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Abstract

Average Hausdorff distance is a widely used performance measure to calculate the distance between two point
sets. In medical image segmentation, it is used to compare ground truth images with segmentations allowing their
ranking. We identified, however, ranking errors of average Hausdorff distance making it less suitable for applications
in segmentation performance assessment. To mitigate this error, we present a modified calculation of this
performance measure that we have coined “balanced average Hausdorff distance”. To simulate segmentations for
ranking, we manually created non-overlapping segmentation errors common in magnetic resonance angiography
cerebral vessel segmentation as our use-case. Adding the created errors consecutively and randomly to the ground
truth, we created sets of simulated segmentations with increasing number of errors. Each set of simulated
segmentations was ranked using both performance measures. We calculated the Kendall rank correlation coefficient
between the segmentation ranking and the number of errors in each simulated segmentation. The rankings
produced by balanced average Hausdorff distance had a significantly higher median correlation (1.00) than those
by average Hausdorff distance (0.89). In 200 total rankings, the former misranked 52 whilst the latter misranked 179
segmentations. Balanced average Hausdorff distance is more suitable for rankings and quality assessment of
segmentations than average Hausdorff distance.
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cancer lesion segmentation [8] and pylorus tracking on
ultrasound images [9].

Average Hausdorff distance is especially recommended
for segmentation tasks with complex boundaries and
small thin segments such as cerebral vessel segmentation
[10]. In comparison to other performance measures such
as the Dice coefficient, average Hausdorff distance has
the advantage that it takes voxel localisation into consid-
eration. Unlike the Hausdorff distance that quantifies
the largest segmentation error, average Hausdorff dis-
tance takes all distances of point pairs between two seg-
mentations into account.

In this work, we show, however, that a ranking error
in the usage of average Hausdorff distance makes it less
suitable for segmentation performance assessment and
ranking. We also present a new modified performance
measure, coined balanced average Hausdorff distance to
alleviate the ranking error.

Methods

Average Hausdorff distance

The average Hausdorff distance between two finite point
sets X and Y is defined in eq. 1.

1 . 1 .
danp(X,Y) = (XZEX: ;rg/n d(x,y) +172; min d(x,y)) /2
x ye
(1)

The directed average Hausdorff distance from point set
X to Yis given by the sum of all minimum distances from
all points from point set X to Y divided by the number of
points in X. Average Hausdorff distance can be calculated
as the mean of the directed average Hausdorff distance
from X to Y and directed average Hausdorff distance from
Yto X.

In the medical image segmentation domain, the point
sets X and Y refer to the voxels of the ground truth and
the segmentation, respectively. The average Hausdorff
distance between the voxel sets of ground truth and seg-
mentation can be calculated in millimeters or voxels.
Equation 1 can be written in a more simplified way as
follows:

Average Hausdorff distance
GtoS = StoG
< G - S >/ @

where GtoS is the directed average Hausdorff distance
from ground truth to segmentation, StoG is the directed
average Hausdorff distance from segmentation to
ground truth, G is the number of voxels in the ground
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truth, and S is the number of voxels in the

segmentation.

Balanced average Hausdorff distance
Since each of the segmentations to be ranked is com-
pared with the ground truth, the ranking error of aver-
age Hausdorff distance stems from the division by S
which differs from one segmentation to the other de-
pending on the number of voxels in each segmentation.
The modified calculation is shown in eq. (3). Here, StoG
is divided by G, which is constant for all segmentations.
This newly proposed performance measure is coined
balanced average Hausdorff distance.

Balanced average Hausdorff distance

_ (GZS N StgG) 1 3)

Data

Time-of-flight magnetic resonance angiography images
of 10 patients from the 1000Plus study were randomly
selected. The 1000Plus study was carried out with ap-
proval from the local Ethics Committee of Charité Uni-
versity Hospital Berlin (EA4/026/08). Details about the
study have been previously published [11]. The only in-
clusion criterion was no occlusion in any vessel seg-
ments constituting the circle of Willis. To create the
ground truth of the cerebral arterial vessels, three-
dimensional time-of-flight magnetic resonance angiog-
raphy images were pre-segmented using a U-net-based
deep learning framework and manually corrected by
OUA and VIM using ITK-Snap [12] as described by
Livne et al. [2].

