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• //;. humans and other mammals, sex is determined by the 

presence or absence of Y chromosome. If Y chromosome is 

present, it will channel the genital ridge of the embryo into the 

pathway oftestis development, while in the absence of Y chro- 

mosome ovaries develop. Once testes have formed, they secrete 

anti-Miillerian hormone and testosterone, which masculinize 

the reproductive tract. By contrast, the female reproductive 

tract develops in the absence of fetal gonadal hormones. Tes- 

tis development is brought about through the action of the sex- 

determining region located on the short arm of the Y chromo- 

some (Siy gene), but correct doses of other genes on autosomes 

as well as the X chromosome, are also required. Sry appears 

to be widely expressed in human fetuses, suggesting the pos- 

sibility that its influence on development is not confined to the 

testes. There is additional evidence of a difference in devel- 

opmental rates between XY and XX cleaving embryos, in which 

Sry and another gene in the sex-determining region namedZfy, 

for the zinc finger protein it encodes, are already expressed. 

These findings are consistent with the possibility that Y-chro- 

mosomal genes affect somatic sex differences prior to the for- 

mation of steroid hormones. (Biomed Rev 1997; 7: 75-83) 
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• How does it come about that babies are born either male 

or female? The question has been debated since civilization 

began and has given rise to literally hundreds of hypotheses. 

Two and a half millennia before Broca (1) developed his idea 

of the lateralized brain, Greek philosophers put forward the 

view that the sex of the embryo was determined by the side of 

the body from which it arose. The rule: males on the right, 

females on the left, could be applied both to the position in the 

mother's womb as well as to the origin of the semen in the 

father's testes (2, 3). Although Aristotle objected to it, the 

theory persisted until recent times, but by the 19th century, it 

had lost its dominant position and was replaced by the view 

that sex is determined by environmental factors, particularly 

the mother's nutrition. A poor nutrition was thought to give 

rise to lean males and ample nutrition to plump females. 

With the advent of the 20th century came a radical change in 

viewpoint. Environmental factors lost some of their preemi- 

nence as causes of health and disease, while genetic factors 

came to the fore. The year 1900 saw the rediscovery of Mendel' s 

paper (4, 5), and in the years that follows sex chromosomes 

were discovered in insects (6). In the order Hemiptera, two types 

of sex chromosome mechanism, giving rise to two types of di- 

morphic sperm, were found. In some species, both classes of 

sperm had the same number of chromosomes, but one pair 

differed in size, while in other species, the number of chromo- 

somes in the two classes of sperm differed by one. When two 
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chromosomes were present, the larger chromosome was called 
"X chromosome", and the smaller one, "Y chromosome", and 
both were called "sex chromosomes". Sperm bearing X chro- 
mosome were found to give rise to female insects, while Y- 
hcaring sperm, and those without a sex chromosome, gave rise 
to males. 

Attempts to find sex-determining genes on the sex chromo- 

somes were destined to be inconclusive. In tnc fruitfly,Z)rojo- 

/)A;Vo mg&iMogojfer, males were likewise found to have one X 

und one Y chromosome, while females were XX. Exceptional 

XXY flies were fertile females, whereas "XO" flies, i.e. hav- 

ing one X and no Y chromosome, turned out to be male, albeit 

sterile. These findings excluded the possibility that the Y chro- 

mosome in Z)mjop/;;7o carried genes for malcness and gave rise 

to the idea that the sex of the flies is determined by the num- 

ber of X chromosomes, two X chromosomes giving rise to a 

female, while a single X chromosome per cell results in a male. 

This simple scheme had to be modified when it was found that 

Iriploid flies with three sets of autosomcs and two X chromo- 

somes were not females but intcrsexes with a mixture of female 

and male characteristics, and it was concluded that the sex of 

a riy is determined by the ratio of the number of X chromo- 

somes to that of autosomes. Bridges (7) proposes that the X 

chromosome of Drojop/zzVa carries genes for femaleness while 

the autosomes carry genes for male characteristics. 

