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A B S T R A C T

Reductions of anthropogenic CO2 emissions are required to stabilize
and reduce atmospheric CO2 concentrations. But variations in the land
and ocean carbon sinks, which are triggered by inherent climate vari-
ability, disguise CO2 emission reductions in global atmospheric CO2 in
the near-term. Therefore, an independent verification of CO2 emission
reductions in atmospheric CO2 needs to take internal variability into
account. Initialized predictions of the evolution of atmospheric CO2

have the potential to constrain this internal variability and enable
an ahead-of-time estimate under different proposed CO2 emission
reductions pathways. To that end, this dissertation focuses on near-
term variability in the global carbon cycle, and how initialized CO2

predictions can guide policy-makers onto a pathway of limiting global
warming below 2°C.

First, I motivate initialized CO2 predictions by showcasing the large
envelope of internal variability of the global carbon cycle, which ini-
tialized prediction can partly constrain. I deduce time-scales in the
near-term on which CO2 emission reductions cause atmospheric CO2

growth to decelerate. I find that CO2 emission reductions compatible
with the Paris Agreement only cause a deceleration of atmospheric
CO2 after a decade. Particularly on the five-year scale, on which the
global stocktake assesses the efficacy of CO2 emission reductions, inter-
nal variability disguises certainty in causation. This study shows how
expectations about the near-term efficacy of CO2 emission reductions
need to consider internal variability.

Then, I evaluate initialized predictive skill of prognostic atmospheric
CO2 and its drivers, which were previously unknown, by perform-
ing initialized ensemble Earth System Model (ESM) simulations in a
perfect-model predictability framework. I show that internal variabil-
ity of prognostic global atmospheric CO2 is predictable up to three
years in advance. ESM-based predictions are feasible and surpass a
statistical regression forecast in scope and accuracy.

Finally, I test the realism of state-of-the-art carbon cycle predictions,
which initialize the carbon cycle only indirectly via the reconstruction
of the physical climate dynamics. In a perfect-model reconstruction
framework, I test the commonly stated assumption that direct carbon
cycle reconstruction improves its predictability. I find that indirect re-
construction tracks the target reasonably well. While direct reconstruc-
tion improves global carbon cycle initial conditions and predictability
slightly, a mean bias reduction achieves similar improvements. This
adds confidence to the current practice of indirect carbon cycle recon-
struction and refutes the need for direct carbon cycle reconstruction.
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My results demonstrate that internal variability of global carbon
cycle can disguise CO2 emission reductions and thereby mislead the
evaluation on mitigation efficacy. As a partial solution, initialized
predictions can constrain this internal variability for up to three years
into the future, which can guide policy-makers navigating on the path
towards well below 2°C global warming.
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Z U S A M M E N FA S S U N G

Um die Konzentration von CO2 in der Atmosphäre zu stabilisieren
und zu reduzieren, müssen die menschengemachten CO2-Emissionen
gesenkt werden. Schwankung der Land- und Ozeankohlenstoffsenken,
die durch die inhärente Klimavariabilität ausgelöst werden, verdecken
allerdings kurzfristig die CO2-Emissionsreduktionen im globalen at-
mosphärischen CO2. Daher muss für eine unabhängige Verifizierung
der CO2-Emissionsminderungen im atmosphärischen CO2 die inter-
ne Variabilität berücksichtigt werden. Initialisierte Vorhersagen von
atmosphärischem CO2 haben das Potenzial, diese interne Variabili-
tät einzugrenzen und damit eine vorausschauende Abschätzung der
Wirkung von verschiedenen Szenarien der CO2-Emissionsreduktion
zu ermöglichen. Daher konzentriert sich diese Dissertation auf die
kurzfristige Variabilität im globalen Kohlenstoffkreislauf und darauf,
wie initialisierte CO2-Vorhersagen politischen Entscheidungsträgern
helfen können, einen Kurs zur Begrenzung der globalen Erwärmung
auf unter 2°C zu finden und zu halten.

