
Biomedical Reviews 1999; 10: 37-44. 

Dedicated to Rita Levi-Montalcini 

©The Bulgarian-American Center, Varna, Bulgaria 

ISSN1310-392X 
  

NEUROIMMUNE HYPOTHESIS OF ATHEROSCLEROSIS 

George N. Chaldakov1, Marco Fiore2, Ivan S. Stankulov3, Viviana Triaca2, Peter I. Ghenev4, 

and Luigi Aloe2
 

'Division of Electron Microscopy, Medical University, Varna, Bulgaria, 2Institute of Neurobiology, CNR, 

Rome, Italy, Department of Forensic Medicine and Department of General and Clinical Pathology, Medical 

University, Varna, Bulgaria 

Although "many roads lead to atheroma ", the prevailing hypothesis at present is the Russell Ross' response-to-injury hypothesis, 

which sates that atherosclerosis is an inflammatory disease that involves several aspects of wound healing. It is noteworthy that, 

emphasized by the current studies of neurotrophic factors and nerve-immune cell interactions, neuroimmune mechanisms are 

increasingly implicated in the pathogenesis of a number of inflammatory diseases. Here we highlight the possibility that 

neuroimmune mechanisms, including the participation of neurotrophic factors and immune cells, may also be involved in the 

process of atherogenesis. Biomed Rev 1999; 10: 37-44. 

INTRODUCTION 

NGF's classical activity: a neuroeffector link 

Life at the neuronal level requires trophic support. Work initiated 

by the discovery of nerve growth factor (NGF) in the early 1950's 

and later embodied in the neurotrophic theory (1) has brought 

increasing insight into the bidirectional link between nerves 

and innervated effector (target) tissues (1-3). In auto-nomic 

nervous system, NGF-driven differentiation and survival of 

sympathetic and sensory neurons is well studied (1). NGF is a 

member of the neurotrophin family of proteins, including 

brain-derived neurotrophic factor (BDNF), neuro-trophin-3 

(NT-3), NT-4/5, NT-6, and NT-7 (3,4). Beginning with the original 

studies of Levi-Montalcini (1), it is known that the largest 

amount of NGF is secreted by the convoluted tubular cells of 

the male mouse submandibular gland. This organ contains NGF 

as an oligomeric macromolecule (7S) composed of alpha, beta 

and gamma subunits. The homodimer consisted of 

 

 

beta-subunits and with molecular weight of 26.5 kD is a nerve 

growth-promoting factor, namely, beta-NGF (2.5S NGF) (1), 

which further in the text will be referred to as NGF. The gamma-

NGF is a member of the kallikrein family of serine proteases, 

cleaving, for example, plasminogen into plasmin (5), a crucial 

factor for the conversion of latent transforming growth factor-

beta (TGF-J3) into active TGF-(3 (6), a key suppressor of 

atherogenesis (6,7). Biological actions of NGF are mediated by 

the initial ligation of two different cell surface receptors: (;') 

the low-affinity p75 NGF receptor (p75NGFR), also named 

p75 neurotrophin receptor, and («) the high-affinity receptor 

ty-rosine kinase (Trk), TrkA (3) (receptozyme). 

NGF's moonlighting: a neuroimmune link 

During some 25 years after its discovery, there have been few 

reasons given to indicate that NGF acts on noneuronal cells. 

Thus, in 1977, it was remarkable to discover that treatment of 

newborn rats with NGF caused a systemic increase in the num- 
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Table 1. Nerve growth factor and nonneuronal cells in 

atherogenesis 

Other cells 

   Endothelial cells* 

   Smooth muscle cells*  

  Fibroblasts  

   Platelets*  

   Adipocytes 

 

 

* These cells are also source of BDNF. Refs 8-21. 

