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The mesencephalic trigeminal nucleus (Me5) is a unique structure in the central nervous system (CNS), made up of pseudou-
nipolar sensory neurons. It is also a suitable paradigm for studying the plastic alterations in neurons. It is known that the Me5 
neurons utilize various neurotransmitters under normal conditions, though little information is available about the morphological 
and chemical events taking place in the nucleus after injury. This review provides concise description of the structural adaptive 
changes in Me5 neurons following peripheral axotomy of the masseteric nerve. Furthermore, it validates NADPH-diaphorase 
activity in them, and using immunohistochemistry for glutamate (Glu), substance P (SP), calcitonin-gene related protein (CGRP), 
neuropeptide tyrosine (NPY) and galanin (GAL), it deals with the altered neurochemical phenotype of the injured neurons. Our 
results distinctly show that the Me5 neurons in the rat are extremely sensitive to peripheral injury and we demonstrate their distinct 
structural and neurochemical plasticity. The adaptive morphological alterations comprise of both qualitative and quantitative 
alterations in the axotomized Me5 population which are statistically significant when compared with the number and phenotype 
of the neurons on the contralateral intact side. Besides, the axotomy-induced alterations in the neurochemical character of Me5 
are best signified by the down-regulation of the classical neurotransmitters under normal conditions, and the up-regulation of 
nitric oxide synthase and de novo synthesis of certain neuroactive substances such as NPY, SP, GAL and VIP. It can be inferred 
that the described phenomena only occur in the nucleus in cases of injury and changes in the environmental cues, and serve as 
adaptive mechanisms and powerful trophic factors for the neuronal survival in the Me5. There is, undoubtedly, still a long way 
to go in order to clarify the dynamic and plastic alterations occurring in the CNS in health and disease, and also explain their 
role in such important functions as pain, perception, learning, cognition and memory. Biomed Rev 2019;30:63-81
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INTRODUCTION
The primary sensory neurons whose bodies are located in cell 
clusters, called ganglia, transmit somatosensory information 
to neurons in the central nervous system (CNS) from different 
types of afferent receptors in the periphery. In contrast to the 
spinal ganglia and the major part of cranial sensory ganglia, 
one of the most characteristic features of the trigeminal sensory 
system is that the bodies of primary trigeminal afferent neurons 
are located both in the trigeminal ganglion (TG) and in the 
brain, in particular, the mesencephalic nucleus of trigeminal 
nerve (Me5) (reviewed in 1-7). Some researchers of the trigem-
inal sensory system claim that the TG is a cranial analogue of 
a peripheral spinal ganglion in the peripheral nervous system 
(PNS) (8). On the other hand, the Me5 is the only known brain 
nucleus which contains the perikarya of primary afferent neu-
rons (9, 10). The Me5 is also unique in that its cells comprise 
one clearly differentiated functional class of trigeminal sensory 
neurons, which exclusively subserve proprioception. The TG 
cells receive afferent information mainly from pressure and 
stretch mechanoreceptors, thermoreceptors, and nociceptors, 
located in the area of the face, mouth, and nasal cavity (11, 12). 
It is also well known that TG neurons receive proprioceptive 
information from the muscles of mastication, more specifi-
cally, from the jaw-closing and jaw-opening muscles (13). 
Their central axons form synaptic contacts on several groups 
of second-order neurons, which, in turn, transmit impulses to 
the somatosensory cortex, passing through the thalamus (14, 
15). Some of the second-order neurons, however, form local 
networks in the CNS and their central processes do not reach 
the cortex (16,17).
	 The Me5 neurons mainly innervate the muscle spindles in 
the masticatory and extrinsic eye muscles (18-20), as well as 
other receptor types in the periodontal ligaments (21-27) and 
the dental pulp (28, 29).
	 The primary trigeminal afferent neurons share a common 
embryonic origin, but have different fate during their develop-
ment. The various populations of cells, which comprise TG and 
Me5 can be identified based on their morphological character-
istics, neurotransmitter profile and electrophysiological pecu-
liarities. From a morphological point of view, it is considered 
that the neurons of Me5 are very similar if not even identical 
with the cells in the cranial and spinal ganglia (9, 10). It is also 
accepted that the peripheral processes of Me5 neurons have 
the same conduction velocity of the nerve impulse as the low-
threshold mechanoreceptive afferent neurons in the TG (23, 26, 
30). However, it still remains unexplained to what extent these 

neurons differ regarding their neurochemical characteristics, as 
well as whether or not they share an identical neurotransmitter 
profile. The elucidation of this issue is of key significance, 
since the characteristics of neurotransmission and synthesis 
of neuroactive substances in different neuronal populations is 
often directly related to their target projections. It is assumed 
that the trigeminal primary afferent neurons manifest signs 
of innervation-specific neurochemical expression, a concept 
called neurochemical coding (31). 
	 At present, it is well known that a peripheral nerve injury 
induces dynamic and adaptive changes in the structure and 
neurochemical content of neurons in the areas innervated 
by the injured nerve, a phenomenon commonly known as 
neuroplasticity, and more specifically, structural and chemi-
cal plasticity (32). It is also known that the Me5 neurons are 
very sensitive to peripheral nerve injury, which results in a 
significant cell loss (33, 34). On the other hand, their survival 
in altered environmental conditions largely depends on the 
presence of certain neurotrophic factors (7, 34-36).
	 This review outlines the morphological and neurochemical 
changes in the Me5 in response to peripheral nerve axotomy. 

