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New class of violation of local constant field approximation in intense crossed laser pulse scenarios
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It is commonly assumed that in ultrastrong laser fields, when the strong field parameter of the laser field £ is
larger than one, the electron radiation is well described by the local constant field approximation (LCFA). We
discuss the failure of this conjecture, considering radiation of an ultrarelativistic electron interacting with strong
counterpropagating laser waves. A deviation from LCFA, in particular in the high-frequency domain, is shown
to occur even at & > 1 because of the appearance of an additional small time scale in the trajectory. Moreover,
we identify a new class of LCFA violation, when the radiation formation length becomes smaller than the one
via LCFA. It is characterized by a broad and smooth spectrum rather than an harmonic structure. A similar
phenomenon is also demonstrated in the scenario of an electron colliding with an ultrashort laser pulse. The

relevance to laser-plasma kinetic simulations is discussed.

Exploration of novel regimes of laser-matter interaction, in-
cluding nonlinear QED [[1H8]] and radiation reaction [9, [10]
effects, has been enabled due to the dramatic progress in high-
power laser technology [[11}12]. The peak power of contempo-
rary lasers has currently attained the petawatt regime [[13| [14]
(corresponding to the field parameter & = eEy/mwy ~ 100) and
multipetawatt infrastructures are under construction worldwide
[L5L [16]. Here, —e and m are the electron charge and mass,
respectively, Ey and wy are the laser field amplitude, and the
frequency, respectively (units 7 = ¢ = 1 are used throughout).

Strong-field QED processes in laser fields can be treated fully
quantum mechanically only for limited field configurations,
where the single-particle wave function is available [17} [18].
Therefore, the standard Monte Carlo codes, which are employed
for theoretical investigation of QED effects in laser-plasma
interaction [19H21]], treat photon emissions and pair production
with the local constant field approximation (LCFA).

The LCFA is commonly believed to be applicable in strong
laser fields with & > 1. One can formulate the physical con-
dition for the LCFA applicability as #; < f, in terms of the
formation time #; of the radiation emission (pair production)
and the characteristic time of the electron trajectory 7. [22}23]].
As an ultrarelativistic electron emits forwards within 1/y-cone
[24]], with the Lorentz factor 7y, the radiation can be superim-
posed and coherently formed during the time ¢, spent by the
electron in the 1/y-cone. In a circularly polarized monochro-
matic plane wave, the trajectory of an electron in the average
rest frame is a circle and the corresponding Lorentz factor y = ¢
[25]. When & > 1, the formation length is €, ~ pf ~ p/y, with
the radius of the trajectory p, and the angle of the coherent
emission 6 ~ 1/y. The typical length scale of the trajectory
in this case is ¢, = p. Therefore, t;/t. = €¢/0. ~ 1/6 < 1 is
automatically fulfilled at £ > 1 in a single laser field, similar
to the synchrotron radiation case of an ultrarelativistic electron
aty > 1. However, in multiple beam laser configurations (see,
e.g., a promising configuration of the dipole wave [26-29])
several characteristic time scales can appear in the electron tra-
jectory. As aresult, the condition 7; < . will not be equivalent
to & > 1 and therefore, as shown below, violation of LCFA
may arise then.

The simplest multiple beam laser configuration is a setup

of counterpropagating laser waves (CPW), which exhibits ra-
diative trapping dynamics [30} 31]], and is favorable for the
exploration of nonlinear QED [32-37]]. The CPW scheme may
arise also in a laser-plasma interaction due to the reflection of
the impinging laser wave from the critical density [38].

