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Full, nonlinear general relativity predicts a memory effect for gravitational waves. For compact binary
coalescence, the total gravitational memory serves as an inferred observable, conceptually on the same
footing as the mass and the spin of the final black hole. Given candidate waveforms for any LIGO-Virgo
event, then one can calculate the posterior probability distribution functions for the total gravitational
memory and use them to compare and contrast the waveforms. In this paper, we present these posterior
distributions for the binary black hole merger events reported in the first Gravitational Wave Transient
Catalog, using the phenomenological and effective-one-body waveforms. On the whole, the two sets of
posterior distributions agree with each other quite well though we find larger discrepancies for the l ¼ 2,
m ¼ 1mode of the memory. This signals a possible source of systematic errors that was not captured by the
posterior distributions of other inferred observables. Thus, the posterior distributions of various angular
modes of total memory can serve as diagnostic tools to further improve the waveforms. Analyses such as
this would be valuable especially for future events as the sensitivity of ground-based detectors improves,
and for LISA which could measure the total gravitational memory directly.
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I. INTRODUCTION

The detection of gravitational waves enables tests of
general relativity that were not possible using the electro-
magnetic window. For example, through observations of
compact binary mergers one can verify higher order post-
Newtonian effects in the inspiral regime and probe the
nature of the final remnant black hole in the postmerger
regime [1–3]. Similarly, in the search for potential devia-
tions from general relativity, one can use the parametrized
post-Newtonian formalism as a general framework in the
inspiral regime and black hole perturbation theory in the
postmerger regime. The merger itself cannot be addressed
by these approximation schemes because nonlinear effects
of general relativity are especially important there. On the
other hand, precisely for the same reason, the merger
provides a promising place to look for potential deviations
from general relativity.

So far, there is no generally accepted framework for
describing the merger itself analogous to the parametrized
post-Newtonian framework. Several tests have been pro-
posed in the literature which attempt to probe different
aspects of the merger. However, to reliably test whether
predictions of general relativity are borne out in observa-
tions, one needs to be confident that the theoretical wave-
forms used in these tests capture predictions of the theory to
a sufficiently high degree of accuracy. Although so far there
is no generally accepted framework to test the accuracy of
theoretical predictions describing the merger itself, several
tests have been proposed in the literature to probe different
aspects of these predictions. These include, for example,
various consistency checks between the inspiral and the
merger [4,5], extending the idea of black hole spectroscopy
[6–11] toward the merger [12,13], and also tests of
phenomenological waveform models for the merger [1].
In this paper, we suggest that the total gravitational memory
can be used as a new tool in the same direction.
General relativity predicts that memory associated with

gravitational waves emitted in compact binary coalescences
would be generically nonzero. For the interferometric
gravitational wave detectors, this corresponds to a perma-
nent displacement of the test masses due to the flux
of gravitational waves across the plane of the detector
[14–18]. See also [19–26] for later work discussing
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prospects for detecting memory and further calculations of
the memory within the post-Newtonian framework.
Advances in numerical relativity toward calculating
memory in numerical simulations of black hole mergers
are given in [27,28]. A direct measurement of the memory
would be a probe of nonlinear aspects of general relativity,
and also of the merger, since the effect is the largest during
this phase. However, thus far, we do not have a direct
measurement either for single events, or collectively for a
population of events [29–33]. But the total gravitational
memory is a bonafide observable in full general relativity,
expressible as a functional of the gravitational wave strain in
a detector. Therefore, assuming general relativity, it is
possible to infer its value.
As we now explain, this inference relies on the waveform

model used. For a binary system, a gravitational waveform
received at a detector is parametrized by at least ten
intrinsic parameters (without restricting oneself to general
relativity): the two component masses m1 and m2, the
individual spins of the two components S1 and S2, and two
additional parameters in case the system is in an eccentric
orbit (namely, the eccentricity and the orientation of the
elliptical orbit). The total mass is denotedM ¼ m1 þm2. It
is conventional to use the dimensionless spin parameter
χi ¼ Si · L̂=m2

i (i ¼ 1, 2) instead of the spin itself, where L̂
is the unit vector in the direction of the orbital angular
momentum vector L. Similarly, the effective spin χeff
which appears in several waveform models is a weighted
sum of the individual spins: χeff ¼ ðm1χ1 þm2χ2Þ=M. The
dimensionless spin components perpendicular to L̂ are
denoted χ⊥1;2. In addition to the masses and spins, we will
have four extrinsic parameters. This includes the luminosity
distance to the source DL and three additional extrinsic
parameters which determine the orientation of the source.
Let us denote the intrinsic parameters collectively by λ⃗ and

the four extrinsic parameters by A⃗. If one or both of the
compact objects is a neutron star, we will have further
parameters depending on the structure of the star. Given
these parameters, we can determine the gravitational wave-

forms hþ;×ðt; λ⃗; A⃗Þ for the two polarizations. Given, in
addition, the orientation of the detector which requires three
additional angles collectively denoted Θ⃗, the received strain
hðt; λ⃗; A⃗; Θ⃗Þ in a detector can be calculated by a suitable
projection of hþ;×. One can show that one of the angles in A⃗

is degenerate with an angle in Θ⃗, namely, the polarization
angle (see, e.g., [34]). Consequently, there are only three

independent parameters in A⃗: the luminosity distance DL,
the inclination angle ιwhich is the angle between the source
axis and the line of sight to the detector, and a polar angle
φ0. The three parameters in Θ⃗ are the sky location of the
source in the detector frame ðθ;ϕÞ and the polarization
angle ψ . Given the measurement of the strain in a detector,
one can match the most accurate available model and

determine the values or, more precisely, the posterior
probability distributions, of these parameters. These dis-
tributions are among the most important results of the
observation, providing us with the measured values of these
parameters that describe the binary.
Once we have the probability distributions of the signal

parameters, assuming general relativity, we can use it to
calculate values of other important observables associated
with the binary. Following a general convention, we will
refer to the values (or rather, the probability distributions) of

