
Integrated Assessment 1389-5176/03/0401-005$16.00
2003, Vol. 4, No. 1, pp. 5–17 # Swets & Zeitlinger

Defining Uncertainty

A Conceptual Basis for Uncertainty Management

in Model-Based Decision Support

W.E. WALKER1, P. HARREMO€EES2, J. ROTMANS3, J.P. VAN DER SLUIJS5, M.B.A. VAN ASSELT4,

P. JANSSEN6 AND M.P. KRAYER VON KRAUSS2

1Faculty of Technology, Policy and Management, Delft University of Technology, The Netherlands, 2Environment & Resources DTU,
Technical University of Denmark, Denmark, 3International Centre for Integrative Studies (ICIS), Maastricht University, The Netherlands,

4Faculty of Arts and Culture, Maastricht University, The Netherlands, 5Copernicus Institute for Sustainable Development and Innovations,
Utrecht University, The Netherlands, and 6Netherlands Environmental Assessment Agency, National Institute of Public Health

and the Environment (RIVM), The Netherlands

ABSTRACT

The aim of this paper is to provide a conceptual basis for the systematic treatment of uncertainty in model-based decision support

activities such as policy analysis, integrated assessment and risk assessment. It focuses on the uncertainty perceived from the point of

view of those providing information to support policy decisions (i.e., the modellers’ view on uncertainty) – uncertainty regarding the

analytical outcomes and conclusions of the decision support exercise. Within the regulatory and management sciences, there is

neither commonly shared terminology nor full agreement on a typology of uncertainties. Our aim is to synthesise a wide variety of

contributions on uncertainty in model-based decision support in order to provide an interdisciplinary theoretical framework for

systematic uncertainty analysis. To that end we adopt a general definition of uncertainty as being any deviation from the

unachievable ideal of completely deterministic knowledge of the relevant system. We further propose to discriminate among three

dimensions of uncertainty: location, level and nature of uncertainty, and we harmonise existing typologies to further detail the

concepts behind these three dimensions of uncertainty. We propose an uncertainty matrix as a heuristic tool to classify and report the

various dimensions of uncertainty, thereby providing a conceptual framework for better communication among analysts as well as

between them and policymakers and stakeholders. Understanding the various dimensions of uncertainty helps in identifying,

articulating, and prioritising critical uncertainties, which is a crucial step to more adequate acknowledgement and treatment of

uncertainty in decision support endeavours and more focused research on complex, inherently uncertain, policy issues.

Keywords: uncertainty, ignorance, model-based decision support, policy analysis, integrated assessment, risk assessment, uncertainty
management.

1. INTRODUCTION

The world is undergoing rapid changes. The future is

uncertain. Even with respect to understanding existing

natural, economic and social systems, many uncertainties

have to be dealt with. Furthermore, because of the

globalisation of issues and the interrelationships among

systems, the consequences of making wrong policy decisions

have become more serious and global – potentially even

catastrophic. Nevertheless, in spite of the profound and

partially irreducible uncertainties and serious potential

consequences, policy decisions have to be made. Scientific

decision support aims to provide assistance to policymakers

in developing and choosing a course of action, given all of the

uncertainties surrounding the choice.

That uncertainties exist in practically all policymaking

situations is generally understood by most policymakers, as

well as by the scientists providing decision support. But

there is little appreciation for the fact that there are many

different dimensions of uncertainty, and there is a lack of

understanding about their different characteristics, relative

magnitudes, and available means of dealing with them. Even

within the different fields of decision support (policy

analysis, integrated assessment, environmental and human

risk assessment, environmental impact assessment, engi-

neering risk analysis, cost-benefit analysis, etc.), there is
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neither a commonly shared terminology nor agreement on a

generic typology of uncertainties.

The need for more constructive approaches to account-

ability about uncertainty and ignorance in regulatory

decisions has grown with the increasing attention to the

‘‘precautionary principle.’’ The principle has put uncertainty

even more firmly and explicitly on the political agenda,

because the principle deals with situations where uncertainty

prevails regarding decisions about activities potentially

generating harm. The key questions are: What level of

certainty is demanded to curtail or even ban an activity that

might be harmful? Who should bear the burden of proof?
Who should run the risks associated with making the

wrong decision? These, and similar questions are high-

lighted in a recent publication from the European Environ-

ment Agency [1].

The aim of this paper is to provide a conceptual

framework for the systematic treatment of uncertainty in

decision support in order to improve the management of

uncertainty in decisionmaking processes.

There are many good reasons to develop a typology of

uncertainties for model-based decision support. First and

foremost, it will provide for better communication among

policy analysts. In the current situation, different analysts

use different terms for the same kinds of uncertainty, and

some use the same term to refer to different kinds. This

makes it extremely difficult for those who have not

participated in the actual work to understand what has been

done. Defining uncertainty through a typology will also

provide for better communication among policy analysts,

policymakers and stakeholders. It is widely held that

policymakers expect scientists to provide certainties and

hence dislike uncertainty in the scientific knowledge base.

But, uncertainty is a fact of life and a better understanding of

the different dimensions of uncertainty and their implica-

tions for policy choices would be likely to lead to more trust

in the scientists providing decision support, and ultimately to

better policies. Finally, a better understanding of the

different dimensions of uncertainty and their potential

impact on the relevant policy issues at hand would help in

identifying and prioritising effective and efficient research

and development activities for decision support. For

example, it would help at the beginning of a project to

decide on the allocation of project resources. Knowing about

the relative differences in outcomes from better parameter

estimates for an assumed model, a more appropriate model

or better information on inputs might reveal the most

resource-effective strategy for carrying out the analysis.

