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SUMMARY 

• This review is devoted to the human Ley dig cell, and 

systematizes published and own unpublished results from stud- 

ies performed during the last decade. Ley dig cells are the main 

cell type in the testis that produce androgens which are impor- 

tant for the development of the male genital organs, second- 

ary sex characteristics and behavior as well as for the process- 

ing and maintenance ofspertnatogenesis. A lot of information 

accumulated provides evidence that Ley dig cells of the human 

testis and the testis of some other species express or possess 

immunoreactivities for numerous marker substances charac- 

teristic for nerve andneuroendocrine cells. It is shown that hu- 

man Leydig cells, beside of markers for steroidogenic activ- 

ity, possess: neuronal markers, synoptic and storage vesicle 

proteins, neural cytoskeletal proteins, 5-hydroxytryptamine, 

enzymes involved in the synthesis ofcatecholatnines, neurohor- 

mones and/or their receptors, neuropeptides, calcium-binding 

proteins, cell adhesion molecules, glial cell antigens, compo- 

nents of the nitric oxide/cyclic guanosine monophosphate sys- 

tem, components of the renin/angiotensin system, and numer- 

ous growth factors and their receptors. These results provide 

new evidence for the neuroendocrine nature of Leydig cells. 

As consequence, t\vo main questions arise: (i) the origin of 

Leydig cells and (ii) their functional significance as neuroen- 

docrine cells. The presumption that Leydig cells originate from 

mesenchymal-like cells of the mesonephros is the most com- 

mon view in the literature. However, no data are provided con- 

cerning the origin of the stem cells from which the Leydig cell 

lineage develops. Mesenchyme comprises the embryonic con- 

nective tissue cells that may have mesodermal, ectoderrnal and 

neuroectodermal (neural crest) origin. In this relation and 

based on the recently established neuroendocrine feature, we 

speculate that Leydig stem cells may detach from unknown 

regions of the neural crest and migrate to the mesonephric and 

gonadal anlage at early stages of development. The functional 

significance of Leydig cells as neuroendocrine cells is also 

illustrated on the basis of the nitric oxide/cyclic guanosine 

monophosphate system. Accordingly, Leydig cells may regu- 

late their steroidogenic activity by an intracrine or autocrine 

fashion. Furthermore, they are probably able to synchronize 

the activity of the cells in a Leydig cell cluster by a paracrine 

way. Leydig cells may influence the contractile activity of the 

smooth muscle cells ofbloodvessels, thus regulating the blood 

flow rate and the permeability for hormones and nutritive sub- 

stances. Also, Leydig cells may regulate the contractile state 

ofperitubular myofibroblasts and myofibroblasts and smooth 

muscle cells of the tunica albuginea. Similarly, Leydig cells 

may communicate with Sertoli cells and germ cells of the se- 

miniferous tubules. Leydig cells are a relatively stable, hetero- 

geneous population of cells in the human testis which persists 

even in cases of impaired spermatogenesis,fibrosis and differ- 

ent pathological changes of the testis. This fact suggests that 

Leydig cells survive under unusual conditions due to precise 

regulatory systems which make them to a larger extent inde- 

pendent from the local homeostasis. 
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INTRODUCTION 

• A large number of data has been accumulating during 
the last decades concerning the origin, nature, structural and 
functional features as well as the aging and pathological 
changes of the endocrine Leydig cells (LC) of different species 
(1, 2). Only rarely research was devoted to LC of the human 
testis. The endocrine function of LC is beyond doubt. Recently, 
results were obtained suggesting the neuroendocrine nature of 
LC (3-5). This newly described characteristics raised a num- 
ber of questions concerning the true nature, the heterogeneity, 
the origin and the functional properties of LC. The present 
concise review deals primarily with the neuroendocrine quali- 
ties of the human LC and the consequences that follow from 
this fact. 

SHORT HISTORY OF THE LEYDIG CELL 

• The history of the LC discovery has been recently sys- 
tematized by Christensen (6). This topic was also object of pre- 
vious publications (7-12). In 1850, a new cell type was de- 
scribed in the intertubular tissue of the testis of a number of 
mammalian species by Franz Leydig (13). In the human testis, 
these cells were described for the first time four years later by 
Kolliker (14). Until 1950, a many data have been published 
concerning the morphology and functional significance of 
humanLC (6, his Table 1). As Beissner (7) and Christensen (6, 
8) reported, variable assumptions were proposed on their nature 
and functional features. The LC were considered as being con- 
nective tissue cells, cells associated with lymphatic vessels, 
neural ganglion cells, plasma cell-like structures, immature 
Sertoli cells, epithelial cells or embryonic epithelium. 

See Editorial on page! 

The first evidence for a possible endocrine role of the testis was 
provided by Berthold (15, 16). Reinke (17) and Regaud and 
Policard (18) tolerated the possibility that the testicular inter- 
stitial cells may be involved in internal secretion. Broad experi- 
mental studies performed by Ancel and Bouin (19) and Bouin 
and Ancel (20-22) provided indirect evidence for possible en- 
docrine actions of the testis. Following a long period of contro- 
versial views (23-28), according to Christensen (6), the first di- 
rect evidence that LC are the main site of androgen production 
was provided by Wattenberg (29) who by means of a his- 
tochemical technique detected 3 6-hydroxysteroid dehydroge- 
nase activity in LC of the rabbit testis. At the same time 
Christensen established androgen biosynthesis in mechanically 
separated interstitial tissue and seminiferous tubules from the 
rat testis, and in 1965 published their results providing the first 
direct biochemical evidence for isolated interstitial tissue as the 
main source of androgen secretion (30, see also 31). These 

studies have finished the long-lasting discussion about the ste- 

roidogenic activity of LC. 

MORPHOLOGY OF THE LEYDIG CELL 

• Two updated reviews on LC structure have been recently 
published by Pudney (2) and Russell (32). There are distinct 
differences in the organization, number, shape and some prop- 
erties of the LC in different species (2, 32). Previous excellent 
reviews provide detailed descriptions of the structural and func- 
tional features of human LC (8, 9, 33-44). In a recent review, 
Chemes (45) gives an up-to-date characterization of human LC 
and focuses on similarities and some important differences with 
the LC of other species. Human LC are distributed as single 
cells, small or larger groups within the loosely arranged inter- 
stitial tissue and often in the vicinity or around blood vessels. 
Rarely, rows of LC are seen to lie parallel to the border of the 
lamina propria (peritubular LC) or within the lamina propria 

(46,47), with preferential peripheral localization, near the outer 
sheath of connective tissue cells separating the lamina propria 

of the seminiferous tubules and the interstitial space (43, 48). 
Usually, individual LC or LC groups are surrounded by thin 
processes of "encapsulating fibroblasts" (45) or "covering cells" 
(49). The LC of adult human testis show well expressed mor- 
phological heterogeneity (see below). This is especially true for 
the testes of elderly men and testes of patients with reduced or 
impaired spermatogenesis (43, 50-52). 