ðλ⃗; A⃗Þ asmeasured quantities, and those of additional source
observables that can then be deduced as inferred values. The
most widely used inferred observables for a binary are the
final mass Mf, the final spin Sf, and the recoil (or kick)
velocity v of the remnant. The total gravitational wave
memory is on a similar footing as these: given thewaveform
parameters and a particular waveform model, values of
various modes in the angular decomposition of the memory
can be uniquely inferred assuming general relativity.
The first goal of this paper is to carry out this procedure

in detail and to obtain the posterior distributions of the
memory modes for the binary black hole merger events
reported in the first Gravitational Wave Transient Catalog
(GWTC-1) [35]. Now, the properties of the commonly used
inferred observables—the final black hole parameters such
as Mf;Sf; v—have important astrophysical and theoretical
applications. Gravitational memory is likely not of direct
astrophysical interest. Nonetheless, since it is a genuine
observable in general relativity, it has interesting theoretical
implications. In particular, differences in the memory for
different waveform models are significant. If, for example,
for a given event, the memory turns out to be statistically
different for different waveform models, they cannot both
be accurate approximations to exact general relativity.
Therefore, the statistical difference would point to a differ-
ence between the underlying physical assumptions of the
models, indicating that these models can be further
improved. As detectors become increasingly sensitive,
these differences might become more significant and can
play a useful role in improving waveform models. The
second goal of this paper, then, is to advocate the use of the
memory as a diagnostic tool for investigating physical
differences between different waveform models.
The plan for the rest of the paper is the following. In

Sec. II, we shall explain the basic formalism for calculating
the linear and nonlinear parts of the memory. Section III
applies this to the events published by the LIGO and Virgo
collaborations, and finally Sec. IV concludes with a
discussion of the results and possible future applications
of the memory.

II. CONSTRAINTS ON GRAVITATIONAL
WAVEFORMS AND THE MEMORY

We begin with a description of the gravitational wave
signal emitted by a compact binary source. The starting point
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for understanding the behavior of gravitational radiation in
numerical relativity and gravitational waveformmodeling is
the Weyl tensor component Ψ4 ¼ Cabcdnam̄bncm̄d. Here
Cabcd is the Weyl tensor, and ðla; na; ma; m̄2Þ is a suitably
chosen null-tetrad adapted to spheres centered on the source.
Thus, la and na are, respectively, the outgoing and ingoing
null normals to these spheres, while the complex vector field
ma is tangential to the spheres and adapted to the source axis,
and m̄a is the complex conjugate of ma.1 The only non-
vanishing inner products arem · m̄ ¼ 1 and l · n ¼ −1. The
notion of spin weight plays an important role. This refers to
the behavior of quantities under “spin rotations”m → eiψm.
A quantityF is said to have spinweight s ifF → eisψF under
this transformation. Thus,ma itself has spinweightþ1while
m̄a has s ¼ −1. TheWeyl tensor componentΨ4 has s ¼ −2.
The two polarizations of the gravitational wave strain

hþ;× are related to Ψ4 according to

Ψ4 ¼ −ḧ where h ≔ hþ − ih×: ð1Þ

The emitted gravitational wave signal at large distances
from the source can be expanded in terms of spin-weighted
spherical harmonics,

h ¼ 1

DL

X∞
l¼2

Xl
m¼−l

hlmðt; λ⃗Þ−2Ylmðι;φ0Þ: ð2Þ

Here −2Ylm is a spin-weighted spherical harmonic of spin
weight −2, and DL is the luminosity distance from
the source. See, for example, [36,37] for a discussion of
the integrations in time required to go from Ψ4 to _h and
eventually to hþ;×.
As explained in Sec. I, hþ;× are functions of time, and

they are parametrized by ðλ⃗; ι;φ0; DLÞ. The signal hðtÞ seen
at a detector is

hðt; λ⃗; A⃗; Θ⃗Þ ¼ Fþðt; θ;ϕ;ψÞhþðt; λ⃗; A⃗Þ
þ F×ðt; θ;ϕ;ψÞh×ðt; λ⃗; A⃗Þ: ð3Þ

Here Fþ;× are the detector beam pattern functions.
Numerical simulations provide us with the mode ampli-

tudes hlm for a selected set of points in parameter space and
for a few chosen modes for which Ψ4 can be extracted
reliably. For analyzing gravitational wave signals, it is
much more practical to construct analytical models that
interpolate between these chosen points in parameter space,
and then use these models for gravitational wave mode
amplitudes. Significant advances have been made in
addressing this interpolation problem (see, e.g., [38] for

recent work in this direction). Two particular waveform
models have been used extensively for interpreting gravi-
tational wave data. The first is the effective-one-body
(EOB) framework originally suggested in [39]; see [40]
for a review and, for example, [41–47] for further develop-
ments. The second commonly used models are the so-
called phenomenological models originally proposed in
[48]; see, for example, [49–54] for further developments. It
is beyond the scope of this paper to review the basic ideas
underlying these models, comparisons between them, and
their relative strengths and weaknesses. Rather, we will use
them to perform “null tests” by first assuming that they both
correctly capture general relativity, with sufficient accuracy
for detection and parameter estimation in binary mergers,
and then comparing their predictions for other observables
as a diagnostic tool for potential systematic errors. In
addition to the EOB and phenomenological models, the
surrogate models are also noteworthy [55–57]. These
models are directly trained against waveforms obtained
from numerical relativity simulations, and represent an
accurate and efficient method of capturing the output of
these simulations. As these models become more widely
used in gravitational wave searches and parameter estima-
tion, the analysis of this paper can be easily extended to
these waveforms.
Our analysis is based on an infinite tower of constraints

on gravitational waveforms, imposed by certain “balance
laws” in full, nonlinear general relativity. Let us begin with
the easier cases, namely, the balance laws for energy E and
linear momentum Pi. Let us first note that the total fluxes,
ΔE and ΔPi, carried away by the gravitational waves are
given by

ΔE ¼ D2
Lc

3

16πG

Z
∞

−∞
dt

I
dΩj _hj2; ð4Þ

ΔPi ¼
D2

Lc
2

16πG

Z
∞

−∞
dt

I
dΩx̂iðι;φ0Þj _hj2: ð5Þ

Here x̂1 ¼ sin ι cosφ0, x̂2 ¼ sin ι sinφ0, x̂3 ¼ cos ι, and
dΩ ¼ sin ιdιdφ0.

2 Note that the fluxes ΔE and ΔPi are
completely determined by the waveform h. Given the initial
(i.e., ADM) mass and the waveform, as we explain below
Eq. (9), the balance laws determine the energy momentum
of the final black hole from which one can extract its mass
Mf and its recoil velocity v.
Now, since the radiated energy, the recoil velocity, and

the final mass are all parameters of direct astrophysical
interest, there is an extensive literature on calculating these
quantities as functions of the initial parameters [57,59–61].
These functions are typically obtained as fits to the results

1For a nonprecessing system, the source axis would be the
direction of the orbital angular momentum, while for a precessing
system the direction of the total angular momentum provides an
approximately conserved direction.