LOCATION AND NORMAL MORPHOLOGY OF THE 
MESENCEPHALIC TRIGEMINAL NUCLEUS
The Me5 in rats is a bilateral longitudinal column of about 
1000-1500 neurons extending for 4-5 mm in the rostral part 
of pons, and along the whole rostrocaudal length of the mes-
encephalon. The predominant part (60-80%) of Me5 neurons 
are located in the rostral pons, where they are grouped in 2-9 
cells in the triangle between the locus coeruleus and medial 
parabrachial nucleus (Fig. 1), medially bordering the superior 
cerebellar peduncle (brachium conjunctivum). In a rostral 
direction, at the midbrain level, the scattered Me5 neurons 
are observed as a thin and bent marginal plate of perikaryal 
profiles, laterally fencing off the periaqueductal gray (Fig. 2).
The Me5 in rats comprises of two distinct subpopulations 
of nerve cells. The majority are large-sized, while a subset 
of them are small in size spherical or ovoid pseudounipolar 
neurons (Fig. 1B, 2B), the latter observed along the entire 
length of the nucleus. Besides, small-sized and spindle-shaped 
multipolar neurons are observed in the caudal pontine part of 
the nucleus (Fig. 1B).

MORPHOLOGICAL CHANGES IN THE MESENCEPHALIC 
TRIGEMINAL NUCLEUS AFTER PERIPHERAL AXOTOMY
Following experimental unilateral cut of the masseteric nerve 
and a survival period of 7 days, the Me5 neurons on the ipsi-
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Figure 1. Location of the neuronal population in the caudal part of the Me5 in rats. 
(A) A low magnification of the nucleus at the level of pons, demonstrating the location of Me5 neurons adjacent to the locus 
coeruleus (LC) and parabrachial nuclei. (B-D) Neutral red-stained Me5 sections at a high (B) and low magnification (D), and 
stained with cresyl violet (C), showing the location of Me5 perikarya in aggregates between the LC and the medial parabrachial 
nucleus (MPB). Lateral parabrachial nucleus (LPB), pedunculus cerebellaris superior (scp), ventriculus quartus (4V). Scale 
bars = 50 µm.

Figure 2. Location of the neuronal population in the rostral part of the Me5 in rats. 
(A-C) A low magnification of the nucleus at the level of the mesencephalon, demonstrating the location of Me5 neurons, later-
ally from the periaqueductal gray (PAG). (D) A higher magnification of the mesencephalic part of the nucleus, indicated in (C), 
showing dispersed profiles of Me5 neurons. Aq, aqueductus cerebri. Staining with neutral red (A, B, D) and cresyl violet (B). 
Scale bars = 50 µm.
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lateral axotomized side demonstrated insignificant decrease 
of their number, compared with the Me5 neurons on the con-
tralateral intact half (Fig. 3A). A similar finding was registered 
along the entire length of the nucleus, both at the level of pons 
and mesencephalon. At that time, at a higher magnification 
we found the first morphological signs of chromatolysis in 
the perikarya of the axotomized Me5 neurons (Fig. 3B). The 
chromatolytic changes in the nucleus were more evident in 
the large-sized Me5 neurons compared to those in the smaller 
pseudounipolar and multipolar Me5 neurons. They involved 
both the cell nucleus and the cytoplasm, and were character-
ized with fading and in some neurons also with completely 
absent basophilic-stained Nissl bodies in their perikarya. 
The nuclei of damaged neurons were enlarged and displaced 
peripherally, and the heterochromatin appeared disintegrated 
and despiralized (Fig. 3B).
	 Degenerative changes were also observed in the axonal pro-
cesses distal from the site of the nerve cut. They demonstrated 

the typical pattern of the so-called Wallerian degeneration and 
were manifested with a disintegration of the axonal skeleton, 
derangement in the axolemma integrity, and subsequently af-
fecting the myelin sheath.
	 Two weeks after the axotomy, the number of injured Me5 
neurons on the side of nerve cut continued to decrease com-
pared to the contralateral control side (Fig. 3C). At that time, 
together with the persistent and already described morpho-
logical cell changes, basophilic granulations and degenerative 
profiles could be observed in the perikarya of the damaged 
Me5 neurons (Fig. 3D).
	 After a survival period of 21 days, the reduction in Me5 
neuronal number at the level of pons on the side of the injury 
was clearly visible. In fact, the number of axotomized neu-
rons was significantly smaller, compared to the population 
of intact neurons on the control side (Fig. 4A). Their cell 
bodies, regardless of size and shape, demonstrated all signs 
of neuronal degeneration (Fig. 4B). Similar findings were 

Figure 3. (A) A microphotograph through the pontine part of the Me5 in rat, 7 days after unilateral transection of the masseteric 
nerve. 
The Me5 neurons at the side of axotomy (arrowhead), show insignificant decrease in number compared with intact half (arrow). 
(B) A higher magnification of the outlined zone in (A), demonstrating chromatolytic changes in the large axotomized Me5 neuronal 
profiles (arrows). Initial disintegration of the Nissl substance and heterochromatin in the nucleus is observed seven days after the 
intervention. (C) A microphotograph of the caudal part of the Me5 in rats, 14 days after unilateral transection of the masseteric 
nerve. The number of Me5 neurons on the side of axotomy (arrowhead) is reduced compared to the intact half (arrow). (D) A 
higher magnification of the outlined rectangle shown in (C), which demonstrates the chromatolytic changes at this stage in the 
axotomized Me5 neurons. Note the presence of basophilic granulations in the degenerated neuronal profiles (arrows). LC, locus 
coeruleus; 4V, ventriculus quartus. Staining with cresyl violet. Scale bars = 100 µm in (A, C) and 50 µm (B, D)
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observed more rostrally, at the level of the mesencephalon 
where the axotomized Me5 neurons were apparently reduced, 
compared to the intact side. Here the damaged Me5 neurons 
demonstrated patterns of transneuronal degeneration with 
clearly visible chromatolytic granules and a dispersion of the 
nuclear chromatin.
	 On the 28th day after the intervention, on the axotomized 
side of nucleus at the level of pons, a significant reduction 
in the number of Me5 neurons could still be registered. That 
was greater when compared to the number of degenerated 
neurons on the 7th postoperative day, and than the neurons in 
the non-treated control half (Fig. 4C). At the same time, the 
level of neuronal degeneration was slightly decreased (Fig. 
4D), though this phenomenon was still present in the days after 
the intervention. The described morphological changes did 
not demonstrate significant differences between the neurons 
located in the caudal and rostral part of the nucleus.
	 After a period of continuous survival of 56 days following 

the intervention, the number of Me5 neurons on the side of 
axotomy was still smaller, although no significant and dis-
tinct differences could be registered when compared with the 
neurons on the intact side. Besides, no visible changes in the 
morphology of Me5 neurons were visualized on the ipsilateral 
and contralateral side (Fig. 5A, B). A similar finding for these 
chronological changes in the number and morphology of Me5 
neurons was done when comparing the axotomized Me5 neu-
rons with the contralateral neurons in the same nucleus on the 
control side, where sham surgery with incision and subsequent 
suturing of the skin with no sectioning of the peripheral nerve 
was performed (Fig. 5 C, D).