Light microscopically, human LC are differing in size, being 
polygonal, round, elongated or occasionally spindle shaped 
cells containing usually eccentrically situated round nuclei with 
prominent nucleoli and peripherally distributed heterochroma- 
tin (Fig.l). Numerous dark stained organelles and lipofuscin 
inclusions are seen perinuclearly. The cytoplasm consists of 
dark and light homogeneously stained areas. Some cells con- 
tain Reinke crystalloid, a structure found only in human LC 
(43, 45). Transmission electron microscopically, LC are dis- 
tinguished by their abundant smooth endoplasmic reticulum, 
pleomorphic mitochondria with tubules and cristae as well as 
some lipid droplets (32,43,45). These cellular constituents are 
believed to be characteristic for the steroidogenic cells (Fig.2). 
In addition, human LC possess well developed Golgi complex 
and numerous lysosomes. Varying numbers of lipofuscin gran- 
ules, peroxisomes, and crystalloid or paracristalline structures 
other than the Reinke ones could also be found within the cy- 
toplasm of LC. Also, rough endoplasmic reticulum, ribosomes 
and cytoskeletal components, such as microtubules, actin and 
intermediate filaments, belong to the constant structures of LC. 
In the testis of some patients, LC possess differently long pro- 
cesses with varicosities. These cells lie in the intertubular space 
as small or large groups. Usually in their vicinity, polygonal 
or round LC are also located (Fig.3). In the processes of these 
LC, intermediate filaments and a variety of cytoplasmic vesicles 
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Figure 1. Semithin section of a Leydig cell group in the vicinity of a seminiferous tubule. Note the different size, staining 

intensity, number of organdies, and Reinke crystalloids (arrows). Toluidine blue/Pyronin G stain. * 7070. 

  

(see below and 43) are characteristically distributed (Fig.2, 4- 
6). Between these processes and the body of adjacent LC, as 
well as between the plasma membranes of neighbouring LC, 
desmosome-like contacts and predominantly nexuses were es- 
tablished (32, 43, 45, 53). In the mouse testis, nexuses of LC 
contain the connexin 43, and carry signals that regulate their 
secretory activity (54). 

THE ENDOCRINE NATURE OF THE LEYDIG CELL 

• There is no doubt that LC represent the main cell type 

of the testis that is able to produce androgens from cholesterol 

(30, 31, 55-57 for review). The LC possess the machinery nec- 

essary for the binding and receptor-mediated endocytosis of 

low-density lipoproteins (LDL) and for de novo synthesis of 

cholesterol as well as for its transport towards the mitochondria 

where it will be converted to pregnenolone by the enzyme cho- 

lesterol side chain cleavage cytochrome P450 (P450scc), which 

is located on the matrix side of the inner mitochondrial mem- 

brane. In the LC, the lipid droplets are storage sites of choles- 

terol esters. The transport of cholesterol from the outer to the 

inner mitochondrial membrane is a rate-limiting step and is 

mediated by a steroidogenic acute regulatory protein (57). 

Three additional steps involving enzymes located in the LC cy- 
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toplasm continue the synthetic process and lead to formation of 
testosterone and metabolizing androgen precursors and bio- 
logically active androgens (58). At the same time these cells 
contain the enzyme aromatase that is responsible to convert tes- 
tosterone to estrogens. 

In LC of different species, enzyme histochemical and immu- 
nocytochemical studies have detected some of the enzymes 
involved in synthesis and metabolism of steroids such as 3B- 
hydroxysteroid dehydrogenase/A

5
-A

4
 isomerase (3B-HSD), 

176-hydroxysteroid dehydrogenase (17JS-HSD), 1 lJ5-hydroxy- 
steroid dehydrogenase (1 Ifi-HSD) as well as testosterone (59- 
65). Testosterone-like immunoreactivity is seen in human LC 
situated both inter- and peritubularly as well as in cells located 
within the tunica albuginea (Fig.7,8). Human LC also show 
3B-HSD activity which is of lower staining intensity compared 
to the staining in rat testis. However, as for testosterone im- 
munoreactivity (66), 3B-HSD activity varies considerably 
among the individual patients. This is consistent with bio- 
chemical and clinical results (67,68). Moreover, in the LC of 
adjacent areas as well as among the LC of a cluster, differences 
in the 3B-HSD activity are seen, reflecting probably differences 
in the functional activity of the individual LC or variants of 
their phenotype (see below). . : . . . . . . .  
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Figure 2. Transmission electron micrograph showing an ultrathin section through a Ley dig cell perikaryon and parts of 

somata and processes of adjacent Ley dig cells. Note the abundant smooth endoplasmic reticulum and the scanty rough 

endoplasmic reticulum. The nucleus is located eccentrically. Numerous mitochondria, different vesicles, lysosomes and a 

few lipid drops are visible. At the bottom, one Leydig cell process is seen that contains a large number of clear and dense- 

core vesicles. 
x 6000. 

  

Human LC exhibit also immunoreactivity for the LDL recep- 
tors (LDLR) (Fig.9) supporting the assumption that they can 
bind and internalize exogenous cholesterol for further utiliza- 
tion in the steroidogenic process. Furthermore, in LC of the 
human testis, androgen receptors, estrogen receptors and 
luteinizing hormone/human chorion gonadotropin (LH/hCG) 
receptors were also visualized immunocytochemically (see be- 
low). 

The "classical" view considers the LC as the main source of 
production of androgens important for the development of the 
male genital tract, male secondary sex characteristics and be- 
havior as well as of the processing and maintenance of steroido- 
genesis and spermatogenesis in the testis (69). According to 
this view, the testosterone synthesis and release is controlled 
by the hypophysial LH (or placental hCG during development). 
Both hormones act via specific LH/hCG receptors, the second 

messenger cyclic adenosine monophosphate (cAMP) and the 
protein kinase A. Testosterone released into the blood circula- 
tion inhibits by a feed back mechanism the expression of go- 
nadotropin-releasing hormone (Gn-RH) in the hypothalamus, 
resulting in the cessation of LH secretion in the pituitary gland. 
In addition, testosterone directly inhibits the expression of LH 
by the hypophysis. By this way the regulatory circuit of the an- 
drogen secretion, in which the hypothalamus, the hypophysis 
and the testis are involved, appears closed (70, 71 for review). 

THE NEUROENDOCRINE NATURE OF THE LEYDIG 

CELL 

• In the testis itself, some biologically active substances 

are produced which are also involved both in regulation of ste- 

roidogenesis and communication between testicular cells (58, 

64, 69, 72, 73). It became evident that in addition to the clas- 

sical control by the systemic hormones and steroids, local con-   
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Figure 3. Sewithin section of a I.evdig cell group composed of two cell types. The cells in the upper part' of the figure re- 

semble those shown in Fig. 1, whereas the cells in the bottom part are smaller, densely stained and have partially branching 

processes (arrow). Toluidine blue/Pyronin G stain, x 980. 

  

trol mechanisms of testicular functions are also of importance. 

It could be shown that some of the regulatory substances are 

produced by the different testicular cells themselves. Thus, in- 

creasing evidence accumulated that testicular functions may be 

subject to a local autocrine/paracrine regulation (74-81). 

Additionally, pro-opiomelanocortin (POMC)-derived peptides, 

such as adrenocorticotropic hormone (ACTH), melanocyte 

stimulating hormone (MSH), 6-endorphin, (82-85) and me- 

thionine-enkephalin (met-Enk) were detected in LC of the rat 

testis (86) and it was suggested that these peptides may be in- 

volved by a paracrine or autocrine fashion in the regulation of 

testicular functions (87,88). Using immunocytochemical tech- 

niques met-Enk was also detected in human LC (4, 5). Al- 

though POMC-derivatives were found also in other cells and 

organs, these were the first neuroactive substances discovered 

in mammalian LC. 

