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The present review compiles data on the development and aging of neuromelanin (NM)-containing neurons in the central nervous 
system. Neuromelanin is brownish-to-black pigment that accumulates in the catecholaminergic (noradrenergic and dopaminergic) 
neurons and is a reliable natural marker that delineates the A1-A14 catecholaminergic groups of Dahlstrom and Fuxe in the 
human brain. The pigmentation of noradrenergic locus ceruleus neurons starts earlier than that of dopaminergic substantia 
nigra, but also a considerable individual variability is present. The pigmentation is well advanced in adolescence. The data at 
what age the maximal pigmentation is reached are controversial, as are the data on the cell loss in the NM-containing neuronal 
populations by normal aging. Thus, the participation of NM in the pathogenesis of Parkinson’s disease remains enigmatic.
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INTRODUCTION 

The brownish-to-black pigment neuromelanin (NM) accumu-
lates in catecholaminergic (CAergic) neurons in the central 
nervous system of humans and apes, and to a lesser extent 
- in other primates, ungulates and carnivores (reviewed in 1). 
Although the majority but not all CAergic neurons contain 
NM (2,3), this pigment is a reliable natural marker of CAergic 
neurons, and several atlases are present (1,4,5) that demonstrate 
the A1-A14 CAergic neuronal groups of Dahlstrom and Fuxe 
(6) in the human brain.
    The NM-containing neurons are involved in severe diseases, 
including motor disorders, mainly the idiopathic Parkinson’s 
disease and in Parkinson-plus syndromes (7-12, and refs. 
therein) and Alzheimer’s disease (13-17, and refs. therein).
    Marsden (18) reasonably asks: ”Neuromelanin is closely 
linked to Parkinson’s disease, but is it the cause of the illness?” 

The issue is controversial and is discussed in numerous reports 
(19-22, and refs. therein). The data on the normal aging of NM-
containing neurons are especially important, when considering 
the development of neurodegenerative diseases, characterized 
primarily by the cell loss of CAergic neurons. The present 
review compiles the data on the development and aging of 
NM-containing CAergic neuronal cells in the brain of man 
and other mammals.

NEUROMELANIN IN DEVELOPMENT 

According to Friede (23), Stilling (24) was the first to note 
that pigmentation in the brain stem is absent in very young 
children. Pilcz (25) observed pigmentation of the human 
locus ceruleus (LC) by 11-12 months and of the substantia 
nigra (SN) by the third year of life. Calligaris (26) found no 
pigmentation in LC of children up to the ninth month. Like 
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Pilcz, he states that the pigment formation starts at about the 
11th and 12th months and is well developed by the second year. 
Pigmentation of SN develops approximately a year later than 
that in LC, and adult-like pigmentation is evident by about 10-
18 years. However, Cooper (27) had noticed NM-containing 
SN neurons in a fetus at the 5th month of gestation (she used 
silver techniques known to be more efficient than the routine 
stainings). Mettler (28) states that the pigmentation of SN 
neurons begins in the third year, is well advanced by the 6th 
but not completed until 16th or 18th year of life. Olszewski 
and Baxter (29) report the presence of melanized LC neurons 
in five year old child but that are not seen in SN. Foley and 
Baxter (30,31) have examined 100 brains from fetuses, infants 
and children under the age of 5 years. They encounter NM 
in a fetal (5th month) LC, but deny its presence in SN before 
18 months after birth. These significant discrepancies are 
probably due to natural individual variations, to the limited 
numbers of the examined brains, and to the different criteria 
in recognizing reliable melanin granules. In addition, Nieto 
et al (32), Fenichel and Bazelon (33), Mann et al (34), and 
Barden (35) stressed the limited reliability of the classical 
staining techniques (for the same reason large discrepancies 
appear in the description of changes in aging as well as in the 
comparative anatomy). Using the diamine silver technique of 
Lillie (36), Fenichel and Bazelon (33) examined 44 brains: 
from the 34th gestational week to 16 years of age. Their results 
show that great individual variability indeed exists, since they 
reported that SN is “routinely pigmented” at the age of 5 years, 
but the youngest brain to contain NM in SN was 5 months old. 
These authors present the only report so far of NM existence 
in the dorsal vagal nucleus (DVN) - in the most immature 
brain examined by them (34 weeks of gestation). The method 
used appears to be of great importance. Cowen (37) used the 
diamine silver technique (36) and Schmorl’s ferric ferricyanide 
method (38) to demonstrate the melanoneurons of human 
cerebellum already at the 26th week of gestation. On the other 
hand, with routine staining methods, the brown granules in the 
NM-containing neurons of the pars cerebellaris loci cerulei 
were shown by Cowen only after 2,5 years after birth.
    It was repeatedly shown that when NM first appears, the 
individual granules are smallest in size (35,39-42), least in 
number (31,35,41,43,44), and the pigment in the youngest 
individuals occupies the smallest intraperikaryal volume (34,43-
46). Fenichel and Bazelon (33) describe a rapid increase of 
melanin content in SN, LC and DVN that reaches its maximum 
at 16 years of age. Thus, SN and LC can already be identified 
grossly at preadolescence. Although these authors investigate 
also adult brains (47), they have apparently concentrated their 
investigation mainly on brainstems of infants and children as to 
conclude that the maximal pigmentation is reached at puberty. 
Other researchers declare a longer development. According 
to Moses et al (42), the maximum is reached between 20 and 
30 years of age. In a painstaking series of cytophotometric 
investigations, Mann and his colleagues established that the 

