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RAB7A: THE MASTER REGULATOR OF VESICULAR TRAFFICKING
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The membrane flow of eukaryotic cells occurs through vesicles that bud from a donor compartment, move and fuse with an ac-
ceptor compartment. Rab (Ras-related in brain), which belong to the Ras superfamily of small GTPases, emerged as a central 
player of vesicle mobility in both secretory and endocytic pathway, Rab7a being a master regulator of late endocytic trafficking. 
Elucidation of how mutant or dysregulated Rab7 GTPase and accessory proteins contribute to organ specific and systemic dis-
ease remains an area of intensive study and an essential foundation for effective drug targeting. Mutation of Rab7 or associated 
regulatory proteins causes numerous human genetic diseases. Cancer and neurodegeneration represent examples of acquired 
human diseases resulting from the up- or down-regulation or aberrant function of Rab7. The broad range of physiologic pro-
cesses affected by altered Rab7 activity is based on its pivotal roles in membrane trafficking and signaling. The Rab7-regulated 
processes of cargo sorting, cytoskeletal translocation of vesicles and appropriate docking and fusion with the target membranes 
control cell metabolism, growth and differentiation. In this review, role of Rab7 in endocytosis is evaluated to illustrate normal 
function and the consequences of dysregulation resulting in human disease. Selected examples are designed to illustrate how 
defects in Rab7 activity alter endocytic trafficking that underlie neurologic, lipid storage, and bone disorders as well as cancer. 
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INTRODUCTION

Mammalian Rab7 was first identified in a rat liver cell line as 
BRL-Ras (X12535;NM_023950) and subsequently named 
Rab7a upon recognition as a distinct member of Ras related 
GTPases now well known as the Rab family of GTPases 
(NP_004628.4;P51149;P09527). Rab7a is the most widely 

studied form and encoded on human chromosome 3q21.3 
(mouse chromosome 6) as two splice variants differing in 3’ 
untranslated region. The most intensively studied mammalian 
forms of Rab7a (mouse, canine, rat and human) are 99.5% 
identical with only a single conservative change among 207 
amino acids (D/E196). A more recently discovered homolog, 
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Rab7b/Rab7L1, is encoded on human and mouse chromosome 
1q32 and functions in late endosome to Golgi trafficking (1). 
Human Rab7b is only 47% identical and 82% homologus to 
Rab7a across its 199 amino acid length. Following the initial 
demonstration of Rab7a function in regulating membrane 
transport from early to late endosomes, Rab7a has established 
roles in autophagy, lipid metabolism, growth factor signaling, 
bone resorption and phagolysosome biogenesis (2). 

RAB7A: THE GOOD, THE BAD AND THE UGLY 

Rab7a belongs to the family of Ras superfamily of GTPases 
that plays a critical role in diverse cellular processes. The 
identification of the Ypt1p as a GTP binding protein in yeast 
led to the discovery of more than 70 Rab GTPases in the 
human genome (3-5). Rab7a was first cloned from a MDCK 
cell cDNA library (6) and later mapped in the mouse genome 
(7). Rab7a was conclusively shown to orchestrate membrane 
transport from early to late endosomes (8). This generated 
considerable interest to investigate the functionality of 
the protein and it is now known to play an important role 
in endocytic trafficking and other degradative pathways 
like phagocytocis and autophagy (9, 10). Rab7a regulates 
internalization and degradation of growth factor receptors 
(11, 12). This regulation is critical as overexpression of 
epidermal growth factor receptor (EGFR) is characterized 
in different types of cancer (13-15). Rab7a is pivotal in the 
trafficking of multivescicular bodies, melanosomes and 
exosomes (16, 17). It is also associated with lipid homeostasis 
that modulates membrane structure and organization, cell 
signaling, regulation of growth, cell cycle and differentiation 
(18). Osteoclasts involve Rab7a vesicular trafficking in bone 
resorption to maintain bone integrity (19). Rab7a is vital for 
axonal retrograde trafficking (20). At neuromuscular junction, 
Rab7a regulates neurotrophin traffic (21). Inhibition of Rab7a 
activity cause endosomal accumulation of TrkA and pronounce 
enhancement of TrkA signaling in response to nerve growth 
factor (NGF) stimulation (21a). NGF has been implicated in 
a host of different cardiometabolic and neurological disorder 
(22). The endocytic role of Rab7a was further demonstrated in 
regulating trafficking of EGF-EGFR complex by controlling 
its lysosomal degradation (11, 12, 23-25). Similarly, ligand 
stimulated lysosomal degradation of platelet activating 
factor receptor (PAFR) depends on Rab7a in its delivery to 
the lysosomes (26). In concert with Rab5 and Rab11, Rab7a 
regulates intracellular trafficking patterns of angiotensin II type 
1A receptor as exemplified by increased AT(1A)R degradation 

