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In recent years, alternative and complementary medicine including the plant-based drugs with antioxidant and neuroptotective 

effects has attracted a growing interest. Resveratrol, a polyphenolic compound which is found in various plant species, has emerged 

as a promising nutraceutical with therapeutic potentials in neuropsychiatric, cardiometabolic and cancer diseases, also aging. 

encouraging potential to treat or prevent chronic and age-related disorders has raised a considerable number of clinical trials. 

Recently, resveratrol is implicated the biology of nerve growth factor (NGF), a critical player in the maintenance of neuronal 

growth and function. Furthermore, resveratrol affects the endocannabinoid signalling (eCBs) which exerts modulatory effects 

in the survival signalling pathways, neural plasticity, and

therapeutic effects of this ubiquitous signalling system in Alzheimer’s disease, epilepsy, multiple sclerosis, mood and movement 

disorders, spinal cord injury, and stroke have been well-documented. In the present review, the implication of NGF and eCBs in 

the mechanism of action of resveratrol, that may be

is highlighted. Biomed Rev 2015; 26: 13-21.
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INTRODUCTION 

herbs have shown the ability of plants to synthesize a variety 

of compounds which interact with biological pathways (1). 

trans-stilbene; C14H12O3, 

Fig. 1), a polyphenolic compound which is found in various 

plant species, has shown a wide range of pharmacological 

activities. This phytochemical (nutraceutical) inhibits the 

cytokines leading to the antiinflammatory and analgesic 

effects (2). Resveratrol via the induction of apoptosis of 

cancer cells and metabolism of carcinogens as well as 
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inhibition of cancer initiation and progression signalling 

a well-characterized target of cancers (4), inhibition of this 

signalling pathway by resveratrol (2) may be implicated 

in the anticarcinogenic effects of this natural polyphenol. 

Regarding the cardiometabolic protection, resveratrol 

inhibits inducible nitric oxide synthase (iNOS) and platelets 

aggregation, elevates high-density lipoprotein, and reduces 

low-density lipoprotein, trigycerides, and reactive oxygen 

species (ROS) accumulation (5). Resveratrol acts against the 

oxidative stress via the up-regulation of antioxidant enzymes 

synthesis and enhancement of the anti-oxidant capacity, free 

radical scavenging activity, as well as the inhibition of lipid 

because of its complexity and multi-factorial nature, has 

remained as a challenging medical problem (7). Resveratrol 

by inhibition of the adipogenesis and down-regulation of 

lipogenic genes, and enhancement of fat oxidation has shown 

promising anti-obesity effects (8). In type 2 diabetes mellitus, 

resveratrol, by activating sirtuin 1, elevates the glucose uptake 

Regarding the neuroprotective properties of resveratrol, 

there are reports indicating its inhibitory effects against the 

in the hippocampus. Resveratrol improves the sensorimotor 

function, modulates the cholinergic neurotransmission, and 

prevents the oxidative damage of astroglial cells and cognitive 

decline. This natural compound downregulates the glutamate-

induced extracellular signal-regulated kinase activation and 

interleukin-1

Study on the primary cortical neuron cultures has revealed 

that resveratrol through the inhibition of intracellular calcium 

increase and production of ROS exerts the protective effect 

against N-Methyl-D-aspartate-induced neuronal death (13). 

Furthermore, this natural polyphenol by antioxidant activities 

protects the hippocampal neurons against the NO-induced 

toxicity (14). In Alzheimer’s disease, resveratrol has been 

shown to  NO 

production, iNOS expression, prostaglandin E2 accumulation, 

and NF- B translocation (15). Resveratrol exhibits therapeutic 

potential in other neurodegenerative diseases such as 

Parkinson’s disease (16) and amyotrophic lateral sclerosis 

properties. This polyphenolic compound prevents the spinal 

cord and brain damage following the ischemia-reperfusion or 

traumatic injury (18).

