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INTRODUCTION

The long-lasting paradigm in biomedical sciences stated that 
all hormones, mediators and neurotransmitters are specialized 
organic molecules synthesized by specific enzyme systems.
Therefore, it was a great surprise when endothelium-derived 
relaxing factor was identified as nitric oxide (NO) – a simple

inorganic molecule. Soon thereafter, the second inorganic 
gaseous compound, carbon monoxide (CO), was recognized 
as an endogenously produced mediator and neurotransmitter. 
CO, together with biliverdin, is a product of heme catabolism 
by heme oxygenase (HO). Recent studies indicate that another 
gas, hydrogen sulfide (H2S), is also a physiological mediator 
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in mammalian tissues. H2S is a water-soluble, colorless and 
flammable gas with a strong odor of rotten eggs, known for
decades only as a toxic environmental pollutant. The main 
mechanism of its toxicity is a potent inhibition of mitochon-
drial cytochrome c oxidase (1). That H2S may operate as an 
endogenous neurotransmitter was first suggested in 1996 by
Abe and Kimura who described the enzymatic mechanism of 
H2S production in the brain, its biological effects at physi-
ological concentrations, and its specific cellular targets (2).
Now, H2S is increasingly recognized as a member of a grow-
ing family of “gasotransmitters”, together with its two “older 
brothers”, NO and CO.
 Several comprehensive reviews about H2S have been 
published recently (3–6). Herein, I will briefly highlight only
mainstream aspects of H2S research including new important 
findings published during the recent 12 months.

CHEMICAL PROPERTIES OF H2S, ITS SYNTHESIS AND 
METABOLISM

Under physiologically relevant conditions, i.e. in aqueous solu-
tions and at pH 7.4, one third of H2S is undissociated and two 
thirds dissociate into H+ and HS- (hydrosulfide ion). Sodium
hydrosulfide (NaHS) is commonly used experimentally as
a H2S donor since it dissociates into Na+ and HS-; the latter 
than partially combines with H+ to form H2S. H2S is lipophilic 
and freely permeates plasma membranes. H2S is detectable 
in serum and most tissues at a relatively high concentration 
(about 50 μM), and even three-fold higher concentrations are 
found in the brain.
 H2S is synthesized from L-cysteine by either cystathionine β-
synthase (CBS, EC 4.2.1.22) or cystathionine γ-lyase (CSE, EC 
4.4.1.1), both being vitamin B6-dependent enzymes. CBS and 
CSE also act sequentially to form cysteine from homocysteine; 
the so-called transsulfuration pathway of homocysteine me-
tabolism (7). CBS is the major H2S-generating enzyme in the 
nervous system, whereas CSE catalyzes H2S production in the 
cardiovascular system. In some tissues such as the liver and 
kidney, both enzymes are expressed in comparable amounts. 
In general, H2S production from cysteine by either CBS or 
CSE constitutes only a minor fraction of cysteine metabolism. 
Most cysteine is catabolized by cysteine oxidase with its 
thiol group being directly oxidized to sulfite (SO32-), which 
is rapidly oxidized to sulfate (SO42-) by sulfite oxidase (SO,
EC 1.8.3.1). However, in some tissues such as renal tubules 
desulfhydration of cysteine to H2S accounts for up to 50% of 
cysteine metabolism (8).