percent of strongly pigmented cells in SN and LC progressively 
increases from 18 months to 60 years (34,44,48,49). Similarly, 
Graham (45), who calculates both the perikaryal volume and 
its NM content in 10, 40 and 80 year old brains, shows not 
only a sharp increase between the first and the 4th decade, but 
also that the volume of the pigment in the 8th decade is twice 
more abundant than in the fourth decade. On the other hand, 
Gellerstedt (50) was the first to describe a decline in the NM 
content of the SN and LC in aging of people without detectable 
neurologic disease, while Adler (39) found the same amount 
of pigment in 18 and 68 year old brains. According to Moses 
et al (42), the amount and distribution of NM in SN and LC 
in 20-30 year old brains is comparable with 58, 70 and 82 
year-old brains of people without neurological disease. The 
precise quantitative estimations of Mann and Yates (43,44) and 
Mann et al (34,51) demonstrate that a gradual decline takes 
place from 60 to 90 years in all NM-containing nuclei, and 
especially - in SN. These authors propose that the decline in 
the quantity of the pigment is due to loss of the heavily loaded 
with NM perikarya, and that the loss of NM is greatest in the 
ventromedial and dorsal SN, in contrast to the ventrolateral 
focus of degeneration in Parkinson’s disease (7,8,43,44,52,53). 
The number of NM-containing nigral neurons (52,54-56), 
but not tyrosine hydroxylase (TH)-immunopositive neurons 
(57) decreases at a rate of ~ 5% per decade. In 36 control 
cases ranged in age from 21 to 91 years, Fearnley and Lees 
(52) reported a decline of 4,7% per decade, and the total 
decrease reached 33%. There was a significant sparing of 
the ventrolateral and ventrointermediate groups in SN pars 
compacta - 15% cell loss. On the other hand, exactly these 
groups are most severely affected by idiopathic Parkinson’s 
disease - the heaviest cell loss involves the dorsal tier of pars 
compacta (48%), followed by pars lateralis (46%). Faraldi 
et al (58) estimated the amount of NM in hematoxylin-eosin-
stained sections of SN pars compacta in 69 cases, 14 to 100 
years old. The mean area of cellular NM showed a curvilinear 
increase from 103 µm2 at age 14, to 600µm2 at age 67 before 
dropping down to 328µm2 at age 100. By contrast, the fraction 
of NM area relative to perikaryal area showed a linear increase 
with age. The latter and an increase of NM pigmented perikarya 
from 83% at age of 14 to almost 100% at age of 65 or older, 
accounted for the increase of NM mean area. By contrast, a 
decrease in the mean area of neuronal perikarya and a decrease 
in the number of profiles of neuronal cell bodies explained the 
decrease of NM mean area beyond age of 67. Faraldi et al (58) 
support the hypothesis that an overload of NM is neurotoxic 
and emphasize the importance of using age-matched controls 
in histopathologic studies of the SN. Mann et al (49), and 
Mann and Yates (48) established that the increased amount 
of NM correlates with a reduction of the cytoplasmic and 
nucleolar RNA. Mann et al (49) suggest that the death of 
neurons maximally accumulating NM is due to a reduction 
in protein synthesizing ability directly associated with the 
physical displacement and dysruption of cytoplasmic RNA. In 
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this regard, Barden (40) points out the impaired function of the 
Golgi-apparatus in NM-containing neurons in old monkeys. 
Unlike the interpretations of Mann’s group (34,43,44,49), 
Graham (45,59) proposed that the atrophy and cell death of 
the melanized neurons is a consequence of the intraneuronal 
toxicity of the cytotoxic quinone precursors of NM.