In this Letter we show for CPW of the same frequency, that
two additional small characteristic time scales f,, 3 emerge
in the trajectory along with the fundamental one #;, which
corresponds to a single laser wave (see Fig.[I). In case these are
comparable to the corresponding formation time scales, #;; 2 t;,
i = 1,2,3, a deviation from LCFA arises. Since 7, = |F|/|F|
where F is the Lorentz force, the short time scale #3 corresponds
to the parts of the trajectory where the total force is relatively
small but changing rapidly. Furthermore, while in Fig. 1(a)
the formation time is larger than the formation time via LCFA
(th;), and hence the LCFA violation is similar to that in a single
laser wave, in the case of Fig. 1(b) the electron motion during
13 is extremely abrupt, giving rise to a previously unidentified
class of LCFA violation with 77 < t? and an up-shifted typical
emitted frequency with respect to LCFA.

One should distinguish between recently found deviations
from LCFA in radiation spectra of an electron in a single laser
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Figure 1. Examples of electron trajectories in circularly polarized
CPW (projection on the plane transverse to the laser propagation):
(a) fl > 1 and fz <1 (l‘fz > b); (b) é:l > (2:2 > 1 (l‘fz < 1, but
tr3 = t3); (red) is the radiation formation length, (green) and (blue)
are the additional characteristic lengths of the electron trajectory [#;
and t;; (i = 1,2,3) are the corresponding characteristic and formation
times]. While in a single laser wave only the scale ¢, for the trajectory
is available, in CPW additional small time scales arise. LCFA fails at
tri 2 4. In(a) tyy > t5,, while in (b) #43 < t%_g which represents a new

f2
class of LCFA violation.



wave with & > 1 [39H41]], and that in CPW discussed in this
Letter. While here the failure of LCFA is due to violation of
the condition f; < ., as additional small scales ?. arise in
the trajectory, in the former, the interference between radiation
emerging from different laser cycles creates harmonic peaks
visible in the low energy part of the spectrum, in deviation from
the LCFA result.

The electron radiation in CPW is explored here in the realm
of the Baier-Katkov semiclassical formalism [22, 42]]. This
method employs the classical electron trajectory, however, ac-
counts for the quantum recoil due to a photon emission. We
consider two qualitatively different regimes for an ultrarelativis-
tic electron moving along the wave propagation direction: (a)
&> landé s 1,and (b) € > & > 1, where & (i = 1,2) s
the laser field parameter for the i’ laser field, see Fig. |1l The
analytical treatment employs an approximation for the classical
trajectory based on the small parameter &/£1. The results are
validated by a full numerical calculation. A significant devia-
tion from the LCFA is demonstrated in the high energy domain
of the radiation spectra for both regimes even for strong laser
fields, due to appearance of small characteristic time scales in
the electron trajectory. In case (a), the LCFA violation stems
from oscillations of the trajectory within the 1/y-cone, resem-
bling the one observed in a monochromatic plane wave. In case
(b), however, it results from the fact that the particle leaves the
1/y-cone more rapidly than predicted by the LCFA (75 < t%).
Accordingly, the corresponding spectrum is broad and does not
feature harmonics. The same mechanism is also encountered
in the interaction of an electron and an ultrashort pulse, where
the new time scale is caused by the rapid changing of the pulse
profile.

The quantum radiation process in a strong laser field is char-
acterized by the classical nonlinear parameter &, and the quan-
tum nonlinear parameter y = e \/—(F*’P,)?/m>. According to
the Baier-Katkov approach, the radiation spectrum reads [22]:
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where 7 = [ e drand 7, = [*_ v,(1) e dr withy = £k -
x(t) being the emission phase and x,(?), k, = (w,K), v,(¢) the
four-vectors of the electron coordinate, the photon momentum
and the velocity, respectively. 7 is the pulse duration, ¢ is the
electron energy in the field and &’ = € — w.

