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• Many factors that inhibit receptor-mediated endo- 

cytosis (RME) at postreceptor level in vitro have been 

described: (i) high concentration of urea, (ii) lowering of 

intracellular pH, (Hi) hypotonic or hypertonic media, (iv) 

intracellular potassium depletion, (v) depletion of cellular 

ATP, (vi) inhbition of the enzyme transglutaminase, (vii) 
impairment of receptor recycling by rising of the endosomal 

pH, (viii) disruption of microtubules. 

Nearly all or all of the factors mentioned above are present 

as disturbances of homeostasis in uremia. The magnitude of 

the factors inhibiting RME in vitro is considerably greater 

than the deviations observed in uremia, but in vitro almost 

complete inhibition of RME is aimed and also in uremia all 

of the factors act together. The hypothesis that RME is inhib- 

ited in uremia is supported by the metabolism ofmacromol- 

ecules known or supposed to be internalized by this process. 

Although glucose intolerance in uremia is due to a postre- 

ceptor defect in insulin action, impaired RME at postrecep- 

tor level, to the best of my knowledge, has not been pointed 

as a general feature of uremia. 

In addition to uremia, there might be other clinical examples 

of inhibited RME at-postreceptor level as well. 

• RME is an important and general process by 
which cells take up macromolecules from the extracellu- 
lar environment. It is common to virtually all eukaryotic 
cells except the mature erythrocyte (1,2). RME begins with 
clustering of cell surface receptors within specialized 
invaginations of the plasma membrane, termed clathrin 
coated pits (CP), prior to internalization. Two significant 
properties of RME, that distinguish it from fluid phase 
endocytosis, are the selective uptake of ligands and the 
considerably higher effectiviness of internalization. CP act 
as molecular filters concentrating the receptors involved 
in macromolecules binding and excluding the proteins that 
are relatively permanent residents of the plasmalemna 
(3,4,5). The clathrin coat seems to behave like a molecu- 
lar motor that converts the CP into a coated vesicle (CV) 
(6). After its formation, the CV quickly sheds its coat and 
the resultant uncoated vesicle immediately participates in 
fusion events (7,8). Unclustered or partially clustered lig- 
and-receptor (L-R) complexes may also be taken up by 
smooth membrane (pinocytic) vesicles (31). Although in 
broad sence this is also a receptor-mediated uptake, in this 
article, the term RME is used for designation of internal- 
ization via CP/CV. 

Clathrin coated pits and vesicles are characteristic struc- 
tures not only of RME. At the trans-face of the Golgi com- 
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plex they are also implicated in sorting and transport of 
newly synthesized lysosomal enzymes and the regulated 
secretory proteins to their approriate destinations (9,10). 

The cytoplasmic coats of coated pits and vesicles repre- 
sent lattices consisting of hexagons and pentagons and are 
built up by clathrin triskelions. Triskelions are stable, flex- 
ible, three armed symmetric protein complexes. Each arm 
of the triskelion is composed of one clathrin heavy chain 
and one non-covalently bound clathrin light chain. The 
three heavy chains are also non-covalently connected by 
their hydrophobic carboxyl terminal regions to form the 
triskelion vertex (Fig. 1). The arms of different triskelions 
impose on and conect to each other making the polygons 
of the clathrin coat (10,11). 

Rearrangement of some of the hexagons into pentagons 
occurs during the CP-CV conversion (12), but there is no 
evidence that this is the force generating mechanism for 
invagination (13). The term clathrin means lattice-like. It 
has been initially introduced for designation of the "major 

protein" extracted from CV. In later studies it has been 
demonstrated that this "major protein" consists of two dif- 
ferent types of polypeptides: the clathrin heavy and two 
clathrin light chains. The triskelion is the functional clathrin 
unit present in living cells and isolated from CV prepara- 
tions (11,14). Under the physiologic conditions of pH, ionic 
strenght and low clathrin concentration, the assembly of 
clathrin coats and their attachment to the underlying mem- 
brane are mediated by heterotetrameric protein complex- 
es designated as adaptors (AP). Two such AP have been 
identified: the AP-2 is restricted to the plasma membrane 
CP and CV, while the AP-1 is found in the CV of the trans- 
Golgi network (11,17). AP play a role in receptor cluster- 
ing within CP. Tyrosine containing motifs within the cyto- 
plasmic domains of receptors taken by RME compete for 
a common binding site on AP-2. Direct interaction, but 
probably not via the AP-2 recognizing motif, has been 
demonstrated between the cytoplasmic tail of mannose-6- 
phosphate receptor and AP-1 (14,15,16). After clathrin 
removal, AP-2 remain attached to the underlying mem- 
brane and induce aggregation of the formed uncoated vesi- 

  

  

Figure 1.  

The triskelion assembly and association. 

/A/A clathrin triskelion  

A clathrin heavy chain. The distended end is designated as terminal domain.       

 

A clathrin light chain  

/B/Apart of a clatrin lattice 

Id Apart of a coated pit. PM - plasma membrane; Lj, L,2 - ligands; R1, R2 - receptors; AP-2 - adaptor type 2; CL - clathrin lat- 

tice. Terminal domains of clathrin heavy - chains are protruding inwards. 
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cles. Since membrane fusion requires close opposition of 
the two participating bilayers, the AP-2 dependent aggre- 
gation may be an important initial step in the fusion of 
uncoated vesicles and endosome formation (8). A 180kD 
protein with clathrin assembly activity has been also des- 
ignated as AP-3. It has uncertain relationship with the other 
two AP, consists of a single polypeptide, has been detect- 
ed only in brain and its specific functions in living cells 
need further elucidation (11,16). 

There is another type of vesicles with cytoplasmic protein 
coats not made by clathrin within the Golgi complex. In 
contrast to clathrin coated pits and vesicles that mediate 
selective transport events, the non-clathrin coated vesicles 
act as non-selective "bulk flow" carriers of the constitutive 
export through the Golgi complex (18). In my article, if 
not additionally noted, the term coated refers to clathrin 
CP and CV. 