2. MODEL-BASED POLICY ANALYSIS

2.1. The Policymaking Process

Policymaking processes involve policymakers, stakeholders

and scientists. The stakeholders communicate their goals,

objectives, and preferences to the policymakers who must

then decide on the policies to be adopted. Policies are the set

of forces within the control of the policymakers that affect

the structure and performance of the system of interest.

Loosely speaking, a policy is a set of actions taken by an

administration to control the system, to help solve problems

within it or caused by it, or to obtain benefits from it. In

public policy, the problems and benefits generally relate to

broad international, national or regional goals – for example,

tradeoffs among national environmental, social, and eco-

nomic goals. A goal is a generalized policy objective

(frequently non-quantitative, e.g., ‘‘reduce air pollution’’ or

‘‘ensure traffic safety,’’ and more rarely quantified, e.g., 80%

reduction of nutrient discharge). Policies are intended to

help achieve the goals.

To aid in the decisionmaking process, applied scientists

are frequently called upon to assess the outcomes of

alternative policies. In this paper, the scientists acting in

this capacity will be referred to as policy analysts and the

task they perform will be referred to as decision support. A

common approach to decision support is to create a model of

the system of interest that defines the boundaries of the

system and its structure – i.e., the elements, and the links,

flows, and relationships among these elements [2]. In this

case the analysis is referred to as being model based. The

system model is usually, but not necessarily, a computer-

based model. This paper will focus on model-based decision

support.

Each policy goes through its own unique process of

development and implementation. In practice, the involve-

ment of policy analysts, stakeholders and policymakers in

the process can take different forms. However, the simplified

and idealized multi-stage iterative process shown in Figure 1

captures many of the important elements of the interactions

between the policy analysis process and the policymaking

process and is a sufficient conceptual basis for the purposes

of this paper.

The first stage of the process is the problem identification

and framing stage. This stage is ideally conducted in the

form of a dialogue among policymakers, stakeholders, and

Fig. 1. The policymaking process viewed as a multi-stage iterative process.
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scientists. It may be that it is not possible to agree on a single

definition of the problem and that rival problem framings

must be explored in the analysis. In model-based policy

analysis, criteria are used to measure the degree to which

alternative policy actions can help to reach the goals. These

criteria are used to determine the outputs that should be

produced by the model. Those model outcomes that are

related to the policy goals and objectives are termed

outcomes of interest. The problem identification and framing

stage is instrumental in determining the structure of the

system model and identifying the outcomes of interest.

In the second stage, policy analysts assess the information

available to produce the knowledge required to support a

policy decision according to a range of plausible circum-

stances and developments, and according to the uncertainty

involved. In principle, both expert and lay knowledge should

be included in the analysis and the assessment process. This

process should ideally be accompanied by a quality control

stage, e.g., in terms of a peer review or a critical self-

reflection, which makes explicit the underlying assumptions,

underpinnings, and quality of the performed analysis,

thereby increasing confidence in the obtained results.

In the next stage the results of the analysis are discussed

by the policymakers and stakeholders. If the information

provided does not adequately match the information needs

agreed upon in the problem identification and framing stage,

or if the review by peers or stakeholders indicates that the

assessment is inadequately framed, too uncertain, too un-

reliable, too biased, or excessively value laden, the process

can be returned to the problem framing stage. If the model

structure and the results of the peer review are acceptable,

the policymakers and stakeholders can develop their

perspective on the results based on their values and interests.

Although a policy action may be designed with a single goal

in mind, it will seldom have an effect on only one outcome of

interest. Policy choices, therefore, depend not only on

estimating the outcomes of interest relative to the policy

goals and objectives, but identifying the preferences of the

various stakeholders, and identifying tradeoffs among the

outcomes of interest given these various sets of preferences.

In the final stages of the policy process, a policy is chosen,

implemented, and communicated to the public. The impacts

of the policy can then be monitored in order to see whether

the objectives are being achieved or not, to identify new

problems, and to assess whether identified uncertainties have

been resolved or new ones are emerging.

2.2. The System Model

Decision support activities must often explore the effect of

alternative policies on the full range of outcomes of interest

under a variety of scenarios, and examine the tradeoffs

among different policies. This exploration requires a struc-

tured analytical process. Because of the complexity of the

system being studied and the wide range of scenarios to be

considered, a system model is a useful and often indis-

pensable tool in this process.

A system model is an abstraction of the system of

interest – either the system as it currently exists, or as it is

envisioned to exist for purposes of evaluating policies in a

different (e.g., future) context. Here it is important to note

that we employ a broad interpretation of the term ‘‘model,’’

including both a conceptual formulation and=or a mathe-

matical model (algorithm), frequently found in the form of a

computer programme. A conceptual model may be as simple

as a line and box diagram of the structure of the system, with

lines representing more or less well known relationships,

varying from facts to beliefs. A widespread conceptual

model is that of modelling the concept of risk as a function of

probability and consequence. This conceptual model has

been adapted to fit the various fields of risk assessment, for

example the expression of risk as a function of exposure and

effect in human and environmental risk assessment.

The system model represents the cause-effect relation-

ships characteristic of the system. In a mathematical model,

the relationships among the various components of the

system are expressed as functions. Although formulated in

mathematical terms, these models usually contain inherent

components of subjectivity. Subjectivity manifests itself

already in the conceptual phase when decisions are made

concerning which elements will be included in the analysis

and which will be left out. Subjectivity affects the manner in

which modellers translate the conceptual model into

mathematical equations.

A computer program is a translation of the mathematical

model into computer code. Typically the resulting system

model represents a compromise between desired function-

ality, plausibility, and tractability, given the resources at

hand (data, time, money, expertise, etc.).