 Both CBS and CSE are regulated by various factors at both 
transcriptional and posttranslational levels (4). Interestingly, 
NO and CO are potent CBS inhibitors and it is suggested that 
CBS may be a major target for CO in the brain (9). In contrast, 
NO donors acutely stimulate CSE-dependent H2S generation in 
a cGMP-dependent manner in the rat aorta (10), and increases 
CSE mRNA and protein expression in the long run (11).
H2S is rapidly oxidized to thiosulfate (SSO32-) in mitochondria, 
but the mechanism of this reaction is unclear. Thiosulfate is fur-
ther converted to sulfite by thiosulfate sulfurtransferase (TST,
rhodanese, EC 2.8.1.1), and sulfite is then oxidized to sulfate by
sulfite oxidase. The second pathway of H2S metabolism is its 
methylation by thiol S-methyltransferase (TSMT, EC 2.1.1.9) 
to methanethiol (CH3SH) and dimethylsulfide (CH3SCH3) (4). 
Finally, H2S may bind to methemoglobin to form sulfhemo-
globin. Because hemoglobin may also bind NO and CO, it is 
a common “sink” for all three gasotransmitters.
 Colonic mucosa is continuously exposed to high concentra-
tions of H2S produced by enteric bacteria, and is equipped with 
extraordinarily high amounts of TST and TSMT. Genotoxicity 
of H2S (12) and reduced expression of H2S-metabolizing en-
zymes in patients with colorectal cancer (13), suggesting that 
impaired H2S metabolism may contribute to the pathogenesis 
of this disease. In addition, colonic epithelial cells are able to 
use H2S as an electron donor for the mitochondrial respiratory 
chain (14). This is a first described example of mitochondrial
oxidation of inorganic substrate in mammalian cells since 
previously only bacteria, worms and fish adapted to high H2S 
concentration were known to utilize sulfide as an electron
donor.

SIGNAL TRANSDUCTION MECHANISMS

The best characterized molecular targets stimulated by H2S 
are ATP-sensitive potassium channels (KATP) composed of in-
wardly rectifying potassium channel Kir6.2 and tissue-specific
isoforms of sulfonylurea receptor (SUR). KATP are cellular 
energy sensors activated under conditions of ATP depletion 
such as hypoxia to drive potassium efflux from the cell. H2S 
also reacts with other molecular targets. As a strong reductant, 
H2S may protect protein sulfhydryl groups from oxidation, 
although until now little data support it as a mechanism of 
physiological effects of this gas. Moreover, H2S reacts with 
reactive oxygen and nitrogen species such as superoxide 
anion radical (O2-), hydrogen peroxide (H2O2), peroxynitrite 
(ONOO-) and hypochlorite (ClO-), and thus protects cells 
from being damaged by these noxious molecules (15–18). 
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Activated neutrophils generate O2- which reacts with H2S 
to form sulfite – an important bactericidal compound which
may also contribute to tissue damage in inflammatory states.
Indeed, increased sulfite concentration is observed in patients
with septic shock (19). H2S has also been demonstrated to 
stimulate heme oxygenase, to stimulate or inhibit inducible NO 
synthase, and to activate or suppress extracellular signal-regu-
lated kinases (ERK), however, it is unclear if these effects are 
primary or result from activation of other signaling pathways 
such as KATP channels (4).

H2S IN THE NERVOUS SYSTEM

Several effects of H2S in the nervous system have been de-
scribed, suggesting that it may function as a neurotransmit-
ter/neuromodulator. H2S facilitates hippocampal long-term 
potentiation, a synaptic model of learning and memory (2), 
at least in part by increasing the sensitivity of N-methyl D-
aspartate (NMDA) receptors to their ligand, glutamate (20). 
In addition, H2S stimulates Ca2+ influx to astrocytes (21) and
neurons (22) from the extracellular space. Accumulating body 
of evidence suggests that H2S stimulates capsaicin-sensitive 
sensory nerves and evokes the release of tachykinins such as 
substance P and neurokinin-A. This effect is mediated by tran-
sient receptor potential vanilloid receptor-1 (TRPV-1) calcium 
channel (23), a nonselective cation channel which serves as a 
nonspecific receptor of sensory terminals for various noxious
physical and chemical stimuli.
 Abnormalities of H2S production have been implicated in 
certain nervous system diseases. Human CBS-encoding gene is 
located on chromosome 21 and, therefore, H2S is overproduced 
in the brain of patients with Down syndrome. Indeed, urinary 
excretion of thiosulfate is increased two-fold in patients with 
Down syndrome in comparison to healthy individuals (24). 
It is hypothesized that excess of H2S exerts a toxic effect on 
neurons through the inhibition of cytochrome c oxidase and/or 
overstimulation of NMDA receptors, and thus contributes to a 
progressive mental retardation in patients with 21 trisomy (25). 
Qu et al. (26) have observed that administration of NaHS or L-
cysteine aggravates, whereas CBS or CSE inhibitors reduce the 
volume of brain infarct induced by cerebral artery occlusion. 
In addition, H2S concentration in the cerebral cortex increased 
in this model of stroke. These data suggest a detrimental ef-
fect of H2S in experimental stroke. Indeed, H2S may induce 
neuronal cell death by overactivating NMDA receptors (27).
 However, H2S may also be protective for neurons under 
certain conditions, and thus its deficiency in the brain may