In recent years, molecular studies have led to the isolation of 

lour "numerator genes", .?»fe;Ye.M-o,6,c and nmf, but only to 

one autosomal ''denominator gene", ^ea(/po«. These genes 

interact both with the X: autosome ratio and the^ex-/gfAaZ f&t/) 

gene in such a way that &?/ is switched on in flies destined to 

become females. The fact that only one denominator gene has 

been identified has lee! to the suggestion that the male-deter- 

mining function of the autosomcs may be mediated by factors 

such as cell size rather than genes (8). 

In contrast to the situation in Dfmop/z;'/o, the Y chromosome 

ol' the flowering plant &7^/;e f^m/co and some other species was 

Ibund to be male-determining (9).  

THE HUMAN Y CHROMOSOME: 

KLINEFELTER'S SYNDROME AND TURNER'S 

SYNDROME  

H Large-scale studies on human chromosomes began in 

the second half of this century, following the development of 

two techniques. One of these was the ability to grow cells in 

culture, so that enough material could be obtained from small 

biopsies or specimens obtained at operation. The other impor- 

tant progress was pre-treating the material with hypotonic sa- 

line solutions, which causes the chromosomes to be dispersed 

within the cell, instead of being crowded together with many 

overlaps. As a result of these techniques it became established 

that the human diploid chromosome number is 46, and that the 

sex chromosomes of males are XY and those of females XX. 

But some human individuals have different sex chromosome 

constitutions. 

Men with Klinefelter's syndrome have small testes, which in 

the adult lack germ cells, as well as reduced testosterone lev- 

els and an increased incidence of mild mental retardation (10, 

11). The chromosome constitution of the majority of patients 

is 47,XXY, i.e. they have three instead of two sex chromo- 

somes. Some of them are 48.XXXY or 49.XXXXY, but those 

in the last group are hypogonadic and suffer from severe men- 

tal retardation and multiple malformations as well. 

Patients with Turner's syndrome are females with infantile 

genitalia and so-called "streak gonads", i.e. the gonads are 

replaced by streaks of fibrous tissue. They also have certain 

somatic abnormalities, as well as short stature. The most com- 

mon chromosome constitution is 45,X; because of the absence 

of the second sex chromosome, it is sometimes referred to as 

XO. Most fetuses with this chromosome constitution are spon- 

taneously aborted, and a large proportion of the survivors carry 

a second cell line, for instance XX or XY (11). 

The fact that patients with Klinefelter's syndrome arc male, 

in spite of having two X chromosomes, whereas patients with 

Turner's syndrome are female, even though they have only one 

X chromosome, indicates that sex determination in humans 

does not depend on the number of X chromosomes, but on the 

presence or absence of Y chromosome. If present, Y chromo- 

some presides over male sex differentiation, whereas in the 

absence of Y chromosome, female sex develops. Thus the hu- ! 

man system of sex determination, in common with that of other 

mammals, resembles that of flowering plants rather than that 

of insects. We shall return to the human Y chromosome after 

discussing the topics of sex reversal and the developmental 

origin of the sexual apparatus. 

SEX REVERSAL 

* In addition to Klinefelter's and Turner's syndromes, 

there are other abnormalities of sexual development, which 

have played an important role in the elucidation of the genetic 

basis of sexual development. In present-day medical genetics, 

the term "sex reversal" is applied to conditions in which indi- 

viduals with XY sex chromosome develop as females, or those 

with XX sex chromosomes develop as males.  

Patients with complete XY sex reversal, a condition referred 

to as XY gonadal dysgenesis or "pure gonadal dysgcnesis", re-  

semble those with Turner's syndrome in having female geni- 

talia and streak gonads, but they differ from Turner patients 
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in not having any somatic abnormalities, and their height is 

not impaired (12). There is, however, an increased suscepti- 

bility to gonadal tumours. XY females are known also in other 

species, in some of which fertile XY females occur as part of 

natural populations (13, 14). 