A process of receptor - dependent uptake of small mole- 
cules, termed potocytosis, has been described. Potocytosis 
embodies certain features of RME, but the L-R uptake is 
via caveolae covered by delicate filaments instead of 
CP/CV (19,33). 

RME is an ATP dependent process (20). It has been shown 
that ATP is needed for the initiation of a CP formation 
and the final budding of a deeply invaginated CP from the 
plasmalemma (13,21). Clathrin removal from CV requires 
ATP as well and is mediated by a 70kD heat shock pro- 
tein (hsp70), designated also as uncoating ATPase (11). 
The disassembly of the CVs' clathrin shell allows mem- 
brane fusion events and delivery of L-R complexes to sort- 
^ing endosomes (26). There is evidence that a variety of 
diferent L-R complexes cluster in one and the same CPs 
and are subsequently found into common endosomes 
(22,23). Mixing in the endosomal compartment of ligands 
taken via CP/CV and molecules internalized by noncoat- 
ed plasmalemmal invaginations has been also found 
(41,48).  

At the present there is no standart nomenclature for the 
elements of the endosomal compartment (25,26,37, see 
Fig. 2) and two models for the intracellular traffic of inter- 
nalized material have been suggested (27): 

A/ The transfer between sorting and late endosomes, and 
between late endosomes and lysosomes is carried out by 
transport vesicles - "vesicle shuttle model".  

B/ Sorting endosomes are continuously formed de novo. 
With time the sorting endosome loses its ability to fuse with 
uncoated vesicles and transforms into late endosome - 

"endosome maturation model". Recent investigation of 
Dunn and Maxfield favour the latter of the proposed mod- 
els (26, Fig. 2). 
Endosomes are acidified by proton pumps residing with- 

 

Figure 2. 

The "endosome maturation". 
CP - clathrin coated pit; CV- clathrin coated vesicle; UV- uncoat- 
ed vesicle; SE- sorting endosome; RV- recycling vesicle; LE - late 
endosome; SL - secondary lysosome; PL - primary lysosome; MT 
- microtubules; Ctr - centrosome; SG- secretory granule; TON - 
trans-Golgi network; GC - Golgi complex; NCV - non-clathiin 
coated vesicle. 

in their membranes and have intravesicular pH ranging 
between 6,3 and 5,2 (see Fig. 2). The acidic nature of the 
endosomal compartment has emerged as an important fac- 
tor for the appropriate processing and targeting of ligands 
and receptors (23,24). 

There are several pathways that physiologic L-R complexes 
may follow once inside a cell: 
(i) Ligand and receptor dissociate in the endosomal com- 
partment due to the mildly acidic pH. Receptors return to 
the plasmalemma and ligands are finally degraded in lyso- 
somes. Ligands as low density lipoproteins (LDL), oc2- 
macroglobulin, asialoglycoproteins, mannosylated glycop- 
toteins, mannose-6-phosphate glycoproteins (M-6-P), 
galactose terminal glycoproteins and their relevant recep- 
tors follow predominantly this intracellular route (5,22,23). 

(ii) L-R cdmplex recycles intact to the cell surface. 
Transferrin (Tf) has high affinity for its receptor at neu- 
tral pH, while apoTf has high affinity at acidic pH and low 
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affinity at neutral pH. Iron is tightly bound to Tf at neu- 
tral pH. Iron is tightly bound to Tf at neutral pH, but dis- 
sociates at mildly acidic pH. Tf binds to its receptor at neu- 
tral pH at the cell surface, enters the acidic endosomes, 
donates here its iron atoms, converts to apoTf that remains 
bound to its receptor and recycles back to the plas- 
malemma where dissociates (24). 

A small part of some ligands (LDL, insulin, mannose and 
galactose terminal glycoproteins) which would normally 
be expected to be delivered to lysosomes return to the cell 
surface on board their receptor - an event known as dia- 
cytosis or retroendocytosis (23,32). 

(iii) Both receptor and ligand are degraded in lysosomes. 

Most of the epidermal growth factor (EGF) or platelet- 

derived growth factor L-R complexes are degraded in lyso- 

somes (22,23). 

The predominant intracellular pathway of insulin and its 

receptor seems to vary with the cell type (22). 

(iv) In polarized cells, certain L-R complexes may traverse 

from one domain of the plasma membrane to the other 

where ligand is released intact - transcytosis (2,5,16,22). 

(v) After entering within the cell, some ligands or L-R com- 
plexes can be delivered to the intracellular sites of their 
actions. The tyrosine kinase activity of occupied insulun 
and EGF receptors is retained for a substantial part of their 
Intracellular lifetime and is important for many of the 
diverse biologic effects of insulin and EGF (32,34,35). 
Partial prelysosomal proteolysis of some internalized lig- 
ands may take place in the endosomal compartment and 
such degradation may have physiological significance 
(32,36,38). There is evidence that insulin internalization 
and processing is required for its late effects as stimula- 
tion! of alanine transport, protein synthesis, inhibition of 
protein degradation (32). Glucose (Gl) is transported 
across the plasma membrane via facilitative carrier pro- 
teins. Cell types (endothelial cells, hepatocytes, parenchy- 
mal brain cells), in which Gl uptake is not subject to acute 
regulation, posses Gl transporter isoforms (GLUTI, 
GLUT2, GLUT3) that are constitutively localized to the 
plasma membrane. In insulin sensitive tissues (fat and mus- 
cle), the augmentation of Gl uptake after insulin stimula- 
tion is achieved mainly by translocation of GLUT4 from 
intracellular tubulovesicular structures to the cell surface. 
Fat and muscle cells also posses GLUTI, but GLUT4 is 
present in much greater abundance. GLUT4 is found in 
CP of the plasmalemma and is more efficiently internal- 
ized than GLUTI. Haney et al (95) suggested that the dif- 
ference in the internationalizion rate is the cause for the 

greater GLUT4 translocation to the cell surface after 

insulin challange. In adipocytes GLUTI and GLUT4 have 

been found in distinct inracellular vesicles (94,95,96). 

Insulin internalization seems to be required for the Gl 

transporters translocation (31,32).  

