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SUMMARY 

• The sympathetic nervous system has been considered 

to be hyperactive from the very beginning after birth in spon- 

taneously hypertensive and stroke-prone spontaneously 

hypertensive rats. This is a primary factor for the development 

and maintenance of hypertension via structural and functional 

alterations of the arteries and the heart. It is. also described 

that the sympathetic hyperfunction probably play a protective 

role in necrosis of vascular smooth muscle cells in spontane- 

ously hypertensive and stroke-prone spontaneously hyperten- 

sive rats.  

INTRODUCTION 

 The spontaneously hypertensive rats (SHR) were devel- 
oped by Okamoto and Aoki (1) for elucidating the pathogenic 
factors of the human essential hypertension. Three stages were 
distinguished in relation to the blood pressure: prehyperten- 
sive stage (0-30 days after birth), developmental stage (40-90 
days after birth) and the established stage (over 90 days after 
birth). Many biochemical investigations showed abnormal 
functions of both central and peripheral sympathetic nervous 
system in SHR and stroke-prone spontaneously hypertensive 
rats (SHRSP). A dysfunction of the nucleus loci coerulei (2), 
an increased basal sympathetic tone of the superior cervical 

ganglia (SCO) (3) and the celiac ganglia (4), and an increased 
noradrenaline (NA) content in the serum (5, 6) and in various 
tissues (7-9) were described. These authors, however, reported 
the functional state of the sympathetic nervous system in SHR 
and SHRSP during the developmental and established stages 
of hypertension, but not during the prehypertensive stage. 

In the following review we describe the morphological studies 
related to the functional state of the peripheral sympathetic ner- 
vous system of SHR and/or SHRSP throughout the prehyper- 
tensive to the established stages of hypertension and the effects 
of the hyperfunction of peripheral sympathetic nervous system 
on the cardiovascular and cerebrovascular systems. 

FUNCTIONAL ACTIVITY OF SUPERIOR CERVICAL 

GANGLIA AND STELLATE GANGLIA OF 

SPONTANEOUSLY  HYPERTENSIVE RATS 

• Ganglion weight, ganglion cell volume and ganglion 

cell area 

The peripheral sympathetic nervous system regulates blood 
pressure by modulating the peripheral resistance of the vessels. 
It has been thought to be one of the most prominent factors in 
the development of hypertension in SHR. There have been 
many morphological, physiological and biochemical studies on 
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the sympathetic nervous system of SHR after the onset of hyper- 
tension (10-14), but only a few studies were carried out on these 
topics before the development of hypertension. Nerve cell dia- 
meter, amount of Nissl granules in the cytoplasm and nucleus- 
to-cytoplasm area ratio, all well-known indicators of nerve cell 
activity in sympathetic ganglia, have been reported to be higher 
in SHR than those in normotensive Wistar-Kyoto (WKY) rats. 
This suggests hyperfunction of the peripheral sympathetic ner- 
vous system in SHR (15). These parameters, however, indicate 
the activity of individual ganglion cells, but not that of whole 
ganglia. 

See Editorial on page 5 

Measurement of ganglion weight per body weight, and mor- 

phometrically examined ganglion cell volume and the relative 

area of ganglion cells in SCG and stellate ganglion (SG) of 

SHR, younger than 30 days of age and comparison to those of 

age-matched WKY rats were required (16). These authors 

showed that: (;') the ganglion weight/body weight ratios of SHR 

are significantly larger compared to those of WKY rats, within 

groups aged 30 days, and (/;') the ganglion cell volume and the 

relative area of ganglionic cells in both ganglia of SHR are sig- 

nificantly larger than those of age- matched WKY rats. These 

data suggest that the functional state of the whole SCG and SG 

is significantly higher in SHR than that in WKY rats already 

before the development of hypertension. 