Incomplete sex reversal can result in the condition known as 

true hermaphroditism, in which testicular and ovarian tissue 

coexists in the same individual. Patients may have an ovary on 

one side and a lestis on the other, or they may have one or two 

ovolestes (15, 16). The genitalia are typically ambiguous, i.e. 

intermediate between those of normal males and females; and 

the sex of rearing may be either male or female. It may be noted 

in passing that in patients with hermaphroditism, most ova- 

ries arc situated on the left, while testes and ovotestes are pref- 

erentially present on the right side. This fact is more in line 

with the thinking of the philosophers of ancient Greece (2) than 

with that of present-day molecular biologists! 

True hermaphroditism can be associated with other sex chro- 

mosome constitutions. Indeed in human hermaphroditism, 

46,XY is relatively rare, the majority of patients being either 

46,XX, or they are mosaics or chimeras with more than one 

cell line, such as 46,XX/46,XY. Mosaics originate from a single 

/.ygolc, whereas chimeras have a more complex origin, such 

as fertilization of the egg nucleus and a polar body by two sper- 

matozoa, or by fusion of two fertilized eggs (17). 

While molecular investigations have shown that most non- 

mosaic 46,XX human hermaphrodites lack Y chromosomal se- 

quences, a different situation is presented by 46,XX males. 

Phcnotypically, these patients resemble those with Klinefelter's 

syndrome, i.e. males with testes that lack spermatogenesis, but 

in XX males there is no increased risk of mental retardation, 

and they are less tall than men with Klinefelter's syndrome. 

In the majority of XX males, one of the X chromosomes car- 

ries DNA sequences of varying lengths, derived from the short 

arm of the Y chromosome. XX males without Y-derived DNA 

sequences ometimes occur in the same families as patients 

u ith 'rue hermaphroditism, suggesting that they represent dif- 

fer i, piviii ilypic manifestations of the same spectrum. 

Belori i vjui^ing the origin of XX males, it will be appropri- 

a! ' o l ake  a look at the early events in development during 

whk-1. i he embryo or fetus assumes the phenotype of one or an- 

DEVELOPMENTAL ORIGINS OF THE SEXUAL 

APPARATUS________________________ 

• In humans and oilier mammals, the principal anatomi- 

cal features thai distinguish males and females - testes, vasa 

dcfcrcntia, seminal vesicles, prostate, and male external geni- 

talia, as opposed to ovaries, Fallopian tubes (oviducts), uterus, 

vagina and female external genitalia - derive from common struc- 

tures in the embryo. The somatic cells of testes and ovaries 

originate from genital ridges, which form in apparently iden- 

tical fashion on the mesonephros of XX and XY embryos, while 

the primordial germ cells migrate into these ridges from an 

extra-embryonic site (18, 19). During this stage, two duct sys- 

tems develop: the Wolffian, or mesonephric, duct, capable of 

developing into the male reproductive tract and associated 

structures (vas deferens, seminal vesicles and epididymis), and 

the Miillerian, or paramesonephric, duct which has the poten- 

tial of becoming the female reproductive tract, i.e. oviduct, 

uterus and upper part of the vagina (Fig. 1). Which of these al- 

ternatives comes into existence depends on whether the geni- 

tal ridges develop into testes or ovaries. 

The first histological sign of sexual differentiation of the go- 

nad is the appearance of Sertoli cells in developing testes (20). 

Fetal testes secrete two active substances, anti-Mullerian hor- 

mone, also referred to as Mullerian-inhibiting substance, which 

demolishes the Miillerian duct as well as testosterone, which 

stabilises the Wolffian duct. As a result of the action of both 

substances, the embryo assumes a male phenotype. Fetal ova- 

ries are not actually required for the establishment of a female 

reproductive tract, since the Mullerian duct will develop and 

the Wolffian will duct regress in the absence of any hormones 

(21). 

In accordance with the need for its early function, the fetal testis 

differentiates earlier than the ovary. It has long been known 

that the first sign of a gonad becoming an ovary is that it has 

failed to show signs of testicular differentiation at a time when 

a developing testis would have shown histological evidence of 

its future development (18). "At a definite stage, usually re- 

ferred to as the stage of gonadal sex differentiation (day 15 in 

rabbits, stage 15-17mm in human fetuses) testicular differen- 

tiation rapidly becomes discernable in the male fetuses (early 

seminiferous tubules), whereas nothing happens in the female" 

(22). Evidently, the process of gonadal differentiation is an 

asymmetrical one. During development, the underlying deci- 

sion is not: "testis versus ovary", but "testicular differentiation" 

versus "no differentiation". By the time the ovary differenti- 

ates, the time for testis differentiation is past. 