2A corresponding formula also exists for the flux of angular
momentum, but it involves several subtle issues [58]; we shall not
discuss it in this paper.
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of numerical simulations. But as indicated above, we can
also calculate these quantities using the model waveforms
and the initial parameters that label them. If these wave-
forms are to accurately represent general relativity, the
answers must agree with the fits from numerical relativity.
Note that it is not obvious that the two calculations must
necessarily agree. As an example of the gap between the
two calculations, consider the mass Mf and the spin Sf of
the final black hole. In numerical relativity, these are
typically calculated using geometrical fields on black hole
horizons rather than waveforms in the asymptotic regions
(see, e.g., [62,63]). While one expects the two sets of values
to agree at late times, their equality has not yet been
established mathematically (because of technical issues
concerning the structure at future timelike infinity iþ).
Therefore, a comparison between the two would serve as a
useful check on overall consistency. In addition, as we
discuss in Sec. III A, one can view such comparisons as
accuracy tests for the waveforms. Any disagreements, even
if not significant for current gravitational wave data
analysis purposes, might point directions leading to
improved waveform models. Eventually, as detectors
improve in sensitivity, accuracy requirements on the wave-
forms become more stringent. Thus, such improvements
might be part of the various ingredients in waveform
modeling necessary in the coming era of high precision
gravitational wave astronomy.
The main focus of this paper is on the nontrivial

constraints on the waveforms obtained from the fluxes
of supermomenta which, as we shall now see, are closely
connected with the total gravitational memory, which is
given by

Δhðι;φ0Þ ¼ hju¼∞ − hju¼−∞: ð6Þ

In practice, h can be calculated by performing two time
integrals of Ψ4. This procedure involves two integration
constants [36,37]. The first vanishes in binary coalescen-
ces, since the Bondi news _h goes to zero in the distant past
as well as distant future (just as Ψ4 does). The second is
generally used to set hju¼−∞ ¼ 0. However, since the total
memory Δh is a difference, its value is independent of the
choice of this integration constant; it is a well-defined
observable in general relativity, without any further inputs.
The value of Δh is governed by the supermomentum

balance laws, associated with supertranslations. More
precisely, the presence of gravitational waves in the
asymptotic region forces one to enlarge the four-dimen-
sional group of translations of flat space-time to an infinite
dimensional group of “angle-dependent translations,”
called supertranslations [64,65]. Just as there are energy
momentum balance laws associated with asymptotic trans-
lations, Einstein’s equations imply that there are super-
momentum balance laws associated with supertranslations
[66]. As shown in [67], under assumptions that are

normally made in the analysis of compact binary coales-
cence, they imply

ð2Δh ¼ −
2G
DLc2

�
M −

Mf

γ3ð1 − v · x̂=cÞ3
�
þDL

2c

Z
∞

−∞
dtj _hj2:

ð7Þ

Here, M is the total initial mass of the system, Mf, the
mass of the final black hole, v, the recoil velocity,
γ ≔ ð1 − v2=c2Þ−1=2, and, ð, the angular derivative, whose
action on a scalar F with spin weight s is a spin weight
sþ 1 scalar, given by [68,69]

ðF ≔ −
1ffiffiffi
2

p ðsin ιÞs
�∂
∂ιþ

i
sin ι

∂
∂φ0

��
F

ðsin ιÞs
�
: ð8Þ

Since Δh is the strain, it has spin weight −2. Thus, the left-
hand side of Eq. (7) has spin-weight 0, consistent with the
right-hand side.
Note that both sides of Eq. (7) have a ðι;φ0Þ dependence.

Therefore, we can carry our mode decomposition of this
equation using spherical harmonics,

ClðΔhÞl;m ¼ −
2G
DLc2

�
M −

Mf

γ3ð1 − v
c · x̂Þ3

�
l;m

þDL

2c

�Z
∞

−∞
dtj _hj2

�
l;m

; ð9Þ

where

Cl ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

p
: ð10Þ

The l ¼ 0 and l ¼ 1 components of (9) provide us the
balance laws for energy and momentum. (Note that Cl ¼ 0
in these cases.) As we remarked just after Eq. (5), if we
know the initial mass M, we can use these four balance
laws together with the overall normalization factors for the
flux of total energy and momentum given in (4) and (5) to
determine the mass Mf and the recoil velocity of the final
black hole, Once M;Mf, and v are known, the only other
field in Eq. (9) is the waveform h. Therefore, the l ≥ 2
modes of Eq. (9) provide an infinite tower of constraints to
be tested on the h provided by waveform models.
However, currently the models do not incorporate the

total memoryΔh that appears on the left side of (9), whence
the constraints are violated for l ≥ 2. But the right-hand
side is dominated by aspects of the waveform that, one
expects, are well modeled. For example, the leading
contribution to the right-hand side comes from the
ð2;�2Þmode of the waveform, which all waveform models
incorporate. Hence, we can turn around the constraint, and
use it to calculate the memory using the well-modeled
aspects of the waveform. Thus, Eq. (9) serves as the
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primary equation which determines the total memory and
its mode decomposition. (The first term on the right side is
often called the “linear” memory and the second term the
“nonlinear” memory.)

III. INFERRED MEMORY FOR THE
OBSERVED EVENTS

For the observed events, parameter estimation using
EOB and phenom models provides us with two posterior
distributions for the initial parameters. Given either of them
and the corresponding waveform, we can calculate the
probability distribution of different modes of the memory.
We can do this by taking sample points from the posterior
and then using Eq. (9) to calculate the memory for each
sample. This would then give us two posterior distributions
of the inferred memory for any given event. We can then
check if the differences in the inferred memory between the
two models is less than the statistical errors. In all of the
following, we do not ourselves calculate the posterior
probability distributions, but rather we use the publicly
available posterior samples released with the GWTC-1
catalog [35].
The first step in this procedure is to use the energy-

momentum flux to calculate the remnant parameters. This
procedure provides us with a posterior probability distri-
bution for the mass and the recoil velocity of the final black
hole. We carry out this step in Sec. III A. In Sec. III B, we
use these values in conjunction with Eq. (9) to arrive at a
streamlined procedure to calculate the inferred values of
various angular modes of the memory. In Sec. III C, this
procedure is used to obtain the probability distributions for
the leading memory modes in the GWTC-1 events.
Differences between these distributions can be used as
diagnostic tools to detect potential discrepancies and
further improve the waveforms.