In decision support activities, the focus of a modelling

exercise is typically on the response of a system to outside

forces (external changes or policy changes) and the system’s

performance (i.e., the resulting values of the outcomes of

interest) in these future contexts. A much-used analytical

tool to deal with the deep uncertainties of the unknown (and

unknowable) future is to use scenarios as plausible

descriptions of how the system and its driving forces may

develop. A scenario is based on a coherent and internally

consistent set of assumptions about key relationships and

driving forces (e.g., technology changes, prices, etc.).

Different scenarios reflect the variety of alternative

economic, environmental, social, and technological condi-

tions that may be present in reality, including variations in

the behaviour of people. These conditions act on the system,

which leads to changes in the system and, ultimately,

changes in the outcomes of interest. Within the decision

support exercise, alternative scenarios may manifest them-

selves as alternative model formulations, as alternative sets

of input data, or as both. Policies represent the alternative

mechanisms for affecting the system that are under the
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control of the policymakers (e.g., changes in prices,

regulations, infrastructure, etc.). Although the policies

themselves may be well defined and not uncertain, the ways

the system actually changes in response to the policy

changes is often highly uncertain.

The role of the system model within the policymaking

process is illustrated in Figure 2.

3. UNCERTAINTY

Uncertainty is not simply the absence of knowledge.

Funtowicz and Ravetz [3] describe uncertainty as a situation

of inadequate information, which can be of three sorts:

inexactness, unreliability, and border with ignorance.

However, uncertainty can prevail in situations where a lot

of information is available [4]. Furthermore, new informa-

tion can either decrease or increase uncertainty. New

knowledge on complex processes may reveal the presence

of uncertainties that were previously unknown or were

understated. In this way, more knowledge illuminates that

our understanding is more limited or that the processes are

more complex than thought before [5].

As will be elaborated further on in the paper, we distinguish

between uncertainty due to lack of knowledge and uncertainty

due to variability inherent to the system under consideration.

In order to encompass all dimensions of uncertainty, we adopt

a general definition of uncertainty as being any departure from

the unachievable ideal of complete determinism.

There have been many uncertainty typologies developed

for many purposes. Few have claimed to be comprehensive,

and even fewer have had model-based decision support as

their point of departure.1 Our framework for uncertainty in

model-based decision support is consistent with most of

them, but is comprehensive within its context. Others are

more general, not targeted specifically on model-based

decision support (such as [3,11]) or apply to a specific

context, such as water management (e.g., [8]). Classifica-

tions that are model-oriented either focus on a single

dimension of uncertainty (e.g., Alcamo and Bartnicki [7],

who focus on the location of uncertainty), reduce uncertainty

to error (e.g., [6]), or do not discriminate explicitly between

the level and the nature of uncertainty [10]. Within the

context of model-based decision support, therefore, it can

easily be concluded that there is neither a commonly shared

terminology nor agreement on a generic typology of

uncertainties. The aim of this paper is to highlight the

agreements in order to provide a conceptual basis for the

systematic treatment of uncertainty in policy analysis and

integrated assessment.

Our major challenge was to find a categorization such that

all of the different kinds of uncertainty found in the literature

can be mapped into the categories that we propose. In doing

that, the resulting synthesis should then be comprehensive

and complete. A second challenge was to be specific to

model-based decision support – removing categories

unrelated to this context and clustering the remaining

notions. Finally, labels had to be found for our categories

that were at least supported by our group of authors.

Those discussing uncertainty in scholarly fora (journals,

conferences), referred to in this paper as uncertainty experts,

agree that it is important to distinguish between what can be

called the modellers’ view of uncertainty and the decision-

makers’=policymakers’ view of uncertainty. The modellers’

view focuses on the accumulated uncertainties associated

with the outcomes of the model and the (robustness of)

conclusions of the decision support exercise; the policy-

makers’ view includes uncertainty about how to value the

outcomes in view of his=her portfolio of goals and possibly

conflicting objectives, priorities, and interests. For example,

what are the current or future societal values related to

environmental impacts versus economic costs and benefits?
This paper focuses on the uncertainty perceived from the

point of view of those providing information to support

policy decisions (i.e., the modellers’ view on uncertainty) –

uncertainty regarding the analytical outcomes and conclu-

sions of the decision support exercise.

Uncertainty experts agree that there are different dimen-

sions of uncertainty related to model-based decision support

exercises. Through a process of consultation and discussion,

the authors of this paper have chosen to distinguish three

dimensions of uncertainty (see Fig. 3):

(i) the location of uncertainty – where the uncertainty

manifests itself within the model complex;

(ii) the level of uncertainty – where the uncertainty

manifests itself along the spectrum between determin-

istic knowledge and total ignorance;

(iii) the nature of uncertainty – whether the uncertainty is due

to the imperfection of our knowledge or is due to the

inherent variability of the phenomena being described.

Fig. 2. The role of the system model within the policymaking process.

1Among recent papers and books directly or indirectly addressing the issue

of characterizing uncertainty in model-based decision support are: [3–15].
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In the following sections, we present the three dimensions of

uncertainty in more detail.

4. THE LOCATION OF UNCERTAINTY:

IDENTIFIED BY THE LOGIC OF THE MODEL

FORMULATION

Location of uncertainty is an identification of where

uncertainty manifests itself within the whole model com-

plex. This dimension refers to the logical structure of a

generic system model within which it is possible to pinpoint

the various sources of uncertainty in the estimation of the

outcomes of interest.

