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Among the rapidly expanding list of factors synthesized and released by white adipose tissue, the range of cytokines, chemokines 
and other signaling proteins, collectively termed adipokines, are of particular interest to better understand the pathogenesis of 
low-grade systemic inflammation associated with obesity. An overwhelming body of evidence further links high circulating con-
centrations of inflammatory biomarkers with the development of insulin resistance and the progression to type 2 diabetes mellitus.
The secretory pattern of adipose tissue characteristic of obesity comprises an increase in pro-inflammatory adipokines together
with a decrease in adipokines with anti-inflammatory, cardioprotective and insulin sensitizing actions. These molecules exerts local 
autocrine and paracrine effects on white adipose tissue physiology at the same time as having systemic effects on other organs. 
A number of factors derived not only from adipocytes but also from infiltrated macrophages and mast cells, which have been 
shown to accompany morbid adiposity, further contribute to inflammation and insulin resistance. The evolving notion of adipose
tissue as an immuno-modulatory organ together with the improving knowledge of how inflammation exerts a (counter)regulatory
action on glucose and lipid metabolism are opening up new therapeutic opportunities for applying anti-inflammatory strategies
to counterbalance the detrimental consequences of excess adiposity and its comorbidities. Biomed Rev 2006; 17: 43-51.
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INTRODUCTION 

Due to its apparent simplicity white adipose tissue (WAT) 
has been ignored as an extraordinarily dynamic endocrine 
organ for decades (1-8). Not surprisingly, WAT functions were 
initially limited to lipid synthesis and breakdown given that 
triglycerides constitute up to 85% of adipose tissue mass (8). 

Thirty years ago the secretory role of WAT was restricted to 
the release of fatty acids as well as other lipid moieties such 
as cholesterol, prostaglandins, steroid hormones and retinol 
(9). Neither cholesterol nor retinol are directly synthesized 
by adipocytes, but taken up and stored within WAT. On the 
contrary, adipose fibroblasts harbour the enzymatic machinery 
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necessary for steroid hormone conversion. 
The identification that tumor necrosis factor-α (TNF-α) 

is a proinflammatory cytokine synthesized and released by
adipocytes meant a key finding in further establishing the
secretory nature of WAT (10). More interestingly, TNF-α ex-
pression was reportedly increased in obesity at the same time 
as a direct role in obesity-linked insulin resistance was set 
forward (10-12). Clinical studies have also revealed expression 
of mRNATNF-α in human adipose tissue, which also closely cor-
related with hyperinsulinemia showing positive associations 
with fasting insulin and triglyceride concentrations (2,10,13). 
Furthermore, mRNATNF-α expression correlated positively with 
body adiposity and was shown to decrease in obese subjects 
after weight loss. 

Kennedy (14) originally proposed that circulating signals 
generated in proportion to body fat stores influence appetite
and energy expenditure in a coordinated manner to regulate 
satiety and body weight. Accordingly, changes in energy 
balance sufficient to alter body fat stores were supposed to
be signaled via one or more circulating factors acting in the 
brain to elicit compensatory changes in order to match energy 
intake to energy expenditure. A major development of our 
knowledge of energy balance regulation and adipobiology was 
triggered by the paradigm-shifting discovery in 1994 of leptin, 
an adipocyte-specific secretory protein encoded in the ob gene 
(15). Leptin fulfilled the concept of a lipostatic molecule that
informs the hypothalamus about the abundance of body fat, 
thereby allowing feeding behavior, metabolism, and endocrine 
physiology to be coupled to the nutritional state of the organ-
ism (2). Leptin has been shown to play an essential role in 
food intake regulation based on its capacity of stimulating key 
anorexigenic pathways composed by the melanocortinergic 
cascade at the same time as inhibiting orexigenic signals such 
as neuropeptide tyrosine (NPY), melanin-concentrating hor-
mone, orexin A, agouti-related peptide and endocannabinoids 
(16-18). Since then remarkable progress has been made in the 
knowledge of leptin as well as in the application of genetics 
to understand body weight control (19-22). 