A. The remnant mass Mf and recoil velocity v

As we discussed in Sec. II, given a waveform model we
can use Eqs. (4) and (5) to calculate the remnant mass Mf
and recoil velocity v. One can then compare these values
with the fits to masses and recoil velocities provided by
numerical relativity using fields at the horizon [57,61] and
the posterior probability for the input parameters provided
by the model. We use the fit NRSur7q4Remnant, which is
fit to precessing systems with mass ratios up to 4. This
comparison provides a first check on the model waveforms.
Assuming that each waveform agrees with the correspond-
ing numerical relativity prediction, one can compare the
predictions of the two waveform models. As we will see,
this comparison can bring out the differences between the
models, thereby providing guidance for further improve-
ments. Determination of Mf and v will also serve a second
purpose: Knowing their values, we will be able to calculate
the l ≥ 2 components of the memory in Sec. III B.

To determine Mf and v, we need to use the flux
expressions Eqs. (4) and (5). However, there is a subtlety:
since waveforms are readily available only for finite time
intervals, in practice we have to truncate the time integrals
in flux expressions to finite intervals. In the distant future,
truncation can be carried out readily without incurring
excessive errors because the waveform decays exponen-
tially. However, in the past the flux falls off slowly. For the
phenom model, the waveform is available for sufficiently
early times and hence the error due to truncation can be
made negligible. However, for the EOB model, we are
unable to generate the waveform at sufficiently early
times; the implementation in the LAL simulation software
library [70,71] currently requires the reference frequency
and the starting frequency to be identical. The reference
frequency—the frequency at which time-dependent param-
eters are quoted—used in the GWTC-1 catalog is 20 Hz. It
is somewhat more complicated to go to lower frequencies,
and we will leave this to future work. While the lower
frequencies are unimportant for detection and parameter
estimation, their contribution to total radiated energy (4) is
not negligible. Therefore, to reduce this truncation error, we
will add the energy radiated away from 0 to 20 Hz to 0PN
order. This can be calculated analytically using the formula

ΔE0PN ¼ M
ν

2
ðπGMfstartÞ2=3; ð11Þ

which describes the 0PN radiated energy ΔE0PN from
retarded time −∞ to when the system reaches a frequency
of fstart. Here ν ¼ m1m2=M2 is the symmetric mass ratio.
Using this procedure, for each of the two models, we can
calculate the remnant parameters in two different ways:
(i) using the energy and momentum fluxes for each
waveform model and (ii) using the numerical relativity
fits on the posterior distribution of the input parameters, as
determined from the respective model. Adding (11) sig-
nificantly improves the agreement between final mass
calculated from EOB flux and the fits. For further details,
see the Appendix.
This procedure was carried out for all events considered

in this paper. Figure 1 illustrates the results with the
posterior distribution of Mf in the case of GW150914.
This is based on the posterior samples available in the
GWTC-1 catalog [35], for both the IMRPhenomPv2 and
SEOBNRv3 waveform models; these are all described in
further detail in Sec. III C.
For each model, there is an excellent match between

(i) the final mass as calculated from the flux and (ii) the
numerical relativity (NR) fits from same posteriors.
However, there is a slight disagreement between the two
models. Although it is not statistically significant, there is
an interesting qualitative difference: While the phenom
plots are a near-Gaussian, the EOB plots show a “double
hump.” The origin of this difference lies in the differences
in parameter estimation of the two models, particularly in
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the way precession is treated. This can be seen in Fig. 2
which shows the posterior distributions of the two compo-
nents of the dimensionless spins, perpendicular to the
orbital angular momentum. The source of the bimodality
of the EOB final mass can be traced back to that in this
posterior distribution which also shows two modes. Taking
samples from each mode in Fig. 2 and comparing with the
corresponding points for the EOB distribution in Fig. 1
reveals that the peaks in each of these distributions are
correlated. The bottom right peak in Fig. 2 corresponds to
the higher peak in Fig. 1, while the top left peak in Fig. 2
corresponds to the lower peak in Fig. 1. In the phenom
model on the other hand, the double hump is absent both in
the posterior of spin distributions and the posterior dis-
tribution of the inferredMf. These differences are all within
1σ of the distributions, and therefore they are not sta-
tistically significant. However, this points to differences
that might become significant with even louder events that
we are likely to see as the sensitivity of the detectors
increases.
The recoil velocity v, on the other hand, shows com-

pletely different behavior in each model depending on
whether it is calculated using (i) the momentum flux or
(ii) using numerical fits. In addition, the values predicted in
the two models using momentum flux are also quite
different as seen in Fig. 3. While the kicks from the flux
of Phenom are below numerical precision, in EOB, the
norm of the kick is v=c ∼ 10−6. The NR fits, by contrast,
yield a much larger kick, v=c 10−3. However, the disagree-
ment between the models and NR is not surprising because
neither model contains the “higher modes" that are impor-
tant for calculating the kick. They also do not model the
asymmetries between the ðl;�mÞ modes which can give
rise to superkicks [72]. Fortunately, for calculation of

memory ðΔhÞlm in Sec. III B, this discrepancy does not
play a role because even with a recoil velocity v=c ∼ 10−3,
the first term on the right-hand side of (9) that contains the
recoil velocity is negligible compared to the second term.
For definiteness, we will present all results using the recoil
velocity as calculated by the fluxes of the waveform model
being used.