At this time it was established that a large number of biologi- 

cally active substances other than the "classical" neurotrans- 

mitters are expressed in different neuronal populations in the 

central and peripheral nervous system (89-92). Depending on 

the kind of its release and the interaction with target cells, a 

neuroactive substance may play the role of hormone, neu- 

rotransmitter or neuromodulator. One of these substances, a 

member of the tachykinin family, the undecapeptide substance 

P (SP), was found to be associated with primary afferent neu- 

rons and to play an important role in the processing of auto- 

nomic and somatic sensory (nociceptive) information in the 

central and peripheral nervous system (93). 

fn 1985, we started a study with the aim to establish whether 

the human LC possess immunoreactivity for the opioide pep- 

tide met-Enk. While opioide peptides have been detected in 

numerous organs (94), we decided to prove additionally the   
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localization of a neuropeptide confined only to neural struc- 
tures. We chose SP, expecting to found it at least in nerve fi- 
bers located in the vicinity of LC. The results of this study 
confirmed that met-Enk immunoreactivity, as in the rat (86), 
was localized in human LC. SP-like immunoreactivity was not 
found as expected in nerve fibers. Immunoreactivity for SP in 
the human testis was seen evenly distributed within the LC cy- 
toplasm, with distinct differences in the staining intensity. 
Thus, for the first time a substance, distributed only in struc- 
tures that are developmentally related to the nervous system, 
was found in human LC (4, 5). As a consequence, this result 
raised two main questions. (/) whether LC possess neuroendo- 
crine features, and (/';') whether LC are of neuroectodermal 
origin. 

The next neuronal and neuroendocrine marker that was visu- 
alized in human LC was the glycolytic enzyme neuron specific 
enolase (NSE) (95). NSE is a hydrolase that is important for 
the conversion of 2-phosphoglycerate to phosphoenol pyruvate. 
In a later study, it was shown that a neuronal survival factor 
identified in the bovine brain is in fact identical to NSE (96). 
Subsequently, immunoreactivity for the growth-associated pro- 
tein-43 (GAP-43) or neuromodulin was detected as a second 
neuronal marker (unpublished data) (Fig. 10). 

Encouraged from the first results and having in mind that one 
individual neuronal marker may also appear in non-neuronal 
cells and a marker substance by itself cannot in general be 
accepted as sufficient evidence for the neuroendocrine pheno- 
rype of a cell, we started a wide scientific program with the aim 
to test the validity of the hypothesis about the neuroendocrine 
features of LC. Firstly, we established that the existence of neu- 
ropeptides is not only feature of human LC. We showed that 
SP, NSE and met-Enk immunoreactivity were also present in 
LC of mouse, rat, hamster, and guinea pig (97-99). Concern- 
ing the expression of SP and NSE there were some species 
dependent differences in LC of the animals studied. For ex- 
ample, we were not able to establish SP immunoreactivity in 
rat LC and NSE was seen also in Sertoli cells of the guinea pig 
testis only. Moreover, we obtained evidence that SP was really 
expressed in LC and not taken up from the extracellular space 
and accumulated in their cytoplasm. We found transcripts of 
the preprotachykinin-A mRNA in human and mouse, but not 
in rat and boar testes (100). In the same study, mRNA for both 
SP and neurokinin-A receptors were also established in human 

testis, suggesting the possibility that SP may act in an autocrine 
way on LC function. In a third study, we found that SP inhib- 
its testosterone production in isolated adult hamster LC (98, 
99) and, interestingly, that SP acts partially by modulating the 
binding capacity of LH receptors in LC (101). In addition, we 
established that both prepubertal and adult populations of LC 
in the hamster testis were SP-immunoreactive, suggesting that 
in these species no differences exist in the expression of SP dur- 
ing testis development (97-99). Also in the rat, no differences 
in the immunoreactivity for 36-HSD have been established be- 
tween intertubular and peritubular LC that are considered to 
be different cell lineages (60). Interestingly, SP exerts differ- 
ent effects on the testosterone production by prepubertal and 
adult LC (97, 98, 102). This fact may be explained with dif- 
ferences in the structure of LH receptors in these cells (61). 
Another target for tachykinins seems to be the Sertoli cell. It 
has been established that tachykinins modulate the secretory 
activity of rat Sertoli cells (103) providing evidence for a para- 
crine role of SP and relative tachykinins in the testis. 

In next two years, we found immunoreactivity for a number of 
markers (see below) and by electron microscopy, different clear 
and dense-core vesicles in human LC (Fig.2, 5-7) which may 
be responsible for the established synaptophysin and chromo- 
granin A immunoreactivity (Fig. 11). These results suggested 
that human LC share a great similarity with cells of the dif- 
fuse neuroendocrine system (104, 105), or paraneurons (106) 
(see also 4, 98, 99, 102), and in 1993 we published a paper in 
which arguments were provided in favour of the neuroendo- 
crine nature of LC (3). The neuroendocrine phenotype of LC 
remains relatively stable after disturbances of testicular func- 
tions (107) and even in LC tumors (108). 

In addition to evidence for the steroidogenic activity (3J5-HSD, 
LDL receptor immunoreactivity [LDLR; Fig. 9]**, testosterone 
immunoreactivity [Fig. 7,8]**, androgen receptor immunoreac- 
tivity [AndrR]*, estrogen receptor immunoreactivity [EstrR]*, 
estrogen receptor-binding protein immunoreactivity [EstrR 
BP] *), we were able to establish the following partially neuro- 
endocrine marker substances in the human LC: 

Neuronal markers 

•   Neuron-specific enolase (NSE) 
•   Growth-associated protein-43 (GAP-43) 
•    Neuromodulin (Fig. 10)** 

  

            Figure 4-6. Transmission electron micrographs of human Leydig cells. A Leydig cell with a long process having several 

short branches and numerous storage vesicles (Fig.4 ). Cross section of a Leydig cell process. Note the different vesicles 

        and the filament bundle within the side branch (arrow)(Fig.5). Portion of a Leydig cell process containing variable storage 

and transport vesicles as well as a filament bundle (Fig.6). 
x 6000 (Fig.4), * 15 200 (Fig. 5, 6). 
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Synaptic and storage vesicle proteins 

•    Synaptophysin (Syn) 
•    Chromogranin A + B (Chro A + B) (Fig. 11) 

Cytoskeletal proteins 

•   Neurofilament protein 200 (NF-200; NF-H) (Fig.2) 

•   Neurofilament protein 160 (NF-160; NF-M) (Fig. 13)** 

•    Neurofilament protein 68 (NF-68; NF-L) (Fig. 14)** 

•   Microtubule-associated protein 2 (MAP2) (Fig. 15) 

Cell adhesion molecules 

•   Neural cell adhesion molecule (N-CAM) (Fig. 16) 
•    Pan catherin (Cath) (Fig. 17)** 

Indoleamines 

•   5-Hydroxytryptamine (5-HT, serotonin) (Fig. 18) 

Enzymes involved in the synthesis of catecholamines 

•   Tyrosine hydroxylase (TH) 
•    Aromatic L-amino acid decarboxylase (AAD) 
•   Dopamine-B-hydroxylase (DBH) 
•    Phenylethanolamine-N-methyltransferase (PMNT)** 

Neurohormones and/or their receptors 

•    Growth hormone-releasing hormone (GHRH) 
(Fig. 19)** 

•    Corticotropin releasing hormone (CRH) (Fig.20)** 
;   •   Luteinizing hormone-releasing hormone (LHRH, Gn- 
RH) (Fig. 21)** 

•    Luteinizing hormone receptor (LHR)** 

•    Gonadotropin-releasing hormone receptor (GnRHR) 

Neuropeptidcs and/or their receptors 

• SubstanceP (SP)         
• SP receptor (SPR) 
• Neurokinin A (NKA)                                     
• Neurokinin A receptor (NKAR)                           
• Methionine-enkephalin (met-Enk)                    
• B-endorphin(fi-End)                                       
• Neurotensin (NT) (Fig.22)**                             