The description of the model locations will vary

according to the system model in question. Ideally, the

location should be characterised in a way that is operation-

ally beneficial to understanding where in the model the

uncertainty associated with the outcome is generated. To this

end, we identify the following generic locations with respect

to the model (see Fig. 4):

� Context is an identification of the boundaries of the

system to be modelled, and thus the portions of the real

world that are inside the system, the portions that are

outside, and the completeness of its representation. The

model context is typically determined in the problem

framing stage and is crucial to the decision support

exercise as it clarifies the issues to be addressed and the

selection of the outcomes of interest to be estimated by the

model.

� Model uncertainty is associated with both the conceptual

model (i.e., the variables and their relationships that are

chosen to describe the system located within the

boundaries and thus constituting the model complex)

and the computer model. Model uncertainty can, there-

fore, be further divided into two parts: model structure
uncertainty, which is uncertainty about the form of the

model itself, and model technical uncertainty, which is

uncertainty arising from the computer implementation of

the model.

� Inputs to the model are associated with the description of

the reference system, which is often the current system,

and the external forces that are driving changes in

the reference system. It is sometimes useful to divide

the inputs into controllable and uncontrollable inputs,

depending on whether the decisionmaker has the

capability to influence the values of the specific input

variables.

� Parameter uncertainty is associated with the data and

the methods used to calibrate the model parameters.

� Model outcome uncertainty is the accumulated uncer-

tainty associated with the model outcomes of interest to

the decisionmaker.

The following paragraphs describe each of the locations in

more detail.

4.1. Context

The ‘‘context’’ refers to the conditions and circumstances

(and even the stakeholder values and interests) that underlie

the choice of the boundaries of the system, and the framing

of the issues and formulation of the problems to be addressed

within the confines of those boundaries.

Context uncertainty includes uncertainty about the external

economic, environmental, political, social, and technological

situation that forms the context for the problem being

examined. The context could fall within the past, the present,

or the future. Uncertainties are often introduced in framing a

decision situation because the context of the decision support

is unclear. Actors in a decision situation often have different

perceptions of reality, which are related to their different

frames of reference or views of the world (see [16, 17]). That

is why it is important to involve all stakeholders from the very

beginning of the process of defining what the issue is. In

recent years, expert groups have been accused increasingly of

framing problems such that the context fits the tacit values of

the experts and=or fits the tools, which the experts can use to

provide a ‘‘solution’’ to the problem. The public is better

educated today and may identify such ‘‘decision support’’ as

biased and manipulative. Deciding on a proper framing of

context is a significant part of the problem and should be given

attention to such an extent that reasonable alternative

framings are incorporated in the analysis. The concept and

methodology of context validation proposed by Dunn [18]

can help to avoid problems arising from incorrect problem

framing.

4.2. Model

There are two major categories of uncertainty within this

location of uncertainty: (1) model structure uncertainty, and

(2) model technical uncertainty.

Model structure uncertainty arises from a lack of suf-

ficient understanding of the system (past, present, or future)

that is the subject of the policy analysis, including the

behaviour of the system and the interrelationships among its

elements. Uncertainty about the structure of the system that

we are trying to model implies that any one of many model

formulations might be a plausible representation of the

Fig. 3. Uncertainty: a three-dimensional concept.
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system, or that none of the proposed system models is an

adequate representation of the real system. We may be

uncertain about the current behaviour of a system, the future

evolution of the system, or both. Model structure uncertainty

involves uncertainty associated with the relationships

between inputs and variables, among variables, and between

variables and output, and pertains to the system boundary,

functional forms, definitions of variables and parameters,

equations, assumptions and mathematical algorithms.

Model technical uncertainty is the uncertainty generated

by software or hardware errors, i.e., hidden flaws in the

technical equipment. Software errors arise from bugs in

software, design errors in algorithms and typing errors in

model source code. Hardware errors arise from bugs, such as

the bug in the early version of the Pentium processor, which

gave rise to numerical error in a broad range of floating-point

calculations performed on the processor [5].

4.3. Input

Input is associated primarily with data that describe the

reference (base case) system and the external driving forces

that have an influence on the system and its performance. The

‘‘input’’ location, therefore, includes two sub-categories:

1. Uncertainty about the external driving forces that

produce changes within the system (the relevant scenario

variables and policy variables) and the magnitude of the

forces (the values of the scenario and policy variables).

The external forces driving system change (FDSCs) that

are not under the control of the policymakers are of

particular importance to policy analyses, especially if

they affect the outcomes of interest. Not only is there

great uncertainty in the FDSCs and their magnitudes,

there is also great uncertainty in the system response to

these forces. This is one of the factors that may lead to

significant model structure uncertainty (see above).

2. Uncertainty about the system data that ‘drive’ the model and

typically quantify relevant features of the reference system

and its behaviour (e.g., land-use maps, data on infrastruc-

ture (roads, houses)). Uncertainty about system data is

generated by a lack of knowledge of the properties

(including both the deterministic and the stochastic

properties) of the underlying system and deficiencies in

the description of the variability that can be an inherent

feature of some of the phenomena under observation. These

uncertainties are discussed in the ‘nature’dimension below.

 

Fig. 4. The Location of Uncertainty. Figures 4a and 4b illustrate the concept of context uncertainty, where ambiguity in the problem formulation leads to the

wrong question being answered. Figures 4c and 4d illustrate the concept of model structure uncertainty, where competing interpretations of the cause-

effect relationships exist, and it is probable that neither of them is entirely correct. Input is illustrated as that which crosses the boundaries of the

system.
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4.4. Parameters

Parameters are constants in the model, supposedly invariant

within the chosen context and scenario. There are the

following types of parameters:

� Exact parameters, which are universal constants, such as

the mathematical constants � and e.