ADIPOKINES 

The multifunctional nature of adipose tissue relies on its 
ability to secrete (i.e. synthesize, store, and release) a large 
number of signaling proteins including hormones, growth fac-
tors, enzymes, cytokines, chemokines, acute phase proteins, 

complement factors and matrix proteins, collectively termed 
adipokines or adipocytokines (1-6,8-10). At the same time 
WAT expresses receptors for most of these factors, warranting 
a wide cross-talk at both local and systemic levels in response 
to metabolic changes or other specific external stimuli. The di-
versity of secreted molecules includes factors involved in lipid 
and glucose metabolism such as lipoprotein lipase, apolipopro-
tein E, cholesteryl ester transfer protein, glucocorticoids, sex 
steroids, prostaglandins, adipsin, acylation-stimulating protein, 
leptin, resistin, adiponectin (Acrp30/adipoQ), osteonectin and 
cathepsins among others. Growth factors include insulin-like 
growth factor I (IGF-I), nerve growth factor (NGF), macro-
phage colony-stimulating factor, transforming growth factor-β, 
vascular endothelial growth factor (VEGF), heparin-binding 
epidermal growth-like factor, leukemia inhibitory factor, and 
bone morphogenetic proteins. 

By definition, adipocytokines are cytokines produced by
adipocytes. Although adipose tissue secretes a variety of fac-
tors, not all of them can be contemplated as adipocytokines. 
Therefore, the term “adipokines” has been coined to include a 
wider range of proteins secreted by both adipocytes and nonad-
ipocytes of adipose tissue (3,6,8,9). For instance, while leptin, 
adiponectin and NGF are mainly produced by adipocytes, a 
large number of cytokines, chemokines and growth factors are 
mainly produced by cells of stromovascular and tissue matrix 
fractions of adipose tissue (3). Also produced by adipose tis-
sue cells are the cytokines TNF-α, interleukin-1 (IL-1), IL-6, 
IL-10, and IL-18, while monocyte chemoattractant protein-1 
(MCP-1/CCL2) and IL-8 (CXCL8) belong to the superfamily 
of chemokines. Such a broad spectrum of adipokines contrib-
utes to WAT’s pleiotropism as well as underlying its extensive 
auto-, para- and endocrine activity. 

ADIPOKINES LINKED TO INFLAMMATION, IMMUNITY, AND 
INSULIN RESISTANCE

Today, the adipobiology of inflammation is one of the most
pursued fields of research in obesity and related diseases. In 
this context, TNF-α, IL-1, IL-6, C-reactive protein (CRP), 
serum amyloid A (SAA), haptoglobin, MCP-1, IL-8, plas-
minogen activator inhibitor-1 (PAI-1), tissue factor, nitric 
oxide, the molecules of the renin-angiotensin system as well 
as leptin, adiponectin, resistin, NGF, visfatin, retinol-binding 
protein 4 (RBP4), and toll-like receptor 4 (TLR4) represent an 
extraordinarily relevant group of obesigenic, diabetogenic and 
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atherogenic mediators (3,8,23-41). In fact, parallels between 
adipocytes and immune cells have been drawn with preadi-
pocytes being able to act like macrophages (35). The figure
summarizes the main adipokines involved in the modulation 
of inflammation exerting either pro-inflammatory actions or
conveying anti-inflammatory signals. Since the role of most
adipokines has been extensively reviewed elsewhere (1-8,28-
43), we will describe below the potential mechanistic basis for 
the link between inflammation and insulin resistance focusing
on some adipokines that have emerged more recently in the 
pro-inflammatory and metabolic (cardiometabolic) syndrome
scenario. 