• Neuropeptide tyrosine (NPY)** 

• Vasoactive intestinal (poly) peptide (VIP)** 

• Peptide histidine isoleucine (PHI)** 

• a atrial natriuretic peptide (aANP)** 

• Brain natriuretic peptide (BNP)** 

• C type natriuretic peptide (CNP)** 

• Big endothelin (big End)* 

• Endothelin I (End I)* 

•      • Endothelin II (End II)*                                 

• Endothelin receptor type A (EndRA)* 

• Endothelin receptor type B (EndRB)* 

Glial cell antigens 

•    Galactocerebroside (GalC) (Fig.23)** 

•    2',3'-cyclic nucleotide 3'-phosphodiesterase 
(CNPase) (Fig.24)** 

•    Glial fibrillary acidic protein (GFAP) (Fig.25)** 

•    A2B5 antigen (A2B5) (Fig.26)** 

Calcium-binding proteins 

•   Protein S-100 (S-100) (Fig.27) 
•    Calmodulin (CaM)** 

•    Calbindin-D28 (CaB) (Fig.28) 
•    Parvalbumin (Pan') 

Components of the NO/cGMP system 

•    Nitric oxide synthase, brain type (NOS-I) (Fig.29) 
•   Nitric oxide synthase, macrophage type (NOS-II)** 

•   Nitric oxide synthase, endothelial type (NOS-III)** 

•    Soluble guanylyl cyclase (sGC) (Fig. 30) 
•    Cyclic guanosine monophosphate (cGMP) (Fig.31) 

•    Aspartate (Asp) 
•   Glutamate (Glu) 
•    Calmodulin (CaM) 
•    Ca

2+
/Calmodulin-dependent protein kinase II (Ca/ 

CaM PKII) 
•    Superoxide dismutase (SOD) (Fig. 3 2)** 

Components of the renin/angiotensin system       

•    Prorenin (proRen)*          

•    Renin(Ren)** 

      •    Angiotensin I (Ang I) (Fig.33)* 

•    Angiotensin II (Ang II)* 

•    Angiotensin receptor type I (AngR I)* 

Growth factors and/or their receptors 

• Activin (Act)* 

• Inhibin-a (Inh-a)** 

• Transforming growth factor-fil (TGF-M)** 

• Insulin-like growth factor-I (IGF-I)** 

• Insulin-like growth factor-II (IGF-II)** 

       • Insulin-like growth factor-binding proteins 1, 2, 3, 4, 

. 5 and 6 (IGFBP 1-6)** 

• Epidermal growth factor receptor (EGFR)** 

• Nerve growth factor receptor (NGFR) (Fig.34)** 

       • basic Fibroblast growth factor (bFGF) (Fig.35)** 

• Vascular endothelial growth factor (VEGF)* 

• Vascular endothelial growth factor receptor (VEGF R) * 

• Endothelial cell growth factor (ECGF)* 

• Platelet-derived growth factor-B (PDGF-B)* 

• Platelet-derived growth factor-B receptor (PDGF-BR)* 

* established by Dr Ergun alone or in collaboration with the authors 

of this review. 
** new, unpublished results obtained by the authors of this review; 

for the remaining substances see 3-5, 95, 107-111.   
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Figures 7-35 represent paraffin sections from human testes showing immunoreactivity for different antigens. 

Figure 7, 8. Testosterone immunoreactivity in the cytoplasm ofintertubular and peritllbular Leydig cells. In some Ser- 

toli cells positive granu/a are also seen, x 570.  

Figure 9. Immunoreactivity for low-density lipoprotein receptor. The Leydig cells show distinct differences in the stain- 

ing intensity, x 570.  

Figure 10. Different growth-associated protein-43 immunoreactivity in the cytoplasm of Leydig cells, x 570. 
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Figure 11. Chromogrcmin A immunoreactivity in the cytoplasm of human Leydig cells with fine granular appearance of the 

reaction precipitate. 
x
 570. 

Figure 12. Neurofilament protein-200 immunoreactivity in human Leydig cells. Note also the strong immunostaining in 

some Sertoli cells (arrow), x 570. 

Figure 13. Neurofilament protein-160 immunoreactivity in human Leydig cells,   x 570. 

Figure 14. Neurofilament protein-68 immunoreactivity in human Leydig cells,   x 570. 
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Meanwhile, several papers were published showing that LC of 
different species express numerous biologically active mol- 
ecules that may be involved in the regulation of LC functions, 
inculding testosterone secretion (58,63,64,67,73,97, 98,101, 
102, 112-128). Examples include hormones such as arginine- 
vasopressin, oxytocin, GnRH, CRH, follicle stimulating hor- 
mone (FSH), prolactin, calcitonin, thyroid hormones, steroid 
hormones (androgens, estrogens, and glycocorticoids), growth 
factors and cytokines (bFGF, IGF-I, inhibins, activins, TGF- 
<x, TGF-B, EGF, PDGF, interleukin-1), some Sertoli cell fac- 
tors as well as neuronal transmitters and regulatory peptides 
(catecholamines, 5-HT, melatonin, SP, POMC derivatives, 
natriuretic peptides, endothelins, angiotensin II, erythropoietin) 
were shown to act through different second messengers or di- 
rectly on enzymes responsible for the synthesis of androgens. 
Some of these substances are produced by the LC themselves 
thus acting as autocrine regulators of their functions. 

Recently, the main components of the NO/cGMP system were 
established in human LC (109, 110). Nitric oxide is a radical 
that is produced by a family of enzymes termed NOS. One 
inducible and two constitutive forms are expressed in different 
organs and tissues. The constitutive isoforms, neuronal NOS 
(NOS-I) and endothelial NOS (NOS-III), require Ca

2+
/CaM and 

may be regulated by other factors such as protein kinase A, 
protein kinase C and Ca

2+
/CaM PKII. The inducible or mac- 

rophage form of NOS (NOS-II) is Ca
24

-insensitive and is acti- 
vated by immunological or infectious stimuli and experimen- 
tally with substances such as lipopolysaccharide, interferon-y, 
interleukin-1 a, and TNF-a. We found moderate to strong 
imrnunoreactivity for NOS-I and moderate to low immunoreac- 
tivity for NOS-III and NOS-II, suggesting the possibility that 
LC are able to produce NO under different circumstances. This 
fact and the accumulation of the second messenger cGMP af- 
ter treatment of isolated human LC with the NO donor sodium 
nitroprusside (110) suggest thatLC contain an active guanylyl 
cyclase which is the intracytoplasmatic receptor for NO. It was 
shown that NO inhibits testosterone secretion in rat LC (129, 
130). Nitric oxide also directly inhibits the aromatase activity 
in ovarian granulosa-luteine cells, the enzyme responsible for 
the conversion of androgens to estrogens (131). In addition, we 
found that human LC showed imrnunoreactivity for molecules 
involved in the regulation of NOS-I activity, e.g. excitatory 
amino acids glutamate and aspartate, Ca

2+
-binding protein 

CaM and Ca
2+

/CaM PK II. Our unpublished results also showed 
that human LC exhibited imrnunoreactivity for both endothe- 
lial NOS-III and macrophage NOS-II. However, in contrast to 
Sertoli cells in which the NOS-III imrnunoreactivity was most 
intensive, the neuronal NOS-I clearly predominated in LC. 
Recent findings suggest that some human cells can express in- 
ducible NOS-II gene constitutively (132). It should be noted 
that NO mediates the action of numerous hormones (LH, 
LHRH, vasopressin, growth hormone) and neurotransmitters 

(SP, calcitonin-gene-related peptide [CGRP], acetylcholine, 
norepinephrine, 5-HT, etc) (109 for review; 133). Nitric oxide 
may also have cytotoxic properties if released in larger amounts 
and combining with superoxide anions (134). The produced pe- 
roxynitrite is a highly toxic molecule that may account for 
apoptosis and degeneration of Leydig, Sertoli and germ cells. 
However, both Leydig and Sertoli cells exhibit immunoreactiv- 
ity for superoxide dismutase (unpublished data), suggesting that 
they are able to eliminate superoxide anions. Thus, a toxic ef- 
fect of NO on these cells may be expected only at higher NO 
concentrations (135 for guinea pig LC). 

