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The nerve growth factor (NGF) belongs to a family of proteins termed neurotrophins, consisting of NGF, brain-derived neuro-
trophic factor (BDNF), neurotrophin-3 (NT-3), NT-4/5 and NT-6. Today, NGF is well recognized to mediate a large number of 
trophobiological actions resulting in neurotrophic, immunotrophic and/or metabotrophic effects. The pathobiology of neurode-
generative diseases, including Alzheimer disease, psychiatric disorders (e.g. depression and schizophrenia) and brain parasitic 
infections have in common the effect of altering the brain levels of neurotrophins and in particular NGF. The involvement of 
NGF and its TrkA receptor in these pathologies and the recent promising results of NGF therapies are presented and discussed.  
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INTRODUCTION

At the end of the nineteenth century, it was envisaged by San-
tiago Ramon y Cajal but has not been proven that life at the 
neuronal level requires trophic support. By a rare combination 

Levi-Montalcini, Viktor Hamburger and Stanley Cohen in the 
early 1950’s in the Washington University in St Louis, MO, 

growth factor (NGF), was discovered. This was embodied in 
a conceptual framework of the neurotrophic theory, which 
reveals a pivotal role of effector cells in the control of neuronal 
differentiation, survival and function via production of NGF. 
Today, NGF and its relative molecules collectively designated 
neurotrophins are well recognized as mediators of multiple 
biological phenomena in health and disease, ranging from 
the neurotrophic through immunotrophic to metabotrophic 
effects. Consequently, NGF is implicated in the pathogenesis 
of a large spectrum of neuronal disorders (Alzheimer’s and 
other neurodegenerative diseases) and nonneuronal disorders 
(atherosclerosis, obesity, type 2 diabetes mellitus and other 
cardiometabolic diseases). 

The present review updates and enlarges evidences for 
the involvement of NGF in both pathogenesis and therapy of 
various brain diseases (Tabl. 1).

Table 1. Potential role of nerve growth factor in the patho-
genesis and therapy of brain diseases

Neurological diseases

Alzheimer’s disease, Mild cognitive impairment, Huntington’s disease, 

Parkinson’s disease, 

Parasitic infections, Human immunodeficiency virus-associated demen-

tia, Epilepsy, Down syndrome, Rett syndrome 

Psychiatric diseases 
Depression, Schizophrenia, Eating disorders (anorexia nervosa; bulimia 

nervosa), Autism, 

Attention deficit and hyperactivity disorder (ADHD)

NERVE GROWTH FACTOR

neuropeptide that regulates the proliferation and survival 
of target neurons (1). Nerve growth factor plays a subtle 
role in several brain pathologies leading to brain cell death 
and/or neurodegeneration during development or during 

aging (2–11). Nerve growth factor is synthesized as a 130 
kD precursor (proNGF) that is a complex of three proteins: 

-NGF, -NGF and -NGF the latter acting as a serine pro-
tease that cuts the Beta subunit N terminal producing the 26 
kD mature NGF that is biologically active as a multifunc-
tional signaling molecule (12–14). Nerve growth factor is 
involved primarily in the growth, survival, and proliferation 
of sympathetic and sensory neurons that undergo apopto-
sis in its absence (15–18). It also plays a delicate role in 
the physiological regulation of other biological structures 
as the immune and the endocrine systems and the adipose 
tissue (14,19–23). Nerve growth factor binds two classes of 
receptors: the tropomyosin-related kinase A (TrkA), and the 

NTR) (12, 24, 
25). TrkA receptor binding produces the homodimerization 
of the receptor and the autophosphorylation of the tyrosine 
residue of the cytoplasmic tail. This site of TrkA phospho-
rylation is a docking site for the Shc adaptor protein that is 
in turn phosphorylated starting several intracellular path-
ways involved in cell survival (12, 26). Among them, one 
involves the activation of the serine/threonine kinase Akt 
and develops with the recruitment on TrkA receptor com-
plex of a second adaptor protein, the growth factor receptor 
bound protein 2 (Grb2) and another docking protein, the 
Grb2-associated Binder1 (GAB1). This complex activates 
phosphatidylinositol-3 kinase (Pl3K), that activates Akt. 
Blocking the activity of Pl3K or Akt provokes the death 
of sympathetic neurons in culture also in presence of NGF 
administration, while when both kinases are constitutively 
expressed neurons can survive without NGF (27,28).  