Error simulation

In order to explore the properties of AHD and bAHD
more systematically for quality assessment of cerebral
vessel segmentations, an error simulation framework
was developed. To simulate segmentations for ranking, a
set of 55 non-overlapping segmentation errors common
in a vessel segmentation task were manually created.
These errors included, for example, oversegmentation
and undersegmentation of various vessel segments, false
positively labelled other anatomical structures and omit-
ted parts of the vessel tree. Of these 55 errors, one ran-
dom error was added to the ground truth, the image was
saved, and this process was successively repeated 9 times
by adding each time a new random error to the resulting
image and saving each image. The end result was a set
of 10 simulated segmentation results with an increasing
number of errors in a random combination. Twenty
such sets were created for each of the ten patients. An
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illustration of the error simulation framework can be
found in Fig. 1. The error simulation framework was
programmed in Python (version 3.6.8); specifically,
image manipulation was performed with the NiBabel
package (version 2.3.0).

Segmentation ranking

Average Hausdorff distance and the proposed balanced
average Hausdorff distance were evaluated for their cap-
ability to rank the above generated segmentation sets.
Each segmentation was evaluated against the ground
truth using each of the two performance measures,
yielding an average distance value measured in voxels.
Each set of simulated segmentations was ranked using
the two performance measures, where the best segmen-
tation result got rank 1 and the lowest rank 10. Here, an
ideal performance measure should have a perfect correl-
ation between the produced ranking of simulated seg-
mentations with the increasing number of errors as the
next simulated segmentation has at all times an add-
itional error compared to the previous segmentation.
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Statistical analysis

Kendall’s tau correlation coefficient for ordinal rankings
was calculated between the segmentation rankings of the
two performance measures and the number of errors for
each simulated segmentation set. Kendall’s tau correl-
ation coefficient measures the similarity of the orderings
of the data when the data is ranked using two different
approaches. The coefficient has the value 1 in case of a
perfect agreement of two rankings and -1 in case of per-
fect disagreement. The median of Kendall’s tau correl-
ation coefficients of the 20 ranking sets per patient was
reported. For each patient, the two-sided Wilcoxon
signed-rank test was performed to calculate whether the
improvement of Kendall’s tau coefficient was statistically
significant between the two performance measures. We
also report the number of rankings by average Hausdorff
distance and balanced average Hausdorff distance with a
Kendall rank correlation coefficient not equal to 1 (Er in
Table 2). The Kendall rank correlation coefficient is not
equal to 1 when at least one segmentation is misranked
in a segmentation set. Twenty segmentation sets were
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Fig. 1 Flow chart of the error simulation framework and correlation analysis. @ The ground truth was created using a U-Net deep learning
architecture and subsequently manually corrected. b The voxels in the errors are added or subtracted from the ground truth depending on
whether the error is a false positive or false negative error. b1 Error introducing false positive voxels (green) in the skull area. b2 Error in which
false-negative voxels (white) in the M3 segment of the middle cerebral artery are missing. €1 False-positive voxels in the skull area are added to
the ground truth to create a simulated segmentation. €2 The error simulation framework allows the random combination of manually created
errors to create simulated segmentations containing multiple errors. This simulated segmentation was created by combining seven errors. d The
ten simulated segmentations in the set have an increasing number of errors. e The simulated segmentations are ranked from best to worst using
the average Hausdorff distance and balanced average Hausdorff distance values, respectively. f Lastly, the correlation between the rankings are
measured by the Kendall rank correlation coefficient. The process is repeated using 20 sets of simulations for each patient
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Table 1 Example ranking of a set of segmentations with increasing number of errors by average Hausdorff distance (AHD) and

balanced average Hausdorff distance (bAHD)

Segmentations Count of errors AHD values AHD rank bAHD values bAHD rank
Ground truth 0 0 1 0 1
E1 1 0.308 2 0314 2
N1_E1 2 0455 3 0467 3
N1_K3_E1 3 9.836 5 23487 4
N1_H1_K3_E1 4 10.138 7 24925 5
N1_H1_K3_E1_P991 5 10111 6 24928 6
N1_H1_K3_G1_E1_P991 6 10.213 8 25394 7
N1_H1_K3_G1_E1_P991_MO 7 10.345 9 25435 8
N1_H1_K3_G1_E1_V2_P991_MO 8 10.638 1 25613 9
N1_H1_K3_G1_E1_R1_V2_P991_MO 9 10.628 10 25.690 10
N1_H1_K3_GI1_E1_R1_V2_P991_C992_MO 10 9.768 4 25.843 "