Furthermore, LC-produced NO may (/) regulate the ste- 
roidogenic activity by an intracrine way, (») modulate the ac- 
tion of neuropeptides, hormones, growth factors and cytokines 
by an autocrine way, (//'/') synchronize the functional activity of 
neighbouring LC in a paracrine way, (iv) modulate the contrac- 
tile activity of smooth muscle cells and vascular pericytes and 
regulate the blood flow rate and permeability of the vessels, and 
(v) influence the contraction state of perirubular myofibroblasts 
and contribute to the peristaltic activity of the seminiferous tu- 
bules (the same action may exert NO produced by the ectopic 
LC, upon myofibroblasts and smooth muscle cells in the tunica 
albuginea, contributing to the rhythmic contraction waves of 
the testicular capsule). 

In contrast to the rat, human LC do not possess hemoxygenase- 
2 which is responsible for the production of an additional cel- 
lular messenger, namely carbon monoxide (CO) (110, 136), 
which also activates the sGC and leads to elevation of cGMP in- 
tracellular levels in the corresponding cells. It seems likely that 
CO is not effective in the regulation of human LC functions. 

Recent findings provide evidence for the expression of 
mRNA

NPY
 in cultured immature rat Leydig and Sertoli cells 

(137) and for the existence of a paracrine system for regulation 
of NPY gene in the testis. The levels of mRNA

NPY
 increase af- 

ter treatment with LH, FSH, interleukin-1 a, -lf>, forskolin (an 
activator of adenylyl cyclase), and phorbol 13-myristate 12-ac- 
etate (an activator of protein kinase C). Also, factors released 
from Sertoli and germ cells are involved in the regulation of 
NPY gene levels in LC. It is presumed that NPY may modulate 
testicular function. These results are also of particular interest 
because in nerves supplying the human ureter, tyrosine hydro- 
xylase, NPY and VTP are colocalized with NOS (138). In adult 
human LC, we found a relatively low immunoreactivity for 
NPY, VIP and PHI. It seems likely that the expression of NPY 
reaches its peak in immature LC. - - 

In human and rat LC, mRNA for thyrotropin releasing hor- 
mone (TRH), TRH gene and TRH itself as well as a partially 
inhibitory effect of TRH on their LH/hCG-induced testoster- 
one secretion were recently established (139, 140). In situ hy- 
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Figure 15. Microtubule-associated pro tein-2 immunoreactivity of human Leydig cells. Some Sertoli cells also show a low 

staining intensity. * 570.  

Figure 16. Neural cell adhesion molecule immunoreactivity on the surface of human Leydig cells clustered in two small groups. 

x 570. 

Figure 17. Immunoreactivity for pan-catherin within cytoplasm of human Leydig cells. Note that the reaction precipitate in 

the seminiferous tubules is located on the surface of Sertoli cells (arrow), x 570. 

Figure 18. Serotonin immunoreactivity in a large Leydig cell group of human testis. *• 570.       
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Figure 19. Growth hormone-releasing hormone imtnunoreactivity in human Leydig cells. The arrow points to positive Ser- 

toli cell, x 570. 

Figure 20. Immunoreactivity for corticotmpin-releasing hormone in human Leydig cells, x 570. 

Figure 21. Luteinizing hormone-releasing hormone immunoreactivity in human Leydig cells, x 570. 

Figure. 22. Neurotensin immunoreactivity. Note the distinct differences in the staining intensity of individual Leydig cells in 

human testis. x 570. 
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Figure 23-26. Glial cell markers in Leydig cells of the human testis. 

Figure 23. Galactocerebroside immunoreactivity. Note also the intensive staining ofSertoli cells (arrow). * 570. 

Figure 24. 2 ',3'-cyclic nucleotide 3 '-phosphodiesterase immunoreactivity. Some interstitial "covering" cells also show a 

distinct immunoreactivity (arrows), x 570. 

Figure 25. Glial fibrillary acidic protein immunoreactivity. x J 70. 

Figure 26. A2B5 antigen immunoreactivity. 
x 570. 
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Figure 27. Immunoreactivity for S-100 protein in human Leydig cells and in nerve fibers in their vicinity (arrow), x 570. 

Figure 28. Calbindin-D28 immunoreactivity in a Leydig cell group of the human testis. 
x 570. 

  

bridization studies showed that within the testis, TRH recep- 
tor mRNA was exclusively detected in LC (141). Recently, TRH 
immunoreactivity was found in LC of adult rats (142). Thus, 
to the modulatory hypothalamic neurohormones (GnRH, 
GHRH, POMC, and CRH) that influence LC functions, TRH 
has to be added as an autocrine regulator. 

A new autocrine or paracrine regulator of LC function seems 

to be melatonin, an indole derivate secreted by the pineal gland. 

Recently, structural changes in the testis have been seen after 

melatonin treatment of immature rats and mice (143, 144). 

Melatonin binding sites were detected on rat LC (145) and it 

has been shown that rat testis possesses the enzymes necessary 

for the local production of melatonin (128). Recent results 

suggest that melatonin suppresses cAMP- and non-cAMP- 

stimulated testosterone production in rat LC via reducing 

cAMP production or in part by inhibiting 17-20 desmolase ac- 

tivity (127). However, prolonged exposure to melatonin results 

in sensitization of the LH-dependent adenylate cyclase activ- 

ity. 

There is evidence that natriuretic peptides may influence the 
testicular function via specific GC-A and to a lesser extent GC- 
B receptors (124,125,146-148). In a recent study, Middendorff 
et al (149) showed that one member of the natriuretic peptide 
family, the CNP, is produced by human LC and that these cells 
expressed GC-B receptors. These results suggest an autocrine/ 
paracrine action of CNP in the human testis. In addition, we 
established a moderate immunoreactivity for ANP and BNP in 
human LC, using particularly well-characterized antisera 
against these neuropeptides. 

Another interesting fact is the occurrence of glial cell marker 
substances in LC of different species. The GFAP belongs to the 
group of intermediate filaments found in cells of neural origin 
(astrocytes) as well as in numerous cell types of non-neural 
tissues. GFAP was expressed in steroidogenic cells of the ad- 
renal cortex and in hamster LC (150). In a number of other spe- 
cies including rat and human, these authors were not able to 
find any immunoreactivity for GFAP, showing clear species- 
dependent differences in the expression of this glial marker. 
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Figure 29-32. Immunoreactivity for components of the nitric oxide/cGMP system in Leydig cells of the human testis. 

Figure 29. Nitric oxide synthase-I immunoreactivity. 
x
 570.  

Figure 30. Soluble guanylyl cyclase immunoreactivity. x 570.         

Figure 31. cGMP immunoreactivity in a serial section shown in Fig.29. x 570.      

Figure 32. Superoxide dismutase immunoreactivity. 
x
 570. 
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Figure 33. Angiotensin I immunoreactivity in a Leydig cell group of the human testis. * 570. 

Figure 34. Nerve growth factor receptor immunoreactivity in human Leydig cells, x 570. 