Another pathway of NGF mediated neuronal survival in-
volves the mitogen-activated protein kinase (MAPK). This 
pathway leads to activation of the membrane-associated G 
protein Ras that phosphorylates the serine/threonine kinase 
Raf. This phosphorylation activates the MAPK cascade that 
regulates transcription (26). Both of these pathways give rise 
to phosphorylation of the cyclic AMP response element bind-
ing protein (CREB), a transcription factor that translocates 
into the nucleus, where controls the expression of antiapop-
totic genes. 

NGF and Alzheimer disease
Alzheimer disease (AD), the most common form of demen-
tia in the old age, is characterized by early perturbations of 
synaptic proteins and synaptic functions with the generation 
of abnormal tau and amyloid proteins. After the release in 
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the intracellular space of these abnormal proteins begins the 
massive deposition of senile plaques (SP) of -amyloid (A ) 

that originate from hyperphosphorylated tau protein. As a 
consequence, during the progression of the disease, appears a 

loss and a complete deterioration of the brain homeostasis 
(29–32). The basal forebrain cholinergic neurons innervate 
the hippocampus and the cerebral cortex, the regions that 
control memory and attention. These regions are more sus-

In the pathophysiological mechanisms of AD, it turned out 
to be fundamental the protective role of neurotrophic factors, 
secreted proteins that control differentiation, plasticity, prun-
ing and survival of forebrain cholinergic neurons (FBCN) of 
the hypothalamus, cortex and hippocampus. Indeed, the sign-
aling of these peptides is seriously altered in the course of the 
disease (37). Among these neurotrophins the most studied for 
its role in the AD is NGF, a glycoprotein of three subunits 

,  and  that is produced as a precursor pro-NGF and is 
processed intracellularly to mature NGF by the subunit of the 
protein (37, 38).

Nerve growth factor signaling involves three types of re-

-
tor (p75NTR) and sortilin. NGF binding to its receptor TrkA 
activates the pathway signaling of cell survival, while in the 
presence of lower levels of NGF and/or TrkA the precursor 
form of NGF (pro-NGF) binds to p75NTR and to sortilin pro-
voking an apoptotic signaling that brings to neurodegenera-
tion (39–41).

Nerve growth factor release by cortical and hippocampal 
neurons is involved in the processing of amyloid precursor 
protein (APP) to generate the soluble APP that is neuropro-
tective and a strong inhibitor of the enzyme -secretase 1 
(BACE1) that controls APP amyloidogenic cleavage (42, 
43). Recent studies in animal and cellular models have 
shown the protective role of NGF against AD induced neuro-
degeneration. Also, there is evidence that the perturbation of 
NGF signaling is one of the earliest events in AD onset (44). 
In a cellular model such as primary hippocampal neurons, 
the NGF deprivation generates an Alzheimer’s like molecu-
lar syndrome with the development of A -amyloid plaques 

-
tibody directed to NGF provokes similar phenotypic effects 

The protective role of NGF observed in vivo and in vitro is 
exerted by the modulation of the processing of amyloid pre-
cursor protein (APP) (42, 43).

Nerve growth factor stimulation of primary choliner-
gic septal neurons promotes the binding of NGF receptor 
TrkA to APP. This binding blocks the APP phosphorylation 
at threonine 668 (T668) residue in the cytosolic tail of the 
protein. T668 phosphorylation is a post-translational modi-

BACE1, that controls the amyloidogenic pathway of matura-
tion (42,43,46).  

-
loid generation increases and could affect the initial synaptic 
alteration observed in mild cognitive impairments and early 
AD. The newly generated amyloid inhibits the endocytosis of 
NGF/TrkA complex and this negative feedback loop marks 
the AD onset (29). 