In recent years, it has been shown that resveratrol exerts 

antidepressant effects via the modulation of hypothalamic-

pituitary (HPA) axis activity and oxidative-nitrosative stress 

(19-21). Based on an increasing evidence, neurotrophins, 

a protein family including the nerve growth factor (NGF), 

brain-derived neurotrophic fac tor (BDNF), neurotrophin 3 

(NT-3), NT-4/5, and NT-6 act as the potential mediators of 

antidepressant responses (22, 23). Neurotrophins mediate 

their effects by the ligation of two major types of receptors: a 

pan-neurotrophin receptor (p75N TR), thus trigger a number of 

cel lular responses including the long-term trophic effects as 

well as the rapid chemo tropic and morphogenetic actions on 

the developing neurons, synaptic transmission, and neuronal 

excitability (24-27). Neurotrophins  are also implicated in the 

neuronal plasticity and exhibit neuroprotective effects that 

disorders (28). Indeed, dysfunction of the neurotrophin-related 

signalling mechanisms is involved in the pathogenesis of a 

number of psychiatric disorders (23-26). The prototypical 

neurotrophin, NGF, which regulates the stress and cognitive 

function (29,30) and mediates the action of a wide variety 

of psychotropic agents (31-35), along with the eCBs which 

regulates the neuroprotective processes (36), are implicated 

in the mechanism of action of resveratrol (37) that will be 

discussed herein.

RESEVERATROL AND NGF

Following the discovery of the first neurotrophin, NGF, 

by the Nobel Laureate Rita Levi-Montalcini (38), further 

Figure 1. The chemical structure of resveratrol.
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studies showed that NGF as well as other neurotrophins 

(e.g. BDNF) affect the neuronal survival and differentiation, 

exerts a regulatory role in the memory and attention tasks, 

in neuroendocrine-immune interaction, and neurological 

disorders (39, 41). Be cause of its antioxidant, angiogenic and 

metabotrophic (including insulinotropic) prop erties, NGF is 

implicated in the molecular mechanisms of cardiometabolic 

diseases (41, 42, 48 and references therein), accelerates corneal 

and skin wound healing (43, 44) and plays a fundamental role 

in tissue engineering (45). Over the last decade, it has been 

suggested that electroconvulsive treatment or antidepressant 

drugs may act by increasing neurotrophin contents in the 

cen tral nervous system (CNS). Based on the ability of NGF 

to induce the release of hypothalamic vasopressin which 

plays a crucial role in the formation of social bonding (46), it 

was suggested that NGF by modulating the neuroendocrine 

functions is implicated in the molecular mechanisms of 

emotions. In this respect, the involvement of NGF and 

BDNF in the pathogenesis of neuropsychiatric disorders 

(39, 41, 47-49) and in the mechanisms of action of a wide 

range of psychotropic agents (31-35, 41, 50) were reported. 

management of neuropsychiatric disorders. Recently, the 

involvement of NGF in the mech anism of action of resveratrol 

has also been reported (37). The elevation of brain NGF 

levels following chronic treatment with resveratrol indicates 

that the neurotrophic effect is a slow-developing process. 

The sustained enhancement of NGF protein contents in the 

brain regions which regulate the emotional activity may be 

considered as a mechanism by which resveratrol exerts its 

therapeutic effects in the neuropsychiatric disorders. Since 

NGF exerts the stimulatory effect on the cell proliferation (51), 

therefore, the elevation of frontal cortex NGF following the 

chronic administration of resveratrol might be of therapeutic 

significance against the stress-induced reduction in cell 

proliferation in the frontal cortex (52).  

Resveratrol also elevates NGF level in the hippocampus 

(37). It is noteworthy that NGF plays a pivotal role in learning, 

hippocampal plasticity, and neurogenesis (29, 30), and induces  

acetylcholine release in the hippocampus (49) leading to the 

improved cognitive performance. Therefore, resveratrol by 

enhancement of the hippocampal NGF may stimulate the 

hippocampal neurogenesis and improve the cognitive function. 

Moreover, this nutraceutical increases NGF contents in the 

olfactory bulb and amygdala (37). The critical role of NGF 

in the development, regeneration, and mainte nance of the 

olfactory system of mammals has been well-documented (29, 

30, 53). NGF also facilitates the cholinergic neurotransmis sion 

between the amygdala and nucleus basalis (54) leading to 

the improvement of cognitive function. Altogether, it appears 

that elevation of brain NGF, also BDNF, contents constitutes 

a major part of the biochemical altera tions induced by certain 

psychotropic agents (31-35, 41, 50) including resveratrol (37).