• Protein and neurotransmitter synthetic activity of 

the ganglia 

Protein and catecholamine synthetic activities of ganglion cells 
of SCG and SG of SHR during the prehypertensive stage have 
been examined by light microscopic autoradiography with 

3
H- 

lysine and 
3
H-DOPA, respectively (17, 18). Silver grains rep- 

resenting toe localization of the labeled 
3
H-lysine and 

3
H-DOPA 

over the cytoplasm of ganglion cells in the SCG and SG have 
been counted in the same photographic magnifications. Sig- 
nificantly more silver grains over ganglion cells in SHR were 
observed as compared to age-matched WKY rats, using vari- 
ous incorporation times after injection of 

3
H-lysine, in newborn 

and 30 days after birth groups. The increased incorporation of 
the label in both SCG and SG was more marked in newborn 
animals than 30 days old animals. These results confirmed that 
a hypersynthesis of protein in SCG and SG is present in SHR 
immediately after birth. Intravenously administered 

3
H-DOPA 

is incorporated by nerve cells and rapidly metabolized intrac- 
ellularly to catecholamines, such as dopamine, noradrenaline 
and adrenaline (19). Significantly greater number of silver 
grains were seen over ganglion cells of SCG and SG in SHR 
compared to those of age-matched WKY rats, using various 
incorporation times after injection of 'H-DOPA in age groups 
of 0 and 10 days (18). In newborn SHR, the sympathetic gan- 

glion cells synthesized a larger amount of catecholamines 
which were transported or released more rapidly than in the 
SG cells of WKY rats. Hypersynthesis of catecholamine in the 
sympathetic ganglia in SHR has been established in this ex- 
periment. A summary of these morphometric analyses on pro- 
tein and neurotransmitter synthetic activity of SCG and SG is 
given in Table 1. The total functional activity of SCG and SG 
as measured in these experiments was significantly higher in 
SHR than in WKY rats in the prehypertensive stage. 

• Noradrenergic innervation of the middle cerebral 

and coronary arteries 

The distribution of noradrenergic nerve fibers in the middle 
cerebral and coronary arteries of SHRSP has been examined 
by several authors to estimate the effect of SCG and SG hyper- 
function. The distribution density of perivascular sympathetic 
nerve fibers in SHR has been investigated in various periph- 
eral arteries such as the mesenteric (20), jejunal (21) and cau- 
dal arteries (22) in the prehypertensive (23-25), developmen- 
tal and established stages (26, 27) of hypertension, using fluo- 
rescence microscopy (26), transmission (28) and scanning (29) 
electron microscopy. The glyoxylic acid method for the stain- 
ing of fluorescent noradrenergic nerve fibers in whole mount 
preparations was applied (30, 31). The distribution densities 
of noradrenergic nerve fibers in the distal portions of the middle 
cerebral artery (Fig. 1) and in the coronary artery from the pre- 
hypertensive to the established hypertensive stage of SHRSP 
were significantly higher than those of age-matched WKY rats. 
The difference in the density of nerve fibers between SHRSP 
and WKY rats was higher in the prehypertensive stage than 
that in the established hypertensive stage.  

Table 1. A comparison behveen spontaneously hypertensive 

rats (SHR) and Wistar-Kyoto (IVKY) rats in functional activity 

of superior cervical ganglia (SCG) and stelatte ganglia (SG) 
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T- increase, —» - no significant difference, 1 - not examined, 

1 - ganglion weight/body weight, 2 - area of ganglion cells/ 

area of whole ganglion tissue. 
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Figure 1. Photomicrographs showing noradrenergic nerve fibers of the distal portion of the middle cerebral arteries of 

180-day-old WKY (a) and SHRSP (b). Bars, 30 juin. 

  

Increased sympathetic innervation of the distal portion of 
middle cerebral artery and of the coronary artery of SHRSP was 
assumed to be caused by hyperfunction of SCO and /or SG (16- 
18), because the perivascular sympathetic nerves innervating 
the major cerebral arteries originate from SCG (32, 33) and 
those innervating the coronary arteries originate from SG. Hy- 
perfunction of SCG and SG in SHRSP may promote the de- 
velopment, elongation and branching of nerves supplying these 
arteries. 

•        Noradrenergic innervation of the heart 

Although there were many data on the NA content in the heart 
of SHR from fetus to adult, no definite conclusion could be 
obtained. While some biochemical studies reported that NA 
levels in the heart in SHR and SHRSP were lower (9, 34-37) or 
not higher (38, 39) than those of WKY rats , others reported 
that NA content in the heart in SHR was greater than that in 
WKY rats (7). Nakamura et al (40) showed data that NA con- 
tent in the heart was not significantly different between SHR 
and WKY rats at 6 weeks of age, but was lower in SHR than in 
WKY rats at 12 weeks of age. Watanabe et al (8), however, re- 
ported that there was no difference in NA content in the fetal 
heart between SHR and WKY rats, but NA content was higher 
in the heart of 16-week-old SHR than that of age-matched 
WKY rats. According to Adams et al (41), sympathetic activ- 
ity was higher in SHR than in WKY rats in the left ventricle 
through most of the period between 4 and 50 weeks of age. 