In rat models of aging, elevated levels of pro-NGF and 
p75NTR in hippocampus and prefrontal cortex are associated 

-
crease in pro-NGF levelss was also observed in mild cogni-
tive impairment and AD patients and also in postmortem AD 
brain examination (44). The perturbation of NGF signaling is 
an early event during the progression of the AD as evidenced 
by the studies on animal and cellular models (30). In ani-
mal models of aged rats the blocking of NGF/TrkA signaling 

animal models of AD, the alteration of NGF signaling brings 
to a general loss of central cholinergic function (50). The ef-
fect of the imbalance in NGF/TrkA signaling is a pathologi-
cal APP processing (45). In transgenic mice lacking the APP/
TrkA interaction, it is observed a serious degeneration of 

seem to support the hypothesis of the neurotrophic model of 
AD development where the reduction of NGF level and the 
increase of pro-NGF would trigger the synaptic failure and 
the abnormal amyloid and tau deposition starting a neurode-
generative cascade (28,52).

New pieces of evidence prove that the relationship be-
tween NGF and APP processing relies on a physical inter-
action between APP and NGF receptors (30). The APP jux-
ta-membrane region which contains the  and -secretase 

 peptide is 

p75NTR (53). APP and TrkA proteins localize in the plasma 
membrane, endoplasmic reticulum (ER), Golgi and endocyt-
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ic vesicles where the proteins form homodimers (30).
In primary septal neurons, NGF treatment increases APP/

TrkA complexes in ER and Golgi without increasing the 
protein level probably because NGF affects the association 
through the control of APP phosphorylation (30, 43). NGF 
withdrawal induces a decrease of APP/TrkA complexes and 
the same pattern is observed with cell death inducers such 
as A  peptide, and rapamycin. Furthermore, NGF, favoring 
APP/TrkA complexes, disadvantages the APP/APP homodi-
mers that are more prone to amyloidogenic processing car-
ried out by  and -secretase (30, 43).  

the physiological or amyloidogenic pathway (54).  The phos-
phorylation of threonine residue 668 (T668) is connected to 

This phosphorylation blocks APP/TrkA binding and increas-
es A  production in cholinergic neurons in vivo and in vitro. 

level in cultured BFCN. It is possible that the detachment of 
APP from TrkA is caused by a change in the conformation of 
APP upon this phosphorylation (43).

In the physiological anti-amyloidogenic pathway, bind-
ing of NGF to TrkA induces TrkA phosphorylation and TrkA 
docking of the signaling adaptor SH2 containing sequence 
C (ShcC). Activated ShcC blocks c-Jun N-terminal kinase 
(JNK), a ser/thr APP kinase, preventing the APP phosphoryl-
ation at threonine residue 668 (T668). Since TrkA can bind 
only APP molecules not phosphorylated at T668, the NGF 
reduction of APP p668 levels stimulates ATP-TrkA bind-

membrane and Golgi apparatus and the preferential cleav-
age of APP by the neuronal -secretases ADAM10-17. Con-
versely, reduced availability of mature NGF and/or reduced 
expression levels of TrkA result in pre-apoptotic signals that 
activate  JNK, increase APP pT668 and disturb APP-TrkA 
interaction favoring the Secretase 1 amyloidogenic path-
way (43).

out downregulating T668 phosphorylation, stimulating APP/

Golgi complex, that is depleted of the amyloidogenic enzyme 
like BACE1. Tau pathology is implicated in non-Alzheimer 
disease pathophysiology (suspected non-Alzheimer disease 
pathophysiology - SNAP). In AD many studies demonstrated 
a synergism between tangles and plaques, with abnormal tau 
that enhances A  toxicity and vice-versa (57, 58).

Nerve growth factor can regulate the steady-state levels 
and the posttranslational maturation of tau that is phosphoryl-
ation, cleavage, and ubiquitination (59, 60). NGF withdrawal 
brings to hyperphosphorylation of tau that is A -dependent 
and to abnormal cleavage of the N terminal fragment of the 
protein that lacks the microtubule-binding domain. The same 
tau fragment was also observed in animal AD models with 
impaired NGF signaling (59, 61).

NGF and Schizophrenia
Growth factors that control pathways involved in normal 
brain development have an important role in the pathophysi-
ology of mental illness that has also a neurodevelopmental 

in patients and also in animal models where altered levels of 
these proteins induce psychiatric behavior (62).

