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RME-BASED PHARMACOLOGY: THE INHIBITION OF VIRAL ENTRY  
AS THERAPEUTIC PERSPECTIVE IN VIRAL DISEASES INCLUDING AIDS. 
HYPOTHESIS UPDATED AND ENLARGED 

George N. Chaldakov* and Stanislav Yanev 
Department of Anatomy and Cell Biology, Medical University, Varna, Bulgaria and Laboratory of Drug 

coated pits/vesicles was the best-characterized endocytic pathway. Since then now, intensive research on the mechanisms of both 
RME and receptor-mediated virus-cell fusion (receptor-mediated fusion - RMF) helped to expand the list of chemical compounds 
with potential clinical application as antiviral agents, the so-called entry inhibitors, e.g. (i) inhibitors of clathrin-, dynamin-2-,  
caveolin- and/or lipid rafts-dependent RME, and (ii) inhibitors of RMF. Accordingly, in the present Dance Round we update and 
enlarge our hypothesis of RME-based antiviral pharmacology. Biomed Rev 2018; 29: 109-118
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WE DANCE ROUND IN A RING AND SUPPOSE,
BUT THE SECRET SITS IN THE MIDDLE AND KNOWS.

ROBERT FROST

D a n c e  R o u n d

INTRODUCTION

Viruses have evolved a complex multistep process to infect 
target cells (entry, endosomal processing, replication, and 
dissemination to other cells). Each of these entry and post-
entry intermediates offers the opportunity for therapeutic 
intervention. 
Although some viruses release their genomes into the cell by 
direct fusion with the plasma membrane, most viruses enter 

cells via receptor-mediated endocytosis (RME) or receptor-
mediated virus-cell fusion, the latter being named  herein 
receptor-mediated fusion (RMF). It is the process of inter-
nalization (entry) of extracellular material, including proteins, 
toxins, bacteria and viruses into cells through clathrin-coated 
vesicles, caveolin-coated vesicles and/or lipid rafts (1-9; for 
clathrin-independent endocytosis see 10) (Fig. 1, 2).



110

Biomed Rev 29, 2018

Chaldakov and Yanev

Figure 1.

Figure 2. Electron micrographs illustrating caveolae (A – by Palade’s transmission electron microscopy method, B – by Heu-

at upper left corner of the micrograph; the typical pentagonal/hexagonal image of the clathrin coat is evident). Bar represents 
200 nm – caveolae diameter is about 100 nm, whereas clathrin-coated vesicles are 2-3 time bigger in diameter. From: Rothberg 
KG, Heuser JE, Donzell WC, Ying Y-S, Glenney JR, Anderson RGW. Caveolin, a protein component of caveolae membrane 
coats. Cell 1992; 68: 673-682.
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Short history of the knowledge of RME
In their Nobel lecture entitled “A receptor-mediated pathway 
for cholesterol homeostasis” delivered on 9 December 1985, 
Michael S. Brown and Joseph L. Goldstein stated: “We be-
gan our work in 1972 in an attempt to understand a human 
genetic disease, familial hypercholesterolemia (FH). In these 
patients the concentration of cholesterol in blood is elevated 
many fold above normal and heart attacks occur early in life. 
We postulated that this dominantly inherited disease results 
from a failure of end-product repression of cholesterol syn-
thesis. The possibility fascinated us because genetic defects 
in feedback regulation had not been observed previously in 
humans or animals, and we hoped that study of this disease 
might throw light on fundamental regulatory mechanisms. 
Our approach was to apply the techniques of cell culture to 
unravel the postulated regulatory defect in FH. These studies 
led to the discovery of a cell surface receptor for a plasma 
cholesterol transport protein called low density lipoprotein 
(LDL) and to the elucidation of the mechanism by which this 
receptor mediates feedback control of cholesterol synthesis. 
Familial hypercholesterolemia was shown to be caused by 
inherited defects in the gene encoding the LDL receptor, 
which disrupt the normal control of cholesterol metabolism. 
Study of the LDL receptor in turn led to the understanding of 
receptor-mediated endocytosis, a general process by which 
cells communicate with each other through internalization of 
regulatory and nutritional molecules” (1, 11). 