Figure 35. Basic fibroblast growth factor immunoreactivity in human Leydig cells, x 570. 
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However, in a study on the barrier properties of blood vessels 

in the rat testis, Holesh eta I (151) found that intertubular LC 

adjacent to microvessels, exhibited GFAP, glutamine syn- 

thetase and S-100 protein immunoreactivity. In the human 

testis, we also found distinct GFAP staining intensity in LC 

by means of an immunocytochemical amplification technique 

(Fig.25). In an additional study, we observed immunoreactiv- 

ity for other glial cell markers such as galactocerebroside 

(Fig.23), CNPase (Fig.24) and A2B5 antigen (Fig.26). There 

are no data on the possible functional significance of these 

marker substances. A possible role of GFAP in the intracellu- 

lar transport of cholesterol in steroidogenesis (150) and of 

cytoskeletal filaments in the intracellular signaling (152) was 

recently suggested. 

Despite some controversies concerning the renin-angiotensin 
system of human testis (121) it seems likely that human LC 
possess proRen, Ren (153), Ang I (Fig.33), Ang-converting 
enzyme (154), Ang II, and AngR I immunoreactivities, provid- 
ing evidence for the existence of an additional autocrine/para- 
crine regulatory system in the human testis. Interestingly, in 
patients pretreated with antiandrogenic drugs, a reduction of 
angiotensin II immunoreactivity has been established (111). 

Taken together, the above presented information shows un- 
equivocally that LC are not only androgen-producing cells, and 
supports the concept of their neuroendocrine nature. 

HETEROGENEITY OF LEYD1S CELLS 

• There are numerous data providing evidence that LC 
represent a heterogeneous cell population not only during de- 
velopment but even in adulthood. The different populations of 
LC exhibit diversity in size, organelle composition, physico- 
chemical properties, and metabolic activity (30,43, 155,156). 

It is well accepted that at least two LC populations differenti- 
ate during ontogenesis, namely fetal LC and adult LC (45,157 
for review). These show some differences in their location in 
the testis and in functional features (41, 158-164). 

Recent findings in the rat confirm the existence of two LC 
populations: prenatal LC and postnatal LC with separate on- 
togeny (61, 165). It has been shown that the postnatal LC are 
formed in t\vo successive phases in which three-stage cells are 
involved: progenitor cells, immature LC and adult LC. Dur- 
ing the first three postnatal weeks, both prenatal and postna- 
tal LC types coexist in the testis of several species. After that 
the prenatal LC undergo a gradual loss (157). Progenitors of 
LC resemble the stem cells (62) from which they are derived 
and could be seen in the rat testis between day 14 and 28 post- 
partum (166). They proliferate actively during this time. Then 
the progenitors start a phase of morphological differentiation 

and transform into immature LC that could be observed be- 
tween days 28 and 56 postpartum. From day 56, the immature 
LC develop into adult, highly differentiated LC with extremely 
low proliferation ability (32,167,168). This differentiation pro- 
cess of postnatal LC was well recognized on the basis of mor- 
phological features, steroidogenic enzyme activity and mRNAs 
for LH receptors, androgen receptors. P450-17a (an enzyme 
involved in testosterone synthesis) and 3oc-HSD (an enzyme 
involved in androgens metabolism) (61,169). It was shown that 
LH and other factors are necessary for the proliferation and 
differentiation of LC progenitors (167), and that androgens are 
required for the differentiation of LC progenitors to immature 
LC (169). This is related to the fact that LC progenitors pos- 
sess only few LH receptors but abundant androgen receptors 
(170). However, human mesenchymal LC precursors are ca- 
pable to produce testosterone (171). It was also established that 
the hCG-stimulated conversion of cultured rat Leydig precur- 
sor cells to immature LC is associated with a progressive in- 
crease in 5a-reductase activity which converts the produced 
testosterone to 5a-reduced metabolites (172); thus immature 
LC although actively synthesizing do not secrete testosterone. 
Testosterone levels increase after about 40 days of age as a result 
of the progressive decrease of 5 a-reductase activity. It seems 
likely that in the adult testis a small population of immature 
LC coexists with the adult type. Under some circumstances 
these immature LC serve as reserve pool for generation of adult 
LC in the rat as well as for the permanent replacement of de- 
genera ting LC (61). 

According to some authors (157,162, 173) the human fetal LC 
are object of continuous changes. They undergo: (/') a differ- 
entiation phase from fetal age 8 to 14 weeks. (/';') a fetal ma- 
ture phase from 14 to 18 weeks, and (/'//) an involution phase 
extending from 18 to 38 weeks. Mature fetal LC show specific 
structural and functional features and form a steroidogenic 
gland important for the masculinization of the foetus (157). In 
contrast to previous findings, recent electron microscopic stud- 
ies establish that cells exhibiting features of steroidogenic ac- 
tivity (smooth endoplasmic reticulum, tubular mitochondria) 
can be recognized early in the human embryo, namely between 
the 6th and 7th postovulatory week and that between the 7th 
and 8th week there are cells that show morphological signs of 
LC (174). 

The postnatal human LC development follows three stages: a 
neonatal, an infantile (prepubertal) and a pubertal period (45). 
The neonatal period exists during the first postnatal months 
and is characterized by numerous fetal type LC. At this period 
LC progressively increase in number and reach a maximum 
at the third postnatal month. After that and until the end of the 
first year LC rapidly regressed and a heterogeneous population 
of infantile LC, myofibroblasts and immature fibroblasts re- 
mained in the intertubulular space. The second period extends 
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between the first year of age and the recognition of the first pu- 
bertal signs. During this period, a LC population exists resem- 
bling dedifferentiated fetal LC and probably arising from fetal 
LC and/or de novo from Leydig precursor cells. The appear- 
ance of first pubertal signs marks the onset of the third, puber- 
tal period that extends until complete sexual maturity is 
reached. Fibroblast-like cells proliferate and develop progres- 
sively to young and mature LC. The primary sites of origin of 
this population are the outer layers of the tubular wall from 
which mature LC migrate towards the intertubular space (45, 
171). 

The ontogenetical LC heterogeneity and the possibility that 
different types may coexist at definite developmental stages is 
probably reverberated in the results of some studies suggest- 
ing the existence of different adult LC populations. For ex- 
ample, after separation of rat LC on Percoll gradients, one light 
fraction with abundant hCG receptors that did not generate tes- 
tosterone, and one heavier fraction lacking high LH/hCG af- 
finity but producing testosterone, were established (175, 176). 
Although methodical reasons were found to be responsible for 
this "heterogeneity", recent findings in adult rats established 
two distinct subpopulations with different expression, of cyto- 
chrome P450IIAl.The authors explain these results with age- 
dependent shifts in the enzyme expression (177). Two LC types 
showing high and low capacity to secrete androgens were also 
proved applying a reverse haemolytic plaque assay (178). How- 
ever, the light and dark cells in human testis may indicate dif- 
ferences in the regulation and/or function, rather than differ- 
ences in LC steroidogenic capacity (179). Recently, distinct het- 
erogeneity of human LC was demonstrated in connection with 
the main components of the NO/cGMP system (110). 

The species-dependent differences in LC heterogeneity have 
to be emphasized. Obviously there are structural, biochemical, 
regulatory, developmental and functional differences of LC in 
different species (2, 32, 45, 61, 65, 100, 110, 180, 181). 