B. Memory

For an elliptically polarized gravitational wave, one can
choose a frame (aligned with the principal polarization
axes) in the plane transverse to the direction of propagation
such that hþ;× are given by

hþ ¼ ηðtÞ
�
1þ cos2 ι

2

�
cosð2φ0 þ 2φðtÞÞ; ð12Þ

hþ ¼ ηðtÞ cos ι sinð2φ0 þ 2φðtÞÞ: ð13Þ

Here ηðtÞ is a slowly varying amplitude, φðtÞ is the orbital
phase, and φ0 is an initial phase. Before we apply the
described procedure to get the distribution of memory
generally, consider the simple case of an absence of
precession and higher modes. The waveform is dominated
by the l ¼ 2; m ¼ �2 modes. In this case, the complex
combination h ¼ hþ − ih× is given by a combination of the
ð2;�2Þ spin-weighted spherical harmonics,

h ¼ e2iφ0
ð1þ χÞ2

4
h0ðtÞ þ e−2iφ0

ð1 − χÞ2
4

h⋆0ðtÞ
∝ −2Y2;2ðι;φ0Þh0ðtÞ þ −2Y2;−2ðι;φ0Þh⋆0ðtÞ; ð14Þ

where h0 ¼ ηðtÞe−2iφðtÞ and χ ≔ cos ι. When we calculate
j _hj2 in the right-hand side of Eq. (9), we will obtain
products of 2Y2;�2 which can be expanded in terms of the
standard spherical harmonics including in particular

FIG. 2. GW150914: posterior distributions for the
perpendicular dimensionless spin components χ⊥1;2. The phenom
model uses a single effective spin while the EOB is parametrized
by the individual spins. This gives rise to the bimodal distribution
for χ⊥1;2 in the EOBmodel, which in turn leads to the double hump
in the posterior distribution of the final mass in Fig. 1.

FIG. 1. GW150914: distribution of the final mass using the
IMRPhenomPv2 and SEOBNRv3 models, compared with the
numerical relativity fits applied to each of the posterior distri-
butions. Unlike the kick-velocity results shown in Fig. 3, the
results for the final mass using the two models are mostly
consistent with the numerical relativity results. The reason is that
the energy flux is dominated by the l ¼ 2 modes which are
accurately modeled.
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Y20ðι;φ0Þ and Y40ðι;φ0Þ. Since the original waveform
model does not include these modes, the model waveform
does not satisfy Eq. (9) and therefore it is not consistent
with general relativity. To address this situation, an obvious
approach is to modify the waveform model by adding these
specific memory modes. This process can be continued
iteratively and will converge. In practice, as we shall shortly
discuss, the first iteration will suffice and we shall not
consider higher iterations in this paper.

The same procedure works for a more general model
consisting of higher modes. In general, given that j _hj2 has
spin weight 0, it can be expanded as

j _hj2 ¼
X∞
l¼0

Xl
m¼−l

αlmYlmðι;φ0Þ: ð15Þ

The coefficients αlm appearing in this expansion can be
written in terms of the 3j-symbols as

αlm¼
X∞

l1;l2¼2

Xl1
m1¼−l1

Xl2
m2¼−l2

hl1;m1
h⋆l2;m2

I
−2Yl1m1

ðι;φ0Þ−2Y⋆
l2m2

ðι;φ0ÞY⋆
lmðι;φ0ÞdΩ

¼
X∞

l1;l2¼2

Xl1
m1¼−l1

Xl2
m2¼−l2

hl1;m1
h⋆l2;m2

ð−1Þmþm2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1þ1Þð2l2þ1Þð2lþ1Þ

4π

r �
l1 l2 l

m1 −m2 m

��
l1 l2 l

−2 2 0

�
: ð16Þ

With the right-hand side of Eq. (9) now understood, it is
straightforward to finally obtain the memory Δh. This can
be projected onto a particular detector response function,
though we shall not do so here.
Given any waveform model, we have thus a straightfor-

ward procedure to calculate the final mass and recoil
velocity, as well as the memory. An important point is
that all known waveform models are incomplete in two
respects: (i) the waveform is truncated in practice to finite
time/frequency intervals and (ii) not all modes are included
in the model.
The truncation to finite time/frequency intervals throws

out the early inspiral region of the waveform. We saw in

Sec. III A that this can lead to significant errors because
radiated energy converges rather slowly in the past.
Similarly, certain modes of the memory converge slowly
and are thus prone to significant truncation errors. To
reduce these errors, we employ the same strategy as in
Sec. III A: we add the leading order post-Newtonian
contribution to the low frequency portion of the integral,
analytically. More precisely, in the expression of the
dominant contributions to memory given in [73], we
substitute the right-hand side of Eq. (11) for the radiated
energy to obtain the contribution from 0 Hz to the starting
frequency fstart. Finally, by comparing the memory calcu-
lated with varying points of truncation, we estimate the

FIG. 3. GW150914: posterior distribution for the recoil velocity (in units with c ¼ 1) using the IMRPhenomPv2 (left panel) and
SEOBNRv3 (middle panel) models, and also accurate fits to numerical relativity calculations (right panel). We note large discrepancies
between both the models and the accurate numerical relativity results; the distribution in the left panel has the bulk of its support for
v=c ∼Oð10−16Þ (making it consistent with being purely numerical noise), the middle panel forOð10−6Þ, while the correct answer in the
right panel has Oð10−3Þ. As discussed in the text, this is not surprising because neither of the models attempts to model the higher
modes, or the asymmetry between the ðl;�mÞ modes, that are important for the kick velocity. However, the discrepancy between the
phenom and EOB models is also interesting to note.
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corresponding error. All results reported have a starting
frequency of 20 Hz for EOB and 1 Hz for Phenom, and
errors much smaller than the standard deviation. The reason
for the truncating EOB is at 20 Hz is technical and already
discussed in Sec. III A. The second truncation arises
because the available waveforms include only a finite
number of modes. Therefore, instead of the full summation
in Eq. (2), we have a partial expression

h ¼ 1

DL

X0

ðl;mÞ
hlmðt; λ⃗Þ−2Ylmðι;φÞ: ð17Þ

Here the summation symbol Σ0 refers to a sum only over the
available modes for the waveform model. Thus, if
fðl1; m1Þ; ðl2; m2Þ…g is the list of available modes, then