The CPW consists of two circularly polarized beams, repre-
sented by the vector-potentials A (x, t) = mé&;[cos(k; - x)e, +
sin(k; - x)e,] and Ay(x, 1) = mé&;[cos(ky - x)ey + sin(ky - x)e, ],
with the four-wave-vectors k; = (wp,0,0,wy) and k, =
(wo, 0,0, —wy), respectively, with the optical frequency wy =
1.55¢V, and e, = (0,1,0,0),e, = (0,0,1,0). The classical
Lorentz equation is not solvable analytically for a general CPW
field. We find an approximate solution for the electron trajec-
tory imposing the conditions: £,&, < 2, & > &, and with a
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Figure 2. Results for ¢, = 20 and & = 0.1 with three different

energies € = 4m, (first column), & = 7m, (second) and € = 20m.,
(third), respectively. (a-c) 6(¢) in the vicinity of #, when y is maximal;
dashed lines are 6, (¢) for LCFA, in this regime always 6(z) < 6,(¢);
(d-f) Radiation spectra; black lines are the exact spectra based on the
analytical trajectory and blue lines are LCFA spectra with the time-
dependent y(¢); gray and red lines are the spectra for a single beam
with &) and &, respectively (the electron energy in the case of a single
beam is chosen to be the same as for CPW in total). For comparison,
the exact spectrum based on a fully numerical trajectory is also shown
as the black dots in case (e).

vanishing asymptotic transverse momentum p, = 0:

x(1) = [(&1/wy) sin(wt) + (&2/wy) sin(wat)]/y,
y(t) = [(£1/w1) cos(wi ) + (&2/w2) cos(wrt)]/y,
2(t) = 0yt + 2woé1 /(Y Aw) sin(Awt), ()

where w; = wo (1 = 0;),ws = wo (1 +7;) and Aw = W — ws.
0, is the average velocity of the electron which is copropagating
with the &;-beam. The effective mass for the electron in the

field is m. ~ m |1 + &} + £3. The energy of the electron in the

external field is constant & ~ go+m*&/(g9— p20) = m./ /1 — 0.,
where pg is the asymptotic 4-momentum.

The emission spectrum via Eqs. (I)-(2) is obtained in terms
of Bessel functions, see [43]. The phase ¢ is an essential
parameter determining the emitted radiation. For the analysis
of the radiation formation and its deviation from LCFA, we
approximate the trajectory in a short interval around time #,
defining the angle 6(¢") of the velocity v(¢’) with respect to v(¢):

wel|l t vV (.,
(//N?[z—yz+gfdt0(t)}. 3)

In LCFA [42], the angle is growing linearly with time, 6.(¢) =
myt/y®. Since the main contribution to the emission originates
from 6 < 1/y, the formation time in LCFA is tj% = 2y/(my),
which determines the typical energy of the emitted photon from
the condition ¢ ~ 1. Moreover, the formation time determines
the LCFA applicability via #f < .. In CPW the characteristic
time of the electron trajectory is [43]]:
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where y1 = ZH€1y and y, = T2&y are the quantum parameters
corresponding to the first and second beam alone, and

X(1) ~ \/)(f + X3 = 2x1x2 cos (Awr) . 4)
Thus, the LCFA condition in the CPW setup is
tL 2
L% (5)
te my*(t)

In a single laser wave it reduces to the familiar result t;/tc ~ 1/€.

In the following, the emitted spectrum is examined for two
different parameter regimes with low & (< 1) and high & (> 1).
Low &, case. The radiation spectra corresponding to &; = 20
and & = 0.1 are shown in Fig.[2] We consider three electron
energies & = 4m,, 7m, and 20m.., yielding different dynamics.
In the case of € = 4m.,, the £;-beam dominates the dynamics
because y; > x»2. As & > 1, the angle 6(¢) grows linearly
within the 1/y-cone like in the LCFA case, see Fig. Eka). Hence,
the emitted spectrum in Fig. [2(d) coincides with the LCFA
result, and is close to the spectrum of a single beam with &;.

For the high energy € = 20m,, the &;-beam is dominant and
therefore t;/tc ~ 1/&, = 10, and the angle oscillates inside the
1/y-cone (Fig.[2[c)). The radiation is similar to the case of the
electron motion in a single &, with a renormalized energy due to
the influence of the &;-beam (Fig. 2f)). The typical energy of
the emitted photon derived from ¢ ~ 1, is w = 2y’w; ~ 4y’ w.