In 1975, a paper entitled “Ultrastructure of the arterial 
smooth muscle cell, with special reference to coated vesicles 
and microtubules” was published (12). „It is well known that 
coated vesicles are cellular transport devices for selective 
uptake of proteins. Therefore, the smooth muscle coated vesi-

macromolecular substances essential for smooth muscle cell 
functions. One may speculate that both basement membrane 
and sarcolemma may be genetically endowed with properties 
for special uptake and transport of some macromolecules as 
implicit in Bennett’s theory of pinocytosis and Singer and 

In 1990, a hypothesis of “Inhibition of receptor-mediated 
cellular entry of viruses including HIV: a perspective on fur-
ther researches on chemotherapy in viral diseases including 
AIDS” was published (13). In essence, one of us (GNC) wrote 
therein: Although the kinetics and the pharmacological control 
of RME are different depending on the nature of ligands, the 

route of entry of many enveloped viruses it shares the following 
common features: (i) a glycoprotein component(s) of the viral 
envelope has the capacity to bind to a 
receptor, (ii) concentrating into clathrin-coated pits-vesicles-
endosomes, where (iii) the low endosomal pH induces fusion 
of the viral envelope with the endosomal membrane, and (iv) 
ejecting the viral nucleoid into the cytoplasm (3-6, 14-16).
Our 1990 hypothesis, addressing mostly RME of viruses 

describes a perspective of further basic studies seen through 
the current knowledge about pharmacological control over 
various steps of the RME of different ligands including viruses 
(3-5, 17-23). The hypothesis proposes an experimental study 
of different chemicals in order to elucidate their eventual 
potential as chemotherapeutic drugs in some viral diseases 

 The 
following steps of cellular entry of viruses are suggested as 
possible targets for actions of these chemicals: (i) inhibition 
of viral internalization, and (ii) inhibition of viral release into 
the cytoplasm. 

Inhibition of viral internalization: role of 
transglutaminase, calmodulin, protein kinase C,  
and cytoplasmic pH
The intracellular enzyme transglutaminase (TG ase) catalyzes 
the cross-linking of proteins by forming an isopeptide bond 
between a lysine residue of one protein and a glutamine residue 
of another (4, 24). It was shown that clustering of hormone-
receptor complexes and/or their internalization was inhibited 
by various primary amines (3, 4, 20) and by bacitracin (4). 
These authors suggested that these steps of the RME may 
require the TG-ase to be active, because TG-ase was a major 
cellular enzyme to be inhibited by such amines. The activity of 
both TG-ase and ornithine decarboxylase, a key cell enzyme 
producing primary amines, and the intracellular concentration 
of these amines in virus-infected (also HIV-infected) cells 
could reasonably be studied.

However, neither chloroquine nor dimethyldansylcadaver-
ine are inhibitors of TG-ase (24), but they inhibited the RME 

good inhibitor of both TG-ase and RME of different ligands (3, 

(23). There is a possibility that the primary action of some 
amines and possibly chloroquine is not related to the activity of 
TG-ase: their antagonistic effect on calmodulin was suggested 
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(23). Indeed, calmodulin was shown to be involved in control-
ling coated pit/vesicle formation (25) and RME of transferrin 
(19). Because dansylcadaverine has a structure similar to that 
of W7, a well known calmodulin antagonist (26), W7 as well 
as other calmodulin antagonists may also be considered in the 
context of the present hypothesis. Whatever the primary mode 
of action, it seems reasonable that various primary amines and 
calmodulin antagonists should be experimentally studied for 
their potential inhibitory effect relative to viral internalization.

Another possibility might be substances that inhibit the 
activity of protein kinase C (PKC), because it was recently 
shown that phorbol-12-myristate-13-acetate, via its activation 
of PKC, stimulated coated pits to internalize, using transferrin 
and insulin as ligands (27). Hence, staurosporine, an alkaloid 
isolated from Streptomyces SP, which is a potent and spe-

(H7, polymycin B), may be included in the list of chemicals 
proposed. Clearly, we need further data about the turnover 
of inositol phospholipids, diacylglycerol, Ca2+ and PKC in 
virus-infected cells including HIV infected ones. Although the 
PKC is independent of calmoduiin it is inhibited by a large 
number of phospholipid-interacting drugs (chlorpromazine; 

antagonists (see (29).
Several methods have been developed to inhibit the forma-

tion of coated pits/vesicles: potassium depletion, hypertonic 

results in inhibition of formation of these organelles, whereas 
the latter in “paralyzing” coated pits so they can no longer 
pinch-off from the plasma membrane to form coated vesicles 

that paralyzes coated pits, pharmacological control of intra-
cellular pH may either stimulate or block this phenomenon. 
Activities of the ATP-dependent proton pumps, the Na+/H+ 
antiporters and the anion antiporters in virus-infected cells may 
provide some clues to this process. For instance, amiloride, a 
well  established inhibitor of Na+/H+ ATP-ase, and colchicine 
(an antitubulin), a recently recognized activator of this enzyme 
(31), may be involved in the regulation of intracellular pH, via 
the membrane-bound tubulin (31).