A small amounts of several polypeptide hormones and 
growth factors are transfered to the cell nucleus after inter- 
nalization, but the mechanism of this delivery is still unclar- 
ified (28). It has been demonstrated that insulin, together 
with its plasmalemmal receptor, is transported to the cell 
nucleus (29) and there is data suggesting that the EGF 
nuclear receptors may be identical to that on the cell sur- 
face (28). Some experimental results favour the hypothe- 
sis that there might be nuclear receptors present a priori 
and not derived from the plasmalemmal ones (28,30). For 
some of the best studied ligands as insulin and EGF there 
is growing evidence that their delivery to the cell nucleus 
is significant for their late effects: DNA synthesis, RNA 
transcription and release (28,29,30,32).  

Sorting endosomes are the main organelles in which lig- 
and - receptor segregation takes place. The majority of 
recycling receptors return back to the cell surface as mem- 
brane components of recycling vesicles that bud from sort- 
ing endosomes (22,26). Receptor recycling from late endo- 
somes is also possible (37). Receptors destined for degra- 
dation are removed from the limiting membrane of endo- 
somes by inward vesiculation, a mechanism playing the 
role of a molecular filter, and late endosomes acquire the 
appearance of multivesicular bodies (16,37). Primary lyso- 
somes emerged as CV in the Trans-Golgi Network (TGN) 
containing nascent lysosomal enzymes bound to the M-6- 
P receptor. After uncoating they fuse late endosomes 
where lysosomal enzymes dissociate (9,10). CV have not 
been implicated in receptor recycling from endosomes to 
the cell surface or in returning of M-6-P receptor from late 
endosomes back to the TGN (22,39).  

The formation of CV seems to be a perpetual process 

(5,14,49) and there is evidence for delivery of several unoc- 

cupied receptors via CP and CV to the endosomal com- 

partment (23). Receptors internalize and recycle in the 

absence of their ligands, but often at a slower rate (2,24). 

The integrity of microtubules is required for the centripetal 
migration of endosomes to the juxtanuclear area (37,73). 
It has been shown that movement of lysosomes is direct- 
ed by microtubules as well (73). Movement of recycling 
vesicles may also depend on microtubules (40,55). 
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INHIBITION OF RME IN VITRO 

• Urea at concentration of 2M completely dissoci- 
ates clathrin from isolated CV (3). 

Intracellular pH (/pHj/) varies in different cell types 
between 7,0 and 7,3, while extracellular pH (/pHe/) is 7,35- 
7,45 (60). /pHj/ in most cells follows /pHe/ to some extent 
usually lagging by 0,5-1,0 pH unit (42,60). Acidification 
accentuates the normal tendency of clathrin lattices to 
curve in vitro, but lowering of /pHj/ below 6,8 in cultured 
fibroblasts (42,61) or Hep2 cells (62) inhibits RME by pre- 
venting CP budding (pinching off) from the plasma mem- 
brane and causing precipitation of free triskelions in 
microcages. Low cytoplasmic pH also inhibits the rate of 
intracellular transport from the TGN to the cell surface 
(61). Samuelson et al have found that /pHj/=6,7 does not 
inhibit RME and L-R dissociation in cultured rat hepato- 
cytes, but impaired the ligand transport to lysosomes (63). 
In macrophages both reduced RME and transport to lyso- 
somes have been observed (43). Clamping of cells (fibrob- 
lasts) at neutrality (pH=7) with nigericin inhibits RME by 
creating a preponderance of unusually flat lattices. These 
results suggest that the physiologic /H

+
/ gradient existing 

across the plasmalemma (60) is responsible for the con- 
stitutive curving of CP and formation of CV. 

Hypotonic media inhibit RME by creating unusually flat 
clathrin coats as well (42). 

Hypertonic media and intracellular K
+
 depletion inhibit 

RME in the same way. They induce clathrin polymeriza- 
tion into microcages and cause disappearance of plas- 
malemmal CP (10,44,45). Clathrin coats in the trans-Golgi 
region appeared less affected by K

+
 depletion (46). Rapid 

intacellular K
+
 depletion by incubation in hypotonic medi- 

um and subsequent transfer to isotonic K
+
 free buffer 

inhibits to a greater extent RME than slow K
+
 depletion 

by incubation only in a K
+
 free buffer (46,47). K

+
 deplet- 

ed cells by incubation with the Na-K-ATPase inhibitor 
oubain show marked reduction of protein and DNA syn- 
thesis and fail to respond to EGF and insulin. Biosynthetic 
functions are restored when intracellular K

+
 returns to 

normal values (46). 

Recent investigations have established that RME is sensi- 
tive to ATP depletion (discussed before in the text). 

Most amines are weak bases and principally penetrate 
through the plasmalemma in their uncharged form. From 
the cytosol amines accumulate in acidic organelles as endo- 
somes, lysosomes and elements of the trans-Golgi. 
Intracellularly, uncharged amines accept H

+
 and rise the 

pH both of cytosol and acidic vesicular structures. In vitro 
addition of amines diminish the difference between /pHj/ 
and /pHe/ (24,52,60). Elevation of the endosomal pH 
inhibits RME by preventing L-R dissociation and the sub- 
sequent receptor recycling. The transfer of internalized lig- 
ands or L-R complexes from endosomes to lysosomes, par- 
tial endosomal proteolysis and lysosomal degradation may 
be also inhibited by amines (23,24,52). Rising of the endo- 
somal pH suppresses the recycling of receptors that have 
been internalized unoccupied as well (23,24) and prevents 
the penetration of internalized enveloped viruses and cer- 
tain protein toxins through the endosomal membrane into 
the cytosol (24). Reduced uptake of Tf (52) or unchanged 
uptake and recycling of Tf but inhibited inracellular iron 
delivery caused by amines have been reported (23,53). 

A correlation between the ability of primary amines to pre- 
vent clustering and uptake of several ligands and to inhib- 
it transglutaminase led to the suggestion that this enzyme 
was essential in the internalization process (50,51). 
However, other investigations failed to confirm this sug- 
gestion (52). 

Although the influences of acidophilic agents on the exo- 
cytic pathway have been less extensively studied, there are 
examples showing that the transport of membrane and 
secretory proteins is altered by amines (24,97). 

