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To what extent, and how, might uncertainty be
defined?
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Decisions about the exploitation and management of social and natural re-
sources are frequently informed by predictions from models. In order to manage
the contribution of models to decision making, it is important to understand
the uncertainties associated with these predictions. In practice, this is not
straightforward, for several reasons: models are structurally diverse, they are
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used in a wide range of contexts and for many different reasons (Beck, 2002),
and the quality of a model’s predictions may be highly case-dependent. Central
to coping with this complexity is the need for new concepts that link classes of
uncertainty to the types of situation in which models are used and the methods
available for evaluating uncertainty. Walker et al. (2003) propose a scheme for
classifying uncertainties in models intended for decision support. The purpose
of this note is to examine 1) the extent to which the aims of Walker et al. are
achievable and 2) whether the proposed classification meets these aims.

Walker et al. aim to provide an interdisciplinary framework for assessing un-
certainties in models used for decision support. We agree that such a framework
is needed and should be developed from a classification of types of uncertainty
and situations in which they arise. Numerous taxonomies of imperfect knowl-
edge have been proposed in recent years, including schemes that focus on general
types of imperfect knowledge (Suter et al., 1987; Smithson, 1989; Faber et al.,
1992, 1996; Wynne, 1992; Dovers et al., 2001) and taxonomies that focus on spe-
cific sources of imperfect knowledge (Witzold, 2000). However, an important
barrier to achieving a common understanding or interdisciplinary framework is
the diversity of meanings associated with terms such as ‘uncertainty’ and ‘igno-
rance’, both within and between disciplines. A further impediment is the depth
with which different meanings are embedded in particular disciplines; common
understanding is not simply a matter of clarity. For example, some authors
equate uncertainty with ‘doubt’ or ‘unsureness’ (Brown, In Press), while others
include in their definitions sources of uncertainty, such as imprecision and ran-
domness, or even view ignorance as an extreme form of scientific uncertainty
(Walker et al., 2003; Smithson, 1989).

Also, uncertainties may be framed by the presentation, sources, and social
construction of information (a social science perspective), as well as the degrees
and perceived quality of information available (a Bayesian, physical science per-
spective). Indeed, from a social science perspective, the apparently uncontro-
versial assertion of Walker et al. that “completely deterministic knowledge of
the relevant system” is “ideal” can be viewed as deeply problematic, because
the pursuit of this “ideal” would discourage consideration of the disposition of
people to exaggerate, suppress or complicate expressions of uncertainty, inten-
tionally or unintentionally. Thus, while classification is an important source of
meaning, some discussion on the scope of uncertainty is a prerequisite to un-
derstanding terms such as ‘location’, ‘level” and ‘nature’ of uncertainty, as used
by Walker et al.. In the absence of a discussion about the different meanings
of uncertainty and the situations in which they arise, a classification cannot be
expected to provide a common understanding or interdisciplinary framework for
assessing uncertainties in models used for decision support.

Although a common framework is difficult to envisage in practice (and im-
possible without very careful treatment of definitions), a systematic treatment
of uncertainty might nevertheless be possible. The Walker et al.. scheme specif-
ically aims “to provide a systematic treatment of uncertainty in decision sup-
port in order to improve the management of uncertainty in decision making
processes”. Given the applied nature of this aim, it follows that the scheme for
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classifying uncertainty should (eventually) link to the application of models as
decision-support tools, and to the methods available for assessing their uncer-
tainties. In this context, the scheme of Walker et al.. is limited in two important
ways. First, by adopting a modellers’ view of uncertainty rather than a deci-
sion makers’ perspective, the classification scheme omits some relevant sources
of uncertainty (perhaps even the most important ones) that arise before and
after scientific models are applied. For example, it fails to consider the different
ways in which goals (concepts) are translated into decision criteria (entities)
and then into observable quantities (data and models), or how decision maker’s
preferences based on model predictions are aggregated by decision-support tools
such as cost-benefit analysis or multi-criteria analysis. Secondly, by not relating
classes of uncertainty to the types of situation in which models are used or the
methods available for estimating uncertainty, Walker et al. do not achieve their
central aim of providing an operational scheme. If, having identified a specific
class of uncertainty, the classification is not accompanied by some means, how-
ever crude, to follow up its implications for model-based decision support, it is
inherently limited as an operational tool. Of course, it may lead to a deeper
understanding of the fundamental components of uncertainty, but many classifi-
cations have been proposed for this purpose (see above), and the current scheme
is no more successful in this respect than the previous attempts, because 1) it
does not address the diversity of meanings associated with terms such as ‘uncer-
tainty’ and ‘ignorance’ in the context of model-based decision support, and 2) it
does not explore how these concepts are assessed and used by different groups of
modellers, including model developers and model users (e.g. ‘academics’ versus
‘practitioners’).