NEUROCHEMICAL CHANGES IN THE MESENCEPHALIC 
TRIGEMINAL NUCLEUS AFTER PERIPHERAL AXOTOMY
Plastic changes in the expression of classical 
neurotransmitters
The glutamatergic nature of Me5 neurons in normal conditions 

Figure 4. (A) Microphotograph of the transition part of the pons and mesencephalon of the Me5 in rats, 21 days after unilateral 
axotomy of the masseteric nerve. 
The number of axotomized Me5 neurons (arrowheads) is apparently reduced, compared to the intact neurons (arrows). (B) A 
higher magnification of the outlined rectangle of (A), demonstrating degenerated Me5 neurons (arrows) 21 days after unilateral 
axotomy. (C) A microphotograph of a lower magnification of the caudal part of the Me5 in rats, 28 days after unilateral tran-
section of the masseteric nerve. The number of Me5 neurons on the side of axotomy (arrowhead) is smaller than the intact half 
(arrow). (D) Higher magnification of the outlined zone in (C), demonstrating chromatolytic changes in the large axotomized 
Me5 neuronal profiles (Me5). LC, locus coeruleus; 4V, ventriculus quartus. Staining with cresyl violet. Scale bars = 100 µm in 
(A, C) and 50 µm (B, D). 
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has been repeatedly documented. Therefore, in this study we 
followed the changes in the expression of established amino 
acid transmitters after experimental unilateral transection of 
the masseteric nerve, and subsequent immunohistochemical 
examination to demonstrate their presence in the nucleus. 
One week after the axotomy, on the side of injury , we found 
reduced Glu immunoreactivity in the injured neurons along 
the entire length of the nucleus, compared to its expression 
patterns in the intact Me5 neurons. A distinct tendency to 
weaker immunostaining intensity was registered on 14th, 
21st, and 28th day after the intervention, while 56 days after 
it the number and intensity of immunostaining of the injured 
neurons was similar to the one of intact neurons.
	 Our efforts to establish axotomy-induced changes in the ex-
pression of tyrosine hydroxylase (TH), a rate-limiting enzyme 
in catecholamine synthesis, were not successful. Indeed, we did 
not find TH immunoreactivity in the axotomized Me5 neurons 
following any period of survival after peripheral axotomy. 
Only nerve fibers and their terminals showed immunopositive 
reaction for this enzyme in the intact Me5.
	 The histochemical reaction for visualization of NADPH-

diaphorase showed that seven days after the intervention, the 
number of nitrergic Me5 neurons had increased on the side 
of injury compared to the intact one (Fig. 6A, B). A similar 
finding was observed when comparing the number of positive 
Me5 neurons on the axotomized side with those in the sham-
operated contralateral side (Fig. 6 C, D). The tendency for 
increase in the number of axotomized nitrergic Me5 neurons 
was observed until the end of the first postoperative month. 
However, two months after the intervention, no visible dif-
ference in the number of NADPH-diaphorase-positive Me5 
neurons between the operated and intact half was established.

Plastic changes in the expression of neuroactive 
peptides
Previous experiments demonstrated that under normal condi-
tions the intact Me5  neurons did not express neuropeptide 
immunoreactivity in their cell bodies. The peripheral axotomy, 
however, changed their phenotype to de novo expression of 
some neuropeptides. In our study we tested the expression of 
some sensory neuropeptides such as SP and CGRP, and other 
peptides like VIP, NPY and GAL, which are usually expressed 

Figure 5. A higher magnification of the intact (A) and the outlined in a rectangle axotomized side (B) of the Me5, 56 days after 
unilateral axotomy. 
The number and morphology of the Me5 neurons on both sides are almost identical. The histological appearance of Me5 neurons 
(Me5) on the shame-operated side (C), and with axotomy (D), 56 days after the intervention. The number and morphology of the 
Me neurons on both sides are almost the same. Nissl staining. Scale bars = 50 µm.
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in the perikarya of sympathetic neurons.
	 We were not able to find the presence of SP and CGRP in 
the cell bodies and/or the processes of the axotomized Me5 
neurons along the entire rostrocaudal extent of the Me5, in any 
of the studied periods of survival after unilateral peripheral 
axotomy.
	 The immunoreaction to GAL in animals, subject to unilat-
eral axotomy, was markedly positive in the ipsilateral side, 
while it was negative contralaterally. Positive immunostain-
ing was also observed in the neurons of the adjacent nuclei, 
the locus coeruleus and medial parabrachial nucleus. GAL-
immunoreactivity was distinct in the large-sized axotomized 
Me5 neurons along the entire rostrocaudal length of the 
nucleus, and in individual small neurons in its pontine part. 
Immunopositivity was already noted on the 7th day after the 
nerve cut, persisted two to four weeks, and then faded away 
about the 56th day following the intervention (Fig. 7A, B).
	 The immunoreactive pattern for the two other studied 
neuropeptides,VIP and NPY,  was also similar, though the 
intensity of the observed immunoreactivity in the axotomized 

Me5 neurons was relatively weaker. More specifically, 14 days 
after the axotomy the immunoreaction for NPY was with the 
same intensity as for GAL. However, we noted a slight ten-
dency for decrease, which was apparent on the 28th day after 
the procedure (Fig. 7 C, D).