Ostlund et al found that the microtubule disrupting agent 
colchicine significantly reduced the receptor-mediated 
uptake and degradation of LDL (54). The experimental 
results of Sandvig and vanDeurs showed that colchicine 
did not affect the initial internalization of Tf, but its recep- 
tor recycling might be inhibited (55). 

All of the factors discussed above reversibly inhibit RME 
and the process is restored when the suppressing agent(s) 
is removed. 

Although the experimental results are not equivocal, 
Hansen et al (56) concluded that hypertonic media, K

+ 

depletion or acidification of the cytosol, which efficiently 
block RME, reduce the uptake of fluid phase markers or 
ricin, that is able to enter cells both from CP and other 
membrane areas, only to some extent. The sensitivity of 
fluid phase endocytosis to theses factors also seems to 
depend on the cell type (42,44,45,56). Microtubule dis- 
rupting agents(55) and amines (52) may decrease the rate 
of fluid phase endocytosis as well. 
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A PARALLEL BETWEEN THE FACTORS 

INHIBITING RME IN VITRO AMD DEVIATIONS 

OF HOMEOSTASIS IN UREMIA 

• The concentration of urea is much higher than 
that of all the other potential uremic toxins combined. Urea 
is best known to chemists as a global protein-unfolding 
agent (denaturant) at high concentrations (-1M), but the 
nuclear magnetic resonance spectroscopy data have shown 
that important effects also occur at the lower concentra- 
tions seen in uremia and are thus likely to be important in 
the pathophysiology of this condition (58). This suggests 
that although the urea levels in uremia are considerably 
lower than the concentrations used in vitro for complete 
clathrin removal, they may have effect on clathrin, espe- 
cially in combination with other factors disturbing the nor- 
mal intracellular clathrin behavior. 

Hyperchloremic metabolic acidosis can develop early in 
the course of the renal disease but the acidosis transforms 
to an increased anion-gap form when the glomerular fil- 
tration rate falls below 20ml/min (59). In uremia /pHj/ was 
found to be normal (66,67) or decreased (68,69,71). 
Normal /pHj/, but prolonged slight intracellular acidosis 
after a mild exercise was reported in skeletal myocytes of 
uremic patients when compared to controls (70). 

Metabolic acidosis in uremia should be associated with 
efflux of K

+
 from intracellular to extracellular fluids (74). 

Decreased Na-K-ATPase activity has been established in 
erythrocytes, brain, leukocytes, intestine and skeletal 
myocytes of uremic subjects (64,65,83). Normal (83) or 
reduced (65) Na-K-ATPase activity has been found in 
v myocardium. As Na

+
 influx is not diminished, intracellu- 

lar Na
+
 concenration rises. Increased Na

+
 concentration 

will restore the product of the rate constant and Na con- 
centration to that observed prior to enzyme inhibition. A 
new steady state will be reached in which Na ~*~ efflux equals 
Na 

+
 influx, but at higher concentration of intracellular 

Na 
+
 . As intracellular Na+ rises the intracellular concen- 

tration of K
+
 falls. Since the gain of Na

+
 exceeds the loss 

of K
+
, cell osmolality rises, i.e., the extracellular fluid 

becomes hypotonic. This leads to an increase in cell water 
(65). It has been found that erythrocytes, leukocytes and 
muscle cells from uremic patients have higher Na

+
, lower 

K
+
 and increased intracellular water contents than nor- 

mal (64,65). Hemodialysis partially restores Na-K-ATPase 
activity (65). 

As a result of the impaired renal function and inappropri- 
ate diet or superimposed aggravating conditions hyper- or 
hypo- natremia may occur as well (74,82). 

Erythrocytes and brain cells from uremic subjects have ele- 
vated ATP, while in leukocytes ATP content is low (65). 
No difference has been found in skeletal muscle ATP con- 
centration in normal and uremic subjects, but in the latter 
glycolysis dominates over oxidative phosphorylation as a 
source of ATP. During exercise phosphocreatine break- 
down, the rate of intracellular acidification and lactic acid 
accumulation is increased in uremia. The half-time of phos- 
phocreatine recovery is also longer, suggesting diminished 
mitochondrial function (84). In uremia energy utilization 
tends to be decreased, especially in severe untreated cases 
(72). Perhaps disturbances in ATP production and utiliza- 
tion play only a minor, if any, additive role in the inhibi- 
tion of RME, since in vitro almost complete depletion is 
needed for suppression of this process (20,21). Direct 
effects of uremic toxins on clathrin uncoating ATPase, by 
analogy with Na-K-ATPAse, have not been investigated. 

Amines, including primary ones, are considered to be ure- 
mic toxins and their concentrations are increased in end 
stage renal disease (65,75,76). In uremia amines may inhib- 
it RME by the mechanisms observed in vitro. Increased 
levels of amines may play a role in the cases when normal 
/pHj/ and metabolic acidosis is present. Probably amines 
are also the reason or one of the reasons for the absent 
initial cytoplasmic acidification and enhanced subsequent 
alkalinization, observed in neutrophils isolated from ure- 
mic subjects or in normal neutrophils preincubated in 
effluent peritoneal dialysate, after stimulation with the 
chemotactic peptide FMLP (66). 

Lee et al (58) have speculated that some methylamines 
may offset the effects of urea on proteins, but this sug- 
gestion needs further investigation. 

Braguer et al (77) have reported that a fraction of uremic 
middle molecules inhibits microtubule formation and may 
also disrupt preformed microtubules. 

lacopetta et al (127) observed in vitro that elevated intra- 
cellular Ca

2+
 had little or no effect on the internalization 

of insulin and transferrin, but in other investigations inhi- 
bition of RME of EGF by the same impact was found. 
Also increased Ca

2+
 burden of cells is associated with 

impaired mitochondrial oxidation and ATP produc- 
tion(128). Elevated intracellular Ca

2+
, as Ca

2+
 -calmod- 

ulin complexes, can depolymerize microtubules (129,130). 
Hyperparathyreoidism of chronic renal failure enhances 
Ca^

+
 entry and causes increased basal levels of Ca2+ in 

a lot of cell types (128). Many hormones and growth fac- 
tors transiently elevate intracellular Ca

2
 

+
 (131) and if their 

stay at the plasma membrane is prolonged due to inhibit- 
ed RME, this may contribute for further increase of intra- 
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cellular Ca^ 
+
 . CV seem to be Ca^

+
 sequestrating 

organdies as well (132). Chervu et al (128) established 
reduced Fc-receptor mediated phagocytosis by the poly- 
morphonuclear leukocytes from uremic rats and provided 
evidence that the suppression is caused by the increased 
intracellular Ca^+ due to secondary hyperparathyreo- 
idism. 