The noradrenergic nerve fiber density in the heart of SHRSP 
and WKY rats has been studied, using the glyoxylic acid 
method for staining frozen sections of m}

r
ocardium and whole 

mount preparations of the subepicardium (42). The density of 
noradrenergic nerve fibers of the subepicardium of the right 

and left ventricles was higher in SHRSP as compared to that 
of WKY rats during 10 to 180 days of age. The density of the 
nerve fibers in myocardium of the right ventricle was higher 
in SHRSP as compared to that of WKY rats during 30 to 90 
days of age. Noradrenergic nerve fiber density of myocardium 
in the left ventricle and in the ventricular septum of SHRSP 
was the same as that of WKY rats. These morphometric results 
suggested that the total amount of NA in the whole heart in 
SHRSP was larger than that of age-matched WKY rats up to 
six months after birth. 

The hyperinnervation of the heart by noradrenergic nerve fi- 

bers in SHRSP is probably the primary change the heart goes 

through prior to develop an hypertension situation, which may 

be caused by hyperfunction of SG. 

EFFECTS OF SYMPATHETIC 
HYPERINNERVATION ON THE 
BLOOD VESSELS AND THE HEART OF STROKE-
PRONE SPONTANEOUSLY HYPERTENSIVE RATS 

•        Blood vessels 

Sympathetic nerves are known to affect vascular smooth muscle 

cells (SMC), both through direct, rapid action (43), and long- 

term regulatory and trophic effects (44,45). In SHRSP, the en- 

hanced perivascular nerves may directly produce intensified 

vasoconstrictionby the increased NA release from their termi- 

nals, as is indicated by electric or K
f
-stimulation (46-49), re- 

sulting in an increase or the maintenance of peripheral resis- 

tance. Sympathetic hyperinnervation of the blood vessels in 

SHRSP during the prehypertensive stage may, through trophic 

effects, provoke an elevation in protein synthesis in vascular 

SMC (50) and an augmentation of the arterial wall mass re- 

sulted from medial SMC hypertrophy (51-53) and/or hyperpla-   
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sia (54-56), although enhanced SMC proliferation is also re- 

ported to be genetically determined (54, 57). The thickened 

arterial media in the prehypertensive (23, 58) and established 

hypertensive stage (59) may become hyperreactive to contrac- 

tile stimuli (60). In addition, vascular hypeiinnervation may 

also control the membrane properties of vascular SMC (61), 

which can induce supersensitivity to catecholamines (49, 62, 

63). Thus the sympathetic hyperinnervation of blood vessels 

in SHRSP may produce structural and functional alterations 

in SMC (64) which tend to occlude the vascular lumen in re- 

sistant vessels. Therefore they cause an increase in peripheral 

resistance, an elevation of the blood pressure in the prehyper- 

tensive and developing stages of hypertension, and contribute 

to the maintenance of hypertension in the established stage. 

From studies of noradrenergic nerve density it is concluded that 
hyperinnervation may play an important role in the develop- 
ment of hypertension in SHR and SHRSP (30). This is sup- 
ported by the fact that the rise in blood pressure was effectively 
suppressed by sympathectomy in newborn SHR (55, 65-67). 

•        Heart 

Sympathetic nerve fibers are involved in the development of 
cardiac muscle hypertrophy through a-adrenoceptors (68-70). 
Several studies have demonstrated that the a-adrenergic nerves 
stimulate protein synthesis of cardiocytes (68) and increase 
their size (71-73). Therefore, the higher density of the noradre- 
nergic nerve fibers in SHRSP compared to that of age-matched 
WKY rats may cause heart hypertrophy in SHRSP due to a pri- 
mary alteration of the heart at the prehypertensive stage (74, 
75). At the established hypertensive stage in SHRSP, the car- 
diocytes become further hypertrophied by high blood pressure 
as a secondary factor, because such a mechanical stretch stimu- 
lates the cardiocyte protein synthesis (76, 77). On the other 
hand, the complete abolition of the sympathetic activity in 4- 
week-old SHR prevented the development of cardiac hypertro- 
phy (77). These data suggested the leading role of noradrener- 
gic innervation in heart hypertrophy. Cardiocytes hypertrophy 
occurring as a primary and secondary change of the heart in 
SHRSP may in its turn augment cardiac activity, resulting in 
elevation of blood pressure in the prehypertensive and devel- 
opmental stages of hypertension and in maintenance of hyper- 
tension in established hypertensive stage (77).  