and AT(1A)R targeting to lysosomes in cell types with 
over-expressed Rab7a (27). In Chinese hamster ovary cells, 
agonist induced down regulation of the human kappa-opiod 
receptor (hkor) and inverse agonist upregulation of mutant rat 
µ-opioid receptor is thought to be dependent on the endocytic 
pathway regulated by Rab7a (28, 29). Rab7a is indispensable 
in the delivery of autophagic cargo for degradation from 
autophagosomes to lysosomes (9, 30). It is thought to play a 
critical role in the final maturation of late autophagic vacuoles 
but not the initial maturation of early autophagosomes (31). 
Rab7a effects the degradation of autophagosomes by fusing 
the autophagosomes with the lysosomes and rapidly delivers 
of a complex of Beclin-1 binding UVRAG with class C Vps to 
lysosomes via late endosomes (32). Phagocytosis plays a vital 
role in development and immunity (33), and the maturation 
of phagosome to phagolysosome occurs by recruitment of 
Rab7a (34). Complete maturation is thought to be mediated 
by retrograde emission of tubular extensions generated by 
activation of Rab7a and its accessory proteins (35). Rab7a plays 
a role in melanosome biogenesis by sorting and associating 
with early and intermediate stage melanosomes (36). It is in the 
T22N dominant negative form in human amelanotic melanoma 
cells (SK-mel-24) impairs vesicular transport of tyrosinase 
and TRP-1 proteins from the trans-Golgi network to maturing 
melanosomes (37, 38). In MMAc melanoma cells, GTP bound 
(active) form of Rab7a promotes melanogenesis by regulating 
gp100 maturation (39). In a similar way, exosomal transport 
uses established endocytic pathway machinery to deliver 
cargo to extracellular environment of the cell. Exosomes help 
in the elimination of undegraded endosomal or lysosomal 
proteins and membranes (40). In dendritic cells, Rab7a is 
associated with exosome biogenesis and function that involve 
antigens transfer (41). Improper lipid homeostasis associated 
with disorders such as Niemann-Pick Type C (NPC) disease 
characterized by accumulation of lipids within late endosomes 
and lysosomes in tissues such as liver spleen and brain (42, 
43). Overexpression of Rab7a in NPC disease fibroblasts 
dramatically improves intracellular trafficking of cholesterol 
and sphingolipids (44). Similarly accumulation of cholesterol 
in endosome membranes increases the amount of membrane 
associated Rab7a and inhibits Rab7a membrane extraction 
by guanine nucleotide dissociation inhibitor (45). Rab7a 
gene is also distinctly upregulated within hepatic and aortic 
tissues in a rabbit in response to cholesterol loading (46). In 
another scenario, Rab7a together with MTM1 are thought 
to serve as molecular switches controlling the sequential 
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synthesis and degradation of endosomal PI3P (47, 48). 
During cell differentiation, epithelial cells undergo epithelial-
mesenchymal transition (49). The change is marked by down-
regulation and inward sequestering of E-cadherin which is 
later trafficked via endocytic pathway to the lysosomes (49). 
Enhanced transport of the ubiquitinated E-cadherin to the 
lysosomes is accomplished by activated Rab7a catalyzed 
by Src kinase (50). Like E-cadherin transport, formation of 
ruffled border during bone resorption processes is usually 
accompanied by transport of acidic intracellular vesicles to the 
plasma membrane. This has been shown to involve regulatory 
role of Rab7a (19, 51). This is further confirmed by presence of 
Rab7a in rat osteoclasts which implies late endosomal nature 
of the plasma membrane domain in resorbing osteoclasts (52). 
 Rab7a is exploited to create a niche for the survival of 
many intracellular pathogens. Intracellular bacterial pathogens 
are thought to manipulate Rab function in the formation of 
vacuoles in their bid to colonize host cells during infection 
(53). Rab7 has a fundamental role in cellular vacuolation 
and vacuole growth (54, 55). In HeLa cells transfected with 
Rab7a mutants and then exposed to VacA cytotoxin, dominant-
negative mutants of Rab7a prevent vacuolation confirming 
that membrane flow along the endocytic pathway is pertinent 
to vacuole growth (55, 56). In another study it is shown that 
interactions with the endocytic pathway controlled by Rab7a 
are key to Salmonella containing vacuole (SCV) biogenesis 
(57). Once entered into mammalian cells, Brucella abortus 
occupies Brucella containing vacuole (BCV) followed 
by acquisition of Rab7a and its effector Rab-interacting 
lysosomal protein to facilitate lysosomal delivery (58). 
Expression of dominant negative Rab7a or overexpression 
of RILP impairs the ability of bacteria to convert BCV into 
an ER-derived organelle thereby interfering with replication 
process (58). Like in higher organisms, the role of Rab7a in 
phagocytosis in lower organisms is quite prominent. In the 
enteric protozoan parasite Entamoeba histolytica, expression 
of either EhRab7aA or EhRab7aB-GTP mutant triggers a 
defect in phagocytosis accompanied with disturbed formation 
and disassembly of prephagosomal vacuoles (59).This 
implicates the two Rab7a isotypes in lysosome and phagosome 
biogenesis. In Dictyoselium discoideum, Rab7a homolog is 
thought to regulate fluid phase influx, efflux, retention of 
lysosomal hydrolases and phagocytosis (60-62). Phagosomes 
in cells overexpressing dominant negative Rab7a mature to 
form multiparticle spacious phagosomes which allude to 
Rab7a’s role in regulating early and late steps of phagosomal 