X0

ðl;mÞ
≔

X
fðl;mÞ∈fðl1;m1Þ;ðl2;m2Þ…g

: ð18Þ

The expression for j _hj2 is then similarly modified to be a
sum only over a subset of the modes obtained by combi-
nations of the available modes. The expressions for the
mode coefficients αlm of course remain unchanged.
In practice, the list of available modes differs for

different models. For the physically correct waveform
implied in Eq. (2), the constraint equation is, by definition,
always satisfied. This is however not the case for the model
waveform of Eq. (17). Here, the constraint will generally
not be exactly satisfied and generally additional modes
need to be included in order to do so. Moreover, the
memory predicted by this procedure will differ for different
waveform approximants. If the predicted memory for any
two approximants turns out be significantly different, then
it is clear that either one or both approximants can be
improved.
Once the additional modes have been included, it is of

course possible to perform a further iteration and obtain
further modifications to the waveform model. In principle,
we should continue this iteration till we converge to a
waveform which exactly satisfies the constraint. In practice,
going beyond the first iteration is unnecessary for gravi-
tational wave observations (see, e.g., [31] where the second
iteration is referred to as “the memory of the memory”). We
shall restrict ourselves to the first iteration in this paper.
This has two immediate applications as discussed pre-

viously. First, for any gravitational wave observation, one
can treat the memory as just another inferred observable on
the same footing as the finalmass, spin, or the recoil velocity.
Thus, just as one obtains posterior distributions for the
masses and spins, we can calculate the posterior distribu-
tions for the memory modes. The second application,
independent in principle of any detections, is to use this
as a diagnostic and compare different waveform models.
In comparing two waveform approximants following the

above procedure, there are two possible approaches. The

first is to simply compute the various memory modes Δhlm
in a discretely sampled parameter space. In this case, we
can calculate the differences between the memory for two
approximants as a function over parameter space. This
comparison would then be a property only of the waveform
independent of any features of gravitational wave detectors
or detections (though of course, one could evaluate whether
the resulting differences could be directlymeasurable by any
detectors). This procedure, while straightforward and nec-
essary, will be left to futurework. Belowwe shall present the
results of a different procedure which relies on the observed
merger events. Associated to eachmerger event and for each
waveform approximant, it is possible to calculate the
posterior probability distributions of the model waveform
parameters. From these posterior distributions, we can
straightforwardly calculate the posterior distribution of
the differentmemorymodesΔhlm. Any differences between
these posterior distributions would indicate differences
between the underlying waveform models. Furthermore,
these differences are in a region of parameter space that is, by
construction, astrophysically relevant. In this procedure, the
original posterior distributions of the waveform parameters
depend on the gravitational wave detectors. The more
sensitive a network (either in terms of the detector noise
properties or the network configuration) would generally
imply narrower posterior distributions.

C. Results for the GWTC-1 events

We now implement this procedure for the binary mergers
listed in GWTC-1 [35,74]. The catalog lists binary merger
events from the first and second observational science runs
of the LIGO and Virgo observatories as reported by the
LIGO and Virgo Collaborations. The first observational
run (01) covers the duration from September 12, 2015 to
January 19, 2016 and three binary black hole mergers are
reported in GWTC-1 for this period. The second observa-
tional run (O2) covers the duration fromNovember 30, 2016
to August 25, 2017. This period has seven binary black hole
mergers and a binary neutron star merger as reported in
GWTC-1. For each of the events, the LIGO-Virgo
Collaboration has released the results of the parameter
inference studies with different waveform models, in par-
ticular with different variants of the Phenom and
EOBmodels. Several other credible events apart from these
have been reported in the literature. We note here in
particular the events reported in [75–77] and in the two
Open Gravitational Wave Catalogs (denoted 1-OGC and
2-OGC) [78,79]. The analysis of this paper could, of course,
be carried out for any of these additional events as well.
Since our goal is to compare different waveform models,
herewe use the results fromGWTC-1 only because it reports
posterior distributions for both the phenom and EOB
waveform models. Specifically, the posterior distributions
use the IMRPhenomPv2 [52,53,80] and SEOBNRv3 [81–
83]. Both of these are complete inspiral-merger-ringdown
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models including precession. IMRPhenomPv2 uses a single
effective spin parameter, while SEOBNRv3 uses individual
spins for the two black holes. Both of these models use only
the l ¼ 2 modes and are in fact based on applying suitable
time-dependent rotations to the l ¼ 2; m ¼ �2modes of an
underlying nonprecessing model. These rotations can lead,

in principle, to all values of m, that is, −2 ≤ m ≤ 2 (though
the (2,0) mode is generally not well modeled by a single
effective spin parameter [84]). Thus, following the rules of
addition of angular momentum, it is easy to verify that j _hj2
(which leads to the dominant memory contributions) con-
tains modes with 0 ≤ l ≤ 4 and potentially all values of m.

FIG. 4. The posterior distributions for the total memory in the (2, 0), (2, 1), and (4, 0) modes for the three O1 events. The best fit values
of the individual black hole masses for GW150914, GW151012, and GW151226 are, respectively, ð35.6 M⊙; 30.6 M⊙Þ
ð13.6 M⊙; 15.2 M⊙Þ, and ð7.7 M⊙; 8.9 M⊙Þ. As in the main text, we emphasize again that this not a direct measurement of the
memory, but these are instead histograms of the inferred values of the memory relying on waveform models and standard general
relativity. The first two events are consistent with nonspinning initial black holes while there is some evidence for moderate spins for
GW151226. The red and green vertical dashed lines show the 90% credible intervals (centered around the median) for the corresponding
distribution.
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FIG. 5. Posterior distributions of the inferred values of the memory for some selected modes. This figure presents results for five of the O2
events, namely, GW170104, GW170608, GW170809, GW170814, andGW170818, in each case for both the EOB and phenommodels. Each
row of figures corresponds to a particular event, while the first, second, and third columns refer to the (2,0),(2,1), and (4,0) modes, respectively.
These are all systems with moderate mass ratios, with the best fit individual masses being, respectively, ð20.0 M⊙; 21.4 M⊙Þ,
ð11.0 M⊙; 7.6 M⊙Þ, ð35.0 M⊙; 23.8 M⊙Þ, ð30.6 M⊙; 25.2 M⊙Þ, and ð35.4 M⊙; 26.7 M⊙Þ. All of these are consistent with small
individual spins.Note thatwhile theposteriors ofEOBandphenomgenerally agree, there is a largedifference for the (2,1)mode forGW170814.
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We begin with the three O1 events labeled GW150914,
GW151012, and GW151226. For each of these events, the
distributions of Δh20, Δh21, and Δh40 are shown in Fig. 4.
To obtain these results, we have used Eq. (9). For each
parameter space point (as determined by the posterior
distribution samples provided for the GWTC-1 events)
and for the appropriate waveform approximant, the modes
of the waveform hlm can be calculated at the location of the
detector. In addition, the waveform could be projected onto
specific detector response functions, but we shall not do so
here. The waveform then determines all the terms on the
right-hand side of Eq. (9) [using Eq. (15) and calculating
separately the remnant mass and recoil velocity]. In this
way, for each choice of mode indices ðl; mÞ, the memory
Δhlm can be calculated.
For GW150914 and GW151226, there is moderate