ber of mast cells (MC) (8). Today, there is compelling evidence 
that NGF, in addition to its neurotrophic function, enhances 
survival and activity of a large number of nonneuronal cells, 
and is secreted not only by directly innervated cells but also 
by MC, lymphocytes and other cell types, implicated in the 
process of atherogenesis (Table 1). Also, atherogenic cytokines 
derived from immune cells increase NGF secretion in a variety 
of cells (18,22), whereas NGF induces release of various 
mediators from MC (23,24). Moreover, beyond their 
importance in differentiation and activation of immune cells, 
interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) (25) 
and stem cell factor (SCF) (MC growth factor, c-kit ligand) (26) 
are able to enhance nerve growth. Indeed, there is at present 
considerable evidence that the sharing of ligands (growth 
factors, cytokines, and neurotransmitters) and their receptors 
constitute a molecular information network between neuronal, 
immune and effector (NIE) cells in different organs (25,27-
29), including blood vessels (30-32). Historically, 
RamonyCajal (cited in 33) and Hamburger and Levi-
Montalcini (34) firstly envisaged neuroimmune interactions 
and also neuronal programmed cell death (apoptosis) by their 
studies on the involvement of macrophages in neuronal injury 
and development. 

ATHEROGENESIS: HOT JUST FOR INTIMA 

The artery wall consists of intima, media, and adventitia, the 
latter gradually transits into periadventitial tissue, that is, the 
artery-associated adipose tissue (AAAT). An artery affected 
by atherosclerosis displays intimal and adventitial lesions 
associated with medial atrophy. 

Although "many roads lead to atheroma" (6) (Table 2), the 
prevailing hypothesis at present is the Russell Ross' response-
to-injury hypothesis, which sates that atherosclerosis is an 
inflammatory disease that involves several aspects of wound 
healing (35). The response-to-injury hypothesis proposes 
endothelial dysfunction, lymphocyte and monocyte 
extravasation into the intima, and vascular smooth muscle cell 
(VSMC) proliferation (35) and oversecretion of matrix molecules 
(35,36) as key events in the generation and development of 
athero- 

 
 

Table 2. Current hypotheses of atherosclerosis 

Response-to-injury 

Response-to-retention 

Response-to-oxidation 

Infectious 
Hemorheologic-hemodynamic 

Adventitial vasa vasorum hypoperfusion 

Adventitial inflammation 

Neuroimmune 

Refs 35-43. 

sclerotic plaques. Because advanced intimal lesions lead to 
luminal loss, resulting in infarction, the intima is considered by 
many authors the most important vascular area involved in 
atherogenesis (35,37-41). Recently, growing evidence, 
however, rises the possibility of alternative, adventitial (42,43) 
and AAAT (44,45) pathways of the vascular injury response, 
suggesting that atherogenesis is not just for intima. 

Our review will focus on possible role for the neurotrophins 
NGF and BDNF and the immune cells MC, macrophage and 
lymphocytes in neuroimmune mechanisms in atherosclerosis. 

NEUROTROPHINS, IMMUNE CELLS, AND ATHEROSCLERO- 

SIS 

 

Within the artery wall, VSMC comprise the primary target of 

the sympathetic neurons and, respectively, serve as the main 

source of NGF (17). Hence much of our insight into the 

possible role of NGF in atherogenesis arises from studies 

usually dealing with VSMC (46-50). Recent evidence shows that 

VSMC besides their classical role in providing neurotrophic 

support via secretion of NGF (17), BDNF and NT-3 (51) are also 

able to respond to these neurotrophins (49,52). Moreover, 

immune cells, like VSMC, secrete a plethora of mediators 

with neurotrophic, proinflammatory, fibrogenic and angiogenic 

effects that play an important role in tissue remodeling (9,23-

25,27,53-56). 
In vascular pathology, considerable evidence exists for the 

involvement of NGF and perivascular sympathetic innervation in 
hypertension (57,58). More recently, two publications deal 
with giant cell arteritis (31) and Kawasaki diseases (59). 
Indeed, an increasing body of evidence supports the hypothesis 
that the cell biology of atherosclerosis (35,39,43-45,60), including 
acute coronary syndromes (61,62), shares many similarities with 
inflammatory-fibroproliferative diseases (35,63,64), and also with 
cancer (65). It is noteworthy therefore that, emphasized by the 
current studies of NGF and immune cells (66,67) and nerve-
immune cell interactions (25,27-30,32), neuroimmune 
mechanisms are implicated in the pathogenesis of a large number 
of these diseases (68, their Table, this volume ofBiomedi-cal 

Reviews). Specifically, while multiple growth factors and 
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Immune cells 

Mast cells* 

Basophils 

Lymphocytes* 

Macrophages 

Dendritic cells 

Neutrophils 
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also immune cells (6,35,53,60) that are potential sources of 