maturation (61). In yeast, endocytosed pheromone alpha-factor 
accumulates in late endosomes in delta ypt7 cells, implicating 
Ypt7p (homolog of mammalian Rab7a protein) in endocytic 
pathway from late endosomes to the vacuole (63). Another 
report suggests the role of YPT7 GTPase in the uptake of the 
fluorescent styryl dye FM4-64 via the endocytic pathway to 
the vacuolar membrane (64). Transport fidelity is indispensable 
as evidenced by the increasing number of human diseases 
attributable to defects in endosomal trafficking and Rab7a 
specifically like Charcot-Marie-Tooth disease which is an 
autosomal dominant peripheral neuropathy (65-75). Rab7a 
sorts cargo on early endosomes by recruiting retromer complex 
(Vps26/29/35) that enables retrieval of cation independent 
mannose 6-phosphate receptor, TGN 38, Wntless among 
other cargo from early endosomes to the Golgi (76-78). 
Dysregulation of retromer is associated with other neurologic 
diseases like Alzheimer’s disease (79, 80). In a macroscopic 
scale, its role in growth regulation is potentially important 
to the overall survival of the organism. The significant role 
it plays in pathogen entry, presents Rab7a as a potential 
therapeutic target. 
 In sum, Rab7 is indispensable in intracellular trafficking and 
signaling. However its role in diverse physiological processes 
is only beginning to be appreciated.

REGULATION OF RAB7A ACTIVITY 

Typical of all Rab GTPases, Rab7a activity is modulated by 
membrane association and nucleotide binding (81) (Fig. 1). 
Membrane recruitment is dependent on the hypervariable, 
isoprenylated C-terminus (10, 82-84). Like all other Rabs, the 
presence of GDI on GDP bound Rab7a renders its delivery to 
the membrane a reversible process unless guanine nucleotide 
exchange factor (GEF) converts Rab7a into GTP bound form 
(5, 85). Unlike Rab5 with a known GEF as Rabex5, Rab7a 
GEF is still under investigation. The hVps39 protein whose 
yeast homolog Vps39 acts as a Ypt7GEF is premised to be a 
putative Rab7a GEF (86).Termination of nucleotide binding 
and Rab7a activation is achieved by GTPase activating 
protein (GAP). TBC1D15 was found to stimulate the intrinsic 
GTPase activity of Rab7a (87). Another regulatory mechanism 
with significant control on Rab7a activity is Rab5-Rab7a 
conversion. It confers directionality to membrane trafficking 
events leading to membrane maturation (85). It involves HOPS 
complex mediated recruitment of Rab7a on the Rab5 positive 
vesicles (86, 88).Vps39 may also form a part of the complex 
(85). An increase in GFP-Rab7a density on endosomes of 
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A431 cells occurred with concomitant decay of GFP-Rab5 
decay (89). Phosphorylation is a common activity regulation. 
Large scale proteomics analyses have identified Rab7a to 
be both serine and tyrosine phosphorylated. In mouse liver 
extracts, Rab7a was found phosphorylated on serine 72 within 
a highly conserved sequence near the GTP binding pocket (90). 
Rab7a was phosphorylated in response to EGF stimulation 
on tyrosine 183 in the C terminal region. Enhanced tyrosine 
183 phosphorylation of Rab7a was also associated with 
mutant EGFR and HER2 expression in non-small cell lung 
carcinoma and mammalian epithelia respectively (91-93). 
Regulation of Rab7 activity has also been achieved by small 
molecule intervention of its nucleotide binding capacity. The 