disagreement between the phenom and EOB results,
especially for the (2, 1) mode. On the other hand,
GW151012 shows excellent agreement between the differ-
ent models. The results for five of the O2 events are shown
in Fig. 5. While there are some minor discrepancies for the
(2, 0) and (4, 0) modes, it is evident that again, as for
GW150914 and GW151226, the (2, 1) mode shows the

largest discrepancies for several of the O2 events. All of
these five events have moderate mass ratios and are
consistent with the initial black holes being nonspinning,
and thus the subdominant modes due to precession are not
likely to have large amplitudes.
It is straightforward to trace back which modes of the

waveform hlm have nonvanishing contributions to a given
memory mode Δhlm. From Eq. (16), we see that hl1m1

and
hl2m2

can contribute to Δhlm only if

�
l1 l2 l

m1 −m2 m

�
≠ 0: ð19Þ

From the properties of the 3j-symbols, we must then have
m ¼ m2 −m1. The (2,1) memory mode must arise from
mode combinations where m1 and m2 differ by unity. An
example of an allowed mode pair would then be products of
the (2, 2) and (2, 1) modes. On the other hand, for the (2, 0)
or (4, 0) mode, we would have m2 ¼ −m1. This includes,
for example, products of the (2,2) and ð2;−2Þmodes which
are better modeled, unlike the (2, 1) mode which is
generated by the time-dependent rotations mentioned

FIG. 6. Posterior distributions of the inferred memory for the (2, 0), (2, 1), and (4, 0) modes. The respective modes are shown in the
first, second, and third columns for two of the O2 events GW170729 and GW170823, and for the IMRPhenomPv2 model. The
individual masses for these events are, respectively, ð50.2 M⊙; 34.0 M⊙Þ and ð39.5 M⊙; 29.0 M⊙Þ. GW170729 has moderately strong
evidence of non-negligible spins.
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above. It is then not surprising that Δh2;1 shows the most
discrepancy (however, this argument is not entirely fool-
proof because the ð2;�1Þ modes contribute to Δh20 as
well, though these are presumably generally subdominant).
This line of reasoning points toward at least a general
direction to resolve these differences.
Shown inFig. 6 are the remainingbinaryblackholemerger

events from O2, namely, GW170729 and GW170832. For
both of these, we show only the IMRPhenomPv2 result
because of the technical difficulty related to the spin
definitions at a reference frequency of 20 Hz mentioned
earlier. We shall address this elsewhere and here only present
the phenom results.

IV. DISCUSSION

Given the required input parameters (see Sec. I), EOB
and phenom models provide us with a waveform that the
detector would receive. Therefore, in any LIGO-Virgo
event, the measurement of strain provides us with posterior
probability distributions for these parameters. Using the
commonly used terminology, we referred to them as
measured values. Once we have these posteriors, within
any one theory, we can calculate the predicted probability
distributions for other observables in that theory. In par-
ticular, using general relativity, one can calculate values of
the masses, spins, and the recoil velocities of the remnants.
We referred to these as inferred values. Futuremeasurements
withmore sensitive detectorswill be able to directlymeasure
the memory. Once this happens, comparison of these direct
measurements with the inferred values will yield tests of
nonlinear aspects of general relativity. As shown in previous
studies, this could require us to combine Oð2000Þ events
[29], or wait for the space-based LISA detector [23].
Before these direct measurements become reality, apart

from improvements in detector sensitivity, it will also be
necessary to improve the accuracy of waveform models.
We have shown that differences between predictions for
inferred observables made by different waveform models
can serve as indicators of differences in the underlying
physics. In Sec. III A, we presented an example to illustrate
this tool: GW150914. Although the expectation value of
the inferred observable Mf—the remnant mass—in each
model is within 68% confidence level of that in the other,
the posterior distribution in Phenom resembles a Gaussian,
while that in EOB has a double peak. We found that this
difference is most likely because of the difference in the
way precession is handled in the two models. For the recoil
velocity, both models give inferred values that are orders of
magnitude lower than those provided by surrogate fits to
numerical relativity. This difference can be traced back
directly to the fact that, in the coprecessing frame, neither
model includes the modes that contribute to the kick. While
this result is not surprising, it provides a proof of principle
that the balance laws can be used to test accuracy of
candidate waveforms.

More importantly, the infinite tower of constraints
provided by the balance laws Eq. (7) can be used to
compare and contrast model waveforms. In Secs. III B
and III C, we used these constraints to infer the posterior
distributions for several leading modes in the spherical
harmonic decomposition of total gravitational memory.
Memory is not an observable of direct astrophysical
interest. However, from a fundamental general relativistic
point of view, it as a gauge invariant observable associated
with the waveform. Therefore, each spherical harmonic
component of memory provides us with a new tool to test
the accuracy of waveform models. As tools, they are on the
same footing as other inferred observables such as the
remnant mass and spin. Furthermore, these new tools can
reveal discrepancies between waveform models that were
not detected by the more commonly used observables that
refer only to the properties of the remnant. Finally, note that
this analysis is rather different from discussions of gravi-
tational memory in the literature [29,85] where the empha-
sis is on a definitive or direct measurement of gravitational
memory from combining several detections. We do not
address this interesting issue. By contrast, as we have
emphasized, our goal is to regard memory as an inferred
observable and use it to probe systematic errors between
different waveform models. In particular, our analysis
makes a strong use of general relativity because our focus
is on testing the accuracy of the candidate waveforms vis-à-
vis predictions of exact general relativity.
There are, however, some limitations of this procedure.