The pivotal role of the fetal testis in controlling sexual devel- 

opment implies that the crucial decision whether the embryo 

develops into a male or female depends on whether or not the 

genital ridge develops into a testis; and given the cytogenetic 

evidence relating the presence of Y chromosome with male 

(and absence of a Y chromosome with female) development, 

we must conclude that the Y chromosome is responsible for the 

differentiation of the genital ridge into a testis. But what is the 

mechanism that allows the Y chromosome to fulfil this task? 
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Figure 1. Differentiation of a male and female phenotype from a bipotential genital ridge and a double set of ducts. If the geni- 

tal ridge differentiates into a testis, its hormonal secretion will demolish the Milllerian duct and induce the Wolffian duct to 

develop into vas deferens, seminal vesicle and epididymis. If testis development does not occur and an ovary is formed, in the 

absence of fetal gonadal secretion, the Wolffian duct regresses and the Miillerian duct differentiates into Fallopian tubes, uterus 

and upper part of the vagina. 
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THE TESTIS-DETERMINING GENE, Sty 

• The Y chromosome differs from all other chromosomes 

in not having a pairing partner in meiosis. However, at the tip 

of its short arm, referred lo as Yp, there is a short region that 

is homologous to a similar region on the X chromosome (Fig. 

2). This is known as the "pseudoautosomal region" (23). In this 

region pairing occurs during male meiosis, and crossing over 

takes place (24). 

Evidence obtained from patients with deleted Y chromosomes 

indicates that male development requires the presence of the 

short arm, hut not of the long arm, of the Y chromosome (25). 

This in turn suggests that there are one or more genes on the 

short arm of the Y chromosome whose function converts the 

hipotential gonad into a testis. Molecular geneticists envisage 

the existence of a single gene named testis-determining factor 

(Tdf); in mice, this gene is known as Tdy. A concentrated search 

to isolate this gene culminates in the identification of Sry (26). 

,- Pseudoautosomal region 

- Pseudoautosomal boundary 

Sry 

L  Zfy 

Heterochromatic 

Yq 

 

 

Figure 2. Organization of the human Y chromosome. The 

terminal portion of the short arm contains the pseudoauto- 

somal region, which pairs with a similar region on the X 

chromosome during meiosis. The short arm contains the sex- 

determining region, including Srv. The long arm contains 

Azf, comprising genes required for spermatogenesis. 

A previously isolated candidate gene for Tdf, named Zfy, for 

the zinc finger protein, which it encodes (27), subsequently falls 

out of favor. TheZ/y gene is located on Yp at a distance of 145 

Kb from the pseudoautosomal boundary, whereas the distance 

between Sry and the pseudoautosomal boundary is only 36 Kb. 

This gene is generally accepted as being identical to Tdf (28, 

29). Chief among the reasons for this view is the finding that 

the mouse homologue, Sry, when inserted into genetically fe- 

male blastocysts, induces some, though not all, of them to de- 

velop as males (30). The transgenic males are .sterile for two 

reasons. One is that genes on the long arm of the Y chromo- 

some are required for spermatogenesis; the other is that the 

presence of a second X chromosome is incompatible with sper- 

matogenesis, as seen in Klinefelter's syndrome in humans. 

The important role played by Sry in human male development 

is emphasized by the fact that mutations in the gene can cause 

sex reversal and the development of XY females. About 15% 

of XY patients with complete gonadal dysgenesis have muta- 

tions in Sry.  

Given the asymmetrical nature of the process of sex differen- 

tiation, the sequence of events can be simply represented by the 

model in Fig.3. In the presence of Sry, the genital ridge ini- 

tiates testicular differentiation, while in the absence of the gene 

the genital ridge remains undifferentiated until a later stage, 

when the beginning of meiosis in the germ cells heralds the 

differentiation of the ovary. 