During the embryonic and postnatal stages, psychophysi-
cal stress altering the environment can modify the normal 
development of the brain opening the way in the adulthood to 
psychopathologies such as hyper-anxiety, anomalous social 
behavior, alcohol abuse and drug dependence, schizophrenia, 
and depression (63–67). In the rat, gestational stress increas-
es maternal and fetal plasma corticosterone with dysregula-
tion of the hypothalamic–pituitary–adrenal (HPA) axis and 
a prolonged elevation of plasma glucocorticoids in response 
to stress events (64, 65). Synaptic development and neuro-

-
ticosterone and corticotrophin-releasing hormone (CRH) in 
developing brain causing behavioral dysfunctions in adult-
hood. For example, rats exposed to intrauterine stress de-
velop depressive-like behaviors and hyper-anxiety coupled 
with the increase of CRH activity in the amygdala (64,65). 
Interestingly, abnormalities in the HPA axis described in pre-
natally stressed animals were also reported in humans with 
endogenous depression (68–70). Also during early postnatal 
life, the development of the nervous system is sensitive to 
stress events, and this contributes to inter-individual differ-
ences in vulnerability to psychopathology. In the postnatal 
development of CNS, the neural network undergoes deep 
rearrangements (71, 72) and is particularly sensitive to ex-
ternal stimuli. In this phase, the role of NGF and BDNF is 
to modulate brain plasticity to better adapt to the environ-
ment. As an example, mice grown in a nest with caregiving 
mothers display better social interaction and skills compared 
to mice bred in standard laboratory conditions. The socially 
enriched mice present also higher levels of NGF and BDNF 
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in hippocampus and hypothalamus (73, 74). In the mouse, 
NGF is produced and secreted by the submaxillary salivary 
glands (75, 76). Neurobehavioral studies have shown that in-

release of NGF from salivary glands into the bloodstream. 
These observations demonstrated a correlation between the 
serum concentration of NGF and the status achieved in the 

levels of NGF compared to dominant mice (77–79). Other 

NGF levels and subordinate behavior (80, 81). In male mice, 
the chronic administration of NGF reduced aggressive be-
havior (79). NGF release was activated by psychosocial 

-
cal stressors have less pronounced effects (73, 74). Intermale 
aggressive behavior increases the synthesis of NGF in the 
hypothalamus (82) probably because the NGF levels respond 
to psychological stimuli connected to fear and anxiety and 
interplay with hormones and neurotransmitters to integrate 
the neuroendocrine response and the behavior to ensure  the 
physiological homeostasis (2, 14, 81). Data from humans and 
animal models suggest a role of neurotrophins also in vulner-
ability to stress-related neuropsychosis (83, 84). Growing lit-
erature evidences showed that in psychopathological disease 
the constitutive levels of neurotrophins are altered in both 
brain and plasma. In schizophrenic patients, without neuro-
leptic therapy, the plasma levels of NGF are lower compared 
to healthy controls (85). Administration of the antipsychotic 
drug haloperidol in human and mice drastically reduces the 
plasma levels of NGF (86) inducing sedation. In contrast, 
the atypical antipsychotics risperidone, clozapine, and olan-
zapine showed higher levels of plasmatic NGF compared to 

critical role of NGF during the development of cholinergic 
neurons that control learning and memory could explain the 

-
cits observed in this disease because the low levels of NGF 

schizophrenic patients, brain imaging studies showed altera-
tion in brain areas such as prefrontal, temporal and anterior 
cingulum known to be involved in affective-cognitive inte-
gration (89). Also, the schizophrenic brain post-mortem ex-
amination showed a reduction of cell proliferation in the en-
torhinal cortex, anterior cingulate and prefrontal region that 
could explain the origin of the disease (85, 89). In animal 

symptoms (90) develop also by maternal exposure to risk 
factors such as ethanol and drug abuse that inhibit entorhinal 
and cortical neurogenesis (91).

Schizophrenia is a multifactorial mental disease triggered 
by social, genetic and developmental factors (92). Among the 
genes that have been observed to be involved in this disease 
one is Disrupted-in-schizophrenia 1 (DISC1) (93,94) which 
is expressed by neurons of the cerebral cortex, hippocampus, 
olfactory bulb and cerebellum in rat brain (95–97). The protein 
binds other proteins including fasciculation and elongation 
protein zeta-1(Fez1), involved in axonal outgrowth. DISC1-
Fez1 molecular complex colocalizes in the growth cone of 
neurite suggesting a role in the process of extension also con-

ontogenic stages. Studying the neurodifferentiation of PC12 
cells stimulated with NGF was observed a drastic increase of 
Fez1 suggesting that NGF controls the neurite extension and 
outgrowth upregulating DISC1-Fez1 complex (92). When the 
DISC1 translocation prevents the complex being formed, neu-
rite extension cannot happen and the brain development re-
mains immature, supporting the hypothesis that schizophrenia 
is essentially a neurodevelopmental disease (92).

