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ARE THERE FUNCTIONAL PROGENITOR CELLS  
IN THE ADULT BRAIN PARENCHYMA?

   
           

The subventricular zone (SVZ) of the anterior horn of the lateral ventricle and the subgranular zone (SGZ) of the hippocampal 
dentate gyrus are the only regions of the adult brain that are widely recognized to contain neural progenitor cells – precursors 
capable of producing both neurons and glia. However, recent evidence suggests that such cells may exist also outside SVZ and 
SGZ, in the parenchyma of neocortex and striatum. This opens new possibilities for progenitor cell manipulation in situ with 
consequent development of novel progenitor-based strategies for the treatment of human neurological disease.
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The adult brain retains progenitor cells in two well-recog-
nized regions (Fig. 1): the subventricular zone (SVZ) of the 
anterior horn of the lateral ventricle and the subgranular zone 
(SGZ) of the hippocampal dentate gyrus (1). The SVZ pro-
genitors migrate tangentially at a long distance to become 
interneurons in the olfactory bulb (2). The SGZ progenitors 
migrate radially at a short distance to become projection neu-
rons in the dentate granule cell layer, immediately adjacent 
to SGZ (3). Both types of precursor cells are multipotent, i.e. 
capable of generating both neurons and glia (2,3), and both 
types are activated by brain injury or by external application 
of growth factors (Table 1). 

Extensively studied in rodents,   neurogenesis has 
been demonstrated also in the primate SVZ (23,24) and SGZ 
(25-27) in healthy subjects, while its existence outside these 
regions at normal conditions remains controversial (28-32). 
Recent data indicate of differences between the commonly 
used rodent models and the primates, related to neurogen-

esis. Thus, the human SVZ appears incapable of sending its 
precursors to the olfactory bulb (33). Further, while the phe-
nomenon of postischemic precursor cell increase (see Table 
1) is observed also in the monkey brain, the primate response 
is much smaller than the rodent one, especially regarding the 
neuronal differentiation of progenitor cells (12). Such results 
indicate of differential molecular control over the rodent and 
primate precursor cells, the revealing of which is a key factor 
for the development of successful strategies for the treatment 
of human neurological disease by means of neural progenitor 
cells.

In addition to the SVZ and SGZ progenitors, yet another 
source of such cells has gradually emerged, that offers an 
exciting possibility of progenitor cells manipulation  . 
Data in rodents implicate that precursor cells for neurons and 
glia may be present also in the parenchyma of the striatum 
and neocortex (10,34,35). Parenchymal progenitors were 
isolated   also in primates (36,37), but their   
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While most of the implanted cells had adopted a differenti-
ated cell fate – either neuronal or glial – in the prefrontal neo-
cortex, Ourednik   also observed a few cells with features 
of undifferentiated progenitors in the brain parenchyma (38). 
While it is unclear whether this phenomenon is applicable 
also to the adult monkey brain, the results of Ourednik   
suggest that the adult primate brain might retain some kind of 
progenitors in the parenchyma. 

Our recent data in adult monkeys represent additional evi-
dence in this direction. We used a model of global cerebral 
ischemia in adult macaques (39) that completely but tran-
siently blocks all blood flow to the brain structures, causing a
major neuronal injury to the hippocampus, and a lesser injury 
to the striatum and neocortex (40,41). We found increased 
progenitor cell proliferation in the hippocampal dentate gy-

Figure 1.        (A)           
                   
                     
  (B)                
                 
                  
       

capabilities remain elusive. If parenchymal (e.g. in neocortex 
or striatum, see Fig. 1) progenitors really exist in the adult 
brain and are functional, i.e. capable of neuronal replacement 
 , they offer a great clinical potential because of their 
spatial proximity to sites of injury in the brain parenchyma. 
The spatial proximity is of a particular importance in the case 
of the large primate brain, in which it may take weeks or 
months for the SVZ progenitors to travel from their site of 
origin to a distant portion of the brain parenchyma in order 
to replace lost cells.

A significant step toward the understanding that parenchy-
mal progenitors may exist   was made by a recent study 
of Ourednik   (38). The authors implanted human neu-
ral stem cells in the lateral ventricles of embryonic monkey 
brains, and investigated the fate of these cells 4 weeks later. 
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Table 1.      
         


Conditions References
  Ischemia 4-12
  Seizures 13-16
Growth factors
  EGF 8
  bFGF 8,17
  BDNF 18,19
  TGFα 20
  IGF-I 21
  VEGF 22

 EGF, epidermal growth factor; bFGF, 
basic fibroblast growth factor; BDNF, brain-derived
neurotrophic factor; TGFα, transforming growth factor-
α; IGF-I, insulin-like growth factor-I; VEGF, vascular 
endothelial growth factor.

rus within the second postischemic week (12), similarly to 
the rodent brain after ischemia (4,5,7,8). However, the prolif-
eration and neuronal differentiation of progenitor cells were 
much smaller in the monkey than in the rodent dentate gyrus 
(12). Further, in the same monkey model, we showed   
evidence of actively proliferating precursor cells in the core 
white matter of the olfactory bulb (42), in coherence with 
previous   results in humans (43) and rodents (44). The 
finding of multipotent progenitors residing in the olfactory
bulb is important, because it shows that such cells may exist 
outside SVZ and SGZ, the two established germinal zones of 
the adult brain. Our yet unpublished observations (Tonchev 
and Yamashima, in preparation) suggest that the striatal and 
neocortical parenchyma is another location containing neu-
ral progenitor cells. We found   evidence of actively 
proliferating cells with progenitor immunophenotype in the 
adult monkey parenchyma, in combination with data for a 
limited neuronal replacement in these regions after ischemia. 
Importantly, we found no evidence of progenitor cell migra-
tion from SVZ to these areas, suggesting that the new neo-
cortical and striatal neurons are derived from a local pool of 
precursors. 

Taken together with previous   data in primates 
(36,37), our results argue that the parenchymal progenitors 
of the adult primate brain exist and are functional, i.e. ca-
pable of neuronal replacement  . Instruction of prolif-
eration and neuronal differentiation to these cells by genetic 

manipulations such as pro-neuronal transcription factor over-
expression (45) might further improve their ability to replace 
dead neurons  . Over 4 decades after Joseph Altman, the 
pioneer of the adult neurogenesis research, asked “Are new 
neurons formed in the brains of adult mammals?” (46), we 
ask ourselves whether neurogenesis may also take place by 
parenchymal progenitors at sites of injury in the adult brain. 
The clinical implications of such cells in the treatment of hu-
man neurological disease could be enormous.
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