small chemical molecule 2-(benzoylcarbamothioylamino)-5, 
5dimethyl-4,7-dihydrothieno (2,3-c)pyran-3-carboxylic acid 
(PubChem CID 1067700) was shown to inhibit Rab7 activity 
in vitro (94, 95). This was the first report of inhibition of Rab7 
activity and has potential therapeutic implications. 

RAB7A EFFECTORS CONTROL ENDOCYTIC TRAFFIC 

To date several effector proteins of Rab7a have been 
identified to interact specifically with the active GTP bound 
Rab7a (Table 1, Fig. 2). Rab7a effectors regulate events 
ranging from cargo selection to microtubule translocation to 
downstream membrane tethering and endosomal membrane 
fusion. Rab7a activation leads to dynamic assembly of large 

Figure1. Rab7a activation cycle. Newly synthesized Rab7a is prenylated by geranylgeranyl
transferase (GGT) and delivered to endosomal membranes by rab escort protein (REP),
thereafter Rab7a membrane cycling is facilitated by GDP dissociation inhibitor (GDI); pathways
that are common to all Rab GTPases. A GDI displacement factor (GDF) has been implicated in
membrane transfer by displacing the GDI. A guanine exchange factor (GEF) promotes
activation and a GTPase activating protein (GAP) promotes hydrolysis and inactivation. Active,
GTP-bound Rab7a act as a scaffold for sequentially binding multiple effectors (see Table1) to
promote cargo selection, cytoskeletal translocation and membrane fusion.

Figure1. Rab7a activation cycle. Newly synthesized Rab7a is prenylated by geranylgeranyl transferase (GGT) and delivered 
to endosomal membranes by rab escort protein (REP), thereafter Rab7a membrane cycling is facilitated by GDP dissociation 
inhibitor (GDI); pathways that are common to all Rab GTPases. A GDI displacement factor (GDF) has been implicated in
membrane transfer by displacing the GDI. A guanine exchange factor (GEF) promotes activation and a GTPase activating 
protein (GAP) promotes hydrolysis and inactivation. Active, GTP-bound Rab7a act as a scaffold for sequentially binding multiple 
effectors (see Table1) to promote cargo selection, cytoskeletal translocation and membrane fusion.
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Figure2. Rab7a regulated trafficking pathways. Rab7a regulated trafficking from early to late endosomes in a process requiring 
Rab5 to Rab7a conversion. Rab7a also cooperates with other Rab GTPases to facilitate late endosome-lysosome fusion and 
autophagolysosome formation (Table1). Key Rab7a effectors involved on individual pathways are noted in parentheses. Rab7a 
cooperates with Rac1 in epithelia promote internalization of cell adhesion molecules and in osteoclasts to promote localized 
hydrolase secretion for bone resorption.

protein complexes in a spatially and temporally regulated 
manner (96). Specific protein complexes serve discrete 
functions in the transport process yet handoffs and multiple 
layers of regulation are common. On multivescicular bodies 
and late endosomes Rab7a regulates cargo sorting and 
bidirectional transport by interacting with effectors that 
modulate kinesin and dynein activity. Lysosomal sorting 
and perinuclear transport are mediated by Rab7a interacting 
lysosomal protein (RILP) effector (97). RILP interacts with 

endosomal sorting complex components (ESCRT II, Vps22 
and Vps36) and based on depletion studies, RILP is shown 
to participate in the sorting of ubiquitinated receptors into 
intraluminal vesicles (98). RILP facilitates the sorting and 
sequestration of cytosolic signaling machinery and targets 
them for lysosomal degradation. RILP is also targeted by 
bacterial pathogen to create a niche for its replication (99, 
100). In a tripartite complex, Rab7a, RILP and ORP1L 
recruit a dynein/dynactin motor complex that in association 
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Rab7a 
isoform and 
nucleotide 
bound state

Rab7a effector/ 
binding partner Regulator/effector function

Rab7a ANKFY1(ankyrin repeat 
andFYVEdomainprotein1)/ 
ANKHZN/Rabankyrin-5

Possible role in vesicular trafficking. Novel interactor of Rab7. Specific role yet to be 
established (70, 113).