be detrimental. In particular, H2S protects neurons against 
neurotoxicity of glutamate independent of the stimulation of 
excitatory amino acid receptors. Overproduction of glutamate 
is observed in certain pathological conditions, such as seizures, 
brain ischemia, trauma, etc., and may damage neurons not 
only by activating specific membrane receptors but also in the
receptor-independent manner referred to as “oxytosis”. Cystine 
is transported to the cell by the xc- system (cystine/glutamate 
antiporter), which drives import of cystine coupled to export 
of glutamate. Extracellular glutamate inhibits this exchange, 
leading to intracellular cysteine deficiency. Since cysteine is a
rate-limiting substrate for glutathione (GSH) synthesis, excess 
glutamate induces GSH depletion which renders the cell more 
sensitive to oxidative stress. NaHS increases intracellular GSH 
concentration in rat cortical neurons and protects these cells 
against ischemia or glutamate-induced death (28, 29). H2S may 
also protect neurons by scavenging reactive oxygen and/or ni-
trogen species (17, 18). Interestingly, H2S concentration in the 
brain of patients with Alzheimer disease is severely depressed 
in comparison to control individuals, which may contribute to 
cognitive impairment and progressive neuronal injury (30).

METABOLIC EFFECTS OF H2S 

Recently, it has been demonstrated that H2S inhaled at low 
concentrations induces a hibernation-like phenotype in mice, 
characterized by reduced metabolic rate, decrease in body 
temperature, heart and respiratory rates, most likely by inhib-
iting mitochondrial respiration (31). These data suggest that 
protective effect of H2S in some experimental models may 
result, at least partially, from reduced oxygen demand. Indeed, 
pretreatment with H2S improved survival of mice subsequently 
exposed to low oxygen tension (32). The similar protective 
effect was observed in a rat model of rapid lethal hemorrhage 
(3). In addition, H2S added to the incubation medium reduces 
injury of the donor rat heart used for transplantation (33). This 
metabolic effects may also contribute to increased life span 
of Caenorhabditis elegant exposed to low H2S concentrations 
(34). However, it is unclear if the analogous effect will be 
observed in large animals such as primates, who spend much 
less energy for thermoregulation (35).