Plastic Changes in the Expression of Calcium-
Binding Proteins
In the early stages after unilateral cut of the masseteric nerve, 
we found no visible changes in the immunohistochemical pat-
tern of some neuron-specific calcium-binding proteins such as 
parvalbumin and calbindin D-28 in the Me5 neurons on the 
affected side. The immunostained neurons on the both sides 
were of middle and large size with a distinct pseudounipolar 
morphology. It was observed that Me5 neurons in the intact 
nucleus were immunoreactive to parvalbumin and calbindin 
with almost the same intensity of staining. However, it is 
noteworthy that the calbindin-immunoreactive neurons in the 
Me5 were fewer in number compared to the parvalbumin-
immunopositive ones. After a survival period of 7 days, no 

Figure 6. Histochemical reaction for NADPH-diaphorase in the caudal part of the Me5 in rats. 
Seven days after the axotomy, the number of reactive Me5 neurons on the side of injury (arrowhead) is larger than the contralateral 
nucles (arrow) (B). A higher magnification of (A), demonstrating the difference in the number of axotomized NADPH-diaphorase 
reactive Me5 neurons. (C) 7 days after the intervention, the number of axotomized NADPH-diaphorase reactive Me5 neurons 
(arrowhead) is larger compared to the sham-operated side (arrow). (D) A higher magnification of the nucleus on the side of 
injury. Scale bars = 100 µm in (A, C) and 50 µm in (B, D).
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noticeable changes were registered in the expression profile 
of the two studied calcium-binding proteins in the intact and 
axotomized Me5 neurons. Two weeks after the axotomy, a de-
crease in the expression levels in the axotomized Me5 neurons 
along the entire length of the nucleus was observed, though 
this was significantly more pronounced for parvalbumin than 
for calbindin (Fig. 8). In fact, the number of parvalbumin-
containing Me5 neurons ipsilaterally to the nerve cut was 
smaller than the one observed in the control animals, while 
the number of calbindin-containing neuronal profiles remained 
unchanged. The registered differences concerned the intensity, 
and not the number of immunopositive neurons. Moreover, 
they were distinct when comparing both with the contralateral 
intact Me5 neurons and those on the ipsilateral side of the 
control sham-operated animals. In addition, 56 days after the 
intervention, no decrease in the expression of calcium-binding 
proteins was established ipsilaterally, and their level remained 
almost the same when compared to the first days following 
peripheral axotomy.
	 Statistical analysis revealed an insignificant decrease in 

the number of Me5 neurons in 7-day axotomized animals, 
compared to the intact and sham-operated control groups. 
Interestingly, only at the level of pons we observed a statisti-
cally significant decrease in the number of neurons in Me5 
from 16.393 ± 0.403 in the control group to 14.920 ± 0.443 
in the group with 7 day survival (Fig. 9). The average number 
of Me5neurons in the control group at the level of pons-mes-
encephalon was 12.615 ± 0.851 compared to 11.273 ± 0.359  
in the axotomized group; at the level of the inferior colliculi 
it was 6.125 ± 0.295 compared to 5.417 ± 0.229 in the axoto-
mized group; and at the level of the superior colliculi it was 
4.429 ± 0.297 compared to 3.636 ± 0.279 in the axotomized 
group. On the other hand, no statistically significant differ-
ences p > 0.05 were observed in the control and sham-operated 
animals.
	 The significant changes in the neuronal number were more 
pronounced 14 days following the intervention. The analysis 
showed that from caudally to rostrally, the number of Me5 
neurons on the axotomized side changed from 13.200 ± 0.416 
in the pons, to 9.063 ± 0.335 in the pons-mesencephalon transi-

Figure 7. (A) Immunohistochemical reaction for GAL in Me5 in rats, at the level of the mesencephalon, 7 days after experimen-
tal unilateral transection of the masseteric nerve. Note the presence of GAL-immunoreactive Me5 neurons (arrowhead) on the 
ipsilateral side and their absence in the intact contralateral half. (B) Higher magnifications of the rectangle in (A), which dem-
onstrates GAL-immunoreactive axotomized Me5 neurons, 7 days after the intervention. (C, D) NPY-immunoreactive axotomized 
Me5 neurons (arrowhead) in the mesenecephalic part of the nucleus, 28 days after peripheral axotomy. Aq, aqueductus cerebri. 
Scale bars = 100 µm in (A) and 50 µm in (B, C, D).
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tion area, 4.444 ± 0.377 at level of the inferior colliculi, and 
3.125 ± 0.227 in the superior colliculi (Fig. 10). Besides, in 
all studied areas the neuronal loss on the side of axotomy was 
statistically significant (p < 0.05), compared to the control and 
sham-groups at the respective levels.
	 The effect of axotomy was most strongly noticeable on the 
21st day along the whole rostocaudal extent of the nucleus. 
In particular, the neuronal loss was most significant, as fol-

lows: 11.923 ± 0.265 in the pons, 8.222 ± 0.173 in the pons-
mesencephalon transition area, 3.824 ± 0.231 at level of the 
inferior colliculi, and 2.875 ± 0.125 at level of the superior 
colliculi (Fig. 11). The neuronal loss on the side of axotomy 
was statistically significant (p < 0.05) when compared to 
both the control and sham-operated groups at the respective 
levels.	Starting with the 28th day after the intervention, a slight 
increase in the average number of Me5 neurons in the respec-

Figure 8. (A) Immunohistochemical demonstration of PV in the pontine part of the Me5, 14 days after unilateral peripheral 
axotomy. Note the apparently decreased number of PV-immunoreactive Me5 neurons of axotomized side (arrowhead) compared 
to the intact half (arrow). (B) Higher magnifications of the axotomized PV immunoreactive Me5 neurons in (A). 4V, ventriculus 
quartus. Scale bars = 50 µm.