Although there is no doubt in the lifesaving effect of 
hemodialysis treatment, there are factors that commonly 
occur and may temporaly contribute to the inhibition of 
RME during the hemodialysis session: (a) in standart 
hemodialysis ( Na

+
 concentration of dialysate _ 140 

mmol/L) there is a movement of water from the extracel- 
lular to the intracellular fluid, i.e., the extracellular fluid 
becomes hypotonic compared to the cytosol (78,79,80), 
(b) if dialysates with increased osmolality are used the 
water flux is just the opposite (78,98), (c) in the beginning 
of acetate hemodialysis there is initial lowering of both 
/pHe/ and /pHj/ (69,80,81). 

The data about the parallel made between inhibition of 
RME in vitro and disturbances of homeostasis in uremia 
are summarized in Table 1. 

The factors inhibiting RME in vitro are of considerably 
greater magnitude than the observed deviations of home- 
ostasis, but in uremia all factors act together, not sepa- 
rately. Also in vitro nearly complete inhibition of RME is 
aimed.  

Since lowering of the pH of caveolae during potocytosis is 
considered to be important for L-R dissociation and lig- 
and entering within the cell (19,33), potocytosis may also 
be inhibited in uremia as a result of increased concentra- 
tions of amines. It has not been investigated if plasma mem- 
brane changes observed in uremia (99) influence potocy- 
tosis. 

METABOLISM OF MACROMOLECULES KNOWN 

OR PRESUMED TO BE INTERNALIZED VIA 

CP/CV IN UREMIA 

• The carbohydrate metabolism in uremia is char- 
acterized with fasting euglycemia, diminished glucose (Gl) 
Uptake by peripheral tissues and elevated insulin levels. 
Early insulin response following Gl loading may be nor- 
mal, increased or decreased, but persistent hyperinsuline- 
mia is always observed during the final part of the Gl tol- 
erance test, regardless of the insulin secretion (65,88,90). 
Insulin receptor tyrosine kinase activity, necessary for 
many of insulin effects and considered to be important for 
receptor-mediated insulin internalization (32), has been 
found not decreased in uremia both in situ and in vitro 
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Table 1 

Parallel between the inhibition of RME in vitro and the meta- 

bolic disturbances in uremia 

 

(89,93). Uremia induces insulin resistance in peripheral tis- 
sues causing a postreceptor defect in insulin action. Even 
pharmacological concentrations of insulin, that should 
overcome a possible binding defect do not normalize Gl 
uptake (88,89). Jacobs et al (93) established decreased con- 
centration of GLUT, without determining their type, in 
adipocytes isolated from uremic rats. In plasma mem- 
branes obtained from these cells the concentration of 
GLUT was decreased by 16% and 30% in basal and insulin 
treated cells, respectively. Concomitantly, microsomal 
membranes prepared from uremic cells treated in the 
absence and presence of insulin had a 28% and 15% 
decrease in the number of GLUT, respectively. These 
results suggest that in addition to the diminished total 
amount of GLUT, there is a reduced translocation of 
GLUT from the intracellular vesicular structures to the cell 
surface. As discussed before in the text, insulin internal- 

63 



  

  

ization is necessary for stimulation of Gl uptake (move- 
ment of GLUT4 to the plasmalemma) in insulin sensitive 
tissues. Effective internalization of GLUT4 via CP/CV and 
the subsequent intracellular sequestration are also impor- 
tant for the transfer of GLUT4 to the cell surface after 
insulin challange (95,96). 

Like the inhibition of RME by the factors discussed before, 
Gl intolerance in uremia is reversible. Hexose transport in 
adipocytes from uremic rats is restored after 20 hours of 
incubation in physiologic medium and is reduced in nor- 
mal adipose tissue preincubated for 3 hours with uremic 
serum (87). Gl metablism also improves after the begin- 
ning of hemodialysis treatment (100).  

Effects of insulin as activation of aminoacid transport, 
stimulation of protein synthesis and inhibition of protein 
breakdown, which depend on insulin internalization and 
its appropriate intracellular processing (32), are all 
depressed in uremia (65). In addition to disturbing insulin 
action (100), acidosis may also directly enhance protein 
degradation (101). 

In uremia the half-life of insulin is markedly prolonged. 
After ten weeks of dialysis insulin clearance returns 
towards normal and increase in insulin degradation by the 
liver and skeletal muscle has been observed (88,100). 
Obviously, during this time the renal function does not 
change. In my opinion, inhibited receptor-mediated uptake 
via CP/CV play a role in the delayed insulin clearance, but 
its contribution is difficult to be quantitatively defined for 
the following reasons: (i) in extrarenal tissues insulin is 
degraded both at the cell surface and intracellularly (for 
review see ref. 32, (ii) insulin can enter within the cell both 
via CP and non-coated plasmalemmal invaginations 
(31,102, 103), and (iii) nonreduced insulin binding to a 
variety of cell types, obtained from uremic subjects, has 
been found (85,86,87,88,89). In other studies, an uremic 
peptide inhibiting insulin binding to erythrocytes has been 
isolated (105). Insulin receptors from different tissues are 
heterogeneous (105) and insulin binding is not uniformly 
influenced by certain molecules in vitro (91). This results 
suggest that the uremic peptide inhibiting insulin binding 
to erythrocytes may have weaker effect on other tissues. 
Expeirmentally induced acidosis reduces insulin-receptor 
binding, tissue insulin extraction and causes Gl intolerance 
as the hyperglycemia might be due either to binding or/and 
postbinding defects (92,100). There is a view that uremia 
without acidosis does not reduce insulin-receptor binding 
(100). In uremia metabolic acidosis aggravate, but is not 
the only reason for the impaired Gl metabolism (104). If 
cells from uremic subjects are incubated in media differ- 
ent from the uremic plasma, prior to the measurement of 
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insulin binding, then factors as the uremic peptide or aci- 