Zunächst rechtfertige ich initialisierte CO2-Vorhersagen, indem ich
die große Bandbreite an interner Variabilität des globalen Kohlen-
stoffkreislaufs aufzeige, die durch initialisierte Vorhersagen zum Teil
eingegrenzt werden kann. Ich leite Zeitskalen in der nahen Zukunft
ab, auf denen CO2-Emissionsreduktionen eine Verlangsamung des
atmosphärischen CO2 verursachen. Eine Erkenntnis ist, dass CO2-
Emissionsminderungen, die mit dem Pariser Klimaabkommen kom-
patibel sind, erst nach einem Jahrzehnt das Abbremsen des atmo-
sphärisches CO2 Wachstums mit Sicherheit verursachen. Insbesondere
im Zeitraum von fünf Jahren, in dem die Wirksamkeit von CO2-
Emissionsreduktionen in Folge des Pariser Klimaabkommens bewertet
wird, kann die Kausalität wegen der internen Variabilität nicht klar
nachgewiesen werden. Diese Studie zeigt, dass Erwartungen an die
kurzfristige Wirksamkeit von CO2-Emissionsminderungen die interne
Variabilität berücksichtigen müssen.

Anschließend untersuche ich initialisierte Vorhersagbarkeit von at-
mosphärischem CO2 und dessen Treibern, indem ich Simulationen in
einem idealisierten, initialisierten Erdsystemmodell (ESM) durchführe.
Darin zeige ich, dass die interne Variabilität des prognostizierten glo-
balen atmosphärischen CO2 bis zu drei Jahre im Voraus vorhersagbar
ist. ESM-basierte Vorhersagen sind praktikabel und übertreffen eine
statistische Regressionsvorhersage in Reichweite und Genauigkeit.

Schließlich teste ich die Realitätsnähe von neuartigen Kohlenstoff-
kreislaufvorhersagen, die den Kohlenstoffkreislauf nur indirekt über
die Rekonstruktion der physikalischen Klimadynamik initialisieren.
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In idealisierten Rekonstruktionen teste ich die häufig geäußerte An-
nahme, dass die direkte Rekonstruktion des Kohlenstoffkreislaufs
dessen Vorhersagbarkeit verbessert. Ich kann zeigen, dass die in-
direkte Rekonstruktion die eigentlichen Startbedingungen recht gut
wiederherstellt. Während die direkte Rekonstruktion die Startbedin-
gungen und die Vorhersagbarkeit des globalen Kohlenstoffkreislaufs
leicht verbessert, erzielt eine Angleichung der mittleren Abweichung
ähnliche Verbesserungen. Dies stärkt die Zuversicht in die derzeitige
Praxis der indirekten Rekonstruktion des Kohlenstoffkreislaufes und
widerlegt die Notwendigkeit von dessen direkter Rekonstruktion.

Meine Ergebnisse zeigen, dass die interne Variabilität des globalen
Kohlenstoffkreislaufs die globalen CO2-Emissionsreduktionen ver-
schleiern und damit die Bewertung von dessen Wirksamkeit in die
Irre führen kann. Als Teillösung können initialisierte Vorhersagen die-
se interne Variabilität für bis zu drei Jahre in die Zukunft begrenzen.
Diese Vorhersagen können politische Entscheidungsträger leiten, die
globale Erwärmung auf deutlich unter 2°C zu begrenzen.
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E
E S S AY

Forecasts possess no intrinsic value. They acquire value through their
ability to influence the decisions made by users of the forecasts.

— Murphy [1993]

e.1 introduction

This dissertation addresses near-term variability of two-to-fifteen years
in the global carbon cycle, and how initialized predictions can con-
strain the near-term evolution of atmospheric CO2 concentrations. I
explore the variability and predictability of changes in atmospheric
CO2 concentrations over short time scales, which had previously not
been investigated in an Earth System Model setting. I pose timely
questions in support of the verification of CO2 emission reductions in
atmospheric CO2 and demonstrate how carbon cycle predictions could
inform decision-makers about the efficacy of CO2 emission mitigation
strategies.