Rab7a ATP6 V0A1 Component of vacuolar ATPase that regulated organelle acidification required for 
protein sorting, receptor mediated endocytosis, zymogen activation and synaptic 
vesicle proton gradient. Novel Rab7 interactor (70, 114).

Rab7a-GDP Ccz1 (vacuolar protein 
trafficking and biogenesis 
associated homolog)

Recruited to endosomes by Mon1a/Mon1b and acts as Rab7 GEF in yeast. Possible 
human homolog C7orf28B also some similarity to HPS4 involved in biogenesis of 
lysosome related organelles (115).

Rab7a-GTP FYCO1(FYVE and coiled coil 
domain containing 1)

Promotes microtubule plus end transport of autophagosomes presumably by 
functioning as a kinesin adaptor (116)

Rab7a GNB2L1 ((guanine 
nucleotide binding 
protein,G protein),beta 
polypeptide)

Role in intracellular signaling and activation of protein kinase C and possible 
interaction with Rab7 via WD40 domain. Novel interactor of Rab7. Specific role yet to be 
determined (70).

Ypt7p/
Rab7a-GTP

HOPS complex (Vps11,-16,-
18,-33,-39 and -41)

Involved in vacuolar tethering and fusion in yeast and conserved mammalian homologs 
function in mammalian endolysosomal fusion. Interfaces with CORVET complex to 
promote Rab5 to Rab7 conversion in yeast. Vps39 sub unit binds Mon1-Ccz1 complex 
that serves as Rab7 GEF in C.elegans and yeast (89, 117, 118).

Rab7a hVps39 In yeast Vps39p, cooperates with Mon1-Ccz1 complex to promote Ypt7p nucleotide 
exchange. Function of mammalian protein remains to be determined (118, 119).

Rab7a IMMT (Mitofilin) Maintains mitochondrial morphology and suggested role in protein import. Novel 
interactor of Rab7 (70).

Rab7a KIF3A (kinesin+adapter?) Kinesin2 heavy chain associates with late endosomes along with dynein, Rab7 and 
dynactin. Possible mediator of Rab7-regulated anterograde transport coordinated by 
Rab7 interacting adapter such as FYCO1 or other as yet unidentified protein (120).

Rab7a-GDP Mon1a-Mon1b Mammalian homologs of C. elegans SAND1. Mon1a-Mon1b causes Rab5 GEF 
displacement and Mon1b interacts with the HOPS complex. Mon1 is an effector of Rab5, 
but only interacts with Rab7 when complexed with Ccz1 (115, 121-123).

Rab7a-GTP ORP1L ((oxysterol-binding 
protein,OSBP)-related 
protein 1)

Required for cholesterol sensing and regulation of dynein/dynactin motor with Rab7 
and RILP, regulates late endosome/lysosome morphogenesis and transport (101).

Rab7a-GTP Phosphoinositide 3-kinase 
complex (hVps34/hVps15)

TypeIII-PI3-kinase that generates phosphoinositide 3-phosphate to control endosomal 
trafficking and signaling. Forms complex with myotubularins for negative regulation 
(124).

Rab7a-GTP Plekhm1 (Pleckstrin 
homology domain 
containing family M(with 
RUN domain member)

Regulates lysosomal secretion in osteoclasts for bone resorption by interacting with 
LIS1 to control microtubule transport and Rab7 and PI3Kinase to recruit effectors for 
fusion (125).

Rab7a Prohibitin Negative regulator of cell proliferation and a possible tumor suppressor. Novel 
interactor of Rab7, specific role yet to be established (70).

Rab7a-GTP Rabring7 Rab7-interacting ring finger protein, functions as E3 ligase that ubiquitylates itself and 
controls EGFR degradation (126).

Table1. Rab7 effectors and their roles in vesicular trafficking
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Table 1 continued.