dosis will be abolished. If such incubation is long enough, 

restoration of non-coated and probably to a lesser extent 

of CP/CV endocytosis may occur. It seems that this is the 

reason for the results of Kauffman and Caro (85), who 

established in hepatocytes from uremic rats increased 

number of insulin receptors, unimpaired insulin binding 

and internalization. They also found decreased insulin 

degradation both at the cell surface and intracellularly. In 

another experiment, Maloff et al (87) observed not reduced 

insulin binding and degradation by liver membranes and 

adipocytes from uremic rats during the 1 hour long insulin 

binding assays. 

Normal (89) or even incresaed number (85) of surface 
insulin receptors along with elevated insulin concentration 
indicate impaired insulin receptor down-regulation in ure- 
mia. Occupancy of receptors by insulin enhances their 
association with CP and subsequent internalization. 
Cellular entry is necessary for ligand-induced receptor 
down-regulation (106). 

The clinical significance of impaired RME, due to inher- 
ited defects in low-density lipoprotein (LDL) receptor, for 
accelerated development of atherosclerosis is well known 
(57,109). In renal failure, dyslipoproteinemia can be 
detected when glomerular filtration rate is reduced below 
40-50 ml/min and becomes more accentuated with deteri- 
oration of renal function (107,108). Although decreased 
activities of lipoprotein lipase, hepatic triglyceride lipase, 
lecithin/cholesterol acyltransferase, as well as increased 
concentration of apolipoprotein CIII, have been reported, 
the complete mechanism of altered lipoprotein metabo- 
lism in uremia has not been established (99,107,108,110). 
Delayed removal of very-low-density lipoproteins (VLDL) 
and chylomicrons, due to diminished lipoprotein lipase 
activity, is considered to be the main cause for the hyper- 
triglyceridemia in uremia (86,108,109). Many experimen- 
tal results indicate that impaired RME, including at a 
postreceptor level, can be the missing factor in the patho- 
genesis of dyslipoproteinemia of end-stage renal disease: 

(i) The synthesis of lipoprotein lipase is controlled by 
insulin (111) and impaired RME and effect on protein syn- 
thesis of the hormone may be one of the causes for the 
diminished concentration of lipoprotein lipase in uremia 

(65,112).   

(ii) The concentration of intermediate-density lipoproteins 
(IDL) is increased in uremia (110,112), although their pro- 
duction should be decreased as a result of reduced lipopro- 
tein lipase activity (108,109). IDL are internalized by the 
hepatic LDL receptor or are further transformed to LDL 
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by the lipoprotein lipase (109,113). LDL are usually not 
elevated in uremia (107,108), although cases of type-IIa 
and lib Fredrickson patterns of hyperlipidemia in dialysis 
patients have been described (121). Also Tsukamoto et al 
(122) have found elevated LDL concentration in hyper- 
triglyceridemic undialysed uremic patients. 

(iii) Weintraub et al. (114) have established a severe defect 
in the clearance of postprandial chylomicron remnants in 
dialysis patients with and without fasting hypertriglyc- 
eridemia. Chylomicron remnants are taken up by the liver 
via the LDL receptor or via specific chylomicron remnant 
receptor (109,113). Portman et al (115) have established 
an acquired defect in LDL receptor function in peripher- 
al blood mononuclear cells from uremic patients. They 
have proposed that the defect is due to decreased LDL 
receptor expression because of the reduction of LDL 
receptor mRNA. Diminished LDL receptor expression is 
probably a result of decreased reductive capacity of ure- 
mic serum and creation of oxysterols, some of which are 
100 times more potent than LDL in inhibiting LDL recep- 
tor biosynthesis (115). By this mechanism is difficult to 
explain the delayed clearance of chylomicron remnants, 
since the chylomicron remnant receptor is unaffected by 
intracellular accumulation of cholesterol (57). The LDL 
receptor-related protein is thought to represent the chy- 
lomicron remnant receptor and the promoter region of its 
gene does not contain a sterol regulatory element of the 
land associated with the LDL receptor gene (116). 

(iv) Reduced high-density-lipoprotein (HDL) cholesterol 
especially in HDL2 subfraction, increase in HDL triglyc- 
eride, decreased ratio of HDL2 cholesterol to HDL3 cho- 
lesterol and impaired conversion of HDL2 to HDLg are 
characteristic for uremic dyslipoproteinemia. 
Approximately only 50% of the deviations in HDL cho- 
lesterol content can be explained by changes in VLDL 
triglycerides or changes in the activities of lipoprotein 
lipase, hepatic triglyceride lipase and lecithin/cholesterol 
acyltransferase (112). Inhibition of RME may influence 
several steps in HDL metabolism (a) macrophages pos- 
sess specific receptors for HDLg without apolipoprotein 
E (apo-E). After internalization these HDL3 are convert- 
ed to larger apo-E containing, cholesterol rich HDL2-like 
particles. HDL2 with apo-E are exocytosed by 
macrophages and hence the excessive cholesterol is 
removed from the cells (117) (b) one of the mechanisms 
for cholesteryl esters removal from HDL is the uptake of 
HDL containing apo-E by the hepatic LDL receptors 
(113,123). HDL without apo-E can also be endocytosed 
by hepatocytes, but, to the best of my knowledge, the role 
of CP/CV in this internalization is not defined (123,124). 

Modified, including oxidized, LDL are recognized and 
taken up by the macrophage scavenger receptors and 
accelerate the formation of foam cells in atherosclerotic 
lessions. Endocytosis of scavenger receptors is presumably 
via CP/CV (118). It is interesting if in uremia the forma- 
tion of foam cells is delayed due to the possible impair- 
ment of RME. The atherosclerotic plaque bears many sim- 
ilarities to chronic inflamatory conditions (119). In uremia 
the disturbed lipoprotein metabolism should promote and 
the suppressed immune response (126) should retard the 
development of atherosclerosis. Probably this is the rea- 
son for the variable results obtained in cross sectional and 
prospective studies about atherosclerosis in uremic sub- 
jects (107). 

