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• During the last two decades numerous studies have 

proven the existence of sexual dimorphism in the brain of lower 

vertebrates, birds, and mammals. Differences between males 

and females have been found in various components of central 

nervous system (CNS), including volumes of certain nuclei, num- 

bers of neurons and synaptic contacts, size of somata and out- 

growths, as well as differences in neurolransmitter systems. The 

mechanisms by which these dimorphic features appear remain 

an open question for further elucidation. It is not clear yet how 

the morphological variations observed between sexes during 

development could be related to functional consequences in the 

adult organism.  

SEXUAL DIFFERENTIATION OF THE BRAIN: 

CONCEPTS AND HYPOTHESES 

• Studying the mechanisms of sexual differentiation of the 

CNS is necessary for understanding the process of neural de- 

velopment. The early embryonic nervous system is considered 

bipotenlial (1). Whether it will differentiate into male or female 
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depends on sex chromosomes and environmental stimuli that 

could influence this process. The sex chromosomes determine 

the formation of ovaries or testes and thus the production of 

female or male sex steroids. According to the androgcn theory 

of sexual differentiation (Fig. 1), androgens are required for the 

formation of male type nervous system. Interestingly, when 

androgens enter the neurons they may be aromatized to estra- 

diol-17(3, and the latter is actually responsible for the masculin- 

ization of the brain (2). On the other hand, females are thought 

to be protected by this process through binding between al- 

pha-fetoprotein and estrogens (1) and thus escaping masculin- 

ization. All these events that determine the faith of neural dif- 

ferentiation take place during a critical period of CNS develop- 

ment (3). Recently, several studies have dealt with extending 

the classical "organizational" concept and suggesting new regu- 

latory mechanisms underlying sexual differentiation of the brain 

(4). In general, sex-specific properties could be regulated by the 

interference of other factors like neurotransmitters or growth fac- 

tors with the effect of sex steroids. On the other hand, it is pos- 

sible that some sexually dimorphic features may develop under 

primary genetic control. This idea is supported by results ob- 

tained from sex-specific cell cultures of embryonic rat brain, 

showing that dopaminergic neurons develop morphological and 

functional sex differences in the absence of cstrogen or test- 

osterone (5). Additionally, it is proposed that sex-determining 

region of the Y chromosome (Sry gene) is transcribed in male 

but not female mice brain and plays a role in the regulation of 

sex differentiation of the mammalian CNS (6). Irrespective of the 

exact mechanisms of sexual differentiation, studies on sexual di- 
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Figure 1. Scheme of the androgen hypothesis of brain sexual differentiation, showing that androgens, after dramatization in the 

brain, masculinize the brain through estradiol. er, estrogen receptor; CMS, central nervous system. 
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morphism of the brain are necessary and important for the ex- 

planation of dimorphic functions and their underlying neural cir- 

cuitry. 

GAMMA-AMINOBUTYRIC ACID AND  

SEXUAL DIMORPHISM 

• Gamma-aminobuly ric acid (GAB A) is an important inhibi- 

tory neurotransmitter in the CNS of vertebrates. It can be found 

in inlerneurons as well as in projection neurons of various brain 

areas (reviewed in 7). Information processing in the CNS through 

GABA can be accomplished by inhibition and disinhibition, de- 

pending on the synaptic connections of GABAergic neurons. 

Recently, GABAergic system has been associated with the re- 

alization of some aspects of male and female reproductive be- 

haviors and neuroendocrine functions. It has become evident 

that GABA is involved in steroid induced negative feedback 

control of luteinizing hormone-releasing hormone (8) and plays 

a critical role in the modulation of gonadotropin and prolactin 

release from the pituitary gland (9-11). GABA participates in the 

neural circuitry controlling lordosis behavior. It has been shown 

that GABA has dual effects, i.e. facilitation of lordosis through 

acting in the medial hypolhalamus and the midbrain central grey 

and inhibition of lordosis through actions in the preoptic area 

(12. 13). The precise source of GABAergic neurons innervating 

these regions remains unclear. Hence, studying the GABAergic 

system may help elucidating the mechanisms of female sexual 

behavior. Maternal behavior is also connected with the func- 

tioning of the GABAergic system. An implication of GABAA- 

bcn/odiazepine-Cl" receptor complex in the development of ma- 

ternal behavior in female rats has been discribed (14). The con- 

tribution of cell loss in the vomeronasal system, including loss 

of GABAergic neurons, to facilitation of this behavior has been 

discussed (14). GABA inhibitory mechanisms also regulate 

male sexual behaviors. Likewise, corticosterone mediates the 

stress-induced inhibition of male sexual behavior through the 

GABAergic system (15, 16). 