This unifying essay characterizes how variability, predictability and
reconstruction of the global carbon cycle matter for carbon-related
climate policy. I furthermore introduce the statistical framework of
forecast verification and the "perfect-model framework" as the mod-
eling approach used. Then, I summarize the three1 research papers
attached as chapters I, II and III. The first paper Spring et al. [2020]
quantifies the substantial variations due to climate variability in at-
mospheric CO2 and hence the use-case of initialized CO2 predictions.
The second paper Spring and Ilyina [2020] investigates the limits and
drivers of atmospheric CO2 predictability. In a further step towards
providing carbon cycle predictions, the third paper Spring et al. [2021]
explores the initial conditions of carbon cycle predictions and whether
reconstructing the carbon cycle directly improves its predictive skill.
Finally, I discuss the importance of my results for future studies and
applications of carbon cycle predictability.

I guide the reader through this essay about carbon cycle predictabil-
ity using two recurring themes. The first addresses "where the carbon
goes" [Marotzke et al., 2017] by characterizing how the global carbon

1 The fourth short paper Brady and Spring [2021] introduces a python software that
streamlines and standardizes forecast verification in chapter IV. Because it is only
short and descriptive paper, it is not summarized in this essay, but motivated in
subsection E.2.2.
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2 essay

cycle shapes near-term atmospheric CO2. The second, "the signal and
the noise" [Silver, 2012], characterizes variability and predictability.

e.1.1 Global Carbon Cycle

Anthropogenic CO2 emissions, which mainly stem from fossil-fuel
combustion and land-use changes, increase the concentration of CO2 in
the atmosphere, which has been proven to enhance the Earth System’s
radiative forcing, thus warming the Earth’s climate [Stocker et al.,
2013]. However, not all anthropogenic CO2 emissions remain in thethe CO2 problem

atmosphere, as atmospheric CO2 is modulated by the uptake of carbon
by land and ocean. The exchanges of carbon within and between these
components, which additionally includes geological storage, is known
as the global carbon cycle [Archer, 2010]. The combustion of fossil
fuels perturbs the natural state of the carbon cycle by adding carbon
from the geological reservoir, which has been secluded for millennia,
to the atmosphere. As a result, the perturbed system re-equilibrates the
additional source of carbon through air-land and air-sea CO2 exchange.
Thus, the land and ocean reservoirs take up parts of the CO2 emissions,
reducing the increasing CO2 burden of the atmosphere.

Between 1850 and 2019, the Global Carbon Budget estimates thatcarbon sinks

40% of anthropogenic fossil-fuel CO2 emissions have remained in
the atmosphere (the so-called airborne fraction of CO2 emissions),
while the terrestrial and oceanic carbon sinks absorbed 32% and 25%,
respectively [Friedlingstein et al., 2020]2.

The air-sea CO2 flux is driven by the difference of the atmosphericocean carbon sink processes

partial pressure3 of CO2 (pCO2,atm) and the oceanic partial pressure4

of CO2 (pCO2,ocean) at the ocean’s surface [Heinze et al., 2015]. Carbon
in the ocean is redistributed by the carbon pumps: The organic carbon
pump describes the uptake of carbon in surface waters by phyto-
plankton photosynthesis, the sinking of particulate organic carbon to
deeper ocean layers, its remineralization to nutrients and dissolved or-

2 There remains a cumulative budget imbalance of 3% representing imperfect data
and imperfect understanding of the contemporary global carbon cycle. Cumulative
land use-change CO2 emissions are broadly equal to the cumulative land carbon sink
[Friedlingstein et al., 2020].

3 There are different measures of atmospheric composition in atmospheric chemistry
describing concentration [Jacob, 1999]: The partial pressure pCO2 in a mixture of
gases of total pressure P is defined as the pressure that would be exerted by the CO2

molecules if all the other gases were removed. Dalton’s law relates pCO2= XCO2
·P. The mixing ratio XCO2 describes the volumetric ratio of CO2 molecules per one
million molecules [ppm(v)] in air. In this thesis, I use concentration and mixing ratio
synonymous for atmospheric CO2.