Teleologically, the onset of inflammation in the setting of
obesity has not been completely disentangled. Currently, it is 
not clear whether elevated circulating concentrations of inflam-
matory factors serve as indicators of systemic inflammation
or reflect a spillover of adipose-derived bioactive molecules
in response to the hypoxia that takes place as a consequence 
of adipose mass expansion (8,9). In this context, an increased 
expression of hypoxia inducible factor-1alpha, a transcription 
factor that operates as a molecular sensor for low oxygen 
levels, may play an important role. This factor stimulates the 
production and subsequent release of inflammatory cytokines,
chemokines and angiogenic factors aimed at enhancing blood 

flow and vascularization of inflamed adipose tissue (44), sug-
gesting the relevance of hypoxic conditions in triggering an 
inflammatory cascade.

At epidemiological level, an association between inflamma-
tory markers, such as circulating concentrations of fibrinogen
and other acute-phase reactants, and obesity or type 2 diabetes 
mellitus (T2DM) has been identified more than half a century
ago (45-47). However, at that time point no causal inferences 
with T2DM pathogenesis were established. In the last decade, 
more widespread epidemiological studies have provided ad-
ditional information on the link between inflammation and
insulin resistance (48-53). 

Serum amyloid A 
Serum amyloid A (SAA) represents an acute-phase reactant 
protein secreted by diverse cell types, including adipocytes, 
which has been associated with systemic inflammation at
the same time as being linked to atherosclerosis, serving as 
a predictor of coronary disease and cardiovascular outcome 
(30). Circulating SAA concentrations are increased in obese 
and diabetic patients (28, 54). White adipose tissue is known to 
express low levels of SAA under normal circumstances, which 
are extraordinarily upregulated in obesity (55). In addition to 
displacing apolipoprotein A1 from HDL-cholesterol, thereby 

Figure. Schematic representation of selected adipokines participating in the development of inflammation.
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increasing its binding to macrophages, SAA further operates 
as a chemoattractant, a modulator of metalloproteinase activity 
and a stimulator of T-cell cytokine production (28). 

Monocyte chemoattractant protein-1 
Monocyte chemoattractant protein-1 (CCL2) like other 
chemokines plays a relevant role in the recruitment to WAT of 
monocytes bearing cysteine-cysteine (CC) motif chemokine 
receptor 2 (CCR2) (56-58); adipose-derived MCP-1 also be-
ing related to echocardiographic abnormalities (59). Elevated 
circulating concentrations of MCP1 have been observed in 
patients at risk for coronary artery disease (60). Furthermore, 
myocardial ischemia is known to be associated with an in-
flammatory response leading to leukocyte recruitment with
MCP-1 being directly involved in ventricular remodeling. 
Recent evidence further supports that MCP-1 contributes to 
thrombin generation and thrombus formation via tissue factor 
production (57). Therefore, MCP-1 (CCL2) and CCR2 may 
turn out as extremely attractive therapeutic targets to counteract 
vascular disease pathogenesis. 

Visfatin 
Visfatin is a recently identified adipokine. Its putative anti-dia-
betic effect is mediated by binding to the insulin receptor and 
thus exerting an insulino-mimetic effect both in vitro and in 
vivo (60-66). Visfatin was originally termed pre-B-cell colony-
enhancing factor 1, a cytokine with increased presence in bron-
choalveolar lavage fluid of animal models of acute lung injury
as well as in neutrophils of septic patients (32). Contrarily to 
what would be expected given its name, plasma concentrations 
of visfatin and adipose visfatin mRNA expression have been 
reported to correlate with measures of obesity but not with vis-
ceral fat mass or waist-to-hip ratio. Moreover, no differences 
in visfatin mRNA expression between visceral and subcutane-
ous fat depots have been observed (62). Interleukin-6 seems 
to exert an inhibitory effect on visfatin expression, which 
is in part mediated by the p44/42 mitogen-activated protein 
kinase (63). A two-fold increase in circulating concentrations 
of visfatin in T2DM patients has been recently reported (64). 
However, the association between visfatin and T2DM disap-
peared after adjustment for body mass index and waist-to-hip 
ratio. Up to date, the pathophysiological relevance of visfatin 
remains unclear and deserves further analysis especially as 
regards the paradoxical effects of favoring fat accretion and 
simultaneously promoting insulin sensitivity (65,66). Visfatin 

may enhance fat accumulation in the intra-abdominal depot, 
as a feedback control preventing the detrimental effects of 
increased visceral fat on insulin sensitivity, or merely embody 
an epiphenomenon with potential useful application as a sur-
rogate marker of increased omental adipose tissue. For further 
update of visfatin, see the article by Ichi Shimamoto et al in 
this volume of Biomedical Reviews. 