� Fixed parameters, which are parameters that are so well

determined by previous investigations that they can be

considered exact, such as the acceleration of gravity (g) at

a particular location in earth.

� A priori chosen parameters, which are parameters that

may be difficult to identify by calibration and are chosen

to be fixed to a certain value that is considered invariant.

However, the values of such parameters are associated

with uncertainty that must be estimated on the basis of a

priori experience.

� Calibrated parameters, which are parameters that are

essentially unknown from previous investigations or that

cannot be transferred from previous investigations due to

lack of similarity of circumstances. They must be

determined by calibration, which is performed by compar-

ison of model outcomes for historical data series regarding

both input and outcome. The parameters are generally

chosen to minimise the difference between model outcomes

and measured data on the same outcomes.

There is a relationship between model structure uncertainty

and calibrated parameter uncertainty. A simple model with

few parameters that does not simulate reality well may be

calibrated with data obtained for both input and output under

well-known conditions. In this case, model structure

uncertainty will most likely dominate the result. In the case

of a more complicated model with many parameters, the

parameters may be manipulated to fit the calibration data

beautifully, but the result may be dominated by parameter

uncertainty. This would happen if the calibration data did not

contain sufficient information to allow for the calibration of

some parameters with an adequate degree of certainty. This

could be revealed by attempting to validate the model using

a different set of data. There is in principle an optimum

combination of model complexity and number of parameters

as a function of the data available for calibration and the

information contained in the data set used for calibration.

Increased model complexity with an increased number of

parameters to be calibrated may in fact increase the

uncertainty of the model outcomes for a given set of

calibration data. This has been described in detail (see [19]).

The calibration data must contain variations of information

fit to deal with all parameters chosen for calibration.

Otherwise the parameter estimates become very uncertain

and the model outcomes become uncertain accordingly.

Finally, even when the parameters are well calibrated, a

residual uncertainty will often remain, and is usually treated

as a parameter in itself.

4.5. Model Outcome Uncertainty

This is the accumulated uncertainty caused by the uncer-

tainties in all of the above locations (context, model, inputs,

and parameters) that are propagated through the model and

are reflected in the resulting estimates of the outcomes of

interest. It is sometimes called prediction error, since it is the

discrepancy between the true value of an outcome and the

model’s predicted value. If the true values are known (which

is rare, even for scientific models), a formal validation

exercise can be carried out to compare the true and predicted

values in order to establish the prediction error. However,

practically all policy analysis models are used to extrapolate

beyond known situations to estimate outcomes for situations

that do not yet exist. For example, the model may be used to

explore how a policy would perform in the future or in

several different futures. In this case, in order for the model

to be useful in practice, it is necessary to (1) build the

credibility of the model with its users and with consumers of

its results (see, for example, [20]), and (2) describe the

uncertainty in the model outcomes using the typology of

uncertainties presented in this paper.

5. LEVELS OF UNCERTAINTY: A PROGRESSION

FROM ‘‘KNOW’’ TO ‘‘NO-KNOW’’

Contrary to the common perception, an entire spectrum of

different levels of knowledge exists, ranging from the

unachievable ideal of complete deterministic understanding

at one end of the scale to total ignorance at the other. In many

cases, decisions must be taken when there is not only a lack

of certainty about the future situation or about the outcomes

from policy changes, but also when some of the possible

changes themselves remain unknown. Here, decisionmaking

is faced with the continual prospect of surprise. It is in this

grey area between the well known and what is not known

that the degree of uncertainty and ignorance ought to affect

the approach to decisionmaking. The ultimate goal of

decisionmaking in the face of uncertainty should be to

reduce the undesired impacts from surprises, rather than

hoping or expecting to eliminate them [21]. Many different

approaches are used in practice to cope with uncertainty. It

is useful to try to match the approach to the level of

uncertainty. For example, Schlesinger [22] distinguishes

between Captain Cook’s tour planning for circumnavigating

the globe and Lewis and Clark’s tour planning for exploring

the previously unexplored western United States. In Cook’s

case, the future was sufficiently certain that one could chart a

straight course years in advance. By contrast, Lewis and

Clark’s planning ‘‘acknowledges that many alternative

course of action and forks in the road will appear, but their

precise character and timing cannot be anticipated.’’ Thus,

very uncertain situations call for robust plans (which will

succeed in a variety of situations) [23] or adaptive plans
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(which can be easily modified to fit the situations

encountered) [24]. For example, in the case of applying

the precautionary principle, the level of uncertainty and

ignorance should be accounted for by deciding on an

appropriate level of proof as the basis for decisions to act or

not act, if there is potential for large-scale and=or

irreversible harm from an activity or a chemical [1].

To distinguish between the various levels of uncertainty,

we employ the following terminology: determinism, statis-

tical uncertainty, scenario uncertainty, recognised ignorance

and total ignorance. This is illustrated in Figure 5.

Determinism is the ideal situation in which we know

everything precisely. It is not attainable, but acts as a limiting

characteristic at one end of the spectrum.

Statistical uncertainty is any uncertainty that can be

described adequately in statistical terms. Statistical uncer-

tainty can apply to any location in the model, even to model

structure uncertainties, as long as the deviation from the true

value can be characterised statistically.

Statistical uncertainty is what is usually referred to as

‘‘uncertainty’’ in the natural sciences. An exclusive focus on

statistical uncertainty, however, implicitly assumes that the

functional relationships in the given model are reasonably

good descriptions of the phenomena being simulated, and

the data used to calibrate the model are representative of

circumstances to which the model will be applied. If this

is not the case, deeper forms of uncertainty supersede

statistical uncertainty, and statistical uncertainty should not

be accorded as much attention as other levels of uncertainty

in the uncertainty analysis.