STRUCTURAL CHANGES IN THE SMOOTH MUSCLE 

CELLS OF THE MIDDLE CEREBRAL AND CORONARY 

ARTERIES IN STROKE-PRONE SPONTANEOUSLY 

HYPERTENSIVE RAT 

•        Middle cerebral artery 

The functional and structural alterations of blood vessels have 
been reported in SHR and SHRSP (78, 79). By scanning elec- 
tron microscopy (SEM), the proximal portion of the middle ce- 
rebral artery of 6-month-old WKY rats has a compact and regu- 
lar medial layer consisting of spindle-shaped SMC running al- 
most parallel to each other and oriented transversely with re- 
spect to the long axis of the vessel. The SMC adventitial sur- 
face is smooth. Small pits with a round or elliptical openings 
are found only sporadically on the cell surface (Fig.2a,b). On 
the other hand, SMC in 6-month-old SHRSP exhibit a remark- 
ably rough surface texture, though their arrangement is unal- 
tered (Fig.2c,d). At a higher magnification, various structural 
modifications such as deep invaginations forming many pits 
and long longitudinal depression or grooves become visible on 
the surface of SMC in SHRSP (Fig.3). These structural modi- 
fications are often clustered, covering almost the whole cell 
width. Necrotic SMC constitute about 10% of all medial cells 
in SHRSP and no necrotic SMC were observed in WKY rats. 

By transmission electron microscopy (TEM), SMC of the 
middle cerebral artery in WKY rats show the typical featur of 
SMC. In SHRSP, transverse profiles of SMC varied from 
rounded to irregular, with deep indentation of the plasma 
membrane. The SMC of SHRSP were surrounded by many 
layers of basal lamina-like material forming a labyrinth-like 
network in which electron-lucent amorphous material is found 
(Fig.4a,b). This finding may be consistent with previous bio- 
chemical studies that have demonstrated an increase in con- 
nective tissue fibers, collagen (80) and elastin (80, 81), in the 
arterial wall of SHR. Irregularly-shaped SMC contain all the 
organelles common to vascular SMC (82), indicating their abil- 
ity to function normally. 

•         Coronary artery 

By SEM, many pits and gutters are observed on the SMC sur- 

face of the coronary artery in both WKY rats and SHRSP at 4 

months after birth. The SMC from 6-month-old WKY rats 
  

Figure 2. Scanning electron microscopy images of the adventitial surface of medial smooth muscle cells in the proximal 

portion of the middle cerebral artery. Low power view of the outermost medial layer in WKY rat. The smooth muscle cells- 

are oriented transversely with respect to the vessel long axis (a). Smooth muscle cells from WKY rat are spindle-shaped 

with a smooth surface texture (b). Low power view of the outermost medial layer in SHRSP. Smooth muscle cells remain in 

a circular arrangement, but exhibit an irregular shape and rough surface texture (c). The smooth muscle cells from SHRSP 

exhibit a very rough surface texture. Asterisk shows a necrotic cell (d). Bar, 20 fim. x 740(a), Bar, 5 urn. x 2000 (b), Bar, 

20 turn, x 900 (c), Bar, 5 fj,m. x 2200 (d). 
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Figure 3. Scanning electron microscopy image of smooth muscle cells of middle cerebral artery from SHRSP. The muscle 

cells form numerous pits (Pi), grooves (G) and processes (Pr). Bar, 5 pm. x 3700. 

  

show rather similar surface texture to that of 4-month-old WKY 
rats. In contrast with WKY rats, SMC of 6-month-old SHRSP 
exhibit a remarkably increased number of gutters and pits on 
the surface. The intercellular space between SMC of 6-month- 
old SHRSP is increased in width compared to that of 4-month- 
old SHRSP and WKY rats and 6-month-old WKY rats. No ne- 
crotic cells, however, are found in the coronary artery of both 
SHRSP and WKY rats at these ages. 