Values of performance measures (in voxels) are shown with the resulting rankings for one example set. The segmentation ranking of bAHD perfectly correlates
with the count of errors in the simulated segmentations. The traditional AHD, however, fails to properly rank the segmentations in line with the number of errors
they contain. Error abbreviations are given in the Segmentations column. Letters stand for error types and numbers 1, 2, 3 state the intensity levels subtle,
moderate and severe, respectively. K3 False positive errors in the skull area, C992 Increased radius of the carotid artery (false positive voxels), MO Missing M1
segment of the middle cerebral artery (false-negative voxels), E7 False-positive segmentation of the optical nerve and adjacent fat tissue, N7 False-positive
segmentation of the middle meningeal artery (false-positive voxels), G False-positive segmentation of the sigmoid sinus, V2 False-negative segmentation of small
vessels, R1 Random voxels added throughout the image (false positives), H1 False-positive segmentation of the meninges, P991 Increased radius of the posterior

communicating artery (false positives)

created for each patient so the reported number ranges
from 0 to 20 for each patient. With this reported num-
ber, we aim to convey a more tangible measure of the
ranking capabilities of each of the two performance mea-
sures. The statistical analysis was performed using the
SciPy package (version 1.5.0) in Python.

Results
In the pooled analysis of the 200 total rankings, the
rankings provided by balanced average Hausdorff

distance showed a significantly higher median Kendall’s
rank correlation coefficient (1.00) than the rankings pro-
vided by average Hausdorff distance (0.89) (p = 0.000).
An example of rankings produced by each of the two
performance measures on a set of segmentations with an
increasing number of errors can be found in Table 1.
For a complete overview of the averaged results of Ken-
dall’s tau coefficients of the ten patients, see Table 2. For
a visual exemplification of the identified ranking error,
please refer to Fig. 2.

Table 2 Results of ranking correlation with number of errors for all 10 patients for average Hausdorff distance (AHD) and balanced

average Hausdorff distance (bAHD)

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

PM Tau Er PM Tau Er PM Tau Er PM Tau Er PM Tau Er
bAHD 1.00 3 bAHD 1.00 4 bAHD 1.00 7 bAHD 1.00 7 bAHD 1.00 [§
AHD 093 17 AHD 093 17 AHD 091 18 AHD 093 18 AHD 0.87 17
p = 0.00039 p = 0.00041 p = 000119 p = 000018 p = 0.00096

Patient 6 Patient 7 Patient 8 Patient 9 Patient 10

PM Tau Er PM Tau Er PM Tau Er PM Tau Er PM Tau Er
bAHD 1.00 6 bAHD 1.00 7 bAHD 1.00 5 bAHD 1.00 3 bAHD 1.00 4
AHD 0.84 18 AHD 0.89 18 AHD 0.87 18 AHD 0.89 19 AHD 0.86 19
p =0.00019 p =0.00128 p = 0.00064 p =0.00012 p =0.00013

Median Kendall’s rank correlation coefficients over the 20 sets per patient. For each patient, the rankings produced by bAHD had statistically significantly higher
median Kendall rank correlation coefficients compared to rankings of the traditional AHD. This means that the rankings of bAHD have a better agreement with
the number of errors in each segmentation and thus bAHD reflects the segmentation quality of cerebral vessel segmentations better than AHD. These results
were confirmed by the fact that the bAHD led to less rankings with at least one misranked segmentation compared to AHD as seen in the number of errors
column (Er). Approximately three out of four sets of segmentations were ranked perfectly with bAHD where only approximately 1 out of 10 segmentation sets
were ranked perfectly with AHD. PM Performance measure, Tau Average Kendall rank correlation coefficient, Er The number of rankings with at least one
misranked segmentation within the total number of 20 rankings per patient. The p values are obtained by two-sided Wilcoxon signed-rank test comparing the
results of 20 sets per patient
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AHD rank: 1

bAHD rank: 3

AHD rank: 4

AHD rank: 3 bAHD rank: 4

Fig. 2 Visual example of the average Hausdorff distance (AHD) ranking error. The ground truth image (a) contains no error, (b) contains one
error, (c) two errors, and (d) three errors (added errors are indicated with arrows coloured the same as the corresponding error, for a description
of the errors see below). AHD misranked (c and d). In contrast, balanced average Hausdorff distance (bAHD) correctly ranked all three
segmentations according to the number of errors contained in the images. Green, error representing false positive voxels in the skull area; yellow,
error representing voxels removed bilaterally from the internal carotid arteries; blue, error representing voxels added bilaterally to the M1