NGF and Major Depression Disorder
Major depression disorder (MDD) is the most common of 
brain disorders and involves depression, scarce interest in 
normal daily activities, fatigue, a decrease in concentra-
tion, suicidal intentions (98). Several neurotrophins includ-
ing NGF and BDNF are involved in MDD pathogenesis (99, 
100). Major depression disorder patients present reduced 
serum NGF, and the same reduction was observed in hip-
pocampus mRNA and protein expression of NGF, BDNF and 
their receptors in post-mortem examination (101, 102).  The 
chemical mediator of NGF reduction is interferon-gamma 
(IFN- ), as was observed in IFN-  knockout mice models 
that develop a depressive-like behavior, an increased immo-
bility and a parallel reduction of NGF levels (103, 104).

The administration of NGF in rats decreases the expres-
sion of cholinergic gene CHRNA5 and prokineticin recep-

-
triptyline therapy. The improvement of the depression-like 
behavior is realized by modifying the expression of several 
genes of amygdala and hippocampus (105).

NGF in Autism Spectrum Disorder
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communication and repetitive pattern of behavior. Genetic 
aberrations play a crucial role in developing ASD with hun-
dreds of genes associated with it, which however do not show 
to converge in a common molecular pathway. Genetic studies 
and behavioral observations demonstrate the overlapping of 
ASD with other psychiatric disorders, such as schizophre-

Disorder (ADHD) (106, 107). In a study of differential alter-
native splicing (DAS) in the blood of 2-4 years old boys with 

in several genes of NGF receptors and signaling compared 
to controls (108). Another study of Lu et al showed several 

-
tion that is one of the autistic trail (109).  

NGF and Alcohol-Induced Mental Retardation
Several human evidences have shown that chronic or binge 
alcohol consumption as well as alcohol exposure during devel-
opment are a main inducing-cause of brain changes (110) and 
mental retardation in both adults and children (88, 111–119). As 
for the gestational alcohol consumption, the plethora of effects 
in children induced by ethanol are described as Fetal Alcohol 
Spectrum Disorders (120–123). It has also been clearly dem-
onstrated that chronic or binge alcohol consumption as well as 
alcohol exposure during development may impair brain neuro-
trophic factors production and the expression of their receptors 
(124–132). NGF is one of the most important neurotrophins 
involved in ethanol-induced toxicity. Indeed, NGF and their 
receptors are known to be altered in the brain during prenatal/
acute/chronic alcohol consumption (133–138). In particular, 
as previously indicated (133) alcohol inhibits the expression 
of endogenous extracellular signal-regulated kinase (ERK) 
and the phosphatidylinositol-3-kinase (PI3K) (139–141). In 
addition, data disclosed several epigenetic rules of NGF and 
BDNF, the serum levels of interleukin-6 (IL-6) and tumor 

-
hol dependence (142, 143). In particular, it has been shown 
an increase in NGF and IL-6 serum levels following alcohol 

serum levels and the history of alcohol consumption, suggest-
ing that changes in the methylation of neurotrophins genes 
may contribute to the development of alcohol dependence by 
affecting relevant downstream signalling cascades (133, 143). 

NGF and Brain Parasitosis
The role of NGF in parasitic disease is not yet clear estab-

lished but some clues have emerged from the study on Trypa-
nosoma cruzi and Schistosoma mansoni
of the brain.

Chagas disease or American trypanosomiasis is a tropi-
cal parasitic disease caused by the protist Trypanosoma cruzi 
spread to humans and mammals by the insects “kissing bugs” 
of the subfamily Triatominae (144, 145). During the early 
stage, symptoms are not present or are mild with fever, head-
ache, swollen lymph nodes. Only 40% of people develop se-
vere symptoms of the disease after 30-40 years from the in-
fection that include heart failure due to enlargement of heart 
ventricles, or enlarged esophagus or colon (megaesophagus 
or megacolon). This disease affects 6,6 million people mostly 
in Central America and Mexico (146).  