The discovery of GABA involvement in the control of neuroen- 

docrine functions and reproductive behaviors in a sex-specific 

manner has led to the proposal of sexual dimorphism of the 

GABAergic system itself. Such a dimorphism could further be 

associated with sex differences in other functions, i. e. motor 

control, learning and memory. Sexual dimorphism of GABA-im- 

munoreactive neuronal densities in the prenatal rat striatum (17), 

in postnatal striatum (18) and in the bed nucleus of stria term.ina.lis 

(19) has been established. Gender dimorphism and dependence 

on sex steroids arc also observed in enzymes taking part in 

GABA metabolism, e. g. glutamic acid decarboxylase (20) and 

GAB A-transaminase (2 1). Studies on GABAA receptor ligation 

in the rat brain have revealed gender difference at this point of 

GABAergic neurotransmission, too (22) 

It is known that in the majority of GABAergic neurons, GABA 

coexists with different neuropeptides, such as cholecystokinin, 

somatostatin, enkephalins, substance P, and opioid peptides. 

In this way certain subpopulations could be formed within the 

GABAergic neurons, which could have different implications 

to the formation of sexually dimorphic functions. Since the data 

available allows us only to speculate on this problem, the func- 

tional involvement of different GABAergic subpopulations 

needs to be further clarified. 

PARVALBUMIN: A MARKER OF GABA- 

ERGIC NEURONAL SUBPOPULATION 

• Pan/albumin (PA) (L.parvus small, albumin-like protein) 

is a prototype member of the family of EF-hand calcium-binding 

motif-containing proteins. It has been first isolated from the 

muscles of lower vertebrates and functionally associated with 

the relaxation of fast-contracting skeletal muscles (23). PA is also 

present in other nonmuscle cells, especially nerve cells (24-28). 

Colocalization studies have shown that PA-immunoreactive 

neurons usually form a separate subpopulation of GABAergic 

neurons (29, 30). This subpopulation includes possible local 

circuit neurons, but according to Freund (31), some projection 

GABAergic neurons in the septo-hippocampal region also con- 

tain PA. Additionally, thalamic projecting PA-containing neu- 

rons have also been described (32). Therefore, PA-containing 

cells can be either local circuitry interneurons, or projection neu- 

rons. 

PA-immunoreactive neurons usually appear after the first post- 

natal week of development, in different terms for various brain 

regions (33; Stefanovaef a/, unpublished data). It probably cor- 

relates with the appearance of the related functional activity in 

different regions, and the inhibitory activity as well. 

PARVALBUMIN-IMMUNOREACTIVITYAND 

SEXUAL DIMORPHISM 

• It is interesting to find out whether the subpopulation of 

PA-immunoreactive neurons is affected by gender, and further 

to answer the question of functional implication of this particu- 

lar group of GABAergic neurons in the formation of sexual be- 

haviors as well as other sexually dimorphic functions. In our 

recent studies we have used monoclonal PA-antibodies and 

avidin-biotin complex method to describe the distribution and 

density of PA-immunoreactive neurons in different parts of 

the CNS, that either are associated with the realization of re- 

productive behaviors, or show gender dimorphism in their to- 

tal GABAergic neuronal population. It has been proved that 

the influence of sex on PA-immunoreactive neurons has certain 

regional variations in the rat brain at postnatal day 20 (Fig. 2). 

The striatum, a structure which is a key center of motor control 

and has proven gender dimorphism in its GABAergic neuronal   
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density, shows also sexually different numbers of PA-immunore- 

active neurons. Females have greater numbers of immunoreac- 

tivc profiles than males. Quite different is the proportion of male 

to female PA-immunoreactive neurons in two other sexually di- 

morphic structures with wide contribution to the formation of 

reproductive behaviors, i.e. the amygdaloid complex and the hip- 

pocampal formation. Neuronal counts exhibit no significant sex 

difference in the medial amygdaloid nucleus and the hippocam- 

pus. The cortical amygdaloid nucleus possesses sexual dimor- 

phism but it is in the opposite direction compared to the striatum. 

That is, male rats have greater numbers of PA-immunoreactive 

neurons than female rats. The same gender correlation has been 

observed in the nucleus accumbens, which is a part of the ven- 

tral striatum and is amain structure in the mesolimbic dopamin- 

crgic system involved in male sexual behavior (34). 

CONCLUSION 

• The present Dance Round describes sexual dimorphism 

of a definite PA-containing subpopulation of GABAergic neu- 

rons in the rat brain. The different pattern of PA-immunoreac- 

tivity in certain brain structures of both sexes could be a key for 

further investigations on the involvement of GABAergic neu- 

rotransmitter system in controlling the of reproductive behav- 

ior and other sexually dimorphic functions. Furthermore, PA- 

immunorcactive neurons are found to be affected by several 

diseases, including Creutzfeklt-Jakob disease (35), Alzheimer's 

disease (36, 37), epilepsy (38), and amyotrophic lateral sclerosis 

(39). Perhaps, by studying the system of PA-immunoreactive 

neurons it would be possible to explain sex-specific prevalence 

in patients with such disorders and to improve our understand- 

ing about their pathogenesis. The mechanisms by which sexual 

dimorphism in PA-immunorcactive neurons appear are not yet 

clarified. Indeed, there is much to be learned about how and 

when during ontogenesis these gender differences occur and 

what is the role of sex steroids in the regulation of PA-contain- 

ing neuronal subpopulation. , - , . . , ;. 
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