The most obvious example of statistical uncertainty is the

measurement uncertainty associated with all data. Measure-

ment uncertainty stems from the fact that measurements can

practically never precisely represent the ‘‘true’’ value of that

which is being measured. Measurement uncertainty in data

can be due to sampling error, or inaccuracy or imprecision in

the measurements.

Sampling error is the error associated with the degree to

which the sample is representative. The location, the time

and the circumstances at which the sample has been taken

may not be completely representative of those of the ‘‘true’’

value. Inaccuracy is the deviation from the ‘‘true’’ value;

i.e., it refers to how close a measured value is to the value

considered ‘‘true.’’ Imprecision reflects variation of mea-

surements around a mean value, which may or may not be

the ‘‘true’’ value because of sampling error or inaccuracy.

This is in fact a measure of the reproducibility of the result.

These terms belong to a well-established vocabulary that

can be found in most textbooks on physical and chemical

experimentation. A good primer on measurement uncer-

tainty is [25].

‘‘Statistical uncertainty’’ may also relate to uncertainty in

measuring the probabilities in a stochastic model (see

section on variability below).

5.1. Scenario Uncertainty

The use of scenarios is one approach used in policy analysis

to deal with uncertainty related to the external environment

of a system (usually its future environment) and its effects

on the system (see, for example, [26, 27]). A scenario is a

plausible description of how the system and=or its driving

forces may develop in the future. To be plausible, it should

be based on a coherent and internally consistent set of

assumptions about key relationships and driving forces (e.g.,

technology changes, prices). Scenarios do not forecast what

will happen in the future; rather they indicate what might

happen (i.e., they are plausible futures). Because the use of

scenarios implies making assumptions that in most cases are

not verifiable, the use of scenarios is associated with

uncertainty at a level beyond statistical uncertainty.

Contrary to statistical uncertainty, where the functional

relationships are well described and a statistical expression of

the uncertainty present can be formulated, scenario uncer-

tainty implies that there is a range of possible outcomes, but

the mechanisms leading to these outcomes are not well

understood and it is, therefore, not possible to formulate the

probability of any one particular outcome occurring. There is

a demarcation in the transition from statistical uncertainty to

scenario uncertainty at the point where a change occurs from a

consistent continuum of outcomes expressed stochastically to

a range of discrete possibilities, where choices must be made

with respect to the options to analyze without allocation of

likelihood.

Scenario uncertainty can manifest itself in various ways –

for example, (a) as a range in the outcomes of an analysis

due to different underlying assumptions, (b) as uncertainty

about which changes and developments (e.g., in driving

forces or in system characteristics) are relevant for the

outcomes of interest, or (c) as uncertainty about the levels of

these relevant changes.

Recognised ignorance is fundamental uncertainty about

the mechanisms and functional relationships being studied.

We know neither the functional relationships nor the

statistical properties and the scientific basis for developing

scenarios is weak.

Fig. 5. The progressive transition between determinism and total ignorance.
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Uncertainty due to ignorance can further be divided into

reducible ignorance and irreducible ignorance. Reducible

ignorance may be resolved by conducting further research,

which implies that it might be possible to somehow achieve a

better understanding. Irreducible ignorance applies when

neither research nor development can provide sufficient

knowledge about the essential relationships. Irreducible

ignorance is also called indeterminacy.

Total ignorance is the other extreme from determinism

on the scale of uncertainty, which implies a deep level of

uncertainty, to the extent that we do not even know that we

do not know. In Figure 5, the continuing arrow at this end of

the scale is used to indicate that we have no way of knowing

the full extent of our ignorance.

The rationale for our categorisation of the levels of

uncertainty we have presented is to establish a scale of

graduation from determinism to total ignorance. We argue

that this characterisation scheme provides a complete logical

structure of the level of uncertainty for uncertainty analysis.

6. THE NATURE OF UNCERTAINTY: INHERENT

VARIABILITY OR LACK OF KNOWLEDGE?

In the above we have focused on locations within models

where uncertainty may manifest itself. We have also dis-

cussed the level of uncertainty as being an expression of

the scale of the uncertainty we are faced with. We would

now like to introduce the third dimension of the concept of

uncertainty: the nature of uncertainty. An important feature

of the nature of uncertainty is the distinction between two

extremes:

� Epistemic uncertainty: The uncertainty due to the

imperfection of our knowledge, which may be reduced

by more research and empirical efforts.

� Variability uncertainty: The uncertainty due to inherent

variability, which is especially applicable in human and

natural systems and concerning social, economic, and

technological developments.

Assessing the nature of uncertainty may help to understand

how specific uncertainties can be addressed. In the case of

epistemic uncertainty, additional research may improve the

quality of our knowledge and thereby improve the quality of

the output. However, in the case of variability uncertainty,

additional research may not yield an improvement in the

quality of the output.

Although the terminology used may differ, the above

distinction in the nature of uncertainty is well recognised in

the literature about uncertainty. For example, the terms

epistemic or epistemological uncertainty have been used to

refer to imperfection of knowledge, while the terms ontic or

ontological uncertainty, derived from philosophy, or alea-

tory uncertainty, derived from physical science, have been

used to describe uncertainty due to variability. An overview

of terms used to characterise the nature of uncertainty is

given in [28]. They stipulate that it is not always easy to

clearly distinguish between these categories of uncertainty;

it often remains a matter of convenience and judgement

linked up to features of the problem under study as well as to

the current state of knowledge or ignorance.