Apo-E containing lipid complexes and LDL receptors are 
involved in peripheral nerve regeneration and remyelin- 
ization (113). Uremic peripheral neuropathy, character- 
ized by primary axonal degeneration and secondary seg- 
mental demyelinization (125), may be due, at least in part, 
to reduced RME. Also unimpaired RME of nerve growth 
factor is required for the full expression of its activity (120). 
Specific binding sites for nerve growth factor have been 
detected in the nuclei of certain cells (28). 

Erythroid cells obtain iron by RME of transferrin (Tf). The 
acidic endosomal pH allows Fe^ + dissociation from Tf 
and the formed apotransferrin, remaining bound to the Tf 
receptor, recycles back to the cell surface. Released Fe-'

+ 

is reduced to Fe^~*~ by a transendosomal membrane reduc- 
tase and is then translocated across the endosomal mem- 
brane (133). About 80% of the iron leaving the plasma is 
incorporated into hemoglobin. Since erythrocyte precur- 
sors possess Tf receptors (TfR) to the reticulocyte stage, 
the iron uptake will depend greatly on the rate of erythro- 
poiesis (137). In reticulocytes, TfR are sequestrated into 
the membranes of endosomal intraluminal vesicles and are 
subsequently exocytosed (23). By enzyme-linked 
immunosorbant assay it has been established that the plas- 
ma TfR protein (TfRP) levels have a constant relationship 
to tissue TfR and in most instances reflect the rate of ery- 
thropoiesis (137). The erythron Tf uptake (ETU) is derived 
from hematocrit, plasma iron, plasma iron half-life and Tf 
saturation (for the exact formulas see ref. 134). The pos- 
sible influences of endosomal pH on Fe^

+
 release from 

Tf are not taken into consideration. Also direct measure- 
ments of TfRP or cell TfR do not participate in the calcu- 
lations. Since TfRP levels are proportional to the erythroid 
cells TfR, the ETU/TfRP ratio may serve as an indicator 
for the effective endocytosis and recycling of TfR. In 
healthy individuals, after several applications of erythro- 
poietin there is an increase in both TfRP and ETU, but the 
ETU/TfRP ratio remains relatively constant (see table III).   
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The anemia of end-stage renal disease is normocytic, nor- 
mochronic, hypoproliferative and is due to a combination 
of several factors: (i) relative erythropoietin deficiency, (ii) 
decreased bone marrow responce, (iii) decreased red cell 
survival and (iv) external blood losses (138,139). In hemo- 
transfusion dependent uremic patients (group A, Table 2) 
increased plasma iron, Tf saturation and prolonged plas- 
ma iron half-life together with the reduced radioiron red- 
cell utilization (RCU) and ETU indicate diminished iron 
uptake. In the same time the reticulocyte index and the 
corrected reticulocyte count suggest reticulocyte produc- 
tion about the normal rate. In uremic patients that do not 
require hemotransfusions (group B, Table 2) the indices 
for iron utilization are about normal values, but the retic- 

Table 2. 

Ferrokinetics and erythropoiesis in uremic patients. 

ulocyte index and the corrected reticulocyte count show 
accelerated, although insufficient for the degree of ane- 
mia, erythropoiesis, i.e., increased number of erythroid 
cells possessing TfR. The facts about ferrokinetics and ery- 
thropoiesis in uremic patients, summarized in Table 2, 
imply reduced rate of iron utilization per erythrocyte pre- 
cursor cell in end stage renal disease. After four doses of 
erythropoietin TfRP and ETU increase in uremic patients 
(135), but the ETU/TfRP ratio changes as well (see Table 
3). Since there is evidence that RME, receptor recycling 
and exocytosis are inhibited in uremia (discussed before), 
it is reasonable to suggest that the exocytosis of TfR by 
reticulocytes is diminished. In my opinion, the values of 
ETU/TfRP ratio before and after erythropoietin in uremic 

Hct - hematocrit; PI - plasma iron; Tf - transferrin; TIBC - total iron binding capacity; Tj/2 - plasma radioiron half-life; TfRP - plasma trans- 
femn-receptor protein; Ferr. - femtin; RCU - radioiron red cell utilization; PIT - plasma iron turnover; ETU - eiythron transferrin uptake; 
Ret. - reticulocytes; CRC - connected reticulocyte count; Rl - reticulocyte index; 
(A) - hemotransfusion dependent group; (B) - group not requiring hemotransfusions 

*-for normal subjects without hemochromatosis and uremic patients  
** - the hematocrit of'normal subjects is acceptedfor'basal 
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patients (Table 3) support such a presumption. It is quite 
unlikely that TfR are used more efficiently in uremia, since 
in addition to the inhibited CP/CV internalization the 
Fe^ 

+
 release from Tf should also be impaired by the ele- 

vated endosomal pH due to increased concentrations of 
amines. Therefore, the number of cell TfR may be higher 
than the predicted from TfRP. The capacity for Tf uptake 
by erythrocyte precursors is considerable as implied by the 
ability of normal bone marow to inrease erythropoiesis five 
to sevenfold after a maximal stimulation (141). Probably 
this is the reason for the normocytic, normochromic ane- 
mia of end-stage renal disease, where the rate of erythro- 
poiesis is about normal or slightly increased. The same 
speculatons can be made for vitB-^, which is also inter- 
nalized via CP/CV (2). If maturation of erythrocyte pre- 
cursors is accelerated in uremic patients by erythropoietin 
treatment (152), iron deficiency easily develops, particu- 
larly in patients whose anemia has been severe (153). 

Table 3. 

The calculations made after the data in referance 135 for normal 

subjects (without hemochromatosis) and uremic patients. 