Most interesting is the case of the intermediate energy
& = Tm,. Both beams influence the dynamics as the quantum
parameters are comparable, y; ~ y». The ratio tL/t. oscillates
in time and is larger than unity, which indicates the deviation
from LCFA. This can be seen from Fig. Ekb) where several ¢,
periods contribute to the radiation during the electron oscilla-
tion within 1/y-cone, see the schematic trajectory in Fig. [I(a).
Note that in this regime 8(¢) is always and mostly substantially
smaller than the value via LCFA. The spectrum (Fig. [J[e)) re-
veals the qualitative deviations from the LCFA result, as well
as from those in single &; or & beams. This demonstrates the
first evidence that even in a strong laser field (£; > 1), LCFA
can completely underestimate the emission in the high energy
domain.

High &, case. We consider here £, = 100 and &, = 2 and
demonstrate the LCFA can fail even though both lasers are
strong. Nontrivial radiation spectra are found when y; ~ x»,
otherwise the spectrum approaches the corresponding single
beam spectrum at y; > y; or vice versa [43]. We choose
& = 4m, sothat y; ~ y» ~ 1073, From Fig.a) one can see that
tj%/tc is far above unity in the vicinity of the smallest y (¢) regime.
This corresponds to the appearance of the smallest typical time
scale in the trajectory (3 = Ymin/(V2w2) < l/wy = 1) as
illustrated in Fig. [I{b), and leads to deviation of the spectrum
from the LCFA prediction, see Fig. [3(b). This deviation takes
place in the entire energy domain, although the small time scale
t3 appears in parts of the trajectory with low y values. Note
that the emission in a single wave &; or &, here (red and gray
lines) can be described rather well with LCFA except for the
harmonic structure in the low energy region for &, = 2.
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Figure 3. High &, case: (a) instantaneous y/(¢) and tf/tc vs time with
T = 2n/wy, & = 100 and & = 2. Radiation spectrum: (b) for
& =100and & = 2 ; (c) for & = 500 and &, = 10; (d) the relative
difference between the exact spectrum (black) and the LCFA one
(blue), respectively, for the case of (b) (triangle) and for (c) (star). The
electron energy is & = 4m,. The color code is similar to Fig. 2}

We analyze the deviation of radiation from LCFA by cal-
culating the spectra for three different directions (see Fig. ),
corresponding to different y () shown in Fig. [3(a). The exact
angular resolved spectrum was obtained by numerically solving
for the trajectory and integrating Eq. (I). For clarity, we avoid
the interference by choosing a short pulse with only four cycles
for &;. From Fig. Eka),(d) one notes that in the vicinity of y,,qx
the time-dependent angle 6(¢) and the spectrum agree well with
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Figure 4. (a-c) the angle 6(¢) at different time points with different
x as shown in Fig.3[a). The black and blue curves are for the exact
trajectory and the LCFA estimation, respectively; . = 0.143T for (a),
t. = 0.0763T for (b), and 7. = 0.0179T for (c); (d-f) Angular resolved
spectra for emitted direction corresponding to minimal, intermediate
and maximal values of y. A sin’-envelope for the laser pulse is applied
in numerical calculations with 2-cycles up and 2-cycles down; the
other parameters are the same as in Fig[3]