Figure 9. Schematic presentation of the average number of neurons in the control (Control), sham-operated group (Sham), and 
the axotomized and survived for 7 days rats (Axo - 7 days) at the level of the pons (A), pons-mesencephalon (B), inferior colliculi 
(C), and superior colliculi (D). The data present the mean value and standard error of mean, and they are compared by Student‘s 
t-test (the number of studied animals in each group was n = 5). *p < 0.05 compared to the control group.
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Figure 10. Graphical visualization of the average number of neurons in the control (Control), sham-operated (Sham), and axoto-
mized group at 14 days (Axo - 14 days) at the level of the pons (A), pons-mesencephalon (B), inferior colliculi (C), and superior 
colliculi (D). The data are compared with Student’s t-test and demonstrate the mean value and standard error of the mean (n = 
5). *p < 0.05 compared to the control group; &p < 0.05 compared to the sham-operated group.

Figure 11. Statistical presentation of the average number of neurons in the control (Control), sham-operated (Sham), and axoto-
mized groups at 21 days (Axo - 21 days) at the level of the pons (A), pons-mesencephalon (B), inferior colliculi (C), and superior 
colliculi (D). The data demonstrate the mean value and standard error of mean (n = 5). *p < 0.05 compared to the control group; 
&p < 0.05 compared to the sham-operated group.
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tive areas was noted. This tendency was obvious on the 56th 
survival day. Specifically, at that time the number of the Me5 
neurons on the side of axotomy was almost the same as on the 
7th postoperative day (Fig. 12). Statistically significant differ-
ences were only registered between the control and axotomized 
group of animals at the levels of the pons and inferior colliculi.
To summarize, we did not register statistically significant dif-
ferences (p = 0.062) in the average number of neurons, per unit 
of area of 0.04 mm2 in all the examined areas in the control and 
sham-operated groups, as well as in the axotomized animals 
during different postoperative periods. On the other hand, the 
average number of neurons per unit of area decreased with 
statistical significance until the 21st day after the intervention, 
and subsequently began to increase gradually until the 56th day.

MORPHOFUNCTIONAL ASPECTS OF MESENCEPHALIC 
TRIGEMINAL NEURONAL PLASTICITY
One of the most striking features of the Me5 is its plastic na-
ture. The data from a series of recent studies undoubtedly show 
that changes in environment result in concomitant, delayed 
in time, and long-term damages in the morphological and 
neurochemical phenotype of the Me5 neurons. In response to 
those external factors, Me5 neurons react with adaptive mor-

phochemical alterations, which direct their activity towards 
survival and regeneration of the injuries. Currently, it is well 
known that central and peripheral nerve injury changes the 
neuronal phenotype from its usual status of interneuronal syn-
aptic signaling and communication to regeneration, including 
down- and upregulation of cell physiological events and de 
novo synthesis of some biologically active substances, which 
are not expressed in the adult neurons in normal environmental 
circumstances. These changes are most likely associated with 
an adequate morphological and neurochemical cell response 
to the nerve injury (37).
	 Our data demonstrate that the unilateral cut of the masse-
teric nerve causes development of noticeable morphological 
changes in the cell bodies and processes of the damaged Me5 
neurons. These are manifested mainly with chromatolysis and 
transneuronal degeneration of the affected perikarya, and also 
with degenerative changes in the distal parts of the transected 
peripheral nerve. This degeneration is an early cellular reaction 
and it is visualized as an initial sign of morphological damage, 
far before the registration of cell loss. However, it may conse-
quently lead to a significant neuronal death. These changes are 
a useful marker for distinguishing of the surviving neurons, 
and therefore, the counting of nucleoli in the axotomized and 

Figure 12. Graphical presentation of the average number of neurons per area of 0.04 mm2 in the control (Control), sham-operated 
(Sham), and axotomized groups of rats at 56 postoperative days (Axo - 56 days) at the level of the pons (A), pons-mesencephalon 
(B), inferior colliculi (C), and superior colliculi (D). The data demonstrate the mean value and standard error of the mean (n = 
5). *p < 0.05 compared to the control group.
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intact neurons may be a reliable method for comparison and 
identification of survived and dead nerve cells in normal and 
experimental animals (33). 
The existing evidence shows that the lesions of the Me5 
or mesencephalic trigeminal tract causes degeneration of 
the nerve fibers, innervating the masticatory muscles and 
demonstrates how these lesions lead to chromatolysis of the 
Me5 neurons (38-41). This morphological finding is also sup-
ported by early ultrastructural studies, which demonstrate the 
presence of axotomy-induced degenerated and necrotic Me5 
neurons (42). Consequently, more recent studies confirm that 
the Me5 neurons are rather sensitive to peripheral nerve injury, 
and they develop degenerative argyrophilia, which results in 
distinct cell death (33,34). Similar changes are also reported 
soon after the intervention in the TG cells in rats, following 
transection of the infraorbital nerve and they are manifested 
with a retrograde degeneration in their cell bodies, called 
transganglionic degeneration (43).
	 A previous quantitative study of Me5 in rats established 
that the peripheral axotomy of the masseteric nerve causes a 
certain (10.5-22.7%) reduction in the number of the damaged 
Me5 neurons, and that most of them die in the period between 
the 10th and 30th postoperative day (33). Our morphometric 
studies show a similar tendency and prove that this is princi-
pally true for the whole rostrocaudal extent of the nucleus. The 
data collected from the neuron counting of separate segments 
of the Me5, i.e. the pontine part, pons-mesencephalon transi-
tion area, superior and inferior colliculi in the mesencephalon 
doubtlessly confirm the fact that the number of axotomized 
Me5 neurons, when compared to the neurons on the intact side 
and sham-operated groups, begins to decrease 7 days after the 
intervention and continues to reduce slightly until the third 
week afterwards. Such reduction in the number of damaged 
Me5 neurons is statistically significant for each Me5 segment 
within this time frame. At the end of the first month following 
the peripheral axotomy, some tendency for an increase in the 
number of Me5 neurons on the side of injury is observed, albeit 
it keeps being smaller than the neurons counted in the control 
animals at this stage. At the end of second month following 
axotomy of the masseteric nerve, the number of the registered 
surviving neurons is similar to their number at the end of the 
first postoperative week. Beyond any doubt, this phenomenon 
is not due to recovery through regeneration of the number of 
axotomized Me5 neurons but to the fact that they probably 
cannot be visualized with the applied methods. 
	 A key postulate in neurobiology states that nerve cells 