Retinol-binding protein 4 
Studies in mice suggest that adipocytes operate as glucose 
sensors regulating systemic glucose metabolism through the 
release of RBP4, a further identified novel adipokine which
provides a link between obesity and insulin resistance in ro-
dents (67). These observations have been extended to humans 
(68), where RBP4 has been found to be elevated in subjects 
with impaired fasting glucose tolerance or T2DM and to be 
independently related to sex and fasting plasma glucose con-
centrations, clinical parameters with known association to in-
sulin resistance (69). However, other researchers have pointed 
out profound differences between rodents and humans in the 
regulation of adipose and circulating RBP4 (70). In fact, RBP4 
was found to be highly expressed in isolated and mature human 
adipocytes at the same time as being secreted by differentiating 
human adipocytes. In contrast to the seminal observations in 
mice, mRNARBP4 was shown to be downregulated in WAT of 
obese women with similar circulating RBP4 concentrations 
in normal weight, overweight and obese patients (70). Retinol 
binding protein 4 was observed to correlate positively with 
GLUT4 expression in WAT independently of other obesity-
associated variables. Additionally, a modest weight loss of 
5% slightly decreased adipose RBP4 expression, but was not 
accompanied by significant changes in circulating concentra-
tions (70). These findings challenge the notion that glucose
uptake by adipocytes plays a dominant role in the regulation 
of RBP4 in humans. 

Toll-like receptor 4
Toll-like receptors play a key role in innate immune response 
at the same time as operating as inflammatory signals. Toll-like
receptor 4 is the receptor for lipopolysaccharide and its stimu-
lation has been shown to activate proinflammatory pathways
as well as induce cytokine expression in a variety of cell types. 
As indicated above, an inflammatory cascade is activated in
tissues of obese animals and humans exerting a crucial role 
in obesity-associated insulin resistance. In this context, circu-
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lating fatty acids, which are often increased in obesity, have 
been observed to activate TLR4 signaling in adipocytes and 
macrophages (71). Moreover, the ability of fatty acids to induce 
inflammatory signals in fat cells and macrophages is blunted in
the absence of TLR4. Given these circumstances, mice lacking 
TLR4 are substantially protected from the effects of lipid ac-
cumulation leading to the suppression of insulin signaling in 
muscle as well as to reduction of insulin-mediated changes in 
systemic glucose metabolism (71). Messenger RNATLR4 levels 
are reportedly induced during adipocyte differentiation being 
remarkably enhanced in adipose tissue of obese mice (72). 
Furthermore, TLR4 activation with either LPS or free fatty 
acids is able to stimulate NF-κB signaling and expression of 
inflammatory cytokine genes, such as those for TNF-α and IL-6 
in 3T3-L1 adipocytes, leading to insulin resistance (72). Taken 
together these findings suggest that TLR4 is a molecular link
between nutrition, lipids and inflammation and that the innate
immune system participates in the regulation of energy balance 
and insulin resistance in response to changes in the nutritional 
environment with a probable implication of TLR4 activation 
in adipocytes in the onset of insulin resistance. 