Colchicine as well as other antitubulins may also be in-
volved in coated pit/vesicle formation, because tubulin is a 
molecular component of coated vesicles (32). Further, the 

disintegrator, cytochalasin B, may inhibit formation of coated 
vesicles (25).

Inhibition of viral release into the cytoplasm, 
including virus receptor recycling: role of 
intraendosomal pH
The low endosomal pH is an essential condition for ligand-
receptor uncoupling (2-4) and for the release of viruses into 
the cytoplasm (5). The ionophore monensin as well as weak 
organic bases accumulate in the acidic endosomal compart-
ment and lysosomes, increase pH and thereby block viral 
release. Monensin, via raising the pH in acidic vesicles like 
medial-Golgi, inhibits transport of Semliki Forest virus mem-
brane proteins (33) and of very low-density lipoproteins (34; 
for chloroquine and verapamil see 35).
Organic amines (dansylcadaverine, dimethyl dansylca-

receptor recycling (19, 21-23, 36). How these substances 
may work in virus-infected cells, needs further experimental 
attention.

NEW VIIRAL ENTRY INHIBITORS AVAILABLE FOR THERAPY IN 
AIDS AND AIDS-RELATED DISEASES

the Retroviridae family, the causal agent of AIDS, delivers 
its RNA into cells by fusing the viral envelope with the plas-
malemma (cell surface membrane) of target cells. This fusion 
process is mediated by viral envelope surface glycoprotein, a 
trimer of heterodimers consisting of glycoprotein 120 (gp120) 
and gp41 subunits. The process of fusion is initiated by gp120 
interactions with CD4 and one of the two coreceptors CCR5 
and CXCR4 at the target cell surface (37, 38). As mentioned 
above, we dubbed this process receptor-mediated fusion 
(RMF) (also see (39).

Every single step of HIV cellular infection offers a potential 
therapeutic strategy to inhibit its progression. Controlling the 
initial event, namely the viral entry – via RME or RMF – is 
one of the most effective ways to control viral dissemination 
(40, 41).

The gp120 interacts with T-cells CD4 receptor which 
complex further interact with a co-receptor (C-C chemokine 
receptor type 5 - CCR5) or CXC chemokine receptor type 4 
(CXCR4) and virus-cell membrane fusion was mediated by 
viral trans-membrane (TM) gp41 subunit transformation into 
a six-helix bundle structure (42). In their chemical nature, the 
entry inhibitors are different synthetic peptides homologous to 
crucial viral glycoproteins. Despite the numerous compounds 
tested in various clinical trials, currently there are only two 
preparations approved as adjuvant drugs for AIDS chemo-
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therapy with such mechanism of action. 
The compounds acting on different stages of viral entry 

process can be grouped as follows: (i) blocking interaction of 
gp120 with CD4, co-receptor (CCR5), and (ii) “freezing” gp41 
subunit transformation thus hindering the fusion process (43).

Multiple studies were directed to inhibit viral attachment 
to CD4 receptor as well as the CD4 binding site of gp120. 

locking gp120 into nonfunctional conformation as PRO 542 
recombinant fusion protein (44) or inhibiting gp120 interac-
tion with CD4 receptor by small molecules (BMS-378806) 
blocking access to F43 important functional gp120 cavity 
(45). Second approach to block viral attachment is to target 
CD4 through antibody binding. The humanized monoclonal 
antibody ibalizumab in practice block the conformational 
changes of gp120 after binding to CD4 receptor thus blocking 
further viral entry process (46).
 

CCR5 or CXCR4 blockers
Small molecules antagonists blocked gp120-CCR5 interaction 
after binding to the co-receptor. Main representative from 
this group is Maraviroc which passed all phases of clinical 
trials (47) and is already available in clinical practice under 
trade name Celsentri. Maraviroc stabilizes CCR5 in an inac-
tive conformation (48). It has been developed for treatment-
experienced HIV-infected patients who have only CCR5-tropic 
HIV-1 detectable. These compounds are with very high adverse 
effects as they target essential host molecules rather than 

fusion inhibitors
The gp41 subunit represent several distinct domains: trans-
membrane domain, long cytoplasmic tail of approximately 
150 amino acids, two heptad repeat domains (HR1 and HR2) 

a fusion protein (FP). Three HR1 and HR2 consecutively form 
the six-helix bundle which juxtaposes the viral and cellular 
membranes for the fusion event. Depending of the different 
amino acids sequences synthetic peptides targeting HR1 can 

1. First generation fusion inhibitors

amino acids which mimics a portion of HR2 domain. 

They inhibited virus entry by binding HR1 core. The 
most active and most developed is T20 (enfuvirtide, 
trade name Fuzeon). T20 is active in nM range but 
must be injected subcutaneously. The effective treat-
ment protocol includes T20 as adjuvant drug with other 
anti-HIV agents.