4 The partial pressure of oceanic CO2 (pCO2,ocean), i. e. CO2 in sea-water, above a liquid
in thermodynamic equilibrium is proportional to the concentration in the liquid by
its solubility SCO2 : pCOeq

2,ocean = SCO2 · pCO2,atm. Air-sea CO2 flux aims to equilibrate
the difference between pCOeq

2,ocean and pCO2,ocean [Sarmiento and Gruber, 2006].
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ganic carbon. Its subsequent wind- and bathymetry-driven upwelling
sustains another phytoplankton bloom at the surface. Similarly, the car-
bonate pump transports calcium carbonate (CaCO3) shells, produced
by skeleton-building marine organisms while releasing CO2, from
the surface to the deep ocean and therefore counteracts the carbon
transfer of the biological pump. The solubility pump is driven by the
solubility of CO2 in oceanic water, which is inversely proportional to
ocean temperature. The thermohaline circulation, which re-distributes
heat and carbon among the global oceans, is driven by deep-water
formation in the cold and therefore high pCO2 high-latitudes. High
pCO2 waters are upwelled from the deeper ocean by atmospheric
wind forcing and bathymetry; e. g. in the tropical warm surface oceans,
where these waters release CO2 to the atmosphere.

Carbon is taken up by the the land reservoir via photosynthe- land carbon sink processes

sis, which is sensitive to temperature, water and nutrient availability
[Schimel, 1995]. Terrestrial carbon is static in the horizontal and passes
vertically between the vegetation, litter and soil carbon pools. Anthro-
pogenic emissions enhance plant growth by CO2 fertilisation [Winkler,
2020] and reactive nitrogen deposition [Reay et al., 2008]. Carbon is
released by ecosystem respiration, fire, erosion by rivers and land-use
changes [Schimel, 1995; Hong et al., 2021].

These processes of the land and ocean carbon uptake maintain long-term CO2 residence in
atmospherea stable airborne fraction of cumulative atmospheric CO2 emissions

for decades and centuries [Canadell et al., 2007; Archer et al., 2009;
Friedlingstein et al., 2020]. Only on time-scales of thousands to tens of
thousands of years, do geological weathering of carbonates on land or
re-dissolution of carbonates in the ocean sediment provide a negative
feedback and draw down atmospheric CO2 [Archer et al., 2009; Heinze
et al., 2015]. As an inert gas, CO2 is only transported by the global
atmospheric dynamics and only changes via air-land and air-sea CO2

fluxes [Jacob, 1999]. However, when investigating the land and ocean
carbon uptake and the atmospheric growth rate, i. e. increment of
additional carbon in the atmosphere each year, the partitioning of
the Global Carbon Budget varies substantially for individual years
[Friedlingstein et al., 2020].
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e.1.2 Internal Variability

Internal variability describes the variations of the climate system,
which are not driven by external forcings, such as volcanoes, human
activities or the sun5, but instead are inherent to coupled Earth System
dynamics.

The most dominant mode of inter-annual climate variability is theENSO variability

El Niño–Southern Oscillation (ENSO) [Rasmusson and Wallace, 1983],
an irregular variation of winds and sea surface temperatures in the
Pacific Ocean. The positive phase El Niño is characterized by high sea
surface temperatures and westerly trade winds weakening upwelling
in the Pacific. At the same time, the Pacific jet stream shifts northward
changing precipitation and temperature in the Americas. ENSO is just
the most prominent of such climate modes, others including the North
Atlantic Oscillation [Hurrell, 1995], Atlantic Multidecadal Oscillation
[Schlesinger and Ramankutty, 1994], Pacific Decadal Oscillation [Man-
tua et al., 1997] or Southern Annular Mode [Karoly, 1990]. The land
and ocean carbon cycles, and in particular the carbon cycle processes
described above, are sensitive to such internal climate variability.