the LCFA prediction, because at this point tL/t. = 0.3 [cf. the
emission at , in the scatch Fig Ekb)]. Around y,,;4, however, the
particle oscillates in the 1/y-cone, as presented in Fig.[d{b). Ac-
cordingly, the emitted spectrum does not agree with LCFA but
rather features harmonic structure, see Fig. Eke). One should
notice that the fundamental frequency of the harmonics ~ 1/,
is considerably larger than both w; and w;. An extraordinary
behavior emerges near y,,;;. The angle 8(¢) shown in Fig. E[c)
is increasing more rapidly than 6 (¢). Namely, the deviation
does not stem from oscillations within the 1/y cone but from
the fact that the particle exits it much quicker as compared to
the LCFA estimation [cf. the emission at #3 in the schematic of
Fig[I[(b)]. This accounts for the fact that the spectrum presented
in Fig. fi(f) is broad and smooth, as opposed to the harmonic
structure in Fig.[[e). This new class of LCFA violation is qual-
itatively distinct from the one observed in a monochromatic
plane wave and is determined by the condition ¢y < t}, where
the real formation time scale corresponds to 8(t¢) ~ 1/y. The
typical emitted photon energy may be estimated using 7, and
the ¥ ~ 1 condition

2my?
O ©6)
mtf/2® + 2y

where ® = 1 + (yz/tf) ft , 62(')dt’ . As the second term in the

latter is ~ 1, we obtain an estimation w = 2m72/(mtf +2y). In
the LCFA case, tl% = 2y/(my), so that the familiar result w ~

gx/(1 + x) is recovered. One notes from Fig. 4(c) that #; < tj’;.
Consequently, the typical energy of the emitted photons in
Fig. [f{f) is considerably larger than the LCFA one and agrees
with the estimation w ~ 4.2m from Eq. (@). Furthermore,
the spectra shown in Fig. d{(d, e, f) have similar amplitudes,
explaining the high energy deviations in Fig. [3[b).

The described deviation from LCFA persists also at higher
laser intensities, as shown in the case of &, = 500 and & = 10
in Fig. [3[c), albeit the emission of each single beam can be well
represented by LCFA. The evaluation of the analytical expres-
sion for this case is unpractical, involving summing extremely
high numbers of Bessel functions. Hence, only the numerical
calculation is presented. The deviation here is weaker as com-
pared to Fig. Ekb) (see panel (d)), since the relative part of the
trajectory with t}% > t. is shorter, see [43]]. This discrepancy,
though quantitative rather than qualitative, bears significance
since multiple photon emissions are probable in ultrastrong
fields and even a minor difference in each single emission will
be accumulated.

An analogous deviation from LCFA due to the emergence
of a small characteristic time scale in the electron trajectory
can also happen in a simpler field configuration. We have
analyzed the radiation emitted by an ultrarelativistic electron
colliding with a single ultrashort laser pulse [43]], where the
characteristic time scale of the electron trajectory is shaped not
only by the central frequency of the laser wave, but also by the
time-envelope of the laser pulse. The comparison of the exact
radiation spectra calculated numerically with that of LCFA is
presented in Fig. [5
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Figure 5. Radiation in an ultrashort laser pulse: (a) The spectrum
with LCFA (blue) and the exact numerical calculation (black). The
inset is the relative difference between the exact and LCFA spectra; (b)
Angular resolved spectrum with a fixed azimuthal direction ¢ = 37/4
and for w = 10m; (c) 6(¢) for t; = —0.65T corresponding to y¥ = 1.25
in panel(b). The laser beam has a Gaussian profile with a standard
deviation o = 0.5 and the peak intensity is & = 50 at r = 0. The waist
size is wy = 34y, and the frequency is wy = 1.55eV. The electron with
energy of 100m counterpropagates with respect to the laser beam.

Surprisingly, even though & > 1, a difference between the
LCFA prediction and the exact result exists through the entire
spectrum, including high energies (see Fig.[5(a)). To seek the
reason of the deviation, the angular resolved spectrum with
a fixed azimuthal direction ¢ = 37/4 for the emitted energy
w = 10m is displayed in Fig.[5b). One can see that the main
difference corresponds to low ¢ value, namely to the beginning
and the end of the trajectory. The corresponding characteristic
time ¢, = 0.0613T is rather small as compared to the laser
period and thus t}%/tc = 1.59 > 1 [43]. Since t, = |F|/|F| this

can be understood as F is large in the beginning and the end
of the ultrashort pulse. Moreover, the direction of motion is
changing rapidly, see Fig. [fc), in accordance with the new
class of violation. Here, similar to the CPW case of Fig. Efkf),
the rise and the fall of the ultrashort laser pulse can influence
the emission in all spectral range, even though the quantum
parameter y () is relatively small in this region.