THERAPEUTIC PERSPECTIVES 

Some drugs currently available in clinical practice are known 
to exert anti-inflammatory properties beyond their original
major pharmacological target, such as statins of the range of 
the 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors 
as well as members of the thiazolidinediones (TZDs) with 
peroxisome proliferator-activated receptor-gamma (PPARγ) 
agonism. Beyond their primary beneficial actions on cho-
lesterol and glucose homeostasis, respectively, both potent 
anti-inflammatory effects. For instance, statins downregulate
transcriptional activities of NF-κB, hypoxia inducible fac-
tor-1alpha and activator protein (AP-1), thereby reducing the 
expression of prothrombotic and inflammatory cytokines (72).
The anti-inflammatory properties of TZDs seem to be mediated
via the transrepression of NF-κB and the subsequently trig-
gered decrease in the expression of target genes for cytokines, 
growth factors, cell proliferation/differentiation and migra-
tion. Thiazolidinedione-dependent SUMOylation of PPARγ 
reportedly targets it to the nuclear receptor corepressor-histone 
deacetylase-3 complexes on gene promoters of NF-κB and AP-
1 (73). On the other hand, TZDs exert an PPARγ-independent 
anti-inflammatory effect via glucocorticoid receptor activation 
(74). Therefore, the clinical effect of TZDs may rely on the 

anti-inflammatory properties concurrently impacting on the
classical control mechanisms of glucose and lipid metabolism 
to increase insulin sensitivity, and promote plaque remodeling 
to improve the cardiovascular state. Moreover, activation of 
other nuclear receptors such as PPARα, PPARδ and the liver 
X receptor have also been shown to exert anti-inflammatory
effects (75,76). 

As recently proposed by Chaldakov et al (77), from a 
mechanistic point of view the main adipopharmacologic 
targets encompass (i) nuclear transcription factors (such as 
PPARs and sterol regulatory element-binding protein-1), (ii) 
products of the intracellular secretory pathways including 
adipokines and steroid hormones, (iii) adipokine signaling 
pathways, (iv) downstream insulin signaling components, (v) 
uncoupling proteins, (vi) lipid droplet-associated proteins (per-
ilipin, adipophilin, caveolin-1) as well as (vii) adipose-derived 
stem cells. Metabotrophic factors such as NGF, brain-derived 
neurotrophic factor, ciliary neurotrophic factor, adiponectin, 
metallothioneins, and angiopoietin-like proteins are also ap-
preciated as potential adipopharmacologic targets (41,77-80); 
apelin and visfatin may also be considered (81). 

Other approaches to tackle diabetes as well as diabesity, 
a co-existence of diabetes and obesity in one subject, have 
fostered gene-transfer technology aimed at either increasing 
the expression of well-known anorexigenic peptides like leptin 
(82-84) or counteracting the orexigenic properties of others, 
e.g. ghrelin (85-87). 

CONCLUSION 

Obesity, T2DM and cardiovascular diseases share a common 
metabolic ground characterized by insulin resistance and a low-
grade chronic inflammatory state. We highlighted the potential
role of adipokines in the development of inflammation-medi-
ated insulin resistance. Therefore, intervention strategies can 
include drugs that secondarily alter the inflammatory process.
The other side of the coin would consist of pharmacological 
interventions to treat or prevent insulin resistance and T2DM 
at the same time as modulating cardiometabolic risks.

The worldwide public health problem posed by the increas-
ing prevalence rates of both obesity and diabetes, offers a 
potentially huge market for a safe and efficacious drug. How-
ever, the limited efficacy and side effects of the few currently
approved drugs collides with the epidemiological scenario. The 
obesity pipeline includes the development of drugs working 
at central and peripheral levels. More recently, gut-derived 



48

Biomed Rev 17, 2006

Catalán, Rodríguez, Becerril, Sáinz, Gómez-Ambrosi, and Frühbeck 

incretins are providing new impetus to the development of 
anti-obesity drugs (88). However, in order to optimize efficacy
and reduce the number and severity of adverse effects (89-91), 
there is a clear need for obesity-directed pharmacogenetics. In 
this sense, an alternative perspective consisting in a personal-
ized pharmaco-metabolomic approach, which is sensitive to 
both genetic and environmental influences in each individual,
represents one of the most interesting challenges at which to 
direct our future efforts. Further adipopharmacologic studies 
may indeed provide new insights into the therapy of inflamma-
tion and related insulin resistance, T2DM and cardiovascular 
disease. 
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