The terrestrial carbon sink is characterized by stronger magnitudesland sink variability

and higher frequencies of near-term internal variability compared
to the ocean carbon sink [Friedlingstein et al., 2020]. Photosynthe-
sis, ecosystem respiration and fire are sensitive to physical climate
variability [Schimel, 1995]. Therefore, internal variability hotspots of
the terrestrial carbon cycle are the tropical forests and mid-latitudes,
which are driven by ENSO variability [Betts et al., 2018]. In response
to El Niño, the terrestrial carbon cycle becomes a net carbon source
due to increased respiration and reduced productivity [Betts et al.,
2018]. Therefore, one standardized Niño 3 index unit results in a 1.8
PgC/yr terrestrial carbon release, resulting in an global atmospheric
CO2 increase of 0.8 ppm/yr [Jones et al., 2001].

The oceanic carbon sink is characterized by smaller magnitudesocean sink variability

and lower-frequency variations compared to the land carbon sink
[McKinley et al., 2017; Friedlingstein et al., 2020]. Air-sea CO2 flux is
sensitive to internal variability, as the variable ocean transport and sea-
surface temperature modulate pCO2. While the surface ocean carbon
cycle inter-annual variability is most pronounced in the tropics driven
by ENSO, decadal variations are strongest in the extra-tropical oceans
[Landschützer et al., 2016, 2019]. The imprint of the oceanic carbon
cycle variations on the atmosphere are not as clearly recognizable
as for land, but still detectable: Gruber et al. [2019] attribute a 4

PgC anomalously lower carbon uptake to the Southern Ocean carbon

5 The largest (externally-driven) variability in the carbon cycle is the seasonal cycle
driven by the sun that I do not focus on in this thesis. Instead I focus on the multi-year
decadal policy-relevant time-scale of two to fifteen years, see subsection E.1.3.
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sink from 1995 to 2010 - a magnitude resulting in a 2 ppm global
atmospheric CO2 increase over these 15 years.

Beyond the monotonic increase of atmospheric CO2, its growth rate
varies substantially [Bacastow, 1976; Canadell et al., 2007]. These vari-
ations stem from the global land and ocean carbon cycles responding
to internal climate variability.

e.1.3 Global Climate Policy

The Paris Agreement aims to reduce global warming to well below Paris Agreement

2°C [UNFCCC, 2015]. In the (multi-decadal and centennial) long-term,
anthropogenic CO2 emissions and carbon-climate feedbacks deter-
mine the future of Earth’s climate. The reduction of CO2 emissions is
the major measure for mitigating climate change. Therefore, the Paris
Agreement [UNFCCC, 2015] requires countries to submit intended
nationally determined contributions (NDC) of greenhouse gas reduc-
tions, marking a shift in narrative and approach of climate change
mitigation [Aykut et al., 2020]. As current pledges are inconsistent
with the 2°C target [Rogelj et al., 2016b], a ratcheting mechanism
was implemented that requires states to continuously intensify their
efforts. Therefore, starting from 2023, the so-called "global stocktake" global stocktake

will take place every five years to track the mitigation progress "in
light of the best available science" [UNFCCC, 2015, Art.14] measuring
the collective effort and efficacy of past mitigation.

Hence, science is requested to inform policy-makers on the prospects
of climate change mitigation, which involves two time-scales:

On the multi-decadal long-term perspective, the remaining carbon remaining carbon budget

budget6 (RCB) shows the range of cumulative CO2 emissions com-
patible with policy goals. This near-linear relationship of cumulative
emissions and temperature increase is independent of emission path-
way and depends on a probabilistic range of geophysical feedbacks
[Allen et al., 2009; Matthews et al., 2009, 2020]7. Converting the range
of the remaining 1.5°C carbon budget to current CO2 emissions levels
yields either an already exceeded carbon budget eight years ago (5th

percentile) or 33 years RCB (95
th percentile), while the median allows

for ten more years at 2019 emission levels [Matthews et al., 2021]. How-
ever, such a conversion is misleading, as the RCB is required to lead to

6 The carbon climate community established two similar concepts of carbon budgets
for different periods: The Global Carbon Project annually releases the historical
or total Global Carbon Budget explaining where the carbon went in the past ten
years and since 1850 [Friedlingstein et al., 2020]. In the context of future emissions,
the remaining carbon budgets describe how much remaining carbon emissions are
compatible with a temperature target [Matthews et al., 2020].