RESVERATROL AND THE ENDOCANNABINOID SIGNALING

Over the last decade, the eCBs, a group of neuromodu-

latory lipids and their receptors which regulates the neuronal 

proliferation and maturation (55), synaptic plasticity (56), 

emotional reactivity (57), neurotensin neurotransmission 

(58-59) and neurotrophin signalling (60, 61), has emerged as 

a topic of great interest in neuroscience and pharmacology. The 

endocan nabinoids, anandamide and 2-ara chidonoylglycerol 

(2-AG), are produced on-demand by the lipid precursors 

in the neuronal cell membrane and activate two types of 

G protein-coupled receptors, cannabinoid CB1 and CB2, 
leading to a wide variety of pathological and physiological 

processes. The eCBs exerts neuroremodulatory action in 

various types of diseases (62). In this context, development of 

anandamide uptake blockers, cannabinoid receptor agonists, 

and selective inhibitors of endocannabinoid degradation has 

been the focus of intense research (63, 64). In transsynaptic 

neuronal changes due to the neurodegenerative processes (65), 

microglia-induced neurotoxicity, and cytotoxicity induced by 

the excitatory amino acids (66), the eCBs exerts protective 

effects (67). In general, the endocannabinoids exert their 

neuroprotective effects through a variety of mechanisms 

and/or glutamate release, and activation of antioxidative 

mechanisms. Furthermore, activation of the CB1 receptors 

leads to the stimulation of phosphoinositide 3-kinase (PI3-K)/

AKT signalling pathway and promotion of the cell survival 

(68). According to the protective effects of the eCBs against 

the excitotoxic damage and neuronal insult (58, 67), this 

ubiquitous signalling system might be an emerging target 

for the therapeutic interventions against the neurological 

disorders. In Parkinson’s disease (PD), the most prevalent 

neurodegenerative disorder affecting the basal ganglia, 

dopamine depletion results in a cascade of neurochemical 

events within the basal ganglia. Endocannabinoids and 

their synthesizing and degrading enzymes are abundantly 

found in the basal ganglia (69). Indeed, the striatal eCBs 

undergoes a profound neurophysiological alteration in order 
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to restore the homeostasis within the basal ganglia (70). In 

Huntington’s disease, the CB1 receptor agonists and inhibitors 

of eCB transport reduce the hyperkinesia associated with 

the disease (71). Stimulation of the CB1 or CB2 receptors 

in multiple sclerosis 

(72). Furthermore, CB1 agonists promote the oligodendro-

cyte survival and mRNA expression of myelin protein (73) 

suggesting that the eCBs not only attenuates the symptoms of 

the disease, but also improves the function of oligodendrocytes 

effects. In the spinal cord injury, a cascade of cellular and 

molecular events which occur following the initial damage, 

is a main target for therapeutic interventions including the 

application of cannabinoids. In an animal model of the spinal 

cord injury, 

reported (74) suggesting that activation of the eCBs is a part 

of the neuroprotective response which is triggered following 

the injury. 

In epilepsy, the imbalance between the inhibitory and 

excitatory neural circuits leads to the excitotoxicity and 

neuronal death (75-77). Based on the regulatory effects of 

the eCBs on the inhibitory and excitatory transmissions and 

the enhancement of the eCB contents in epilepsy (78), this 

ubiquitous signalling system may be a promising target for 

antiepileptic therapies. In ischemic stroke, recombinant tissue 

plasminogen activator improves the functional outcome in 

patients, however, it should be administered within a short 

period of time following the onset of symptoms. The non-

psychoactive component of cannabis, cannabidiol, has been 

shown to inhibit the voltage-sensitive Ca2+ channels leading to 

the reduction of excitotoxicity. Administration of cannabidiol 

6 h after the cerebral ischemia has led to the neuroprotective 

effects. Furthermore, cannabidiol has preserved the regional 

at 3 days after the cerebral ischemia (79) indicating its long-

lasting preventive effects on the post-ischemic cerebrovascular 

events.

In Alzheimer’s disease which is associated with neuro-

-

(62, 81).

may exert protective effects through the inhibition of NO 

release and activation of mitogen-activated protein kinase 

pathway (82). 