The Sry gene is a regulatory gene encoding a protein with a 

high mobility group (HMG) box protein-binding domain. It is 

postulated that the gene product acts on the somatic cell of the 

genital ridge causing the differentiation of Sertoli cells. These, 

in turn, initiate the formation of the early seminiferous tubules, 

and, therefore, the differentiation of the testis. In the mouse, 

transcripts of Sry have, indeed, been observed specifically in 

the somatic cells of the genital ridge, as well as in germ cells 

of the adult testis. On the other hand, the human gene has been 

found to be expressed in all fetal tissues examined, i.e. adre- 

nal, brain, liver, pancreas, small intestine, spleen, thymus and 

heart, whereas in the adult, Sry expression was found in heart, 

liver, kidney and testis, but not in lung (31). Furthermore, tran- 

scription of the gene has been described in very early human 

and murine embryos, long before the formation of the genital 

ridge. The expression of Sry in organs outside the genital ridge 

suggests the possibility that it has functions other than in tes- 

tis determination, but this has not yet been established. 

The identification of Sry has helped in elucidating the origin 

of most cases of XX males (32). About 80% of patients carry 

Y-derived DNA sequences, including Sry, on one of their X 

chromosomes as a result of accidental crossing over outside the 

pseudoautosomal region (Fig.4). Whereas crossing over be- 
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Figure 3. Asymmetrical model of gonadal sex determination. Under the influence ofSry the genital ridge initiates testis differ- 

entiation. In the absence ofSry, the gonad remains undifferentiated, until it later initiates ovarian differentiation. 

  

twecn the X and Y chromosomes is normally confined to the 

pseudoautosomal region, an exceptional cross over event may 

lake place beyond the pseudoautosomal boundary, thus trans- 

ferring varying lengths of DNA from the short arm of the Y to 

the short arm of the X chromosome. 

OTHER GENES INVOLVED IN SEX 

DETERMINATION 

• In addition to Siy, there are several autosomal and X- 

chromosomal genes whose normal functioning is required for 

testis differentiation. The human malformation syndrome 

known as "campomelic dysplasia" is a serious disorder of bone 

development, which causes the death of most affected infants 

in the neonatal period. It has long been known that the major- 

ity of patients are female, even if their sex-chromosome con- 

stitution is XY. The gene causing the condition was found to 

be localized on chromosome 17q24.3-q25 and named Sral, re- 

ferring to its effect on sex reversal. It has since been cloned and 

Ibund to be a member of the Sox series of Sry-related genes, 

So.\9 (29, 32, 33). The Sox genes, like Sry, encode a protein 

with an HMG domain. It appears that normal male sex differ- 

entiation requires a double dose of the Sox9 product. 

Another autosomal gene with a role in testis differentiation is 

the Wilms tumor gene, Wtl. Mutations of this gene give rise 

to Wilms tumor, a childhood kidney cancer, which can also be 

part of Denys-Drash syndrome characterized by abnormal kid- 

ney development. Some of the female patients have XY sex 

chromosomes and gonadal dysgenesis; the external genitalia 

can be ambiguous (29, 32). ; . 

Other autosomal regions involved in testis development are 

likely to come to the fore. One of these is located on the short 

arm of chromosome 9, since deletions of 9p can be associated 

with XY sex reversal or genital ambiguities in males. 

Male-to-female sex reversal can also result from the duplica- 

tion of a region on the short arm of the X chromosome, Xp21 

(33). The putative gene thought to be responsible has been 

named "dosage sensitive sex reversal" (Dss). If present on two 

different sex chromosomes, the gene does not cause sex rever- 

sal, presumably because one will be inactivated. A gene, named 

Daxl, which is responsible for the X-linked form of adrenal 

hypoplasia, is located in this region, but its relationship to sex 

reversal is not yet certain. The Dss duplication is associated 

with mental retardation and multiple malformations in addi- 

tion to sex reversal. 