Conclusion. We have studied the validity of LCFA for the
description of an ultrarelativistic electron radiation in ultra-
strong laser fields, in a CPW multiple beam configuration and
in an ultrashort laser pulse. In both cases deviations from
LCFA are observed in the radiation spectra, in particular in the
high photon energy domain. This deviation results from the
emergence of extra small time scales of the electron trajectory,
which are comparable to the radiation formation time #; 2 f..
The shortness of the emerged time scales is the reason for the
disturbance of the high-energy spectral region. Moreover, we
identify a novel class of LCFA violation, where the radiating
electron leaves the 1/y-cone much faster than along the approx-
imate LCFA trajectory (so that 7 < t/ﬁ). Our discussion has a
direct implication for the calculation of electron radiation in
laser-plasma interaction. In the latter multiple beam configu-
ration may arise, when a strong laser wave impinging on the
target is reflected from the critical density, or when a counter-
propagating plasma wave is induced. Our results indicate that
LCFA should be applied with particular care for complex field
configurations in Monte Carlo simulations of the laser-matter



interaction.
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Supplemental Materials to the paper
“New class of violation of local constant field approximation in intense crossed laser pulse scenarios'’

I. RADIATION FORMATION TIME

In the paper, we employ the semiclassical Baier-Katkov ap-
proach [1] to calculate the radiation spectra in a strong external
field. The phase of a photon emission is a crucial parame-
ter in the formalism, determining the interference of radiation
emerging from different points of the trajectory. It is given by

v=Sk-x, ()
&

where k;, = w(1, n) is the emitted photon four-wavevector. In-
troducing the definition of u = w/(e — w), we have

Y =myult —n-x@)] . 2)

The trajectory in the vicinity of #y can be represented as

x(to +T) = x9 + v(tp)T + fT dr’ [U(lo + T’) - v(lo)] , (3)
0

with xo = x(#y). Therefore, the phase reads
W =muy [(1 —u(to) T —v(tp) - f dt’ [v(to + ") — v(1p)]

1 T
~miy [2—}/27+f dT'A(lo,T')} ,

“4)

where n = v(fy) is assumed, i.e. forward emission for the ultra-
relativistic electron, and A(ty, 7) = —v(ty) - [v(ty + 7) — v(fp)].
The constant phase myu(ty — n - x) is omitted as it does not
affect the interference. In order to understand the physical
meaning of A(#y, T), we rewrite it in the following way

Altg, ) = —0*(to) (cos 8() — 1) ~ %v%m)ez(r), (5)

where 6(1) < 1 is the angle between v(fy + 7) and v(#y). Having
expressed the phase i in terms of 6 and recalling the well-
known fact that the radiation formation interval corresponds to
0(t) < 1/y, the formation time may be instantly obtained.

Let us find an explicit expression for the formation time
according to the LCFA. This approximation corresponds to
expanding the velocity up to the 7> order, namely
my?

7 T, (6)

1 1
Alto,7) = =3 [olto) - 8(10)] 7= §|v|272 =

where we have assumed that the force acting on the electron is
transverse v(#y) - 0(fp) = 0, and the definition of the quantum
parameter y = y2|b|/m was employed. Combining Eq. (5) and
(6), the time dependence of the angle according to the LCFA
reads

ny
— T

OL(r) = (7
Y

Therefore, the LCFA formation time, defined by 9(1‘]%) =2/y,is
given by

2y

L
t; = .
f my

®)
Accordingly, in order to determine for a given trajectory,
whether a coincidence with LCFA is to be expected or not,
one should examine the temporal behavior of the angle 9(t)

during the emission interval. A linear dependence indicates a
good agreement with LCFA.