6.1. Epistemic Uncertainty

This form of uncertainty is related to many aspects of

modelling and policy analysis – e.g., limited and inaccurate

data, measurement error, incomplete knowledge, limited

understanding, imperfect models, subjective judgement,

ambiguities, etc. With their NUSAP method, Funtowicz

and Ravetz [3] have introduced the concept of pedigree to

systematically assess the imperfection in the knowledge

base, thereby providing an indication of the degree to which

uncertainty may be reducible. Pedigree conveys an evalua-

tive account of the production process of information, and

indicates different aspects of the underpinning of the

numbers and scientific status of the knowledge used.

Assessment of pedigree involves qualitative expert judge-

ment. It should be noted that pedigree and degree of

reducibility of uncertainty do not necessarily correspond to

each other in a one-to-one fashion: increasing the pedigree

by more research may either reduce or increase uncertainty.

The latter can be the case if, for instance, unforeseen

complexities are revealed by the research. Examples of

pedigree analysis can be found in [29] and on the website

www.nusap.net.

Related to the NUSAP method are methods being

developed to rate the strength of scientific evidence that

are grouped under the heading of ‘‘evidence-based practice’’

(see, for example, [30]). These methods, which are primarily

used in the health care field, are designed to protect against

the use of study results in individual and policy-level health

care decisions that contain selection, measurement, and

confounding biases.

6.2. Variability Uncertainty

Many empirical quantities (measurable properties of the

real-world systems being modelled) vary over space or time

in a manner that is beyond control, simply due to the nature

of the phenomena involved. Variability uncertainty is

defined here as the inherent uncertainty or randomness

induced by variation associated with external input data,

input functions, parameters, and certain model structures.

Different sources of variability uncertainty can be

distinguished (see Fig. 6):2

� Inherent randomness of nature: the chaotic and unpre-

dictable nature of natural processes – see also [16];

2See [4] or [15].
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� Human behaviour (behavioural variability): ‘non-rational’

behaviour, discrepancies between what people say and

what they actually do (cognitive dissonance), or devia-

tions of ‘standard’ behavioural patterns (micro-level

behaviour);

� Social, economic, and cultural dynamics (societal vari-

ability): the chaotic and unpredictable nature of societal

processes (macro-level behaviour). The need to consider

societal and institutional processes as a major contributor

to uncertainty due to variability can be inferred from

various papers of Funtowicz, Ravetz, and de Marchi (see,

for example, [31, 32]).

� Technological surprise: New developments or break-

throughs in technology or unexpected consequences

(‘side-effects’) of technologies.

These sources may contribute to variability uncertainty, but it

may be difficult to identify precisely what is reducible through

investigations and research, and what is irreducible because it

is an inherent property of the phenomena of concern. However,

it is important to make an assessment, because the information

may be essential to the political process.

Models may use frequency distributions to represent

variability uncertainty in case the property falls into the level

of statistical uncertainty. From [10]: ‘‘It is possible to have a

high degree of certainty about a frequency distribution. For

example, it is not hard to imagine obtaining the statistics on

the weights of all newborns in Washington, D.C. during 2000

and compiling a precise frequency distribution for the weight

of newborn infants in Washington, D.C. during 2000. On the

other hand, one may be quite uncertain about a frequency

distribution, for example, the frequency distribution for

newborn infants in Washington, D.C. during 2020.’’

Uncertainty about a frequency distribution may be repre-

sented by probability distributions about its various param-

eters, such as its mean, standard deviation, or median.

A common mistake is failure to distinguish between the

uncertainty inherent in sampling from a known frequency

distribution (variability uncertainty), and the uncertainty that

arises from incomplete scientific or technical knowledge

(epistemic uncertainty). For example, in throwing a fair coin,

one knows that the outcome will be heads 1/2 the time, but

one cannot predict what specific value the next throw will

have (variability uncertainty). In case that the coin is not fair,

there will also be epistemic uncertainty, concerning the

frequency of the heads.

Similarly, input functions can exhibit variability that can

be described as a mathematical relationship with an asso-

ciated uncertainty. Such functions may be considered part of

the model structure or separate as an external input function.

An example is seasonal variation, which can be described

functionally [15] or the variation in time and space of

extreme rainfall, giving rise to flooding [33]. The location of

this form of variability is in either the model structure or in

input data. Input data can exhibit variability with an

associated uncertainty. As with all locations of uncertainty,

the uncertainty associated with variability of input data or

model structure can fall into all four levels: Statistical

uncertainty, scenario uncertainty, recognised ignorance, or

total ignorance. If the model is used for extrapolation (e.g.,

projection into the future), the uncertainty associated with

variability is also due to the application of the model to

circumstances different from those associated with the

experience upon which the model and data were developed.

7. THE UNCERTAINTY MATRIX

The purpose of an uncertainty matrix is to provide a tool by

which to get a systematic and graphical overview of the

essential features of uncertainty in relation to the use of

models in decision support activities. The idea is to identify

the location, level, and nature of the uncertainty associated

with models, so that model developers and users will become

aware of and address all of the important elements of

uncertainty. The location, level, and nature of uncertainty

can be combined to obtain an uncertainty matrix, as shown in

Figure 7.

The vertical axis identifies the location of uncertainty –

i.e., where the uncertainty is located in the framework shown

in Figure 2. The first three columns of the horizontal axis

cover the level of uncertainty in relation to all locations;

the next two columns indicate the nature of uncertainty for

each location. In both cases the columns can be interpreted

as ‘brackets’ of characterisation:

Level: statistical uncertainty, scenario uncertainty, and

recognised ignorance.

Nature: Epistemic and variability uncertainty.

The first three columns may also be interpreted as a

continuum of uncertainty (based on the progressive transi-

tion from determinism to total ignorance depicted in Fig. 5).