7 On this multi-decadal time-scale relevant for the concept of the RCB, climate model
uncertainty, estimating these feedbacks, dwarfs internal variability [Tokarska et al.,
2020].
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net zero CO2 emissions and hence the CO2 emission path ways must
be continuously declining. Also this message "years remaining" com-
municates a cliff-edge deadline, whereas climate change will rather
unfold intermittent, slow and gradual [Asayama et al., 2019]. Further-
more, the remaining carbon budget8 is not fixed anymore [Peters, 2016,
2018]: The RCB is sensitive to the temperature threshold definition
[Rogelj et al., 2016a; Millar et al., 2017]. Also, negative emissions [Pe-
ters and Geden, 2017] and temperature overshoot scenarios [Geden
and Löschel, 2017] allow more flexible success definitions hampering
immediate action [McLaren et al., 2019]. Even the communicated like-
lihood of staying below a temperature target shrank to 66% or 50%
[Peters, 2018; Matthews et al., 2021]. Understanding the incentives of
politics, carbon budgets help to postpone action to the future rather
than inspiring action [Geden, 2018; Peters, 2018]. Due to the range
of definitions, choices and uncertainties, the RCB should not be used
to reduce climate change to a single magic number, but rather as an
elevator pitch explaining the importance of net zero emissions [Peters,
2018] - a more actionable policy target [Geden, 2016]. What reconciles
RCBs and net zero emissions is the call for immediate CO2 emission
reductions, i. e. CO2 emission reductions in the near-term or best now.

Science also needs to inform policy-makers about the dynamics
of the Earth System in the multi-year short-term perspective [Peters
et al., 2017; Peters, 2018]. How can policy and science judge whether
past CO2 emission reduction efforts have been effective? The globalverification of CO2 emissions

temperature signal shall be limited in the long-term, but global tem-
perature has large inertia and internal variability, making it impossible
to track near-term progress in a timely manner [Tebaldi and Friedling-
stein, 2013; Marotzke, 2019]. Prior to that, CO2 emission reductions
will also be reflected in decelerating atmospheric CO2 growth. There-
fore, a more direct causal link towards the efficacy of CO2 emission
reductions is the observable atmospheric CO2 signal [Peters et al.,
2017]. As CO2 is well-mixed in the atmosphere after one to two years
[Jacob, 1999; Ciais et al., 2019], atmospheric CO2 can be regarded as
a Global Common [Edenhofer et al., 2014] because only the collec-
tive CO2 emission reductions, i. e. the sum of all NDCs, determine
the evolution of atmospheric CO2. Furthermore, global atmospheric
CO2 provides an independent top-down verification of NDC-based
bottom-up CO2 emission reductions, which are reported by countries
themselves [Janssens-Maenhout et al., 2020].

However, there is one substantial challenge when using atmospheric
CO2 as a verification of CO2 emission reductions: The noise of internalinternal variability noise

variability in the global land and ocean carbon cycles can disguise
the CO2 emission reduction signal in the near-term, which covers the