segment of the middle cerebral artery

In the 200 total rankings analysed, balanced average
Hausdorff distance led to 52 rankings with at least one mis-
ranked segmentation whilst average Hausdorff distance led
to 179 with at least one misranked segmentation. This
means that approximately three out of four sets of segmen-
tations ranked by average Hausdorff distance contained a
misranked segmentation whereas using balanced average
Hausdorff distance only one out of four sets were with a
misranked segmentation. The number of misranked

segmentation sets can also be found in Table 2. The new
performance measure was implemented in the EvaluateSeg-
mentation command-line tool that is free to download
(https://github.com/Visceral-Project/EvaluateSegmentation).

Discussion

The average Hausdorff distance is a recommended and
widely used performance measure for medical segmenta-
tion tasks. In the current paper, we identified a ranking
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error of this method, making it less suitable to compare
segmentation results. We also proposed and validated a
new performance measure, balanced average Hausdorff
distance, which strongly alleviates this error.

Based on our results, segmentations with lower aver-
age Hausdorff distance values do not necessarily corres-
pond to a segmentation of higher quality. Using average
Hausdorff distance values to assess segmentation quality
may therefore result in an erroneous ranking not reflect-
ing the actual segmentation quality. This ranking error
can be explained by the average Hausdorff distance div-
iding the distance from the ground truth to the segmen-
tation by the number of ground truth voxels whilst
dividing the distance from segmentation to the ground
truth by the number of voxels in the segmented volume
(eq. 2). This leads to an unwanted ranking error in cer-
tain situations.

For example, when an error introduces voxels rela-
tively closer to the ground truth than the average dis-
tance of the previously introduced errors, the average
Hausdorff distance might still decrease, because the in-
crease in StoG is proportionally less than the increase of
S. This results in a lower directed average Hausdorff dis-
tance from segmentation to ground truth (SToG/S). This
observation shows that an additional error added to the
segmentation might increase StoG whilst it simultan-
eously decreases the average Hausdorff distance indicat-
ing an improvement of the segmentation quality. This
depends on the distances of the voxels belonging to the
error and to the number of voxels contained in the
error. Here, although the total distance from segmenta-
tion to the ground truth (SzoG) increases, the denomin-
ator corresponding to the number of voxels in the
segmentation volume increases as well.

Although the simulated segmentation in Fig. 2d has an
additional error compared to Fig. 2c the traditional aver-
age Hausdorff distance value of Fig. 2d is lower than that
of Fig. 2c resulting in a better rank of Fig. 2d. Therefore,
average Hausdorff distance might rank a simulated seg-
mentation containing more errors better than a simu-
lated segmentation with less errors because the
denominator changes with the number of voxels in the
segmentation. Due to this ranking error, the traditional
average Hausdorff distance should be used with caution
for rankings and quality assessment of segmentations.
This issue was significantly mitigated by the newly pro-
posed balanced average Hausdorff distance, where the
StoG is divided by the constant number of ground truth
voxels instead of the variable number of voxels in the
segmentation volume. Applying the new performance
measure, the ranking results were strongly improved.

Our study has some limitations. First, even with a bal-
anced average Hausdorff distance, ranking results were
not perfect. There are still a few types of errors that
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increase StoG and decrease GtoS at the same time. For
example, when we simulated false positive single voxels
scattered randomly throughout the image volume, we
observed increased StoG and decreased GtoS. This re-
sulted in a lower balanced average Hausdorff distance
value, indicating an improved segmentation despite
lower quality. Second, the ranking error of average
Hausdorff distance could be analysed only for the use
case of cerebral vessel segmentation. The ranking error
of average Hausdorff distance observed in this study
might be more prominent than in other application
areas considering that the anatomy and spatial represen-
tation of the cerebral arterial tree are relatively complex.
Therefore, especially for complex segmentation tasks like
vessel tree segmentations (such as in the brain, liver, or
heart), balanced average Hausdorff distance should re-
place the traditional average Hausdorff distance. The
ranking properties of both performance measures should
be also compared in different application areas to con-
firm or negate the observations made in this study.

In conclusion, the novel proposed balanced average
Hausdorff distance performance measure alleviates the
identified ranking error of classic average Hausdorff dis-
tance. This makes the balanced average Hausdorff dis-
tance more suitable for rankings and quality assessment
of segmentations in medical segmentation tasks and
should be used instead of the traditional average Haus-
dorff distance.
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