The Sry-related gene, Sox3, is located on the long arm of the 

X chromosome. A haemophilic male patient in whom this gene 

has been deleted has mental retardation and partial primary tes--   
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ticular failure. The gene is found to be widely expressed in 

human and mouse fetuses in the genital ridge and central ner- 

vous system (34). 

SPERMATOGENESIS GENES 

• More than 20 years ago, the results of a chromosome 

study on men with azoospermia have suggested that the long 

arm of the Y chromosomes carries factors necessary for sper- 

matogenesis, and the existence of the azoospermia factor (Azf) 

has been postulated (35). The correctness of this hypothesis has 

since been confirmed by molecular studies, which have shown 

that azoospermia or severe oligozoospermia may also be asso- 

ciated with interstitial microdeletions, which are not visible in 

the microscope. The critical region has been localized to 

Yql 1.23 and is likely to contain more than one gene, includ- 

ing two candidate genes, deleted in azoospermia (Daz) (36), 

and RNA-binding motif 1 (Rbml) (37), which was previously 

known as Yrrm (38). The latter gene is present on the Y chro- 

mosome of all eutherian mammals tested as well as in marsu- 

pials. 

In the mouse, a candidate spermatogenesis gene, Ubely, that 

encodes the ubiquitin-activating enzyme Ubel, has been iden- 

tified on the short arm of the Y chromosome, while a homo- 

logue, Ubelx, is present on the X chromosome (39). Whereas 

Ubelx is ubiquitously expressed, the Y-encoded transcripts are 

found predominantly in germ cells, and the authors suggest that 

the Ubely gene serves to increase Ubel production in times of 

high demand. 

SEXUAL  DIFFERENTIATION  BEFORE 

GONAD   FORMATION 

• Although it has been widely assumed that genetically 

male and female embryos develop in identical fashion until a 

switch acts on the hitherto bipotential gonad, causing it to 

develop into either a testis or an ovary, it has become apparent 

in recent years that the sex chromosomes exert their effect long 

before the genital ridge is formed. Data on accelerated devel- 

opment of male preimplantation embryos in mice and cattle 

have been soon followed by findings of sex differences in blas- 

tocysts(10, 40). 

In human embryos produced by in vitro fertilization, differences 

in developmental rates between genetic males and females have 

been found virtually from the beginning of zygote formation 

(41, 42). Males have a higher mean cell number than females 

on the second day after insemination, and it has been reported 

that embryos transferred with four or more cells give rise to 

more males than do embryos with fewer cells. Male embryos 

between days 2-5 have a higher pyruvate uptake, and on days 

4 and 5, a higher glucose uptake and lactate production, indi- 

cating that even at this early stage, the metabolic rate of male 

embryos is higher than that in female embryos. Another un- 

expected finding is that the Y-chromosomal genes of the sex- 

determining region, Sry and Zfy, are already transcribed in the 

2-cell stage of mice (43) and at the zygote stage in human 

embryos (44). 

CONCLUSION 

• It is evident even from a brief survey that the last de- 

cade has witnessed striking advances in the elucidation of the 

genetics of sex determination, including the identification of 

the long-sought-after "testis-determining" gene, .Sry. However, 
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the way in which Siy functions in the process of sexual differ- 

entiation is still unknown. It has even been suggested that an 

understanding of the process may be more easily achieved by 

cloning autosomal sex-determining genes than by identifying 

genes that possess Sry-binding sequences (45).  

At the same time it has become apparent that, on the pheno- 

typic level, the function of Srv is likely to extend beyond the 

confines of the genital ridge, since the gene has been shown to 

he expressed in early human embryos as well as in a variety of 

human fetal organs, including the brain. It is equally remark- 

able that there appears to be a difference in metabolic rates 

between genetically male and female embryos from the earli- 

est time of their existence, with males having the higher meta- 

bolic rate. 

Though the significance of these findings is not fully under- 

stood, they indicate the likelihood that the process of somatic 

sexual differentiation begins before that of the gonads and the 

production of sex-specific steroid hormones. This in turn sug- 

gests the possibility that the sexual differentiation of the brain 

may originate through the activity of the genotype and is later 

modified by hormonal action. 
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