CATECHOLAMINERGIC NEURONAL LOSS IN AGING 

Neuronal loss in SN with aging is also verified by biochemical 
studies. Riederer and Wuketich (60) establish a 13% reduction 
of caudate nucleus dopamine content per decade. Carlsson et 
al (61) report a non-linear decline of striatal dopamine with 
little loss until the age of 60, followed by a dramatic fall in 
the following decades. Scherman et al (62) assessed striatal 
dopamine levels by measuring the binding of alpha-dihydro-
tetrabenazine, a ligand of the vesicular monoamine transporter 
and found a linear decline of under 10% per decade. It is 
generally assumed that the neuronal loss in normal aging is not 
sufficient to cause Parkinson’s disease (52 and refs. therein). 
In Parkinson’s disease, there is a presymptomatic phase and 
clinical signs do not appear until 50% of nigral neurons and 
80% of striatal dopamine are lost (see 63).
    There is a considerable body of literature, reporting a 
decrease in LC neuron number with advancing age, similarly 
to SN (14,46,64-74, and refs. therein). Most studies have 
used NM as a cell marker of noradrenergic neurons, and 
some studies have additionally used immunohistochemical 
staining with antibodies against TH (46,73,75), or against 
dopamine-β-hydroxylase (68,73). However, the data of the 
total number of LC neurons at different age are contradictory 
in both cell number and age-dependency, and often the 
comparative evaluation of the data is difficult (see 74). The 
reported mean cell numbers range from approximately 6,000-
19,000 (68,69,72,76) to about 27,000-32,000 per side (77,78). 
In brains from four young individuals (1-28 years of age), 
Manaye et al (46) found an average of 21,000 LC and nucleus 
subceruleus neurons in one hemisphere, counting both TH and 
NM-containing neurons. Lohr and Jeste (72), and Manaye et al 
(46) reported linear age-related changes, while other authors 
(14,64,66,70,79) found non-linear changes. In LC and nucleus 
subceruleus, neuronal loss of up to 40% in the 7th decade and 
up to 48% by the 9th decade was described (64). The authors 
found a mean number of approximately 14,000 ± 3,500 
neurons (24 individuals between 14 and 87 years). The mean 
for the group under 60 years was 16,840 ±  2,320, whereas the 
group above 60 had a mean of 13,378 ±  2,141 neurons. Chan-
Palay and Asan (73) distinguish rostral, middle and caudal 
portions of LC, that contain four neuronal types in different 
proportions. They point out that cell loss in the old adult brain 
shows a topographical arrangement with a distinct rostrocaudal 
gradient. Cell loss is highest in the rostral LC part, displaying a 
reduction of 54.3% - 62.9%, it is 21.6% - 32.4% in the middle 
part, and 1.8% - 15.4% in the caudal part, which is greatly 