H2S IN THE CARDIOVASCULAR SYSTEM

Initial studies have unequivocally indicated that H2S has a 
hypotensive/vasodilating activity. Intravenously injected H2S 
induces a transient dose-dependent decrease in mean arterial 
pressure (11). In vitro, H2S and NaHS relax isolated rat arter-
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ies and veins (36). In contrast to NO and CO, H2S does not 
stimulate soluble guanylate cyclase but activates KATP channels 
in vascular smooth muscle cells, which results in hyperpo-
larization of plasma membrane, reduction of Ca2+ influx, and
attenuation of the contractile response. Vasodilatory effect of 
H2S is abolished by KATP channel antagonist, glibenclamide 
(11). Moreover, patch-clamp studies have demonstrated that 
H2S increases KATP-dependent current by increasing channel’s 
open probability, but has no effect on its conductance (37). 
Interestingly, CSE inhibitors reduce KATP channel-dependent 
current indicating that endogenous H2S continuously stimu-
lates the channel under baseline conditions. It seems that H2S 
activates KATP channels directly and no intermediate signal-
ing mechanism is involved, however, the specific molecular
background of channel activation is not known.
 Recent studies suggest that H2S has a more complex effect on 
vascular tone. First, O2-dependent effect on rat thoracic aorta 
was observed, i.e. H2S constricted it at high but relaxed at low 
O2 concentration (38). Second, both in vivo (39) and in vitro 
(40) studies indicate that low H2S concentrations may induce 
vasoconstriction and blood pressure elevation by inactivating 
endothelial NO which combines with H2S to form inactive 
nitrosothiol (41). Finally, H2S directly inhibits endothelial 
NO synthase (42). Other effects of H2S in the cardiovascular 
system include augmentation of baroreceptor reflex (43),
decrease in myocardial contractility (44), and stimulation of 
angiogenesis (45). H2S also inhibits angiotensin-converting 
enzyme (ACE) – a zinc-containing protein – by binding Zn2+ 
cations (46).
 Plasma H2S concentration as well as aortic CSE expression 
are lower in spontaneously hypertensive rats (SHR) than in 
control Wistar-Kyoto rats. In addition, chronic administration 
of NaHS lowers blood pressure in SHR but not in normoten-
sive rats (47). The similar results were obtained in rats with 
experimental hypertension induced by chronic NO synthase 
blockade (48). Plasma H2S level is lower in patients with 
essential hypertension than in normotensive controls (49). 
Taken together, these data suggest that deficiency of H2S may 
contribute to the pathogenesis of arterial hypertension.
Both NO and CO produced in the arterial wall inhibit athero-
genesis through their anti-inflammatory, antiplatelet, and
antiproliferative activities. Therefore, the question arises if 
H2S is also involved in atherogenesis. Indeed, H2S exerts some 
effects potentially associated with suppressing atherogenesis. 
H2S inhibits proliferation (50) and induces apoptosis (51) of 
vascular smooth muscle cells, suppresses oxidative modifica-

tion of low-density lipoproteins (52), inhibits platelet aggrega-
tion (53), attenuates prooxidant effect of homocysteine (54), 
and may inhibit vascular inflammatory reactions, although
the latter is controversial (see below). In vivo, NaHS attenu-
ates vascular remodeling and inhibits neointima formation 
after balloon-induced injury of the rat carotid artery (55), and 
ameliorates experimentally-induced vascular calcifications
(56). Further studies are required to elucidate if H2S production 
is impaired in human atherosclerosis. It should be noted that 
low CBS/CSE activity will promote not only H2S deficiency
but also homocysteine excess, so low H2S may accompany 
at least some forms of hyperhomocystinemia. Dissecting the 
role of homocysteine vs. H2S deficiency in atherogenesis will
be an important and demanding aspect of future research in 
this field.
 Myocardial cells contain large amounts of KATP channels 
consisting of Kir6.2 and a sulfonylurea receptor, SUR2A. 
Activators of KATP channels have documented a protective 
effect in myocardial ischemia-reperfusion injury (57). Several 
studies have demonstrated that H2S donors reduce myocardial 
damage and improve hemodynamic function in various models 
of ischemia-reoxygenation in isolated cardiomyocytes, iso-
lated perfused heart, and in intact animals (58,59). Perfusion 
of isolated rat heart with H2S before ischemia prevented ar-
rhythmias induced by the subsequent ischemia/reperfusion 
episode, and protected isolated cardiac myocytes against death 
induced by subsequent hypoxia (60). In addition, blockade 
of endogenous H2S production reduced the protective effect 
of modest ischemia against deleterious effect of subsequent 
severe ischemia, suggesting that endogenous H2S is involved 
in the phenomenon of “ischemic preconditioning”.
 Finally, H2S deficiency is observed in experimental pulmo-
nary hypertension induced by hypobaric hypoxia (61) or by 
high pulmonary blood flow (62), and sodium hydrosulfide at-
tenuates vascular remodeling and right ventricular hypertrophy 
as well as reduces pulmonary arterial pressure in these models 
(63,64).