Rab7a 
isoform and 
nucleotide 
bound state

Rab7a effector/ 
binding partner Regulator/effector function

Rab7a-GDP REP1 (Rab Escort protein1) Presents Rab7 to Rab geranylgeranyl transferase for addition of prenyl group that acts 
as a membrane anchor (96).

Rab7a-GTP Retromer 
(Vps26,Vps29,Vps35) 

Regulates retrograde transport from late endosome to trans-Golgi network (TGN) 
through direct interaction with Vps26 (127).

Rab7a-GTP RILP (Rab7 Interacting 
Lysosomal Protein) 

Involved in late endosomal/lysosomal maturation. Recruits dynein/dynactin motor 
protein complex (128).

Rab7a-GTP Rubicon Regulates endosomal maturation through differential interaction with UVRAG and 
Rab7. Rubicon binding inhibits UVRAG by binding to active Rab7 frees UVRAG to 
activate the hVps34/hVps15 complex and HOPS thereby simultaneously increasing the 
active pool of Rab7 and PI3P signaling (129).

Rab7a-GTP SKIP (SifA and kinesin 
interacting protein)

Homolog of PLEKHM1 that binds Rab7, Rab9 and kinesin-1 and may regulate 
anterograde motility of late endosomes. Target of Salmonella SifA protein (130, 131).

Rab7a Spg21 Loss of function causes autosomal recessive hereditary spastic paraplegia. Involved in 
vesicular transport. Novel interactor of Rab7. Specific role yet to be established (70).

Rab7a STOML2 (Stomatin-like 2) Negatively modulates mitochondrial sodium/calcium exchange. Novel interactor of 
Rab7. Specific role yet to be established (70).

Rab7a-GTP TBC1D2 ((tre-2/
USP6,BUB2,cdc16) domain 
family,member5)/Armus 
and Rac1

Regulates cytoskeletal organization, ruffled border formation in osteoclasts and 
E-cadherin/adherens junction degradation in conjunction with Rac1, inactivates Rab7 
through C-terminal GAP activity (132, 133).

Rab7a-GTP TBC1D5 ((tre-2/
USP6,BUB2,cdc16) domain 
family,member 5)

Negatively regulates retromer recruitment and causes Rab7 to dissociate from 
membrane and may have Rab7GAP activity (77).

Rab7a-GTP TBC1D15 ((tre-2/
USP6,BUB2,cdc16)domain 
family,member 15

Functions as Rab7 GAP and reduces interaction with RILP, fragments lysosomes and 
confers resistance to growth factor withdrawalinduced cell death (87, 119).

Rab7a-GTP TrkA (neurotrophic tyrosine 
kinase receptor)

Interacts with Rab7 and regulates endocytic trafficking and nerve growth factor 
signaling as well as well as influencing neurite outgrowth (22, 68).

Rab7a-GTP UVRAG (UV radiation 
resistance associated 
gene)/Beclin1 

UVRAG/C-Vps complex positively regulates Rab7 activity via PI3kinase complex during 
autophagic and endocytic maturation (32).

Rab7a-GTP VapB ((Vesicle associated 
membrane protein)- 
associated protein B)

Involved in mediating endosome-ER interaction in response to ORP1L conformation 
sensing low cholesterol levels (102).

Rab7a Vps13c (vacuolar protein 
sorting 13c) 

Vacuolar protein sorting and novel interactor of Rab7. Specific role yet to be established 
(70).

Rab7a-
GDP,GTP 

XAPC7/PSMA7 (proteasome 
subunit, alpha type7)

Negative regulator of late endocytic transport. Overexpression inhibits EGFR 
degradation (110).

