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• There are sex specific genetic mechanisms for mamma- 

lian brain and behavior. These are genes that act differently 

in each sex. They may underlie either similarities or differences 

in brain and behavior of males andfernales. Some of these genes 

are autosomal. Others are located on the non-recombining 

part of the Y chromosome. Genes on this region of the Y chro- 

mosome may contribute to sex differences in brain and behav- 

ior in three ways. First, a gene may be on the Y chromosome 

and not on any other chromosome. Thus, it acts only in males. 

Sex-determining region on the Y chromosome (Sry) is such a 

gene. Second, there may be different isoforms of proteins coded 

for by the gene on the Y chromosome and by its homologue 

located elsewhere in the genome. Such a gene is Smcy which 

codes for an H-Yantigen. Smcx is its X-chromosomal homo- 

logue. Third, there may be different protein levels in males and 

females for a gene located on the X and Y chromosomes. Zfy 

and Zfx, for the zinc finger proteins on the Y and on the X, are 

a pair of such genes. Due to X inactivation in females, one copy 

of Zfx is expressed in all tissues of female mice, whereas two 

copies, one of Zfx and one of Zfy, are expressed in many tissues 

of male mice. (Biomed Rev 1997; 7: 85-90) 
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There are sex specific genetic mechanisms for mammalian brain 

and behavior. These are genes that have different effects in each 

sex, and may cause phenotypic similarities or differences be- 

tween the sexes. Here, I will briefly describe autosomal genes 

which may be sex specific. The rest of the review will focus on 

genes of the non-recombining part of the Y chromosome of pla- 

cental mammals, especially mice, which are obviously sex spe- 

cific. 

AUTOSOMES 

• Crossbreeding of inbred strains of mice is being used to 
identify genes, known as quantitative trait loci (QTL), with ef- 
fects on complex traits, such as brain and behavior (1,2). The 
chromosomal positions in cM of genes with effects on trait 
variation are identified in relation to known markers and genes. 
These genes may be identified at the molecular level by posi- 
tional candidates (1) or positional cloning (3). It has been pro- 
posed that there are sex specific QTL for hypertension in rats 
(4), nociception in mice (5), stress-induced analgesia (5), and 
alcohol preference (6). The Alcpl gene on chromosome 2, for 
example, appears to cause variation in alcohol preference of male 
but not female mice, whereas the Alcp2 gene on chromosome 
11 appears to cause variation in alcohol preference of female 
but not male mice. There are many methodological issues that 
must be considered in firmly establishing findings on QTL (re- 
viewed in 7-9).  

Transgenic mice, including knockout mutants, are also being 
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used to identify genes with effects on complex traits, such as 

brain and behavior (10). Such genes have already been charac- 

terized at the molecular level and their chromosomal position is 

frequently known. Using knockouts, there appears to be sex 

specific genes with effects on copulalory, aggressive, and open 

field behaviors of mice. Knockout mutants for the 5-hydrox- 

ylryptamine (5-HT )̂ receptor (11), monoamine oxidase A (MAO- 

AX 12), and nitric oxide synthase 1 (NOS-1)( 13) affect male but 

not female copulatory behaviors. The null mutant for Htrlb in 

males decreases the latency to copulation and increases the fre- 

quency of mounting. Also, the null mutants of MAO-A and 

NOS-1 display abnormal sexual behavior with non-estrous fe- 

males. Similarly, mutants for cstrogen receptor (ER) (14, 15), 

MAO-A, NOS-1, and transforming growth factor-a (TGF-a) (16, 

17) have differential effects on male and female aggression. The 

null mutant for NOS-1 decreases latency and increases fre- 

quency of attacks in males but not females, and that for MAO- 

A decrease latency to attack and increase amount of wounding 

in males but not females. In contrast, the null mutant for ER1 

decreases attack duration of male mice paired with male oppo- 

nents and increases attack duration of female mice paired with 

female opponents. Similarly, a variant for TGF-a increases ag- 

gressive behaviors in males but decreases aggressive behav- 

iors in females. Also, the null mutant for ER decreases open field 

activity in male but increases it in female mice. There are many 

methodological issues that must he considered in firmly estab- 

lishing findings with knockouts and other transgenics (reviewed 

in 18). 