II. CPW SCENARIO
A. Radiation spectral distribution

Using the trajectory given in the main text, the Baier-Katkov
formula for the radiation spectral distribution can be represented
in the following form:

di aw
dwdp - 4ro (1 +u) Z zw:

2
~ (24 2u+ ) M+ (g) |M0|2] 0)

In the following, the matrix element M|, is given as a function
of sy, s, u, . We start by introducing the quantities

BO(S’ Z, ‘P) :JS(Z)e—i-W? 5

eisy ,

Bi(s,z,¢) = EJS(z) cos ¢ + iJ.(z) singp (10)

Ba(s,2.) =[S L@sing - i@ cos | e
4
where J,(z), J/(z) are the Bessel function and its first derivative,

respectively. In terms of these functions, the various compo-
nents of the matrix element take the form

M. =" By(DBo(2)Bo(3),

M, =2 3 [6Bo@)Bi(D) + £Bo(DB1(2)] Bo(3).
&

53

11
My =2 S e Bu@ B + £BDBD] BoB),
& s

2
M= ByDBo) [17z30(3) -0

where 1 = (s1,21,9), 2 = (52,22,¢) and 3 = (s3,23,0). The
indices sy, 57, 53 are related to s,, s; that appear in the final emis-
sion expression by

SIES—83 ,SH=S+53. (12)



The arguments of the Bessel function read
_ mé&usind

_ méusind
= , 22 = » <3
w1 w2

2
m-&1§u
= ‘S § CO

9.
v, Awe s

21

The angle  is expressed in terms of u, s;, s, according to

1 1
cost = — |1 — — (sjwy + s,wr) . (13)
U, cu

B. Analytical expressions for y and z,

The acceleration, corresponding to the trajectory given in
the paper, reads

. mé\wy méwy
Uy = — ——sinwt — sin wyt ,
&
mé w mérw
U =£cosw1t+£cosw2t, (14)
y
& &
2wm?
U, =ﬂ sin Awt .
£2
Hence
4.2 2,2
U §X; .
Y= 7_2 =X% +)(§—2/\{1,\/2 cos Awt + 1—22 sin? Awt. (15)
m Y

The last term is negligible, since £&; < y. Thus, the expression
appearing in the paper is obtained.

s \/Xg +x2 = 21x2 cos Awt., (16)

We further calculate the characteristic time of the electron
trajectory t, = |F |/|F |, where F is the Lorentz force. Since the
energy is constant, this quantity may be equivalently written as
t. = [0/|[§]. The acceleration ¥ was already found, and the de-
nominator ¥ is straightforwardly obtained by taking a derivative
of Eq. (14).

[0] ~ )7 \/w%/\/lz + wg)(g - 2¥1x2w1w; sin Awt, a7

and hence the trajectory characteristic time takes the form

x ()

lC I~
]X] ZX} X]Xz 12

(18)

In the cases y; ~ x» and wy > w;, the denominator can be
approximated by w, x>, leading to

X
wx2

e 19)

C. Additional spectra for the &, = 100, &, = 2 case

In the paper, we concentrated on the most interesting case of
X1 = X2, where the emission is influenced by both beams. Here

4" @ 25 (b)
33 34
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1 0.5
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Figure 1. Emission spectrum for the CPW scenario with &, = 100,¢, =
2. (a) corresponds to € = 2m, and (b) to € = 16m.. The color scheme
is the same as in Fig. 2 of the paper.
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Figure 2. The ratio t?/tc and the quantum parameter y as a function of

time for the case of & = 500 and &, = 10 presented in the paper.

we show that in the limits when y; > y» or vice versa, one
beam dominates and, accordingly, the full spectrum follows the
corresponding single laser field results. The spectrum calcu-
lated for & = 2m,, is shown in Fig. 1(a). For the given parameters
X1 = 8.13 x 1072 is substantially larger than y, = 2.26 x 1072
and, therefore, the emission spectrum (black) closely follows
the one corresponding to the first beam (gray). Since & = 100
this spectrum also coincides with the LCFA one (blue). The
numerical calculation (black dots) agrees with the analytical
one (black).