Applying the matrix is a means to make a complete

inventory of where the uncertainties are located and how

they can be typified in terms of uncertainty level and nature.

In filling in the matrix, one should be aware that the level and

nature of the uncertainty that occurs at any location can

manifest itself in various forms simultaneously. For

example, in a specific model input or driving force, part of

the uncertainty can be due to statistical uncertainty, while

another part can only be described by scenario uncertainty or

Fig. 6. Detailed typology of sources of variability uncertainty.
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recognized ignorance. Similar divisions and overlaps hold

with respect to the ‘nature’ dimension – part of the

uncertainty can be of an epistemic character, and part due

to variability. Attribution of the parts will not always be clear

or unambiguous. In filling in the matrix, one can keep track

of the various forms in which uncertainty in a certain box

manifests itself by using indexes (e.g., index 1 might refer to

one specific model input, index 2 to a different input, etc.).

Note that it is not necessarily true that the uncertainties

located in a particular part of the matrix are more important

than uncertainties in other parts of the matrix. Ignorance may

be irrelevant in case it pertains to minor components, while

in other cases ignorance may supersede statistical uncer-

tainty. Further analysis is therefore necessary to assess the

size of the various uncertainties and their influence on the

outcomes of interest. Either a quantitative [10, 34] or a

qualitative uncertainty or sensitivity analysis [5, 15] can be

used to identify the uncertainty in the outcomes of interest

induced by uncertainties in its inputs, as well as which

uncertainties have the greatest effects on the outcomes of

interest. The insights derived from the use of such techniques

can help determine how best to allocate project resources to

reduce uncertainty in the estimates of the outcomes of

interest – e.g., would it be more worthwhile to focus on the

structure of the model or to gather more information to

estimate the model’s parameters?
The matrix looks conveniently small and handy as it is

depicted in Figure 7, but in reality the level and nature of

uncertainty have to be estimated for each location in the

model structure. That can be a considerable endeavour in

practise, if uncertainty has to be identified and estimated in

detail. However, the effort invested to achieve this insight

should vary according to the purpose of each particular

exercise. The amount of effort to invest should therefore be

chosen with care in order to provide an adequate combina-

tion of overview and detail. As well, in filling in the matrix,

one should be aware of differences in the levels of quality

and underpinnings of the information about the various

uncertainties, as well as the presence of values and biases in

the choices involved (e.g., concerning the way the scientific

questions are framed, data are selected, interpreted, and

rejected, methodologies and models are devised and used,

and explanations and conclusions are formulated [29, 35]).

These aspects will have important influences on the resulting

uncertainties.

It should be noted that such a matrix may characterise

the uncertainty associated with a particular issue only at

a particular point in time. The matrix will change with

more information and with the development of new

circumstances.

The purpose of the matrix is to inspire model developers

and users of models to make an explicit effort to identify,

estimate, assess and prioritise all important contributions to

uncertainty associated with the outcomes of interest in a

systematic manner.

The uncertainty matrix can be applied at different stages

in the decision support endeavour:

– as a heuristic during the preparatory pre-analysis phase

(i.e., problem-framing, determining system boundaries,

and model-building);

– as a checklist during the analysis phase (i.e., model use,

assessment of the results, reporting and communication);

– as a quality control checklist, used in peer review or for

self-evaluation.

The uncertainty matrix has to be re-applied during the peer

review because those performing the policy analysis may

have overlooked some relevant uncertainties [15, 29]. In this

way it can be tested whether personal and institutional lack

of knowledge or overconfidence are associated with the

uncertainty treatment. For example, a team of analysts may

not be aware of the incompleteness of their model structure,

which may be surfaced in a peer review or a self-evaluation.

Finally, the matrix can be included in the reporting process,

in order to make the results of the assessment more

transparent to stakeholders and decisionmakers.

Fig. 7. Uncertainty matrix.
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8. CONCLUSION

It is increasingly a requirement in model-based decision

support that uncertainty has to be communicated in the

science-engineering=policy-management interface. During

the past decade several significant contributions to concepts,

terminology, and typology have been proposed. However,

there is no generally accepted approach to communication

about uncertainty. The result is confusion and frequent lack

of mutual understanding. This paper has attempted to

condense and harmonise the terminology and typology as

well as propose a tool – the uncertainty matrix – for

identifying and characterising the potential uncertainty in

model-based decision support. It suggests that uncertainty is

a three dimensional concept defined by: the location in the

analysis, the level of uncertainty, and the nature of the

uncertainty. The uncertainty matrix can be combined with

other tools – for example, sensitivity analysis and pedigree

analysis – so that the most important locations of uncertainty

can be identified and their influence on the results of the use

of models in decision support can be identified, estimated,

and assessed qualitatively or quantitatively. The intention is

that such an approach be applied on a routine basis when

communicating the results of decision support exercises to

decisionmakers. We argue that harmonised terminology and

a systematic use of the uncertainty matrix to identify,

prioritise, and communicate uncertainty can substantially

improve the quality of model-based decision support. Our

first step has been to agree on dimensions of uncertainty and

how to refer to them. This was a theoretical endeavour,

which was, nonetheless, fed by our experiences with

modelling and model-based decision-support. A next step

would be to apply and test the uncertainty matrix in

examples and case studies. The various authors intend to do

that in their respective research, but a sensible application of

the matrix was beyond the scope of our current effort. Note

that we have focused ourselves on the modeller’s perspective

of uncertainty in model-based decision-support, being aware

that there is a decisionmaker’s perspective at the other end of

decision-support. With our typology, we think modellers are

better equipped to address and treat uncertainty in their part

of the job (although we are well aware that it does not

prevent uncertainty from being politicised in the decision-

making arena).
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