H2S AND INFLAMMATION

H2S seems to play a very complex role in the inflammatory
reactions. Both pro- and antiinflammatory effects of H2S have 
been described both in vitro and in vivo, depending on the 
experimental model and dose/concentration of this gasotrans-
mitter (reviewed in 3,4,65). For example, H2S is overproduced 
in experimental models of septic shock and may contribute to 
hypotension, impaired myocardial contractility, and lung and 
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liver damage (66–68). Suppressing H2S production reduces 
inflammatory reaction and improves survival in these mod-
els. In addition, increased CSE expression/activity and H2S 
production are observed in experimental caerulein-induced 
pancreatitis (69). H2S may also induce “neurogenic inflam-
mation”, especially in the airways, by activating TRPV1 in 
sensory nerve endings and increasing local release of substance 
P, neurokinin-A and calcitonin gene-related peptide (CGRP). 
These mediators induce a series of inflammatory responses
including vasodilation, extravasation of plasma proteins, 
edema, bronchoconstriction, mucus secretion and recruitment 
of inflammatory and immune cells (70,71). Plasma H2S con-
centration is increased by almost 50% in patients with stable 
chronic obstructive bronchopulmonary disease (COPD) in 
comparison to the control group (72). Interestingly, in patients 
with exacerbated COPD, H2S level is lower than in those with 
stable disease and is inversely correlated with pulmonary artery 
systolic pressure, suggesting that pulmonary hypertension 
per se has a deleterious effect on H2S production in humans. 
Finally, H2S concentration in exhaled breath is increased in 
patients with chronic pancreatitis (73).

INSULIN SECRETION AND DIABETES MELLITUS

Apart from vascular smooth muscle cells and cardiomyocytes, 
KATP channels are abundantly expressed in insulin-secreting 
pancreatic β cells. Pancreatic KATP channels, consisting of 
Kir6.2 and SUR1, play an important role in the regulation of 
glucose-induced insulin secretion. Glucose increases intrac-
ellular ATP concentration leading to KATP channel blockade, 
plasma membrane depolarization, Ca2+ influx through the
voltage-sensitive Ca2+ channels, and insulin release. Several 
studies have demonstrated that both exo- and endogenous H2S 
inhibits insulin release by activating KATP channels in β-cells 
(74, 75). Moreover CBS expression and H2S production are 
increased in pancreas of rats with streptozotocin-induced 
diabetes, suggesting that excess of H2S may contribute to 
abnormal insulin secretion (76). H2S was not measured in dia-
betic humans, but plasma L-cysteine as well as the expression 
of CBS and CSE in various tissues are increased in patients 
with diabetes (77).

H2S IN THE GASTROINTESTINAL SYSTEM

Both acetylsalicylic acid (ASA) and nonsteroidal anti-inflam-
matory drugs (NSAIDs) reduce CSE expression and H2S 
production in the gastric mucosa. NaHS attenuates gastric 
lesions induced in the rat by ASA or NSAIDs (78).

 Serosal application of NaHS or L-cysteine stimulates lu-
minal chloride secretion by guinea pig and human colonic 
tissues. This effect results from TRPV1-mediated stimulation 
of the enteric nervous system (79). Recently, Distrutti et al (80) 
have demonstrated that NaHS ameliorates visceral nocicep-
tion evoked in the rat by colorectal distension. Fiorucci et al  
(81) have shown that H2S attenuates norepinephrine-induced 
vasoconstriction in the liver of healthy rat as well as in animals 
with experimental liver cirrhosis induced by bile duct liga-
tion. Experimental cirrhosis is associated with reduced CSE 
expression, decreased H2S production by liver homogenates, 
and decrease in plasma H2S concentration (81). Deficiency of
H2S may thus contribute to enhanced hepatic vascular resist-
ance and to the development of portal hypertension.