For the high energy case (¢ = 16m.), one finds y; =
9.49 x 10™* and y» = 1.94 x 1072 and thus the spectrum is
similar to the second beam emission, seeFig. 1(b). The nu-
merically calculated emission (black dots) is identical to the
emission corresponding to a single beam with &, (red curve).
The harmonic structure of the red curve is well reproduced by
the total spectrum (black dots). The LCFA result (blue curve)
follows the harmonic-averaged emission, as expected.
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Figure 3. The trajectory of the particle in the angular plane (¢ — ¢).
The blue (black) curve designates the trajectory during the rise (fall)
of the pulse. The spectrum considered in the paper is for ¢ = 37/4.

D. th/t(, for the £, = 500, &, = 10 case

Fig. 3(c,d) of the paper demonstrates that even for & = 500
and &, = 10 the total spectrum does not agree with the LCFA
calculation. In order to better understand the underlying reason
of this deviation, the quantity tj’;/tc is presented in Fig. 2. As in
the & = 100, &, = 2 case, depicted in Fig. 3(a) of the paper, the
ratio tjlz/tc is higher than 1 in the trajectory part corresponding
to low y value. Thus, a discrepancy with respect to the LCFA
is obviously expected. However, the relative weight of this
trajectory part is smaller as compared to the above mentioned
case, and therefore so is the total deviation from the LCFA
spectrum (as shown in Fig. 4(d) of the paper).

III. ULTRASHORT PULSE SCENARIO

A. Pulse shape

In order to specify the spatial and temporal shape for the
ultra-short pulse used in the paper, the following quantities are
introduced

2

ww
Xzi’yzl,ZEi,ZrE_O, (20)

and
f=—— . p= VX112 2n
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Figure 4. The ratio t]%/tc as a function of time for the ultra-short laser
pulse scenario.

The vector potential corresponding to this ultra-short and
tightly-focused pulse reads [2]

A, = Agg()fe ! ex
| f et a3 3% Pt 1%
(1 +€ ]+ € [ A T A + 0

2 4
where Ay denotes the amplitude and n = k - x and g(n7) =

e 27 is the temporal envelope. Since we consider a circular
polarization, the y component is given by A, = iA,. The
electromagnetic fields can thus be derived from the above vector
potential by

(22)

E=—iwA-~V(V. A,
w
B=VxA.

(23)

B. The particle trajectory in the ©J — ¢ plane

In the paper, we argue that the new mechanism of deviating
from the LCFA prediction can also occur in the ultrashort pulse
scenario because of the rapid rising and falling tails of the pulse.
In the following a further intuitive explanation is provided. Fig.
3 illustrates the trajectory of an electron in the ¢ — ¢ plane
corresponding to the parameters used in the paper for Fig. 5.
The polar axis stands for the angle ¢ = 3n/4, for which the
angular resolved spectrum in the paper is calculated. One
may see that the trajectory crosses this line three times, which
implies that the angular resolved spectrum should feature three
peaks, as presented in the paper (see Fig. 5(b) of the paper). In
the paper it was demonstrated that the region corresponding
to the high ¥ values are well described by the LCFA, and the
deviation stems from the small } direction. Looking closely at
the trajectory in Fig. 3 one may indeed see the dramatic change
in the trajectory at this point, in agreement with the 6(¢) curve
appearing in Fig. 5(c) of the paper.



C. t}/tc for the ultra-short laser pulse case

The deviation from the LCFA can also be proved from the
ratio th/tC depicted in Fig. 4. From the figure, one can see that
the ratio is much large than unity at the beginning and end of

the pulse. This indicates the failure of the LCFA prediction. As
we argued in the paper, the surprising point is that the failure
can induce a deviation in the high energy domain, even though
X is much smaller at the beginning and end of the pulse.
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