pay for their high specialization with a loss of their ability 
to divide postnatally. Regardless that in the present century 
enough convincing evidence has been gathered which ques-
tions this postulate, at least in certain brain regions such as the 
hippocampus and the olfactory bulb of the telencephalon in 
rodents and primates (summarized in 44), there is still a lack 
of firm confirmation for adult neurogenesis in this brain area. 
A logical explanation for the visualization of a larger number 
of neurons at the end of the second month after axotomy 
could be found in the fact that after the first week following 
the intervention, the Me5 neurons show obvious signs of 
neuronal degeneration. Above all, this is expressed in the 
disintegration of the rough endoplasmic reticulum (RER), 
the ultrastructural equivalent of Nissl bodies, which results 
in a loss of the tinctorial abilities of the cytoplasm for stain-
ing with cresyl violet. It is obvious that during the period 
between the second and fourth week after the peripheral 
axotomy, part of the injured Me5 neurons cannot be visual-
ized by the Nissl method. Following the switch-on of the 
defense mechanisms in the damaged neurons in the second 
month after the injury, they gradually regain at least a part 
of their RER and their inherent abilities for active protein 
synthesis. Thus, they stain again with the Nissl method and 
are visualized with conventional histological and immuno-
histochemical techniques. The changes we observed confirm 
the findings of Raappana and Arvidsson (33) that the peak of 
neuronal loss is between the second and fourth postoperative 
week. Supporting these findings is the fact that the period 
of greatest neuronal loss chronologically coincides with the 
time when the most significant changes are registered in the 
levels of the neuroactive substances expressed by the axoto-
mized Me5 neurons (45-48). These data make us conclude 
that the process of adaptation to the changed environmental 
conditions is accompanied by significant cell loss. In this 
sense, it is quite probable that axonal signals induced by the 
neuronal damage activate some genetic signal pathways in the 
perikarya leading to either of two possible opposing events, 
i.e. cellular death or regenerative response of the damaged 
neurons resulting in their survival. On the other hand, earlier 
studies provide convincing evidence that the peripheral nerve 
injury “obliges” the surviving Me5 neurons to modify their 
natural activity by switching from a state of maintenance of 
normal cellular functions and neurotransmission to unusual 
adaptive phenomena such as regeneration and survival (36, 
49). There are also data claiming that the changes induced by 
nerve injury involve increased neurotrophic requirements (34).
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NEUROCHEMICAL PLASTICITY OF THE MESENCEPHALIC 
TRIGEMINAL NEURONS
It is well known that in the course of their embryonic and early 
postnatal development the trigeminal primary sensory neurons 
need neurotrophins, though with time they mature and become 
less dependent on the presence of neurotrophic signals. For 
their survival in unusual external conditions, however, sensory 
neurons need to acquire specific patterns in order to respond 
adequately to the changed environment. This happens through 
the expression of other growth and regulatory signals such as 
neurotransmitters and neuropeptides. The role of these neu-
roactive substances as maintaining factors has continuously 
aroused the interest of neurobiologists, since nowadays it is 
known for certain that they share common signal pathways 
with the growth factors and proto-oncogenes regulating the 
neuronal proliferation, migration, survival, growth, differentia-
tion, and gene expression (50).
	 Our current results show a significant chemical plasticity 
of the Me5 neurons, manifesting as a bidirectional change, 
i.e. up- or down-regulation in the levels of main transmitters 
in Me5, as well as through the de novo synthesis of certain 
neuropeptides following axotomy. The data from a series of 
studies unambiguously show that some neurotransmitters 
and neuropeptides are not only a means for short-term trans-
synaptic transmission of information, but can also act as long-
term morphogenic signals and trophic factors, which maintain 
the neuronal growth, plasticity, and survival (50, 51).
	 The study of neurotransmitter plasticity of primary sensory 
neurons marked its peak at the end of the last century, when 
a number of research groups devoted considerable efforts in 
the elucidation of the phenomenon in different animal spe-
cies. The data from a series of immunohistochemical and in 
situ hybridization studies described the changes in the levels 
of normally expressed neuronal calcium-binding proteins 
and gaseous transmitters after axotomy of a peripheral nerve 
(45, 46, 52-55). For the first time, we establish in our study 
a decreased immunoreactivity, i.e. a decreased number of 
immunopositive neurons and a low staining intensity for Glu 
in axotomized Me5 neurons. Previous studies have shown 
that this excitatory amino acid is the main neurotransmitter 
candidate in the Me5 neurons in rats (56), guinea pigs (57), 
and cats (7, 48). A plausible explanation of the observed low 
expression of Glu could be that peripheral injury causes a 
functional shift from neurotransmission to survival and regen-
eration of the axonal processes in the damaged neurons. In this 
sense it is logical to accept that the levels of neurotransmit-

