
detection of AP in human serum with lower limit of detection
as compared to the enzyme-linked immune sorbent assay (40).

In Parkinson’s disease, one of the most common neurode-
generative disorders worldwide, the currently available drugs
alleviate the symptoms but do not affect disease progression
(41). Furthermore, infusion pumps or skin patches may be
associated with various complications (42). Since the conven-
tional techniques for deep brain stimulation (DBS) are usually
associated with multiple limitations such as high electrical
current needs, large size of electrodes, and lack of feedback
monitoring of brain electrical activity (43), CNTs might be at-
tractive nanomaterials for DBS due to their prolonged stability
and ability for real time neuromonitoring, neuromodulation,
and large charge storage (44).

In multiple sclerosis (MS), a debilitating autoimmune
disease of CNS which is associated with myelin degradation
and cognitive impairment, disease modifying agents including
the immunosuppressants, monoclonal antibodies, or high-dose
corticosteroids do not stop the disease process (45). Because
of their ability to record or stimulate the neural activity, CNTs
might be promising theranostic candidates in MS. In this
respect, CNT-neuron hybrid networks have been shown to
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improve the neuronal network connectivity and performance
(46). In epilepsy, one of the most prevalent neurological dis-
orders which is associated with abnormal electrical activity
within the brain, the conventional antiepileptic drugs are usu-
ally associated with various side effects and do not effectively
reduce the seizure severity or frequency (47). CNTs due to their
unique properties have been represented as suitable carriers
for drug delivery into the brain (48).

Following SCI, permanent paralysis occurs because of the
inability of axons to regenerate across the lesion. Applica-
tion of neuroprotective agents or stem cell therapy does not
usually result in a functional repair (49, 50), while, post-SCI
administration of SWNT-polyethylene glycol has promoted
tissue repair in the experimental SCI (51). In brain injuries,
transplantation of neural stem cells into the injured region may
be associated with multiple limitations because of their low
survival rate (52). CNTs as biocompatible substrates or scaf-
folds by promoting the differentiation and maturity of neural
stem cells provide improved function of damaged nerve tis-
sues (53). Application of CNTs have been shown to reduce the
levels of inflammatory markers and promote the recovery from
stroke (54, 55). Moreover, CNT-mediated siRNA delivery and
gene silencing of neuronal tissues has successfully promoted
functional motor recovery from brain ischemic insult (56).

CONJUGATION OF CARBON NANOTUBES WITH GROWTH
FACTORS OR ENDOCANNABINOIDS: IMPROVED TREATMENT
OUTCOMES

Growth factors, the endogenous polypeptides which regulate
the cellular proliferation, migration and differentiation, have
been presented as leading therapeutic candidates in neural
tissue engineering (57). Because of the rapid degradation or
non-specific distribution after systemic administration, the
outcome of growth factor-based therapies largely depends
on their delivery mode. In this respect, advanced growth fac-
tor delivery systems have been designed among which the
functionalized CNTs proved to be particularly promising for
controlled release of growth factors (58). For targeted killing
of cancer cells, epidermal growth factor-directed CNT-drug
conjugates have shown efficiency both in vitro and in vivo (59).

Carbon nanotubes loaded with GDNF, a glial cell line-
derived neurotrophic factor for midbrain dopaminergic
neurons, increase the integration of transplanted embryonic
dopaminergic neurons into the striatum and promote neuronal
survival (60). Indeed, the promotion of neurite outgrowth and
synaptogenesis by neurotrophin-coated CNTs has attracted a
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growing interest (61). The prototypic member of the neurotro-
phin family, nerve growth factor (NGF), which plays a regula-
tory role in the survival, differentiation, and maintenance of
the functions of specific populations of neurons and mediates
the therapeutic effects of a wide variety of CNS drugs (8-13),
is trophic for the cholinergic neurons which are critically in-
volved in the cognitive processes (62). NGF has also shown
therapeutic potential in the neurological disorders such as
SCI and Alzheimer’s disease (63, 64). In dorsal root ganglia
or PC12 cells, CNTs-NGF complex is able to promote the
neuronal outgrowth (65, 66). In an in vitro model of ischemic
stroke, aminated MWCNTs have been presented as efficient
nanocarriers for NGF which provide a sustained concentration
and longer lasting effects for this neurotrophin (67) that might
be of therapeutic significance against the disorders associated
with NGF deficiency. In the latter study, MWCNTs-NGF
complex dose-dependently attenuated the oxidative stress
via the reduction of MDA; a marker of lipid peroxidation,
tissue injury, and free radical generation (68), and elevation
of the activities of antioxidant enzymes including the SOD;
an enzyme which is implicated in the cell protection against
the oxidative damage, and CAT; the scavenger of hydrogen
peroxide which is a cell-permeable oxidizing agent (69). Since
the neurotrophic factors promote the expression of antioxidant
proteins and the loss of neurotrophic support may lead to the
development of various disorders in the central or peripheral
nervous system (14, 57), therefore, prolonged suppression
of oxidative stress by CNTs-NGF complex might be of great
therapeutic value against the neurological disorders.