Rab7b SP-A (Surfactant protein A) Transiently enhances the expression of Rab7 and Rab7b and makes them functionally 
active to increase the endolysosomal trafficking in alveolar macrophages (134).
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with betaIII spectrin transports endosomes to the perinuclear 
region on microtubules (101-103). Endosomal lipids like 
cholesterol and phosphoinositides are critical regulators of 
cargo sorting and transport on the late endosomal pathway 
that are integrated with transport through the Rab7a effector 
ORP1L. When cholesterol levels are low, ORP1L promotes 
association of late endosomes with endoplasmic reticulum 
by dissociating minus end motor proteins. The ER protein 
VAPB contributes to motor dissociation and the peripheral 
movement of late endosomes. Being more peripherally 
localized, late endosomes are poised to receive cholesterol 
from early endosomes or ER. When cholesterol levels are high 
the conformation of ORP1L is altered and perinuclear transport 
is favored. In NPC disease where endosomal cholesterol levels 
are high the bidirectional motility of endosomes are perturbed 
that contribute to disease pathology and can be reversed 
by overexpressing Rab7a and Rab9 (107, 108). Membrane 
associated scaffolding protein huntingtin (Htt) helps in dynein/
dynactin mediated perinuclear positioning. The mutant form of 
this protein causes Huntington’s disease (2, 104). Huntingtin 
and Htt-associated protein of 40kD (HAP40) are known Rab5 
effectors that orchestrates transport between tubulin- and 
actin-based networks, though the link with Rab7a remains 
unclarified. Anterograde movement of endosomes to the cell 
periphery along the microtubular network is incompletely 
characterized. Plus end motility of the autophagosomes is 
coordinated by FYVE and coiled coil domain protein1 FYCO1 
and an unknown kinesin (96). Late endosomal movement 
depends on kinesin2-KIF3A heavy chain while the Rab7a 
link and effector remain unknown (105). Rab9 and Rab7a 
have been shown to interact with distinct domains on SifA 
and kinesin interacting protein (SKIP), implicating kinesin-1 
in anterograde motility and late endosomal sorting (106). 
Similar to Rab5 on early endosomes, GTP bound Rab7a is 
required for classIII phosphatidyl inositol 3-kinase (consisting 
of hVps34 catalytic, the hVps15/p150 Rab7a adaptor and 
Rubicon regulatory subunits) activation on late endosomes 
(2, 109). The synthesis of PI3P on endosomes recruit FYVE 
domain containing protein that promote membrane remodeling 
(including intraluminal vesicle formation) and eventually 
terminate the signal. Together these downstream effectors 
control endolysosome morphology, membrane trafficking, 
acidification among other functions. Rab7a together with the 
early endosomal myotubularin lipid phosphatases (MTM1) 
and late endosomal myotubularin related protein 2 (MTMR2) 
acts as a molecular switch regulating the sequential synthesis 

and degradation of endosomal PI3P (47). The phosphatases 
bind directly to the phosphatidyl inositol 3-kinase complex 
leading to inactivation of the myotubularins. The interaction 
of lipid kinase to myotubularin precludes the interaction 
of Rab7a with lipid kinase illustrating the importance 
of protein hand-offs in phosphoinositide 3-phosphate 
homeostasis on late endosomes. Together the examples cited 
provide evidence for a Rab7a function in endosomal lipid 
homeostasis in both metabolism and signaling, disruption 
of which leads to human disease. Rab7a interacting proteins 
like Rabring7 (Rab7a interacting ring finger protein) and 
XAPC7 have been reported to facilitate cargo degradation. 
Rabring7 functions as an E3 ligase in conjunction with the 
Ubc4 and Ubc5 as E2 proteins (96, 108). Overexpression 
of Rabring7 leads to degradation of EGFR and lysosome 
biogenesis. The proteasome subunit XAPC7 or PSMA7 in 
mammals interacts specifically with Rab7a and is recruited 
to late multivescicular endosomes (110). Overexpression 
of XAPC7 impairs late endocytic transport of EGFR and 
hence is a negative regulator of trafficking (111). Together 
Rabring7 and XAPC7 may coordinate the degradation 
of ubiquitinated growth factor receptors via a link to the 
proteasomal degradation machinery. There are many more 
putative effectors of Rab7a whose functions remain to be 
established. Therefore further complexity in Rab7a mediated 
sorting, cytoskeletal transport and membrane fusion will 
emerge. An important area that calls for attention is the 
interaction of Rab7a with the tethering factors and SNARE 
proteins in the endosomal fusion events that have been 
primarily characterized for yeast homolog Ypt7p (112). 

CONCLUSION 

Ever since Rab7a was discovered its role in endosomal 
trafficking have remained under investigation. The indefatigable 
interest is attributed to its diverse role in human disease. 
The list of Rab7a effectors continue to grow although their 
functions remain to be established. Elucidating regulation of 
Rab7 nucleotide exchange and hydrolysis and the mechanism 
of its recruitment to specific macromolecular complexes 
to regulate individual pathways remain important areas for 
further investigation.
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