8 The term budget stems from a financial fixed budget where over-spending in one
period needs to be equalized by savings in the following period.
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policy-relevant pentadal global stocktakes [Peters et al., 2017; Schwartz-
man and Keeling, 2020]. Consequentially, I focus this dissertation on
the near-term variability and predictability of the carbon cycle in the
time-frame of two to fifteen years9. From the global policy perspective
taken for this dissertation, I disregard the micro perspective, i. e. the
details of carbon cycling within the reservoirs, and focus on the macro
perspective of the global carbon cycle - the exchange of carbon at
the Earth’s surface as air-land and air-sea CO2 flux - which reflects
the sum of all reservoir-internal processes at the boundary. Therefore,
when discerning the global CO2 emission reduction signal from the
carbon cycle internal variability noise, only the global land and ocean
carbon cycles, aggregating all spatial CO2 fluxes, matter and are there-
fore emphasized in this dissertation.

e.1.4 Effect of CO2 Internal Variability on the Signal of CO2 Emission
Reductions

As a consequence of CO2 emission reductions, policy-makers and the
public will expect that CO2 emission reductions cause atmospheric
CO2 growth to decelerate10. However, internal variability complicates
the picture in the near-term: Carbon released to the atmosphere by
the global carbon cycle may counteract CO2 emission reductions, or
carbon uptake may slow down atmospheric CO2 growth despite the
lack of CO2 emission reductions. This raises the question whether
CO2 emission reductions cause decelerating atmospheric CO2 in the
near-term.

While observations can only describe the present and past climate, pitching paper I

climate modeling allows us to simulate the future. Earth-System-
Models are numerical models representing the Earth System by cou-
pling physical and biogeochemical processes under external forcings
[Flato et al., 2013]. In particular, ESMs allow us to model climate trajec-
tories with or without CO2 emission reductions. They can therefore be
used to tackle the question of CO2 deceleration causation, which is a
matter of detection and attribution [Bindoff et al., 2013]. By inference,
chapter I [Spring et al., 2020] showcases the need for initialized carbon
cycle predictions by exposing the large range of atmospheric CO2

internal variability and is therefore an appropriate introductory paper
to this thesis.

9 The IPCC’s predictability chapter Kirtman et al. [2013] defines the near-term as the
next two decades.

10 Over the past decades, atmospheric CO2 concentrations are not just increasing
linearly, but have been accelerating due to CO2 emissions increasing at 1% per year
over decades [Canadell et al., 2007; Peters et al., 2019].
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When policy-makers want to evaluate the efficacy of CO2 emission
reductions, they either need to wait until internal variability balances
within the following few years or they look into initialized carbon cycle
predictions, which provide an outlook on multi-year future outlooks
based on alternative CO2 emissions pathways. The ongoing COVID-
19 pandemic provides an unprecedented example for the challenges
attributing CO2 emission reductions in global atmospheric CO2.

e.1.5 Case-study: Atmospheric CO2 Signal in the COVID-19 Pandemic

I mentioned previously only internal variability of the global carbon cy-
cle as noise in the atmospheric CO2 signal. The annual fossil-fuel CO2

emissions, the bulk of CO2 emissions, have evolved rather smoothly
so far [Fig. E1, gray line]. Even disruptive economic crises, like thelittle variability in CO2

emissions global financial crisis in 2008 and its aftermath, have only marginally
decreased fossil-fuel CO2 emissions [Friedlingstein et al., 2020] [Fig.
E1].

The current COVID-19 crisis marks an unexpected instance of CO2

emission reductions, as CO2 emissions dropped unprecedentedly [Le
Quéré et al., 2020; Liu et al., 2020]. Can this signal in CO2 emissions
be identified in annual atmospheric CO2 observations?

In this framing, the annual COVID-19 CO2 emission reductions in
2020 are the signal, whereas the internal variability of land and ocean
CO2 uptake is the noise. With a back-of-the-envelope calculation basedback-of-the-envelope

calculation on the Global Carbon Budget data [Friedlingstein et al., 2020], I show
that internal variability most likely disguises CO2 emission reductions
in atmospheric CO2 measurements in the year 2020 [Fig. E1].