NGF (8-12) are identified in developing lesions of atherosclerosis, 

as well as an essential nonneuronal function of neurotro-phins 

implicated in cardiovascular tissue development (51,69), the role 

of neurotrophins in atherosclerosis has only recently emerged 

(45-50). Intriguingly, NGF shares a striking structural homology 

with proinsulin and exerts certain insulin-like effects on lipid 

metabolism in adipocytes (71,72) and both BDNF and NGF exert 

hypoglycemic effect acting on pancreatic beta cells, which also 

secrete NGF (73,74). Furthermore, atherogen-esis-associated 

growth factors, such as LIF, SCF, TGF-p, hepa-tocyte growth 

factor, vascular endothelial growth factor, and bone 

morphogenetic proteins (25,26,75-78) and even the 

paradigmic antherogenic factor platelet-derived growth factor 

(PDGF) (35) exert neurotrophic activities (79), and NGF uses 

similar intracellular signaling pathways as PDGF in VSMC (50). 

Given the key role of inflammation and fibrosis in the initiation 

and development of atherosclerotic lesions (35,37-40,43-45,60-

64), what role, for example, might NGF and MC play in the 

process of atherogenesis? First, NGF influences certain 

atherogenesis-associated functions of NIE cells including 

survival of peri vascular nerves (17), proliferation and activity of 

MC (8-10), and apoptosis and migration of VSMC (46,50,52). 

Second, atherogenesis related molecules, such as PDGF, IL-

1(3, and angiotensin II (47), and also thrombin (48) increase 

NGF secretion in cultured VSMC, whereas MC-derived mediators 

modulate the growth of VSMC (80). Third, local and/or 

systemic levels of NGF (68,81,82) and the number of MC 

(23,25,30,32,61,68) increase in response to inflammatory stimuli, 

and, importantly, exogenous administration of NGF inhibits 

such inflammatory reactions, whereas histamine receptor 

antagonists inhibit atherosclerotic intimal lesions (83). Fourth, 

there is an inverse relation between the density of peri vascular 

sympathetic nerves and the development of atherosclerosis 

(84). Finally, NGF upregulates low density lipoprotein receptor 

(LDLR)-related protein (85), a member of the LDLR gene family 

whose malfunction is causally related to atherosclerosis, while 

another neurotrophic factor, LIF, decreases serum cholesterol 

levels and upregulates LDLR, and thereby inhibits the 

development of atherosclerosis (86,87). Effects of NGF as 

potentially related to atherogenesis are summarized in Table 3. 

Altogether, these results taken in conjunction with the 

involvement of MC in LDL metabolism in atherosclerotic lesions 

(95) suggest a complex arrangement between lipoproteins, 

NGF, and immune cells and the process of atherogenesis. For 

example, in human coronary atherosclerosis, VSMC, like in 

culture conditions (49,52), express BDNF, NT-3, and NT-4/5, 

and their TrkB and TrkC receptors (52), while the level of NGF 

is significantly reduced and the adventitial p75NGFR immunore-

activity increased (70). Further, the number of MC (39,70) and 

lymphocyte aggregates (39), as well as their links to perivascu-lar 

nerves (96-98), is increased at the adventitia in atherosclerotic 

compared with control coronary.arteries. Most likely, the 

Table 3. NGF potentials in atherogenesis 

Promotion of survival of sympathetic neurons 

Stimulation of vascular smooth muscle cell migration 

Stimulation of vascular smooth muscle cell apoptosis 

Stimulation of mast cell proliferation 

Stimulation of release of mast cell mediators 

Stimulation of lymphocyte proliferation 

Stimulation of neutrophil apoptosis 

Stimulation of tissue repair 

Stimulation of angiogenesis 

Conversion of plasminogen to plasmin (gamma-NGF) 

Regulation of adipogenesis 

Increase in serum triglyceride and free fatty acid levels 

Upregulation of LDL receptor-related protein 

Upregulation of caveolin-1, -2 

Activation of antioxidant enzymes 

Activation of matrix metalloproteinase 

Inhibition of vascular permeability 

Inhibition of major histocompatibility class n expression 

Inhibition of synaptic norepinephrine release 

Refs 1,8,9,14,21,68,85,88-94. 

increased presence of these immonocytes, which are potential 

sources of NGF (9,11,29,70), is not able to compensate the 

neurotrophic deficit that may result from VSMC atrophy 

(17,99). This deficit may lead to degenerative changes in 

perivascular nerves (100-102). Nothworthy, (f) denervation 

results in a significant decrease in NGF content in vascular wall, 

particularly in the adventitia (102), and (if) apolipoprotein E-

deficient mice that spontaneously develop atherosclerosis (103) 

also develop neu-ronal degeneration (104). Clearly, the 

importance of neuroimmune and neuroeffector interactions in 

atherogenesis requires further evaluation. 