Based on the protective effects of NGF against the cerebral
insults and forebrain ischemia (70), the ability of CNTs to
provide a sustained concentration and longer lasting effects
for NGF may be beneficial against the cellular dysfunction
due to the acute or chronic form of neural injury. Interestingly,
both NGF and CNTs modulate the synaptic plasticity (5, 8-13,
27), therefore, application of NGF-CNTs complex appears as
a promising treatment option against the disorders which are
associated with abnormal synaptic plasticity.

According to a recently published report, function-
alized CNTs prolong the regulatory action of NGF on the
endocannabinoid system (eCBs) (71). It has been shown that
CNTs-NGF complex induces a long-lasting enhancement
of brain 2-arachidonoylglycerol (2-AG) content indicating
the efficiency of this nanostructure to provide a sustained
concentration of NGF. Furthermore, the implication of 2-AG
in the mechanism of action of NGF has been demonstrated
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(71) that might be of great therapeutic significance in the
neurological disorders. Indeed, identification of the eCBs (a
group of neuromodulatory lipids and their receptors) which is
implicated in a wide variety of physiological and pathological
processes (72), has provided new insights into the mechanisms
underlying the pathophysiology of various diseases that may
result in the development of novel treatment strategies. The
endocannabinoids, anandamide and 2-AG, are produced on-
demand from the membrane lipid precursors and release from
postsynaptic neurons. They are ligands of two types of G
protein-coupled receptors, cannabinoid CB; and CB», which
are predominantly located in the central nervous system and
immune cells, respectively (73). In the mammalian brain,
CBj receptors are highly expressed in the areas which control
emotional, cognitive, sensory and motor functions. Endocan-
nabinoids by the activation of presynaptic CBj receptors act
as retrograde synaptic messengers and inhibit the release of
the excitatory and inhibitory neurotransmitters (74). Follow-
ing different types of diseases, enhancement of the activity
of eCBs may result in the therapeutic effects. In this sense,
development of the cannabinoid receptor agonists, anandamide
uptake blockers, or selective inhibitors of endocannabinoid
degradation, has triggered increasing research efforts (75, 76).
Based on the involvement of eCBs in the survival signaling
pathways and neural plasticity and its modulatory effects on the
neurodegenerative and neuroinflammatory processes (72-74),
malfunctioning of the eCBs may contribute to the etiology of
neurological disorders. In this context, pharmacological ma-
nipulation of this system might be of therapeutic significance
in the neurological problems as there are reports suggesting the
therapeutic potential of the eCBs in multiple sclerosis, stroke,
Alzheimer’s disease, spinal cord injury, and epilepsy (77-81).

In an in vitro model of stroke, anandamide-CNTs com-
plex has shown sustained protective effects as compared to
anandamide alone which its therapeutic potential may be
negatively affected by its short half-life or poor solubility (82).
Aminated CNTs have been represented as suitable carriers
for anandamide which provide sustained concentration for
this cannabinoid leading to the longer-lasting effects against
the ischemic insult induced by oxygen-glucose deprivation.
Anandamide-CNTs complex by suppressing the oxidative
stress and increasing the cell viability has been suggested as
a valuable therapeutic agent against the ischemic stroke or
other neurodegenerative pathologies (82).

Moreover, conjugation of endocannabinoids with CNTs
has led to the sustained therapeutic effects in gastrointestinal
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disorders. In a rat model of colitis, 2-AG-CNTs complex
has been designed in order to improve the pharmacological
profile of 2-AG. This nanocomplex by providing a sustained
concentration of 2-AG showed promising therapeutic effects
through the anti-inflammatory and antioxidant mechanisms
(83). Based on the high biocompatibility of CNTs and their
ability for controlled drug delivery, anandamide-CNTs com-
plex via the antioxidant mechanism has shown prolonged
gastroprotective effects in an experimental model of gastric
ulcer (unpublished data).

CONCLUSION

Implication of NGF in the molecular mechanisms of autoim-
mune and cardiometabolic disorders and a wide variety of
psychotropic agents as well as its therapeutic potentials in
neurological disorders have made this neurotrophin as an at-
tractive candidate for theranostic settings. Meanwhile, NGF
similar to other neurotrophic factors does not significantly
penetrate the BBB and may be rapidly degraded. Therefore,
the clinical significance of NGF depends on the development
of suitable carrier systems which elevate the stability and reten-
tion of NGF in the target organ. Over the last decade, increasing
research efforts have been attracted towards the eCBs which
is the modulator of many cellular and physiological functions
and neuroinflammatory or neurodegenerative processes. This
ubiquitous signaling system may be a promising target for
drug discovery particularly in disorders for which no effective
therapeutic or prophylactic regimens are currently available.
However, the poor solubility or short half-life may negatively
affect the effectiveness of cannabinoids.

The outstanding breakthroughs in nanotechnology have
provided the opportunities to develop more sophisticated
delivery systems to improve the treatment outcomes. In this
respect, CNTs have emerged as one of the most attractive
candidates due to their outstanding properties including the
biomechanical stability, capacity to integrate with neurons,
re-establishment of synaptic connections, neuromonitoring,
neuromodulation, and controlled drug delivery. These nano-
structures have been represented as promising carriers for
NGF or cannabinoids which provide longer lasting effects for
these modulators that might be of great theranostic signifi-
cance in a wide variety of pathological conditions including
the neurological or gastrointestinal disorders. It appears that
application of biofunctionalized CNTs will be considered as
a major part of the next generation of therapeutic strategies
in biomedicine.
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