ORIGIN OF LEYDIG CELLS 

• Current concepts concerning gonadal development pre- 
sume mesenchymal (162, 173, 182-185), fibroblastic (37), 
peritubular myoid/fibroblast cell (8, 35, 45), macrophage (28, 
186) or perivascular fibroblast-like cell (72) origin of the LC. 
Migration of putative LC precursors from both mesonephros 
and coelomic epithelium to the developing testis was recently 
described (185, 186, 188). Moreover, such a dual origin was 
proposed by these authors also for the Sertoli cells. Results on 
quail-chick chimeras recognized a mesonephric origin of LC 
(189). However, other results (190) argue against an early 
migration of cells from mesonephros into the testis. Recent 
findings using cultured mouse embryos provide further evi- 
dence for mesonephric contribution to peritubular myoid cells 

and other interstitial cells (191). This view is supported also 
by results of Mayerhofer et al (192) about cells exhibited N- 
CAM immunoreactivity at embryonic day 17 stretching from 
the mesonephros into the forming rete testis and continue into 
the testis itself. The interstitial cells are also immunoreactive 
for P450scc which gives the opportunity to distinguish them 
as LC. However, no information is presented by these authors 
of whether the cells located in the mesonephros or at the bor- 
der between mesonephros and the gonadal anlage exhibit 
P450scc immunoreactivity.  

Despite of these at a first glance controversial results, recent 
publications agree with the proposal that LC in rodent and 
human testes derive from undifferentiated mesonephric mes- 
enchymal cells that migrate and invade the gonad at appropri- 
ate stage of early development. Obviously these cells comprise 
a mixed population of stem cells that gives also rise for 
peritubular myofibroblasts, interstitial fibroblasts and macroph- 
ages (61, 157, 174). 

Regardless the general consensus that LC are of mesenchy- 
mal origin, "the ultimate embryonic origin of Leydig stem cells 
has not been established"(61, see also 45). As discussed above 
mesenchymal cells from two main sources, the mesonephros 
and the mesoderm, are considered to be the stem cells that 
undergo the LC lineage of development (185, 187). However, 
a third source of mesenchymal-like cells, namely the neural 
crest cells, has been neglected until now. There is a lot of in- 
formation about the origin and fate of development of the neural 
crest and its derivatives (193-198). The neural crest consists 
of a population of pluripotent precursor cells that develops 
along the dorsal midline of the embryo, at the boundary between 
the neural plate and the epidermal ectoderm. At exact defined 
stage of development, neural crest cells segregate from the neu- 
ral epithelium and migrate in a rostrocaudal pattern along well 
defined pathways towards their definite regions. During mi- 
gration, neural crest cells change their shape, become elongated 
and elaborate long processes. 

Arriving at the final position, neural crest cells generate cells 
of variable phenotypes. One group of cells become neural in 
nature (sensory and autonomic ganglia and glia cells of the pe- 
ripheral nervous system, enteric neurons, adrenal gland 
medullar cells, and skin melanocytes) and others possess the 
morphological characteristics of mesenchymal cells. Depend- 
ing on the location, neural crest cells may start the migratory 
process either prior (rostral neural crest) or after the closure 
(neural crest of the trunk region) of the neural tube (194). 

The fact that LC of man and some rodents, in addition to their 

steroidogenic phenotype, exhibit numerous markers character- 

istic for paraneurons suggests that LC are neuroendocrine cells. 

Taking into account the pluripotent features and the wide dis- 
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tribution of neural crest cells throughout the organism as well 
as the narrow spatial relationships between the neural crest and 
the mesonephros/gonadal blastema, it could be presumed that 
neural crest cells migrate into these anlages and give rise not 
only to LC but also to peritubular myofibroblasts, fibroblasts 
of the intertubular space, vascular smooth muscle cells and 
probably to Sertoli cells (see below). The neural crest, the in- 
termediate mesoderm, the pronephros, and the mesonephros 
develop during the third and fourth week of the gestational age. 
During this time massive migration of different cells and es- 
pecially of neural crest cells has been observed. The crest pro- 
genitors for the suprarenal medulla, for example, invade the 
organ between the 15 stage embryo (33 gestational day) and 
the end of the embryonal period. At this time, approximately 
the 6th week of development (stage 15-17; 8-12 mm embryo), 
the initial signs of differentiation of the gonadal ridge at the 
ventral surface of the pronephric and metanephric ridges may 
be seen. The gonadal ridge develops below the suprarenal pri- 
mordium and the pronephric structural components. During 
tins time narrow spatial and temporal interrelationships exist 
between the neural crest cells and the primordial structures of 
the genitourinary system. While sympathoadrenal progenitors 
migrate from the neural crest to the suprarenal medulla, simi- 
lar cells may invade the developing pronephros and mesoneph- 
ros and reach some days later the gonadal blastema. 

Another organ that also receives its vegetative components 
from the neural crest is the gut. The enteric nervous system is 
derived from the vagal regions of the neural crest. The crest 
cells enter the gut near the pharynx and follow a rostrocaudal 
migratory way (198). Recent results provide evidence that the 
enteric neurons may derive from the sympathoadrenal lineage 
showing some characteristic features of sympathetic neurons 
and adrenal chromaffin cells (199). Cells from this lineage dis- 
perse throughout the body and are included in the diffuse neuro- 
ednocrine system according Pearse (104,105), or termed para- 
neurons by Fujita (106 for review). In some organs, the segre- 
gated neural crest cells having finished their migration regroup 
and generate cell clusters with well developed intercellular con- 
tacts. The LC also migrate to the testis and generate cell groups 
in the intertubular space (183). They are interconnected by gap 
and tight junctions and adhesion molecules such as N-C AM 
(3, 121, 192). In this connection, neural crest cells also show 
N-CAM immunoreactivity that during their migration disap- 
pears gradually and could be established again when they ar- 
rive at their final region and start to differentiate (200). The 
variable phenotype of LC, if assumed that their stem cells are 
neural crest cells, is not surprising. There is unequivocal evi- 
dence that neural crest cells comprise various progenitors, in- 
cluding the sublineage of sympathoadrenal, glial and melano- 
genic cells (193). This sublineage generates cells that produce 
both catecholaminergic and melanocyte populations. Similarly, 
in the rat retina a common progenitor for neurons and glia was 

established (201). The existence of pluripotent progenitors may 
explain the fact that LC exhibit both neuronal and glial mark- 
ers. Thus, the possibility exists that pluripotent neural crest cells 
of mesenchymal shape may invade the gonadal anlage and 
serve as stem cells for the development of the somatic cell lin- 
eages of the testis. This presumption is supported by the fact 
that LC, peritubular myofibroblasts, connective tissue cells of 
the intertubular tissue, and Sertoli cells share some common 
antigenic features, suggesting their possible origin from a com- 
mon progenitor. For example, both LC and Sertoli cells show 
immunoreactivity for NSE (98), oc-inhibin (202-204), the cal- 
cium-binding protein SPARC (205), vimentin (206) and NPY 
(138). Also, Sertoli cells share some similarities with nerve cells 
(207, 208). In Leydig and Sertoli cells, immunoreactivity for 
GAP-43, neurofilament proteins, MAP2, NOS, CaM, calbin- 
din, S-100 protein, CNPase, GFAP, galactocerebroside, bFGF, 
TGF-B, Ang II, AngR I, big-End,End I, End II, EndRA, estro- 
gen and androgen receptors has been established (3; unpub- 
lished data; also Ergiin's unpublished data). Moreover, LC and 
fibroblastic "covering" cells of the interstitial tissue (49) share 
common glial cell antigens such as galactocerebroside, 
CNPase, A2B5 and GFAP. 

Neural crest-derived cells migrate also to the thymus (195,209) 
and under autocrine/paracrine influence of EGF differentiate 
to epithelial cells of a neuronal phenotype, expressing neuro- 
filament proteins, SP and other tachykinins, NPY, somatosta- 
tin, specific neurotrophic factors (ciliary neurotrophic factor, 
interleukin-6), and cytokeratins (210). It seems likely that these 
cells undergo a process of epithelial-neural transition which 
proceeds under the influence of different growth factors, in 
comparison with the neural cell lineage of the gut, thyroid gland 
or pancreas. 