 

Erythropoietin (Epo) is a glycoprotein. It is metabolized 
by the kidney, bone marrow and via the liver asialoglyco- 
protein receptors after its desialilation. The first two ways 
have only little contribution to the Epo clearance (142). 
The plasma half-life of human Epo injected in uremic ani- 
mals is significantly prolonged, considerably more than 
would be expected solely from cessation of the urinary 
excretion of the hormone (143,144). The serum Epo half- 
life was found to be not markedly different in patients with 
end-stage renal disease compared to those with normal 
renal function (142,154). Kindler et al (145) found no sig- 
nificant difference in the recombinant human Epo half- 
life in patients various degrees of renal failure. Shannon 
et al (146) demonstrated increased glycosidase activity in 
the serum of patients with chronic renal failure. Therefore, 
the cleavage of the carbohydrate moiety from Epo should 
be enhanced. Accelerated submission of Epo to the hepat- 
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ic asialoglycoprotein receptor system, possessing a great 

capacity for ligand uptake, can compensate the probable 

inhibition of RME and may be the reason for the similar 

clearance rates of Epo in patients with renal failure and 

normal individuals. 

Burst forming unit erythroid cells (BFU-E), colony form- 
ing unit erythroid cells (CFU-E), proerythroblasts and ery- 
throblasts possess a small number of specific Epo recep- 
tors. The number of Epo receptors and sensitivity to Epo 
of erythroblasts show a steady decline during maturation 
(154,156). After binding, Epo is internalized by RME 
(142,154). In addition to Epo, several other growth factors 
as interleukin-3, granulocyte-macrophage colony stimu- 
lating factor and insulin-like growth factor I (IGF-I) mod- 
ulate erythropoiesis (154,155,158). 

There are different opinions about the importance of ure- 
mic inhibitions of erythropoiesis (135,139). Several facts 
show decreased bone marrow response in chronic renal 
failure: (i) In end-stage renal disease Epo levels are low 
for the degree of anemia, but as absolute values are nor- 
mal or slightly elevated (135,138,157). In healthy subjects, 
after blood losses such as one-unit blood-bank donation, 
the red-cell mass slowly returns to its steady-state level 
without significant changes in the rate of erythropoiesis 
and Epo production. In normal individuals banking mul- 
tiple units of blood, although Epo levels are significantly 
increased, they are not significantly above the upper limit 
of normal for the assay (154). Therefore, if the uremic bone 
marrow responce is normal, the shortened erythrocyte life- 
span and external blood losses may be overcome by the 
existing levels of Epo, (ii) It has been observed that serum 
Epo increases with the progression of renal insufficiency 
when the hematocrit decreases, but after the partial cor- 
rection of the uremic syndrome by dialysis the serum Epo 
declines, together with the improvement of anemia. 
Whereas the relationship between Epo and hematocrit is 
inverse in pre-dialysis patients, this relationship is either 
lost or becomes positive after dialysis has been started. 
Absence and existance of correlation between IGF-I lev- 
els and hematocrit have been found in pre-dialysis and 
dialysis patients, respectively (148,158), and (iii) Kushner 
et al (159) observed that uremic sera inhibited erythroid 
colony (CFU-E) formation to a significantly greater degree 
than granulocyte-macrophage colony formation. They also 
established a noncompetitive inhibition of the Epo bioac- 
tivity on CFU-E by polyamines. 

The low number of Epo receptors on erythrocyte precur- 
sors, the evidences for decreased bone marrow responce 
and the high doses of recombinant Epo used for the 
improvement of anemia of end-stage renal disease (161) 
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suggest a post-binding defect in the Epo action. 

In addition to the decreased renal clearance, the increased 
levels of growth hormone, parathyroid hormone, glucagon, 
prolactin and luteinizing hormone in uremia may be also 
due to impaired RME in extrarenal tissues, predominant- 
ly the liver. Normal or elevated concentrations of insulin- 
like growth factors, adrenocorticotropin and follicle-stim- 
ulating hormone have been observed (65,147,148,160). 

It is interesting if in uremia post-binding or post-receptor 
defects are common feature of ligands requiring unim- 
paired internalization for the full expression of their activ- 
ity. 

Inhibited RME should result in prolonged stay of ligands 
at the cell surface and may enhance some of the effects 
carried out at the plasmalemma. Impaired RME will also 
depress the ligand induced receptor down-regulation. For 
example, the glucose output and cyclic AMP formation by 
hepatocytes is increased in uremia after glucagon chal- 
lange. Like insulin receptors, the hepatic glucagon recep- 
tors are also not efficiently down-regulated in end-stage 
renal disease.  

Although increased concentrations of growth hormone 
and glucagon can induce hyperglycemia, they are not the 
primary and the main reason for the Gl intolerance in ure- 
mia (see ref. 65,88). 

Increased concentrations of tumor-necrosis factor, inter- 
leukin-1 and interleukin-6 are found in pre-dialysis and 
dialysis patients (149). Inhibited RME may contribute to 
the elevation of these cytokines in uremia. 

Significant increase in serum o^-macroglobulin has been 
observed at the end and early post-dialysis periods regard- 
less of the membrane used (150). Inreased levels of insulin 
after dialysis have been found as well (151). Impairment 
of RME during the hemodialysis session (discussed 
before) may be one of the reasons for these elevations of 
a2-macroglobulin and insulin. Tissue sensitivity to insulin 
increases after dialysis (100). Compared to the pre-dialy- 
sis period, after ten weeks of dialysis treatment consider- 
able improvement of insulin clearance has been reported 
(88). Similar levels of growth hormone and glucagon have 
been observed before and after dialysis. Normalization of 
the glycemic reaction to glucagon after dialysis has been 
also found (65,88). It seems that the time of measurements 
influences the concentrations of the studied ligands. 

CONCLUSION 

• The variety of factors inhibiting RME in vitro sug- 
gests that there might be other clinical examples of 
acquired inhibition of RME, but there is no other case, 
except uremia, lasting for a such long period of time and 
in which the factors inhibiting RME in vitro are so fully 
presented. The hypothesis presented herein may give a key 
not only to the pathogenesis of uremic syndrome, but may 
help in finding answers to some general questions con- 
cerning RME. It may also contribute to further improve- 
ment of the treatment of patients with end-stage renal dis- 
ease. 
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