ters playing a chief role in the transmission of nerve signals 
between neurons upon normal conditions apparently lowers 
upon environmental changes, and the efforts of the damaged 
neurons are directed towards their survival by minimizing of 
their usual functional activities. This conclusion could also be 
extrapolated to other atypical transmitters, such as the gaseous 
molecule nitric oxide for which there are sufficient data that 
it is expressed by Me5 neurons under normal environmental 
conditions (58,59). In support of this finding, an increase in 
the number of NADPH-diaphorase-containing Me5 neurons 
has been reported 4-6 days after cutting of the infraorbital 
nerve (55). Similar data have also been obtained after unilat-
eral peripheral axotomy of the masseteric nerve in rats: three 
days after the intervention the Me5 neurons demonstrated 
NADPH-diaphorase-positivity, reaching a maximal number 
on the seventh day after the axotomy and keeping such a high 
number until the eighth postoperative week. At the same time, 
the maximal number of axotomy-induced nitric oxide synthase 
(NOS)-immunoreactive neurons remain unchanged for two 
weeks after the intervention and within four weeks afterwards 
the nitrergic neurons disappeared (60). Our results confirm 
such a tendency of early increase in the number of NADPH-
diaphorase-reactive Me5 neurons, persistence of nitrergic 
neurons until the end of the first month after the intervention, 
and their slow return to the intact condition by the end of 
the second postoperative month. This phenomenon could be 
explained with the assumption that the constantly increased 
level of NOS in Me5 neurons is due to slowly progressing 
neuronal death after the peripheral nerve injury, because it is 
a logical outcome from the increased sensitivity of the neurons 
to calcium-mediated neurotoxicity under unfavorable sur-
rounding conditions. Alternatively, we could speculate that 
probably the endogenous production of nitric oxide underlies 
a protective mechanism of the neurons against nerve injury, 
and thus supports the survival and regeneration of the Me5 
neurons.
	 Newer studies on the chemical plasticity of the trigeminal 
primary afferent neurons have shown that the axotomy of the 
inferior alveolar nerve causes significant reduction of the level 
of two sensory neuropeptides, SP and CGRP, in the perikarya 
of damaged trigeminal ganglionic cells in the ferret (61). In 
our studies, however, we did not succeed to find induced by 
axotomy expression of these two peptides in the injured Me5 
neurons in rats. Besides interspecies differences, a possible 
explanation of this negative finding could be the assumption 
that the de novo synthesis of SP and CGRP is too weak and/
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or these proteins are transported too slowly for any possible 
detection with immunohistochemical methods. The application 
of in situ hybridization could provide more specific data for 
the presence of these peptides in the damaged Me5 neurons, 
at least at mRNA level, while the blocking of the axoplasmic 
flow with colchicine would also increase the possibility for 
their visualization at protein level. Similar positive findings 
for the expression of CGRP, but not of SP, in about 20% of 
the peripherally axotomized Me5 neurons in rats have been 
reported by other authors (46). By using Fluorogold tracing 
of the projections of the transected nerve the authors manage 
to demonstrate that both types of primary proprioceptors, 
innervating the masticatory muscle spindles and periodontal 
baroreceptors, undergo CGRP up-regulation.
	 On the other hand, we clearly denote that the Me5 neurons, 
which do not synthesize neuropeptides under normal condi-
tions, as a consequence of peripheral nerve axotomy begin to 
express other neuropeptides at mRNA and protein level, which 
functionally are accepted as inhibitors of the sensory transmis-
sion. This refers both to the involvement in this process of the 
neurons, predominantly located in the pontine part of Me5, 
which innervate the periodontal ligament and are considered to 
be baroreceptors, and to these dispersed throughout the whole 
nucleus, which take part in the innervation of the masticatory 
muscles. Our data show that the transection of a peripheral 
nerve induces immunoreactivity for NPY, GAL, and VIP in 
the Me5 neurons in rats one week after the axotomy, and that 
the expression reaches maximum intensity two weeks follow-
ing the injury. These and some of our previous results (62, 
63) contribute to the findings of other authors (45), who find 
expression for VIP in the damaged Me5 neurons at mRNA 
level, but not at protein level. This is also supported by the 
findings from subsequent experiments of Larsen et al (54), who 
demonstrate an early expression of another peptide from the 
family of VIP, PACAP (pituitary adenylate cyclase-activating 
polypeptide) in the axotomized Me5 neurons, in coexistence 
with NPY and GAL at that. Similar neuropeptide expression 
evoked by trauma has been demonstrated chronologically 
in axotomized spinal ganglion neurons in rats as well (64). 
The authors state that the spinal ganglion cells of a large size 
are immunoreactive, thus they are functionally accepted as 
proprioceptive. The established period of time of the de novo 
neuropeptide synthesis corresponds to the changes found in 
the neuropeptide mRNA and protein content of Me5 neurons 
in cats (7, 35, 36), as well as results about the neurochemical 
response to axotomy in Me5 in rats (45, 46). It comprises the 