Once we obtain an event for which the posterior distribu-
tions between the models show clear systematic difference,
we know that both models cannot be good approximations
to exact general relativity in a certain region of the
parameter space. As the detector sensitivity increases, such
pointers could serve as powerful guidelines, calling for
further examination of the physics captured by the models.
However, it is not straightforward to identify what aspects
of the waveforms are causing this difference. Thus, the
evaluative role is passive in the sense that the pointers by
themselves do not provide clear-cut directions to improve
the models.
Nevertheless, some preliminary conjectures can be

made. The first is, as noted in Sec. III C, the flux contains
products of two modes. Therefore, given pairs hl1m1

and
hl2m2

, we can identify which mode pair contributes to each
Δhlm. The second comment is that even if the dominant
modes [typically ð2;�2Þ] are well modeled, there is still a
nontrivial issue, namely, that of correlations between
various modes. These are necessary to calculate j _hj2
accurately according to Eq. (15) and thus greatly impact
the memory. Clearly, larger the precession or more asym-
metric the system, larger will the impact of the other modes
be. It is likely that these configurations will also generally
have larger disagreements in the inferred values of the
memory in different models. Note that both the EOB and
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phenom models that we have considered do not directly
model precession. They both start with an underlying
nonprecessing model to which the precession effects are
applied as suitable time-dependent rotations [84,86,87] (see
also [88]). It is generally only the underlying nonprecessing
models which are directly calibrated with numerical rela-
tivity waveforms, and the other modes are generated by the
time-dependent rotations. Thus, it is possible that if
precession effects and the higher modes were to be directly
calibrated with numerical relativity results, the disagree-
ments with the memory reported here would reduced. It is
worth noting that more recent precessing phenom models
for the higher modes labeled IMRPhenomPv3HM [49,51]
already represent an improvement in this direction. In this
model, the (2,1) mode, for instance, is nonvanishing even in
the coprecessing frame and is thus not determined entirely
by the time-dependent rotations. The PhenomX family of
waveforms [89–91] represent further improvements.
Especially relevant for our purposes, the improvements
include a direct calibration of the subdominant modes with
numerical relativity results; the IMRPhenomPv3HM mod-
els use approximate extrapolations based on the behavior of
the ð2;�2Þ modes. Also noteworthy are the developments
on the EOB side; for example, higher modes for non-
precessing systems have been modeled in [92] and
extended to precessing systems in [93]. The more recent
events reported by the LIGO-Virgo Collaboration employs
some of the models listed above, and it will be interesting to
repeat the analysis of this paper for those events.
Finally, there are also systematic errors involved in

our analysis of the ten LIGO-Virgo events. The evaluation
of the inferred memory for a waveform model involves
calculating the mode decomposition of the integralR
∞
−∞ j _hj2dt. However, for events considered in this paper,
the waveform models used in the publicly available analy-
ses, SEOBNRv3 and IMRPhenomPv2, only include the
(2, 2)mode in the coprecessing frame.While the physics that
is ignored may be unimportant for parameter estimation, it
may be very important for the inference of certain modes of
the memory. Therefore, the inferred memory we calculate
may suffer from significant systematic errors. For example,
the (2, 0) mode of the memory is typically 10% larger if
higher modes are included in the waveform, and a proper
estimation of the recoil velocity requires at least the (2, 1)
mode. However, for the comparison of two models that are
attempting to include the same physics, these errors should
be identical and a comparison of the posterior distributions is
still meaningful. With these limitations in mind, we find that
the (2, 0) mode and (2, 1) mode are most significant sources
of memory. A comparison of these modes for the GWTC-1
events we analyzed show that they largely agree across
models—indicating that the systematics are mostly under
control. However, for GW170814, we see that the inferred
(2, 1) mode of the memory differs significantly between
EOB and phenom models.

There are several interesting avenues to take this work
forward. First, there are also angular momentum balance
laws [58] analogous to those for supermomentum used in
this paper. Following a procedure analogous to that of
Sec. III A, they can be used to construct posterior prob-
ability distributions for the spin of the final remnant for
any given waveform. For any one waveform, a comparison
of this distribution with that provided by numerical
relativity provides another measure of the accuracy of that
waveform. Similarly, comparisons between the posterior
distributions from two different waveform models can
serve as additional and distinct tests of the differences
between their physical underpinnings. Returning to gravi-
tational memory, an obvious avenue is to extend our
analysis to the more recently reported merger events from
the third LIGO-Virgo observational run which includes
events with higher masses and more asymmetric mass
ratios [94,95]. These events could allow for more stringent
comparisons between the most up-to-date waveform mod-
els. As mentioned above, apart from looking at particular
events, it would be useful to compare waveform models
using the memory across large parameter space regions.
Injections of gravitational waves spanning the parameter
space can be performed to learn where the systematic
differences are prominent. Alternatively, one could avoid
parameter estimation results altogether and directly com-
pare deviations in the inferred memory across parameter
space. Additionally, once we identify the regions of
parameter space where these differences arise, such as
what we see for GW170814, one can take sample points
from the region and directly compare the waveforms and all
the components that go into the inference. This should
allow one to pinpoint more accurately the source of the
deviations between the models, giving more direct input to
improve future modeling.
Finally, in this paper, we focused just on total memory

that involves integrals from t ¼ −∞ to t ¼ ∞ [see Eq. (9)].
As pointed out in [67], there are also finite time versions of
balance laws that enable one to calculate the memory as a
function of time [96], not just the difference between very
late and very early times. This involves an accurate
calculation of, say, the (2, 0) and (4, 0) modes and a better
understanding of Ψ2 [28]. These calculations will lead to
much more detailed accuracy tests on waveforms. Longer
term, over the next decade, as more sensitive detectors are
commissioned and more accurate waveform models are
developed and the memory is observed directly, the most
important payoff will be to compare the inferred values of
the memory modes with the observed values, thereby
providing a test of nonlinear general relativity.
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APPENDIX: POST-NEWTONIAN CORRECTIONS

As discussed in Sec. III A, in practice waveforms have to
be cut off at early time, leading to truncation errors in
integrals such as in (4) or (9). This error is higher for EOB
than phenom in our analysis, as we were able to go to lower
frequencies for phenom. To reduce this error, we added the
0PN contribution to the truncated integral. In this
Appendix, we discuss how significant the 0PN corrections
are. Moreover, while we only included the 0PN contribu-
tion to radiated energy via (11), one can use Eq. (4.6) in
[99] to calculate the correction up to 3.5PN with linear in
spin terms. Therefore, we can also include higher order
terms and compare with 0PN to estimate the error.
For GW150914, ΔE0PN radiated till 20 Hz gives a

surprisingly large value—about ∼20% of the total radiated
energy—because this phase encompasses a large number of
cycles during which the waveform amplitude is not
negligible. By contrast, ΔE0PN radiated till 1 Hz—the
cutoff frequency used for Phenom models—is only 3% of
the total radiated energy. Thus, the 0PN correction is
significant for EOB and improves agreement with fits,
while the effect of including this correction is very small for
Phenom. This is shown in Fig. 7. The left panel also
includes a plot with 3.5PN correction to the final mass from

the EOB waveform. The difference between 0PN and
3.5PN is negligibly small, justifying the use of 0PN
throughout our analysis.
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