YCHROMOSOME 

M Genes on the non-rccombining part of the Y chromosome 
arc transmitted normally from father to son, and they obviously 
act and cause variation in males but not females. About 10 genes 
have been identified on the non-recombining region of the 
mouse Y chromosome, and about 30 genes have been identi- 
fied on the non-recombining region of the human Y chromosome 
(19,20) .Also, there may be an additional 100 to 500 genes on 
the Y chromosome of mice, humans, and other placental mam- 
mals (21). In spite of arguments to the contrary (22), these genes 
may have an influence not only on variation among male, but 
also on differences between male and female mammals in brain 
and behavior. 

There arc Y chromosome effects on brain and behavior of male 
mice. They include effects on hippocampal weight (23), asym- 
metry in hippocampal size (23), hippocampal mossy fiber distri- 
bution (24), whole brain levels of serotonin (25) and dynorphin 
(26), open Held behavior (27), circadian rhythms (28), coping 
strategies (29), apomorphinc-induced stereotypy (30), copula- 
tory behaviors (31, 32), aggressive behavior (33-35), and dis- 
crimination learning (23). Reciprocal Fls, segregating popula- 
tions, and congenic strains have been used in these studies. 

Elsewhere, I have reviewed methodological issues in using these 

breeding systems to show effects of the non-recombining re- 

gion of the Y chromosome on traits of male mice (36). 

Sex differences have been shown in voles for hippocampal size 

(37), in rats for hypothalamic and whole brain serotonin lev- 

els (38,39), in rodents for regional and whole brain ncuropep- 

tide levels (40), and in mice for open field (11,12), copulatory 

(41,42) and aggressive behaviors (11,12,43). Since there are 

Y chromosomal effects in mice on these brain or behavior traits, 

it is conceivable that genes on the non-recombining region of 

the Y chromosome by acting in males and not females could 

contribute at least to these sex differences. A role for the Y chro- 

mosome in behavioral sex differences has been suggested (44). 

A gene, F/p, on the Y chromosome, for example, has been pro- 

posed for channel flipping in males and not females. A more 

serious proposal is made here for three genetic mechanisms 

involving genes on the Y chromosome of male mice that could 

account for sex differences in brain and behavior. 

A gene on the non-recombining part of the Y chromosome and 
nowhere else in the genome might have a role in sex differ- 
ences. There is one such gene on the mammalian Y chromo- 
some. In mice, this is .Sry gene which codes for a high mobility 
group (HMG) transcription factor (45). This gene is essential 
for differentiation of the primordial gonad into a testis (46). It is 
also expressed in brains of marsupials (47), mice (48), and hu- 
mans (49). The transcript in adult mouse brain is linear and is 
capable of being translated. Sry protein may bind to five re- 
sponse elements in target genes contributing to activation of 
their transcription. The Sry protein binds to response elements 
in the geneFraJ and regulates expression of Fral (50). Fral is a 
component of activator protein-1 transcription factors which 
regulate many genes including those coding for neuropeptides 
(51). Alternatively, Sry may compete with the transcription fac- 
tors Soxl, 2 or 3 for response elements of target genes and 
thereby block or attenuate the activation of transcription by 
Sox 1,2 or 3 (52). Sox 1,2 and 3 are expressed in brain (53). Either 
of these mechanisms may have a role not only in effects of the 
non-recombining part of the Y chromosome on brain and be- 
haviors of males, but also of sex differences in brain and behav- 
ior. 