onset of the so-called peptide up-regulation between the 1st 
and 3rd postoperative day and its continuous peak between 
the 2nd and 4th week following the intervention. Later, the 
significant increase in the peptide levels persists until the 28th 
postoperative day, followed by a discernible and slow, yet 
constant peptide down-regulation (52). We register a recovery 
of the peptide levels close to the control values 56 days after 
the peripheral nerve injury. Comparing these data with the 
results from the above-mentioned studies, it seems probable 
that PACAP participates in the early neuronal response to 
peripheral injury and its initial adaptive effect is taken up at a 
later stage by other newly synthesized peptides such as NPY 
and GAL.
	 These data make us conclude that the involvement of 
neuropeptides in orofacial proprioception is observed only 
in abnormal conditions and this phenomenon is true for all 
primary afferent neurons. It is obvious that the expression 
of neuropeptides in the Me5 neurons is plastic and the pro-
prioceptive neurons in Me5 can up-regulate these peptides 
as a consequence from the injury of a peripheral nerve. It is 
yet to be clarified what is the functional significance of this 
phenomenon and what is its specific correlation with the cell 
death.
	 A well-known fact in synaptology is that the release of a 
transmitter from the axonal terminal must be compensated by 
its de novo synthesis in the perikaryon (37). Therefore, it is 
logical to accept that neuropeptides such as SP, which normally 
participate in the sensory transmission, are suppressed upon 
selective axotomy, while the expression of peptides, acting 
as trophic factors, are induced by the intervention and they 
participate actively in the response to injury and the process 
of neuronal regeneration (65). It seems probable that the sup-
pression of sensory signal transmission and down-regulation of 
the excitatory neurotransmitters aims to minimize the effect of 
peripheral nerve injury. Moreover, we consider that the newly 
synthesized neuropeptides could also play a supporting role 
in the adaptive process as neurotrophic factors, produced in 
response to the injury, thus protecting the axotomized Me5 
neurons. Beyond any doubt, the actual neurotrophins as growth 
factors are included in the regulation and maintenance of the 
phenotype and morphofunctional condition in mature age. 
This assumption is supported by their demonstrated pres-
ence in more than 60% of the Me5 neurons in adult rats (66), 
which suggests their probable participation in the process of 
survival of the neurons. It is currently known that the addi-
tional endogenous application of neurotrophins can intensify 
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the regeneratory response in peripherally axotomized neurons 
(37), though their specific role is still to be clarified.
	 The axotomy-induced neurochemical changes include a 
changed Me5 profile and alteration of the neuronal calcium-
binding proteins. It is mainly related to the level of parvalbu-
min, and, to a lesser extent, of calbindin. After a latent period 
of several days, the adaptive response of the axotomized Me5 
neurons includes significant decrease in the level of parvalbu-
min, and also a slighter one of calbindin. The absence of any 
alterations in the initial days could be explained with the fact 
that some time following the injury is needed to overcome the 
threshold for their immunohistochemical registration. These 
data correspond to the results from previous studies on the 
effect of peripheral axotomy on the level of calcium-binding 
proteins in Me5 in rats (53), and coincided with the described 
initial changes in the axotomized Me5 neurons in other animal 
species (7,36). In cats, however, the level of these calcium-
binding proteins remains unchanged during the first week after 
the axotomy and decreases during the second postoperative 
week (67). Nonetheless, such changes are not found in the neu-
rons of spinal ganglia after transection of peripheral somatic 
nerves or injury of visceral nerves (68, 69). It is most likely 
that these discrepancies are due to interspecies differences, but 
it could also be that the masseteric nerve is more vulnerable to 
injury than the inferior alveolar nerve, which passes through 
calcified tissue in a bone canal (33).
	 We believe that both a reduction in the number of Me5 
neurons and decreased intensity of their immunological 
staining after peripheral axotomy may contribute to these 
neurochemical changes. However, their functional interpre-
tation requires a different approach. Because the two studied 
calcium-binding proteins are located in large-sized primary 
sensory neurons, a subpopulation with known high calcium 
content, it only seems logical to suggest that these proteins 
play a role in the buffering of intracellular calcium, as it is 
assumed by Blaustein (70). Current evidence suggests that the 
calcium-binding proteins can function as intracellular calcium 
transporters or as a buffering system for cellular protection of 
the neuronal activity in normal conditions (71, 72). Thus, for 
example, Wakisaka et al (53) assume that calbindin is involved 
in calcium-buffering mechanisms in the sensory ganglia after 
peripheral injury. Moreover, its involvement in this process 
is accompanied by NPY-immunoreactivity in the trigeminal 
primary afferent neurons, where the calcium regulation is of 
particular significance (73). In this regard, Wakisaka et al 
(53, 74) find a partial coexistence of calbindin and NPY in 

trigeminal ganglion cells in rats, where both of these neuroac-
tive substances participate in buffer mechanisms for calcium 
ions in the injured primary sensory neurons. It can be inferred 
that the changes in the expression of calcium-binding proteins 
can be attributed to an adequate cellular response, because the 
sensitivity of the axotomized Me5 neurons to intracellular 
calcium seems to differ from that of intact Me5 neurons. It can 
also be assumed that the reduced levels of calcium-binding 
proteins together with the newly synthesized NPY contribute 
to the survival of axotomized Me5 in the process of adaptation 
following peripheral axotomy.

CONCLUSIONS
In summary, it can be inferred that the neuronal population in 
the Me5 in rats is very sensitive to peripheral nerve injury, and 
shows clear structural and neurochemical plasticity. It causes 
morphological alterations in the neurochemical phenotype of 
the injured Me5 neurons, which are dynamic, with a delayed 
onset, and long-term lasting. Moreover, the adaptive morpho-
logical phenomena include quantitative and qualitative struc-
tural changes in the axotomized Me5 neurons, which include 
a statistically significant neuronal loss on the side of injury. In 
addition, the qualitative changes in Me5 are manifested with 
transneuronal degeneration and chromatolysis of the perikarya 
of axotomized neurons, and degeneration of their peripheral 
processes. The neurochemical changes induced by the axotomy 
are observed in the down-regulation of normally expressed in 
the nucleus classical transmitters such as GLU and the neuronal 
calcium-binding proteins like parvalbumin and calbindin, up-
regulation of the gaseous transmitter nitric oxide, and de novo 
synthesis of some neuroactive peptides including NPY, GAL, 
and VIP in the damaged Me5 neurons. The newly synthesized 
peptides participate in the orofacial proprioception only in ab-
normal conditions. They most likely suppress the presynaptic 
level of transmission in axotomized neurons. Furthermore, the 
established morphological and neurochemical changes in the 
axotomized Me5 neurons are manifested at the end of first 
postoperative week, persist until the end of fourth week, and 
slowly begin to subside to return to their usual levels about the 
end of eighth week after the intervention. Last but not least, 
the morphological changes in the axotomized Me5 neurons 
are an important adaptive quality, aimed at their survival in 
abnormal conditions. The neurochemical changes are another 
relevant factor for the survival of the axotomized Me5 neurons 
and they also contribute for regeneration of their axons in the 
course of the adaptive process.
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	 The morphofunctional and neurochemical changes il-
lustrate the amazing interactive nature and the remarkable 
neuronal plasticity of the Me5 neurons, not suspected until 
now. The changed phenotype can find partial explanation in 
their unique ectopic brain location and their functional role in 
the proprioceptive sensitivity of the orofacial area. It seems 
quite probable that this unusual location of the cell bodies of 
the Me5 neurons in CNS is of significance for their adequate 
reaction to peripheral nerve injury.
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