Trypanosoma cruzi produces the NGF mimetic neurotro-
phin called parasite-derived neurotrophic factor (PDNF), a 
membrane-bound neuraminidase/trans-sialidase that can 
bind TrkA but not p75NTR (147, 148).

Trypanosoma infection of CNS is usually asymptomatic 
and neuronal examination has shown neuroprotection and 

parasite nest (149). Neuroprotection and neuroregeneration 
were also observed in animals with acute or chronic infection 
(150–153). Signs of sprouting of sympathetic and parasym-

increased levels of neurotransmitters (154, 155). These data 
have shown that PDNF is a functional mimic of NGF that can 
bind TrkA in an NGF inhibitable manner, can induce TrkA 
autophosphorylation and can trigger Pl3K/Akt and MAPK-
Erk1/2 signaling that promotes cell survival and neurite 
outgrowth. The inability of binding p75NTR inhibits the cell-
death signaling pathway (156, 157). Given the critical role of 
TrkA in neuronal maintenance, the parasitic invader utilizes 
this receptor to reduce tissue damage, to stimulate protec-
tive mechanisms and tissue repair maximizing host-parasite 
equilibrium in order to prolong parasitism. This mechanism 

interaction (156).
Neuroschistosomiasis (NS) refers to the Schistosoma man-

soni infection of the central nervous system and depends ba-
sically on the presence of parasite eggs in the nervous tissue 
and on the host immune response. After eggs deposition, the 
mature embryo secretes and excretes antigenic and immuno-
genic mediators that start the granulomatosis reaction. A large 
number of eggs and granulomas in CNS regions damage the 

-
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fect (158–162). In infected mice that manifest granulomas in 
several CNS regions it is observed an increase in NGF levels 
in the cortex, hypothalamus, and brain stem with paw hyperal-
gesia (163,164). This murine model of chronic infection sug-

in human infection are associated with abnormal NGF levels 
and/or activity in peripheral and central nervous system caused 
by the local formation of granulomas (75,165–171).

NGF-based Therapy
The protective effect of NGF in animal models of neurode-
generative disease has led to clinical trials of NGF therapy 
in humans for several brain diseases including AD, schizo-
phrenia (172,173) and hopefully for other brain pathologies.

Encouraging results were observed in patients’ basal fore-
brain in which were implanted connective cells engineered 
to synthesize and secrete NGF. In these experiments were 

-
ers. Also, the cell showing signs of pathology and protein 
clumps inside the cell body maintained a healthy size, ac-
tivated prosurvival signaling and manifested stress resist-

that contain the NGF gene were directly injected in the basal 
forebrain (174, 175). The protective role of NGF and its pro-
gressive decrease in AD is the rationale of NGF therapy in 
which the administration of exogenous NGF could antago-

-
ing results were obtained in rodents where intracerebral NGF 
delivery was neuroprotective for cholinergic neurons. Also in 
AD models like APP/PSI transgenic mouse, the less invasive 
ocular or nasal administration of NGF reduces beta-amyloid 
deposition (176). In AD patients NGF gene therapy in phase I 
has shown axonal sprouting without side effects (176).

Anomalies in the levels of NGF or NGF signaling and the 
resulting impairment of neuroplasticity and cognitive func-
tions were also observed in psychiatric disorders such as 
schizophrenia, depression, bipolar disorders, alcohol use dis-
orders and autism. In schizophrenic patients in therapy with 
atypical antipsychotic drugs, NGF levels increase leading to 
a reduction of negative symptoms (49, 177). In bipolar disor-
ders, NGF decreases during the manic state and is rescued by 
lithium administration that increases the NGF concentration 
in the frontal cortex, hippocampus, and amygdala (178). In 
children with Rett syndrome, a condition that causes a delay 
in development and cognitive disability resembling autism, 
therapies with NGF-like activity drugs improve motor and 

cortical functions and increase social interactions (179).

CONCLUSIONS

Many years of research have well documented the impor-
tant trophic and homeostatic role of NGF that exerts its 
modulatory activities on nervous, endocrine, adipose and im-
mune system functions. Future researches, through a greater 
knowledge of the mechanism of action of this small and ver-
satile peptide, will help to develop updated brain therapeutic 
strategies for many clinical areas including those involving 

-
nology  (2, 20, 23, 180, 181).  
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