2. Second generation fusion inhibitors
The new peptide variants include amino acids sequenc-

virus (SIV) strains. The prototype T1249 is longer than 
T20 (39 amino acids) and shows increased potency in 
vitro (50).

3. Third generation fusion inhibitors
Introducing of negatively and positively charged 
residues in the peptide helix of T20 and T1249 
increased serum stability and loss of conformation 
entropy. The main representative T2635 with some 
additions of hydrophobic residues showed 100-times 
improvements of the half-life in serum of cynomol-
gus macaques and greatly improved potency against 
T20 and T1249 resistant variants (51). Similar in-
creased stability after changes in the C34 peptide 
helix was obtained in Sifuvirtide with half-life of 
20 hours compared to 4 hours half-life of T20 (52). 

enfuvirtide might be related to its ability to adsorb 
on rigid lipidic areas, such as the viral envelope and 
lipid rafts, which results in an increased sifuvirtide 
concentration at the fusion site (53). Phase Ia clini-
cal studies of sifuvirtide in 60 healthy individuals 
demonstrated good safety, tolerability, and pharma-

human viruses
The last step of protein transformation for virus cell entry is 
characteristic for many other viruses, e.g. 
HA2 protein, the Ebola GP2 protein and the SARS virus S2 
protein. Respiratory viruses are attractive targets for local 

in vitro inhibition was achieved by some peptides analogues 
of coronaviruses (55) and paramyxoviruses (56). 

Taken together the present updated hypothesis suggests 
further studies on chemicals for their eventual effects relative 
to inhibition of viral entry including HIV-1 (Table 1). 
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Table 1. Chemicals proposed to be tested for their potentials relative to inhibition of viral entry including 
HIV-1 (14, 15, 17-36, 42-45, 57-61).

Possible mode of actions

Chemicals

Steps of receptor-mediated entry

Internalization
Release into the cytoplasm 

including receptor recycling

Transglutaminase inhibition primary amines
methylamine
bacitracin
rimactadine
lysine and glutamine analogues

primary amines

Calmodulin antagonism trifluoperazine
chlorpromazine
dibucaine
W7
Dansylcadaverine (?)

trifluoperazine

Cytoplasmic acidification 
(‘paralysis’ of coated pits)

Amiloride

Coated pit/vesicle formation 
inhibition

Trifluoperazine
cytochalasin B
colchicine (?)
K+-depletion hypertonic medium

Dynamin-2 inhibition* Dynasore

Endosomal alkalization 
including trans-Golgi

monensin
chloroquine
verapamil
week organic bases

Blocking viral glycoprotein 
120/CD4 interaction 

Ibalizumab

Blocking viral glycoprotein 
120/co-receptor (CCR5) 
interaction

Maraviroc

Blocking gp41 subunit 
transformation

Enfuvirtide
sifuvirtide

Purinergic antagonists NF279, a selective P2X1 receptor 
antagonists

* Dynamin-2 (DNM2) is known to contribute to clathrin-mediated endocytosis by pinching the clathrin-coated 
pit upon forming an octameric ring like structure that is important for its GTPase activity (Fig. 3). The finding that 
DNM2 can contribute to HIV-1 entry suggests that HIV-1 may indeed enter cells via RME, and DNM2 might also 
be directly involved in the process of virus–cell fusion (see (59).

Figure 3. Schematic illustration of the formation of clathrin-
coated pit and vesicle (their coat is no depicted). Endophilin 

-
lemma. After that, dynamin takes its function: wrapping up 
around the neck of coated vesicles, and by using the energy 
of its own GTP-ase activity, pinching off the vesicle. 

From: Alberts B, et al. Molecular Biology of the Cell. 5th 
edition. 2008.
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CONCLUSION

The current clinical practice for the effective antiviral therapy 
requires combination therapy by attacking various stages in the 
life of viruses, including HIV-1: entry inhibitors, nucleoside/
nucleotide reverse transcriptase inhibitors, non-nucleoside 
reverse transcriptase inhibitors, and protease inhibitors. 
A proper study of the chemicals proposed in Table 1 may 
prove (or disprove) to be (i) inhibitors of clathrin-, dynamin-2-,  
caveolin- and/or lipid rafts-dependent RME, or (ii) inhibitors 
of RMF. Tentatively, some of them or a combination with 
antiretroviral therapy (ART) may possess a therapeutic value 

-
ing the keys to close the door for HIV-1 entry (62), thus being 
an additional state-of-the-ART in the therapy of AIDS and 
AIDS-related diseases, e.g. HIV-associated neurocognitive 
and cardiometabolic diseases (63-66).
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