spared. Manaye et al (46) investigated 17 cases (1-104 years 
of age) and reported that from the first to 10th decade of life 
there is over 50% loss of LC neurons. On the other hand, Ohm 
et al (74) find no correlation between the age of the individuals 
and the cell number. Their study involves 20 cases (49-98 
years of age), all of which - carefully examined for absence 
of neurological or psychiatric disorders. These researchers 
report a mean number of NM-containing LC neurons per side 
15,731 ± 3,408, with a quite broad range: 11,737 - 25,319. At 
a variance to the studies cited above, Mouton et al (80), state 
that there is no change in pigmented cell number or size in 
the LC of nondemented older persons as compared with that 
of young individuals. An important point that at least partially 
explains these controversies is proposed by Manaye et al (46). 
According to them, the magnitude of LC neuronal loss that 
occurs with aging depends upon whether the cell marker is NM 
or TH-immunostaining. Manaye et al (46) insist that although 
NM is a useful marker of CAergic neurons in the human brain, 
NM is not a reliable marker for LC neurons in brains under 
50 years of age. They demonstrate that below age of 25 there 
are much fewer NM-containing neurons than TH-containing 
neurons in LC. Manaye et al recall the data of Graham (45), 
who examined the area of the LC neurons occupied by NM in 
the first, 4th and 8th decade - there was a doubling of cellular 
area occupied by NM from first to the 4th decade, and again 
from the 4th to the 8th decade of life. Thus, Manaye et al (46) 
proposed that in studies in which brains less than 50 years of 
age had been used (64,69,70,72,76), counting of pigmented 
cells results in an underestimation of their number.  
    The data focused on whether aging results in a random loss 
of LC neurons throughout the nucleus or whether different 
rostrocaudal portions of the nucleus age at different rates, are 
also controversial. Marcyniuk et al (76) find a random cell loss, 
whilst Chan-Palay and Asan (81) establish a non-random cell 
loss in LC. Manaye et al (46) report a statistically significant 
interaction between age group and magnitude of rostrocaudal 
cell loss. They describe that in the rostral portion of LC there 
is a substantial age-related cell loss, whilst in the caudal 
portions of the nucleus little or no cell loss occurs. Recently, 
Kubis et al (82) provided unexpected data. They examined the 
human TH-immunostained neuronal population in SN, ventral 
tegmental area (VTA), peri- and retrorubral area, central gray 
substances and LC in 21 control subjects who died at ages 44-
110 years. They found no statistically significant cell loss of 
TH positive neurons in the older subjects, either in the SN or 
in the remaining CAergic neuronal groups that degenerate to a 
lesser degree in Parkinson’s disease. Kubis et al (82) concluded 
that from middle age to 110 years, aging in control adults is 
not (or is scarcely) accompanied by CA-containing cell loss 
in the mesencephalon, hence Parkinson’s disease is probably 
not caused by an acceleration of a degenerative process during 
aging.
    Although more scant, and only rarely with precise 
quantitative measurements, there are data for an increased 
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pigmentation in aged animals: chimpanzee and orangutan 
(83), gorilla (84), dog (85-88), cat (85,89,90), rhesus monkey 
(40,41,91), and horse (92). Herrero et al (93) estimated the 
distribution and number of NM-positive neurons in Macaca 
fascicularis, aged 0-13 years, by means of calculating 
unstained NM-containing neurons, or stained with Masson 
silver impregnation, and by TH-immunocytochemistry. At 
birth, no unstained NM-positive neurons were detected, but 
Masson-stained cells were observed in LC. At 8 and 13 years, 
unstained NM was present in Masson-positive neurons. Herrero 
et al (93) state that a differential increase in NM content with 
age in the neurons of mesencephalic catecholamine group 
is present. Irwin et al (94) examined young, intermediate-
aged and old squirrel monkeys. Contrary to the obvious 
functional and neurochemical age-related changes (70% loss 
of dopamine in SN, and 30% in the putamen), the number of 
TH-immunoreactive cells did not significantly differ among 
the three age groups. Pakkenberg et al (91) examined the 
number of pigmented and nonpigmented neurons in the SN 
of young and old Macaca mulatta monkeys. They found that 
the total number of pigmented neurons was about eight times 
higher in old animals compared with young ones (166,000 
versus 21,400), while the total number of non-pigmented 
SN neurons was less than half in old animals compared with 
young ones (139,000 versus 285,000). Siddiqi and Peters (95) 
point out that with age, all of the neurons in rhesus monkey 
SN accumulate lipofuscin, especially the small multipolar 
GABAergic neurons. These authors also report that although 
both neurons and neuroglial cells are affected with age, no 
entities that could be construed to be dying neurons might be 
encountered.
    The CAergic neurons in rodents do not contain MN 
(90,96,97). There is a considerable body of data based on 
cell loss and TH-immunostaining but the reports are somewhat 
contradictory. In the ASH/TO mouse, a significant loss of LC 
cells has been observed by Sturrock and Rao (98). They found 
a 47% decrease in Nissl-stained LC neurons in 31-month-
old mice, compared to 6- and 15-month-old mice. Shores et 
al (99) also found a LC cell loss in Brown-Norway rats but 
reported that the TH mRNA expression increases, which may 
potentially increase norepinephrine synthesis in the remaining 
neurons. We investigated the noradrenergic neuronal systems 
in young (3-month-old) and very old (26-28-month-old) Wistar 
rats by means of dopamine-β-hydroxylase immunostaining 
(Figs. 1, 2). The cell loss in LC and nucleus subceruleus 