THERAPEUTIC IMPLICATIONS

According to the experimental studies mentioned above, el-
evating H2S may be beneficial in diseases such as arterial and
pulmonary hypertension, atherosclerosis, myocardial infarc-
tion, gastrointestinal ulcer and some inflammatory diseases,
whereas suppressing H2S production may be indicated in 
conditions such as septic shock, pancreatitis, cerebral stroke 
or diabetes. Although there are attempts to use gaseous NO 
and CO in some diseases such as pulmonary hypertension, 
H2S application via this route may be more difficult due to
problems with precise control of concentration, low therapeutic 
index, manufacturing and formulation difficulties and, last but
not least, a very unpleasant smell even at low concentrations. 
Such therapy may be considered only in acute states such as 
myocardial infarction. Most of problems with gaseous H2S 
will also emerge while trying to administer H2S solutions 
parenterally. NaHS, although widely used as a research tool, 
releases H2S quickly and is thus a short-lasting donor. In 
addition, rapid release of H2S may cause acute changes in 
blood pressure. Ideal H2S donors, from therapeutic point of 
view, should release H2S slowly in moderate amounts. Such 
compounds are, unfortunately, still not available. Recently, two 
H2S-releasing derivatives of currently used drugs were syn-
thesized: mesalamine derivative, ATB-429, and S-diclofenac. 
They differ from their parent compounds in that they contain 
a H2S-releasing moiety, and initial results suggest that this 
augments their antiinflammatory properties while reducing
deleterious effects on the gastrointestinal system (82). The 
other possible approach is pharmaco- or gene therapy aimed 
to increase CBS/CSE expression. Interestingly, biologically 
active garlic component, S-allylcysteine, is a H2S precursor in 
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vivo, and H2S seems to drive its beneficial effects on vascular
tone on myocardial ischemic insults (83,84).
 Therapeutic approach based on suppressing H2S-generating 
enzymes is a matter of future. Currently used CSE and CBS 
inhibitors are unsuitable for pharmacotherapy and non ideal 
even for research. First, they are not completely specific and
inhibit also other vitamin B6-dependent enzymes. Second, 
the most commonly used CSE inhibitor, propargylglycine, is 
a lead-containing compound and may be toxic after long-term 
administration. Finally, most inhibitors have a very limited 
ability to permeate plasma membranes. However, even com-
pletely specific CBS or CSE inhibitors will not only reduce
H2S level but also impair homocysteine metabolism, which 
may be unbeneficial in certain circumstances. Thus, their
administration may be considered only for a short time.
 ASA and NSAIDs have an inhibitory effect on the CSE-H2S 
pathway in gastrointestinal mucosa (78), which may contribute 
to mucosal injury induced by these drugs but, on the other 
hand, may be involved in their antineoplastic effect of these 
medications in the gastrointestinal tract. NSAIDs reduce CSE 
expression also in renal epithelial cells, and NaHS exerts a 
protective effect against NSAIDs-induced injury in these cells 
(78). These data are intriguing in view of high expression of 
H2S-producing enzymes in the kidney and the well-known 
nephrotoxic effect of NSAIDs. Because KATP channels mediate 
many effects of H2S, sulfonylurea derivatives widely used in 
the treatment of type 2 diabetes may interfere with the effects 
of this gasotransmitter by blocking KATP channels outside 
the pancreas. In this context, it should be noted that some 
sulfonylurea derivatives have adverse effects in experimental 
myocardial ischemia and increase the amount of cardiovascular 
events in clinical trials (85). Thus, unbeneficial modulation of
H2S signaling may also contribute to adverse effects of certain 
drugs. Finally, taking into account the potential role of H2S de-
ficiency in arterial hypertension and atherosclerosis, the effect
of drugs currently used in pharmacotherapy of cardiovascular 
diseases on H2S metabolism is of great interest.

CONCLUSIONS AND PERSPECTIVES

H2S emerges as an important regulator of many physiological 
functions, and is also involved in the pathogenesis of certain 
diseases. However, our knowledge about its role in physiology 
and pathology is far from being complete. Some aspects of its 
activity are controversial and the results are often contradictory 
depending on the experimental conditions. Only few studies 
demonstrated alterations in H2S level in human diseases, and 

in most cases it was done indirectly by measuring H2S-related 
compounds such as thiosulfate, sulfite or sulfhemoglobin rather
than H2S itself. The most important issues for future research 
are: (i) improvement of methods used for measurement of H2S 
concentration in biological samples, (ii) more detailed char-
acterization of specific molecular targets for this transmitter,
(iii) unraveling the mechanisms which regulate H2S-producing 
and H2S-degrading enzymes, (iv) more systematic analysis of 
H2S system in human diseases, including prospective studies 
focused on its role as a cardiovascular risk factor, and  (v) 
synthesis of H2S donors and CBS/CSE inhibitors more suit-
able for research and potentially for therapy than currently 
used compounds. Great progress made in this field in the last
five years allows to hope that we will be able to answer many
unresolved questions in the near future.
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