In the scheme proposed by Walker et al., uncertainty is classified according
to its location, level and nature, each with a small number of classes. This
resembles a taxonomy. Taxonomies usually have one or more orderings, of-
ten hierarchical. Examples are the periodic table and the standard zoological
classification scheme. The attribute “location” has classes (context, model,
inputs, parameters, outputs) and subclasses, and “nature” includes a binary
split between epistemic uncertainty and ontological uncertainty (ignoring lin-
guistic imprecision). While these do not impose any natural ordering, the at-
tribute “level” introduces an order from ‘certainty’ through ‘statistical uncer-
tainty’ and ‘scenario uncertainty’ to ‘recognised ignorance’ and ‘unrecognised
ignorance’. This ordering is problematic if uncertainty is viewed as a state
of confidence, because certainty does not imply that a judgement is correct;
rather, ignorance or ‘unrecognised ignorance’ in the Walker et al. scheme is
fundamentally different from a state of confidence. Furthermore, if ‘statistical
uncertainty’ is assumed to refer to quantifiable uncertainty, Walker et al. fail to
acknowledge the distinct spectrum of well-established methods, not all statisti-
cal, for characterising degrees of credibility, ranging from bounds (binary clas-
sification as possible/impossible) through rough sets (ternary classification as
possible/doubtful /impossible), fuzzy sets (graded from possible to impossible)
and histograms (graded in relative frequency with a probabilistic interpretation
available) to probability density functions (taking a Bayesian view). However,

IAJ, Vol. 6, Iss. 1 (2006), Pg. 85



Y

Norton et al.: Defining uncertainty

this one-dimensional spectrum does not cover all ways of describing uncertainty.
For example, the characterisation of a group of uncertain items by their vector
mean and covariance matrix has a non-probabilistic parallel in the specification
of ellipsoid bounds, characterised by the center and defining matrix. The latter
is algebraically identical to the former, quite different in its interpretation and
implications, yet asymmetrically linked: the describing matrix of an ellipsoidal
bound on a vector is an upper bound on its covariance, but a given covariance
does not, of course, imply bounds on the vector. Similarly, pdfs are superfi-
cially complete descriptors of uncertainty, well suited to assessing uncertainty
propagation through a model, whereas qualitative expressions of uncertainty are
more difficult to define unequivocally and to use in an uncertainty propagation
analysis, but are potentially more informative than pdfs, as they can contain an
arbitrarily large number of types of attributes. As another example, information
about the number of samples is typically lost in fitting a pdf to a probability
test sample, but may be highly relevant if the number is small.

Although the scheme of Walker et al. is insufficiently precise about the at-
tribute “level” and does not consider sufficiently the relationship between states
of knowledge and methods for describing uncertainty, it has the advantage of
being specific about the location of uncertainty in models. For example, it
distinguishes between model-structure uncertainty and input uncertainty, and
within the latter between uncertainty in external forcing and in measured data.
Uncertainties in calibrated parameters and model solution (numerical approx-
imation) might be included here. However, in non-linear systems the effects
of inputs and parameters on outputs, or even stability, may be inextricably
linked, so that the contribution of input uncertainty to the overall uncertainty
in model prediction cannot be separated from those of uncertain model param-
eters, structure and solution. Thus, an uncertainty-propagation analysis should
be performed for specific cases, and the roles of specific sources of uncertainty
may be highly case-dependent. Walker et al. also distinguish between con-
trollable and uncontrollable inputs, but if the aim is to explore the effects of
uncertainty on model predictions it is necessary to consider controllability (of
the state of a model, and thence of its outputs, from its inputs) as a prop-
erty of the model and its inputs jointly, rather than its forcing inputs alone.
Here the complementary properties of observability and identifiability should
be considered alongside controllability, and the possibility acknowledged that
over-parameterisation could accentuate uncertainties in model predictions. Of
course, amplification of uncertainty by ill-posedness may originate from a poor
choice of origin, scaling of variables or order of computation, as well as from
over-parameterisation.

A further potentially important source of uncertainty in models originates
from the extrapolation of model predictions into regions of behaviour that are
poorly covered, or not covered at all, during model calibration. Thus, it is useful
to distinguish between the quality of a model in approximating some aspects
of ‘reality’ and the uncertainties associated with extrapolation of model pre-
dictions. The former may depend on a combination of insufficiently detailed
knowledge about the system or its inputs, and deliberate reduction of model
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complexity for reasons of comprehensibility, computational load or analytical
convenience. Approximation errors may be complex even in linear models. For
example, aliasing or rounding errors, caused by an unsuitable sampling rate or
quantisation interval for a variable in a model, may be entirely predictable from
the characteristics of the variable being approximated, but may be very diffi-
cult to describe in an uncertainty analysis. The uncertainties associated with
extrapolation are essentially case-dependent, and their evaluation is impossi-
ble without either extending experiments into a larger region of state space or
making untested assumptions about regularity of behaviour over that space.
Extended experimentation may be impossible in practice when resources are
limited or the state space is difficult to observe (e.g., in groundwater hydrol-
ogy), or if the model has to predict in scenarios that are not currently realisable
(e.g., in changed climate).