is obvious (Fig. 1a-d). In young rats (Fig. 1a, c) the cell 
density in LC is so high that it is difficult to discriminate the 
individual immunopositive neuronal perikarya. On the other 
hand, the decreased cell density in aged rats improves the 
visualization of individual neurons (Fig. 1b, d). In young rats, 
the immunostaining is present also in distal dendrites (Fig. 1f). 
In old rats, only proximal dendritic stumps are visualized (Fig. 
1e). Alongside the atrophy of the cell processes, the amount 
of dopamine-β-hydroxylase is probably also decreased. The 
differences between young and aged rats in noradrenergic 
axon numbers are drastic (Fig. 2a, b). The number of im-
munolabeled axons in the medial forebrain bundle on the 
territory of the lateral hypothalamus is greatly reduced in the 
aged rats. Also, the axonal immunostaining is considerably 
more pale in old animals, so that only individual axonal 
varicosities are comparable to those in young rats. Tatton et 
al (100) and Greenwood et al (101) investigated the SN and 
LC in C57B1 mice aged 8 to 104 weeks, and found that the 
neuronal loss was due to neuronal death rather than loss of TH-
immunoreactivity. The cytoplasmic TH was increased by 63% 
in 104-week-old mice in comparisson to 8-week-old animals. 
McNeill et al (102,103) investigated the SN in young and aged 
C57B1/6N Nia mice. They found a progressive accumulation 
of cytoplasmic lipofuscin granules and a markedly reduced 
dopamine content per cell as determined by histofluorescence. 
Further, McNeill and Koek (104) investigated six age groups 
(3 - 30 months aged) of C57BL/6N mice, and reported a small 
decline (11%) in the total number of dopamine neurons of the 
SN with age, a decrease not reaching a statistical significance. 
Voogt et al (105) did not observe detectable changes in TH 
mRNA levels in the rat SN with age. Emerich et al (106) also 
reported a lack of reduction in number, area and length of TH-
immunoreactive neurons within the A8, A9 or A10 region of 
aged (24-25 month old) rats. Schuligoi et al (107) suggested 
that the reduction in TH mRNA in the VTA and SN pars 
compacta in 33-month-old Sprague-Dawley rats is not due to 
a loss of TH mRNA expressing cells but due to a reduction in 
the hybridization signal per expressing cell. Himi et al (108) 
investigated the expression of mRNAs encoding the dopamine 
transporter and TH in SN of young and aged Fischer 344 rats. 
They found that dopamine transporter mRNA decreases by 18 
months, whilst TH mRNA reduction does not occur until 24 
months. Finally, De La Cruz et al (109) report a significant 
decrease of TH activity in SN in rats between 12 and 24 months 
of age.

Figure 1. Low power view of the dorsal pontine tegmentum in young (a) and old rat (b). Fig. 1c is a detail from Fig. 1a. The 
strong immunostaining and the great neuronal density impedes the visualization of individual neurons in LC (upper part of the 
figure, but individual neurons are clearly demonstrated in nucleus subceruleus dorsalis (central and lower part of the figure). 
Fig. 1d is a detail from Fig. 1b. Both the cell loss and decreased immunostaining are obvious in the old rat. Fig. 1e is a detail 
from Fig. 1d. Neuronal group in the nucleus subceruleus. Only the proximal parts of the dendritic trunci are visualized. Compare 
with Fig. 1f - strongly immunostained neuron in nucleus subceruleus ventralis of a young rat. The cell nucleus is unstained but 
the reaction product extends also to distal portions of the dendrites. a,b x 40; c,d x 100; e,f x 400.
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CONCLUSION

NM is a pigment that accumulates in the majority primate 
central nervous system CAergic neurons. The NM-containing 
neurons are involved in severe diseases, including Parkinson’s 
disease and Alzheimer’s disease. Therefore, the data on the 
normal aging of NM-containing neurons are especially 
important. Although a subject of intensive research, the precise 
involvement of NM in the development of Parkinson’s disease 
is still controversial. A better understanding of this issue could 
provide new strategies in the treatment of human neurological 
disease.
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