A gene on the Y chromosome may code for a different isoform 
of a protein than that coded for by its homologue elsewhere in 
the genome. An example of this is the gene pair J'mcy andS'mcx 
in mice. These are transcribed in all tissues including brain. They 
code for zinc finger transcription factors, and peptides derived 
from them are minor histocompatibility antigens (54,55). The X- 
and Y-chromosomal peptides of their antigens differ in five amino 
acids. There is a second pair of such antigens (UTX and UTY) 
on the mouse X and Y chromosomes. They differ by three amino 
acids (56). The genes are transcribed in many tissues including 
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brain, and their proteins may also be transcription factors. Rps4y 

and Rps4x arc another example of genes on the human X and Y 

chromosomes coding for different isoforms of the same protein 

(57). Here, there are 19 amino acid differences for a small riboso- 

mal protein. These genes are transcribed in many tissues includ- 

ing brain. Also, this gene is in an area of the human Y implicated 

in Turner's syndrome. Such differences between males and fe- 

males in isoforms may contribute to sex differences in brain and 

behavior. 

In placenta! mammals, most but not all genes on one of the X 

chromosomes of females are inactivated at random in each cell. 

For these genes, one copy is expressed in all female cells. There 

are X chromosomal homologues for many Y chromosomal 

genes of placental mammals (58). Both the X and Y chromo- 

somal genes are expressed in males, or in other words, two 

copies arc expressed in some, if not all, male cells. An example 

of ihis is the pair of mouse genes Zfx and Zfy (59). These are 

respectively zinc finger on the X and on the Y.Zfx is expressed 

in all cells of males and females, whileZ/y is expressed in some 

bul not all cells of females. It is not expressed in neurons (60). 

Another example of this dose difference between males and 

females is for the genes Amelx and Amely (61); for amelogenin 

of the X and Y, respectively. Amelogenin is a tooth enamel pro- 

tein. Because of the difference in dose of gene expression in 

males and females in ameloblasts of tooth buds, males have 

about 10% more amelogenin then females and may thereby have 

larger teeth than females (62). There may also be similar dose 

effect differences for developmental rate or growth factor genes 

located on the X and Y chromosomes (63-65). 

There is recent direct evidence for effects of the Y chromosome 

on sex differences in behavior. On the C57BL6 background, 

mice with the Y chromosome from posciavinus are either XY 

males or XY females (66). The XY females have ovaries or 

ovatestes. XX females, XY females (ovaries), and XY males 

on the C57BL6 background have been tested for open field 

activity, active avoidance, water escape, and Morris maze learn- 

ing (67). The XX females and XY males differ on each of these 

behaviors. XY females resemble XX females for open field 

behavior, active avoidance, and water escape, and XY females 

resemble XY males for Morris maze learning. These findings 

arc consistent with the hypothesis that sex differences in open 

field behavior, active avoidance, and water escape are due to 

differences in gonadal hormones of males and females, and that 

the sex difference in Morris maze learning is due to a hormone- 

independent effect of one or more Y chromosomal genes. It re- 

mains to be determined whether other Y chromosomal effects 

on male brain and behavior and on sex differences in brain and 

behavior are hormonally dependent or independent. There is at 

least one gene on the mouse Y chromosome with effects on adult 

serum levels of testosterone and at least one other gene with 

effects on target organ sensitivity to testosterone (68). 

CONCLUSION 

• It has been proposed that there are hormonal and non- 

hormonal mechanisms for the development of sex differences 

in mammalian brain and behavior (69,70). Genes, including those 

of the Y chromosome, are involved in both mechanisms. Sry, for 

example, is involved in determining whether or not the gonad 

develops as a testis or ovary and thereby the hormonal envi- 

ronment of male or female. These hormones of males and females 

are involved in sex-specific expression of genes. Some genes 

described in the section on autosomes may be sex-specific be- 

cause of effects of sex-specific hormonal environments of males 

and females. Further research is needed to determine which 

genes these are. Alternatively, Sry may have direct effects on 

sex differences in brain and behavior which do not involve dif- 

ferences between males and females in hormonal environments. 

Since Sry is a transcription factor, some of the genes described 

in the Section on Autosomes may be sex specific because their 

expression is regulated by Sry in males but not in females. Again, 

further research is necessitated to define which autosomal genes 

these are. Such research will contribute to our understanding 

of the genetic bases for hormonally dependent and indepen- 

dent sex differences in mammalian brain and behavior. 
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