NGF: protective or damaging to the artery ? 

There are conflicting opinions about the role of NGF in 

atherogenesis. While some authors suggest that an elevated 

NGF amount may provide damaging effect (47), there are 

certain reasons to suggest that NGF might exert a 

vasculoprotectivc effect. First of all, brief myocardial ischemia 

induces a dysfunction of sympathetic cardiac innervation that is 

accompanied by a rapid increase in NGF release, whereas 

exogenous administration of NGF protects against such 

neuronal dysfunction, thus suggesting that the endogeneous 

NGF release is insufficient for complete neural protection (81). 

Second, as indicated in the Introduction, the process of 

atherogenesis involves several aspects of chronic inflammation 

and wound healing (35). It is noteworthy therefore that 

p75NGFR-deficient mice develop skin ulcers (105), while the 

administration of NGF promotes healing of skin (82,106) and 

corneal (107) ulcers, and inhibits experimental inflammation 

more potently than indometha- 
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cin and betamethasone (108). Significantly, patients with 

severe coronary atherosclerosis (7) and restenosis (6,7) do 

indeed have reduced levels of both active TGF-J3 and estrogen 

(7) and also mutation of type II TGF [3 receptor (67) 

compared to patients with normal coronary arteries, whereas 

one factor crucial for the activation of VSMC-secreted TGF-J3 

is plasmin (6) that can be generated upon the action of gamma-

NGF (5; also see 109,110 for NGF-TGF-(3- estrogen 

interactions). Future studies may provide the answer of 

whether TGF-(3-induced increase in NGF secretion by VSMC 

is damaging (47) or protective to the artery. Yet, the principle 

question remains: if NGF is causally related to atherogenesis, 

is it low or high levels of NGF that are associated with a 

possible vasculoprotective (atheroprotective) effect? 

Genetically-modified mice deficient in NGF or neurotrophin 

receptors (105,111) fed with high cholesterol diet may help to 

answer this question. Another pressing question is whether 

gamma-NGF (5) is expressed in atherosclerotic vascular wall? 

CONCLUSION AMD PERSPECTIVES 

From the evidence presented here the following main conclusion 

may be drawn: the neurotrophic theory and its currently 

expanded neuroimmune framework may be set into the context of 

neuroimmune hypothesis of atherosclerosis. Of course, many 

pressing questions remain to be answered, and future studies 

scheduled, in order to evaluate, for example, (i) plasma levels of 

NGF in patients with angina pectoris and with myocardial 

infarction, (ii) MC/basophils, lymphocytes, and platelets as 

potential peripheral markers for alterations in neurotrophins in 

atherosclerosis, and (Hi) potential involvement of AAAT in 

human atherosclerosis (44,45,112-120), as well as in Watanabe 

heritable hyperlipidemic rabbits and spontaneously hypertensive 

rats, and, more specifically, in neurotrophin-deficient mice and in 

MC-deficient mice (121) fed with cholesterol-supplemented 

diet. 

In effect, a continued pursuit of the possible interactive role of 

neurotrophic factors and immune cells in atherogenesis may 

help to answer many questions which have continuously arisen, 

and hence provide new insight into atherosclerosis. If the 

neuroimmune hypothesis of atherogenesis proposed herein is 

proved, a new, neurotrophin-directed (57; 122, this volume 

ofBiomedical Reviews) and immune cell-directed therapeutic 

approach in atherosclerosis may then be designed. Indeed, 

"the submerged areas of the NGF iceberg loom very large", 

Rita Levi-Montalcini stated in her Nobel prize lecture reviewing 

35 years of research on NGF (123). Blessedly, she is continuing 

to contribute. 
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