By TEM, the SMC of 6-month-old SHRSP and WKY rats are 
irregular in profile with deep indentations of the plasma mem- 
brane. They are surrounded by many layers of basal lamina- 
like material,. and large amount of collagen fibrils and fibrous 
matrix substances are observed between the SMC. 

Taken together, the morphological alterations of vascular SMC 
of middle cerebral and coronary arteries in SHRSP may be 
adaptive changes to increased tension of the arterial wall in 
severe hypertension (83, 84). 

PROTECTIVE ROLE OF SYMPATHETIC 

HYPERINNERVATION IN NECROSIS OF VASCULAR 

SMOOTH MUSCLE CELLS 

•        Sympathetic hyperinnervation of blood vessels in SHR 
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and SHRSP has an important role in the development of hy- 
pertension. On the other hand, it may play a protective role 
against stroke due to a trophic effect on the vascular wall (85). 
Relation between the noradrenergic nerve fiber density and the 
structure of SMC in the middle, anterior cerebral arteries and 
in the ophthalmic artery, and the coronary artery, are investi- 
gate in both developmental and established stage of hyperten- 
sion in SHRSP (86, 87). More than 10% of SMC in the proxi- 
mal portion of the middle cerebral artery (86) and the distal 
portion of the anterior cerebral artery (unpublished data) of 
SHRSP become necrotic at the established stage of hyperten- 
sion. These arteries were innervated by noradrenergic fibers 
of the same distribution density as those in WKY rats (30).' 
However, a few or no necrotic SMC are found in the distal por- 
tion of the middle cerebral artery (unpublished data), in the 
ophthalmic artery (87) and in the coronary artery (31) of 
SHRSP in the established stage of hypertension and all blood 
vessels were more heavily innervated than those in WKY rats. 
The difference in the occurrence of necrosis of vascular SMC 
may be attributed to the difference in nerve density. The latter 
suggests that sympathetic hyperinnervation may protect SMC 
from necrosis caused by the great tangential wall stress, which 
is associated with chronic hypertension. Such a kind of pro- 
tective role of sympathetic nerves against SMC necrosis (and 
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Figure 4. Transmission electron micrographs of the media of proximal portion of SHRSP middle cerebral arteries sec- 

tioned parallel to the vessel long axis. The media consists of variously shaped smooth muscle cells, some are rounded and 

others are irregular with deep imaginations of the plasma membrane. Necrotic cells are depicted (asterisks). A - adventi- 

tial surface, L - lumlnal surface (a). Smooth muscle cell from the outermost medial layer exhibits an irregular profile and 

is surrounded by multiple layers of basal lamina-like material (b). Bar, 2 [im. 
x 4900 (a). Bar, 1 /j.m. 

x 16 000 (b). 

  

apoptosis ?) may be of a clinical value, since primary rupture 
of the cerebral arteries has been reported to be caused by "ar- 
teriosclerosis" accompanied by degeneration of the medial 
SMC(88,89). 

CONCLUSION 

• The relative ganglion weight, ganglion cell volume, 
relative ganglion cell area and protein and catecholamine syn- 
thetic activities of SCO and SG at prehypertensive stage of SHR 
are greater compared to those of age-matched WKY rats, sug- 
gesting a hyperfunction of SCO and SG in SHR before the hy- 
pertension development. The densities of perivascular norad- 

renergic innervation in the distal portion of middle cerebral 
artery, the anterior cerebral, the ophthalmic and the coronary 
arteries and the heart, which are innervated by SCG or SG, are 
higher in SHRSP than those in WKY rats during the prehyper- 
tensive stage to the established hypertensive stage. Sympathetic 
hyperinnervation both in arteries and heart from SHR and 
SHRSP in the prehypertensive stage may have a leading role in 
development of hypertension, through SMC hypertrophy and 
hyperplasia and SMC hypersensitivity to NA. 

Few necrotic SMC are seen in the densely innervated distal por- 
tion of the middle cerebral artery, the ophthalmic and the coro- 
nary arteries. On the other hand, many necrotic SMC are seen   
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in the proximal portion of the middle cerebral artery and the 
distal portion of the anterior cerebral artery that are less densely 
innervated. Thus, sympathetic hyperinnervation in SHR and 
SHRSP may also play a role to protect SMC from necrosis, 
which is caused by the great tangential wall stress associated 
with chronic hypertension. 
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