In amyotrophic lateral sclerosis, one of most the debilitating 

neurodegenerative disorder which is characterised by the 

degeneration of motor neurons, the eCBs has shown anti-

excitotoxic damage and preservation of glutamate homeostasis 

(83). Following the  of the endocannabinoid 

binding sites in substan tia gelatinosa,  analgesic effects 

of the eCBs in both acute and chronic pain

(84, 85). The interaction between the opioid signalling and 

eCBs is also well-documented (86). Based on these multi-

target bioactivities of the eCBs, its potential implication in 

the mechanism through which resveratrol regulates brain 

NGF contents has been investigated. It has been found that 

resveratrol affects brain NGF levels under the regulatory drive 

of CB1 receptors (37). Furthermore, the brain eCB contents 

are increased following the chronic treatment with resveratrol 

(37). It appears that the eCBs activation is required, at least in 

part, for the neuroprotective actions of resveratrol against the 

various types of neurological disorders. 

Regarding the mood disorders, compounds which affect the 

eCBs function have been shown to regulate the monoamine-

mediated neurotransmission and activity of HPA axis (87). In 

the limbic brain regions where the neuronal activity is altered 

in depression (88), endocannabinoids are found at moderate 

to high levels (87). Indeed, the regulatory role of the eCB 

enhancers on mood (57), has opened a new line of research 

in antide pressant drug discovery and development of novel 

anxiety-related disorders as the CB1 receptor antagonist, 

SR141716A, has been shown to induce anxiety-like responses 

(89). Chronic exposure to a wide range of psychotropic agents 

the brain regions which regulate the synaptic plasticity and 

emotional behaviour (32-35, 37). In fact, the brain regional 

distribu tion of endocannabinoids following the administration 

of psychotropic agents represents the important role of the 

eCBs in the development of effective coping strategies to the 

emotional responses. As recently reported, four-week once-

daily injections of resveratrol results in a sustained elevation 

of annadamide and 2-AG contents in the brain regions 

implicated in the modulation of emotional behaviour and 

an intrinsic eCB tone which is involved in the mechanism of 

action of resveratrol. 

Following chronic administration of resveratrol, NGF 

and endocannabinoids have been increased in the same brain 

regions suggesting that the regulatory effect of resveratrol 
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on brain NGF contents depends on the coordinated release 

of endocannabinoids. It appears that a balance between NGF 

and eCB signalling mediates the pharmacological effects of 

this natural polypheonlic compound. In addition to its intrinsic 

radical scavenging activity, resveratrol reduces the production 

expression of iNOS gene. This natural polyphenol upregulates 

the activities of protein kinase C and heme oxygenase leading 

to the neuroprotective effects. In fact, multiple intracellular 

signalling pathways and molecular targets are involved in the 

mechanism of action of resveratrol (90). Involvement of the 

extracellular signal-regulated kinase cascade, noradrenaline 

and serotonin system, and HPA axis in the antidepressant-

like effects of resveratrol has been previously demonstrated 

eCBs are also implicated in the mechanism of action of 

resveratrol. In this context, resveratrol by affecting NGF and 

of diseases which are associated with abnormal NGF or 

eCBs. Resveratrol enhances the brain NGF contents under the 

regulatory drive of CB1 receptors indicating the importance of 

the endogenous cannabinoid activity in the neurotrphic action 

of this nutraceutical. 

In recent years, smart delivery of drugs, neurotrophins, 

and nutrients has been the focus of intense research. In 

nanotechnology-based approaches, nanoencapsulation of 

nutraceuticals, application of nanosensors and computational 

modelling have been the emerging topics (93-97). In this 

respect, designing the nanoformulations of resveratrol has led 

to the increased cellular uptake and improved bioavailability 

potential side effects of this nutraceutical which has shown 

multi-spectrum therapeutic applications.

CONCLUSION 

For over a decade, natural products with antioxidant, 

antiinflammatory, metabotrophic and neuroptotective 

effects have been the focus of intense research. Resveratrol, 

a naturally occurring polyphenolic compound, has shown 

multi-spectrum therapeutic applications. Besides its 

therapeutic potential in ischemia, cancer, diabetes, and 

cardiometabolic disorders, resveratrol has proved to be a 

promising therapeutic agent against the neurodegenerative 

disorders. In recent years,

functions of the eCBs has resulted in a better understanding 

of the pathological processes which occur in the CNS. 

Compounds which regulate the activity of the eCBs, have 

against various disorders in which 

 

The eCBs as the modulator of the neurodegenerative and 

the pharmacotherapy of chronic CNS disorders. Resveratrol 

by affecting the eCBs and NGF with well-documented 

regulatory actions in the neuroprotective processes and 

emotional activity might be a valuable therapeutic agent 

against a wide variety of disorders associated with abnormal 

eCB or NGF signalling.

interest.
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