Neural crest cells migrate along axons of prospective periph- 
eral nerves and use them as guide in their movement towards 
the end region to be invaded. Ectopic LC located along periph- 
eral nerves are an interesting phenomenon. These cells are situ- 
ated either within the tunica albuginea or in regions located 
away from it. Ectopic LC are established as component of ac- 
cessory suprarenal glands (Holstein, unpublished data) and 
along the spermatic cord (66,211-213). In the tunica albuginea 

and especially in the spermatic cord, ectopic LC and glomus 
cells and neurons are located in the vicinity or within periph- 
eral nerve bundles (212). These findings support the idea for 
the possibility that neural crest cells use peripheral nerves as 
guiding structures during their migration towards the devel- 
oping testis. It is probable that at the time of cessation of mi- 
gration some LC progenitors proceed their differentiation at 
sites located away from the testis. It is likely that postpubertal 
LC progenitors also migrate to their end location using as 
guiding structures the lamina propria of seminiferous tubules 
and the vascular walls. This may explain the different sites of   
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occurrence of prepubertal and postpubertal LC established light 
and electron microscopically in testes of different mammals 
(45, 161). 

The fact that for the immunocytochemical visualization of most 
of the substances found in LC, amplification procedures have 
to be applied, suggests a low quantity of these antigens. This 
may also suggest that they are not of functional importance for 
the LC. In the LC of some species, low-level functional tran- 
scripts which coexist with predominantly non-functional tran- 
scripts are established (214). Moreover, the functional variants 
are much less common, and detectable only with methods more 
sensitive than northern hybridization. Thus, sequence analy- 
sis and polymerase chain reaction assays are recommended if 
conclusions about their physiological significance be drawn 
(214, 215). However, the immunocytochemical visualization 
of some antigens as well as the expression of non-functional 
transcripts may be of importance for the establishment of the 
cell lineage. Hence, some of the substances detected may be 
considered rudimentary (or redundant, junk) products that 
could serve as marker substances which allow us to follow out 
the ontogenetic origin and development of the LC. 

Are all LC of neural origin? This question cannot be answered 
precisely at the moment. The fact that LC represent a hetero- 
geneous and dynamic cell population which may change its 
phenotype during normal and pathological conditions makes 
it difficult to distinguish different cell lineages. In the human 
and hamster, both the prepubertal and postpubertal LC exhibit 
some of the established neuroendocrine marker substances (97; 
unpublished data). These results suggest that these cell popu- 
lations may originate from the same stem cell. As discussed 
above, progenitor cells may persist during the life of an indi- 
vidual species either in peritubular or perivascular location, or 
within the intertubular tissue as documented in the rat follow- 
ing degeneration of LC by the alkylating agent ethane-1,2-dim- 
ethyl sulphonate (EDS) and subsequent regeneration (45,65). 
Interestingly, the regenerated LC are not sensitive to repeated 
EDS applications. These cells show similarities with the im- 
mature adult type LC of the prepubertal testis (65). It seems 
likely that EDS inhibits steroidogenesis and increases intrac- 
ellular levels of glutathione which leads to apoptotic LC death. 
However, EDS shows distinct species-dependent differences in 
its action. Therefore in the adult rat testis, progenitor cells 
persist which under some circumstances give rise to immature 
LC. Immature LC can proliferate for several weeks and differ- 
entiate to mature LC in which the proliferative activity ceases 
(65). The factor(s) responsible for the inhibition of LC prolif- 
eration is (are) not known yet. During the proliferation of im- 
mature LC, TGF-fi plays an inhibiting role. Human LC exhibit 
moderate to strong TGF-ft immunoreactivity, thus this growth 
factor may account for their very slow proliferative activity (32, 
45,167,168). In adult human LC, only low to very low immu- 

noreactivity for EGFR is found, which is in accordance with 
findings showing a more pronounced effect of EGF/TNF-a dur- 
ing the proliferative phases of LC development (65). Another 
candidate that may also contribute to the low proliferative ac- 
tivity of adult human LC may be NO. Recently, it was shown 
that the nerve growth factor (NGF) may induce the activity of 
a NOS isoform in proliferating neurons and the produced NO 
triggers a switch to growth arrest during differentiation of 
neuronal cells (216). As our unpublished data show, adult hu- 
man LC like PC 12 cells possess NGFR immunoreactivity as 
well as immunoreactivity for the constitutive and inducible 
NOS isoforms. Colocalization of NGFR and NOS-I was already 
established in neurons of different regions of the central ner- 
vous system (217). Thus, NGF in addition to its specific func- 
tion in the onset of meiosis (218) mediated by the Sertoli cells 
(219), together with NO, may contribute to the differentiation 
of the adult human LC. 

CONCLUSION 

• The dual nature of LC comprises its endocrine and neu- 
roendocrine features. Human LC are the main cell type in the 
testis that produce androgen hormones. Also, they are a cell 
type involved in the regulation of testicular functions in intrac- 
rine, autocrine and paracrine fashions. There is evidence that 
prepubertal and postpubertal LC show distinct similarities 
including their endocrine as well as neuroendocrine features. 
This suggests the possibility that both cell populations may 
originate from a common stem cell. . 

The accumulated information on the structural and biochemi- 
cal composition of the LC supports the hypothesis that the Ley- 
dig stem cells are derivatives of the neuroectoderm and most 
probably of the neural crest. Human LC and LC of some ver- 
tebrates are immunoreactive for a number of neuronal, neuroen- 
docrine and glial cell antigens. Future studies will confirm or 
reject this hypothesis. One difficult problem, in case that the 
neural crest hypothesis is valid, provides the determination of 
the neural crest region (head-vagal-pharyngeal or trunk) that 
contributes to the delivery of migrating stem cells which are 
responsible for the differentiation of the LC lineage. Another 
question is whether there is only one pluripotent stem cell type 
from which all known LC subtypes emerge and only the local 
homeostatic conditions in the testis are responsible for the 
generation of heterogeneous LC at a definite developmental 
stage. If so, which factors are responsible to keep in a latent 
form the progenitor cells which are important for the regen- 
eration of died LC? Why do LC have an extremely low prolif- 
erative index and how does increase their number in cases of 
hyperplasia? Under normal circumstances no mitotic figures 
could be observed in human LC. Single mitotic figures (two 
in 87 biopsies) have been reported (220). However, these au- 
thors have not considered the possible existence of carcinoma   
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in situ cells within tubules located closely to the mitotic LC. 
Evidence was provided for single mitoses in LC situated in the 
vicinity of early germ cell tumors (221). These mitoses were 
explained with the possible action of mitogenic factors released 
by the tumor cells (221). 

The LC behaves as a stable, nearly postmitotic cell type that is 
to a larger extent undependent of the functional activity of other 
structural components of the testis and of the spermatogenesis. 
This is not surprising because LC are not primarily important 
for spermatogenesis. This fact explains the persistence of LC 
in cases with impaired spermatogenesis, cryptorchidism, tes- 
ticular atrophy, testicular tumors and other pathological 
changes. This behavior of the LC suggests that they possess 
very effective own regulatory mechanisms that ensure their sur- 
vival under unusual conditions, including an ectopic position. 
It seems likely that under some circumstances LC may dedif- 
ferentiate. In these cases their neuroendocrine character be- 
comes more prominent. 

As shown in the present review, some of the biologically ac- 
tive substances detected in LC may be involved in different 
regulatory pathways subserving the regulation of LC functions 
or the communication between the somatic cell representatives 
of the testis. However, some of the substances of the LC may 
not have any functional significance and could be considered 
marker substances permitting further conclusions on their ec- 
todermal neural origin and their relation to the remaining so- 
matic and interstitial cells of the testis. 
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