Finally, in evaluating ‘structural uncertainty’ it is important to distinguish
between the predictive performance of a model and its ability to explain real
patterns and processes. The former is fully reflected in the quantifiable difference
between model predictions and independent observations, whereas the latter
depends also on collateral knowledge (e.g., recognising the possible contribution
of snowmelt in calibrating a hydrological model relating rainfall to runoff). In
this context, observations are not inherently more certain than models (although
such an assumption is often implicit, especially for measured inputs) and their
uncertainties may be poorly reflected in stationary statistics.

Underlying the classification of uncertainty in general, and undermining the
classification of Walker et al. specifically, is the possibility that interactions
between different sources of uncertainty are obscured or overlooked. Crucially,
therefore, classifications of uncertainty should not sustain the generally unwar-
ranted assumption, often made unconsciously, that the effects of different uncer-
tainties are additive. Rather, once these uncertainties are identified (classified)
they must be analysed and their implications for decision-making evaluated as
a whole. For the same reason, an uncertainty analysis is always required in spe-
cific cases, and the quality of a classification should be judged by its ability to
guide the application of an uncertainty analysis in specific cases. Since Walker
et al. do not relate classes of uncertainty to methods of analysis or propagation,
they cannot provide an operational scheme for addressing uncertainties and do
not fulfil their central aim of providing “a systematic treatment of uncertainty in
decision support in order to improve the management of uncertainty in decision
making processes”.

To summarise, the scheme proposed by Walker et al. is valuable in stim-
ulating further thought about the role of uncertainty in model-aided decision-
making, but incomplete in its discussion of concepts (e.g., the meaning of un-
certainty) and hence difficult to apply within an interdisciplinary framework,
and insufficiently grounded in methodology and thus difficult to apply in an
operational content. Furthermore, it overlooks interactions between uncertain-
ties that can severely limit a simple classification from both a modellers’ and a
decision makers’ perspective.

IAJ, Vol. 6, Iss. 1 (2006), Pg. 87



Y

Norton et al.: Defining uncertainty

1 Bibliography

Beck, M. B. (2002), Environmental Foresight and Models: A Manifesto, Elsevier,
Oxford. 84

Brown, J. (In Press), ‘Knowledge, uncertainty and physical geography: Towards
the development of methodologies for questioning belief’, Transactions of the
Institute of British Geographers. 84

Dovers, S., Norton, T. & Handmer, J. (2001), Ignorance, uncertainty and ecol-
ogy: Key themes, in J. Handmer, T. Norton & S. Dovers, eds, ‘Ecology,
Uncertainty, and Policy: Managing Fcosystems for Sustainability’, Pearson
Education Limited, Harlow, pp. 1-25. 84

Faber, M., Manstetten, R. & Proops, J. (1992), Towards an open future: Ig-
norance, novelty and evolution, in R. Costanza, B. Norton & B. Haskell,
eds, ‘Ecosystem Health: New Goals for Environmental Management’, Island
Press, Washington, D.C., pp. 72-96. 84

Faber, M., Manstetten, R. & Proops, J. (1996), Ecological Economics, Edward
Elgar, Cheltenham. 84

Smithson, M. (1989), Ignorance and Uncertainty: Emerging Paradigms,
Springer-Verlag, New York. 84

Suter, G., Barnthouse, L. & O’Neill, R. (1987), ‘Treatment of risk in environ-
mental impact assessment’, Environmental Management 11, 295-303. 84

Walker, W., Harremoés, P., Rotmans, J., van der Sluijs, J., van Asselt, M.,
Janssen, P. & Krayer von Krauss, M. (2003), ‘Defining uncertainty: A con-
ceptual basis for uncertainty management in model-based decision support’,
Integrated Assessment 4(1), 5-18. 84, 85, 86, 87

Witzold, F. (2000), ‘Efficiency and applicability of economic concepts dealing
with environmental risk and ignorance’, Ecological Economics 2(33), 299-311.
84

Wynne, B. (1992), ‘Uncertainty and environmental learning: Reconceiving sci-
ence and policy in the preventative paradigm’, Global Environmental Change
2, 111-127. 84

IAJ, Vol. 6, Iss. 1 (2006), Pg. 88



	Bibliography