The annual COVID-19 related CO2 emissions are estimated byCOVID-19 CO2 emission
reductions signal different groups and methods: -6.9−2.7

−10.8% (±1σ) [Le Quéré et al., 2020,
updated in Friedlingstein et al. 2020], -7% [IEA, 2020], -13% [Forster
et al., 2020], -5.8% [Friedlingstein et al., 2020] and -6.9% [Liu et al.,
2020]. Averaging these forecasts results in CO2 emission reductions of
7.9±3.6% (±1σ), which amounts to a 0.8±0.3 PgC emission decrease.
Due to the land and ocean carbon sinks, the expected CO2 emission
reductions as seen in global atmospheric CO2 need to be discounted
by the airborne fraction of fossil fuel CO2 emissions11, which averages
to 55% (1958-2019) [Friedlingstein et al., 2020]. Therefore the expected
reduction of global atmospheric CO2 growth rate due to COVID-19 is
only 0.4±0.2 PgC, which translates to 0.2±0.1 ppm converted to global
atmospheric CO2 units12.

I infer the annual carbon cycle internal variability from the de-internal variability noise

trended 1959-2019 atmospheric CO2 growth rate and estimate the 2σ

11 I exclude land-use changes in the airborne fraction, although they are usually included
in the airborne fraction (of all anthropogenic CO2 emissions), because here I do not
assume any changes in land-use change specifically due to COVID-19.

12 1 PgC = 1 GtC = 2.12 ppm = 0.27 GtCO2 [Keeling et al., 1982; Ballantyne et al., 2012;
Friedlingstein et al., 2020], see also equation 1 in subsection E.2.1.
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Figure E1: COVID-19 CO2 emission reductions not seen in the annual
2020 global atmospheric CO2 growth rate. Historical annual CO2

emissions from fossil fuels and industry (gray), total CO2 emis-
sions by additionally including land-use changes (dark blue) and
annual increase of CO2 in the atmosphere (green) based on Global
Carbon Budget data [Friedlingstein et al., 2020]. Note that the
atmospheric CO2 growth can be interpreted as increase of car-
bon in the atmosphere (black scale) and also as an increase of
global atmospheric CO2 mixing ratio (green scale). CO2 emissions
drive long-term atmospheric CO2 growth, but internal variability
of the terrestrial and oceanic carbon sink drive variations in the
annual atmospheric CO2 increment. Crosses show back-of-the-
envelope estimates for the year 2020 with 2σ uncertainties: how
COVID-19 related CO2 emission reductions (red line) result in
an atmospheric CO2 growth reduction (red), where emission re-
ductions have to be discounted by the mean airborne fraction of
fossil-fuel emissions (55% over 1958-2019) [Friedlingstein et al.,
2020]. The COVID-19 CO2 emission reductions are averaged over
estimates by Liu et al. [2020] (-6.9%), Le Quéré et al. [2020, up-
dated in Friedlingstein et al. 2020] (-6.9−2.7

−10.8%) (±1σ), -13% [Forster
et al., 2020], -5.9% [Friedlingstein et al., 2020] and IEA [2020] (-
7%) to a combined mean reduction estimate of 7.9±3.6% (±1σ).
This COVID-19 signal in atmospheric CO2 is masked by internal
variability of the global carbon cycle (green, 2σ uncertainty of
detrended past variability in atmospheric CO2 growth). The ob-
served global atmospheric CO2 growth rate did not change from
2019 to 2020 despite unprecedented CO2 emission reductions
(black) [Dlugokencky, 2021].

interval as ±1.7 PgC = ±0.8 ppm. Given this large range of internal
variability, the COVID-19 CO2 signal of 0.2 ppm is dwarfed by global
carbon cycle noise. Indeed, recent global atmospheric CO2 observa-
tions reveal that the growth rate did not change from 2019 to 2020

[Fig. E1, black cross]. The reported growth rate reduction of 0.01 ppm
is inside the measurement uncertainty of ±0.11 ppm [Dlugokencky,
2021]. Hence, internal variability balanced COVID-19 CO2 emission
reductions.
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In conclusion, this example clearly illustrates how crucial internal
carbon cycle variability is for near-term atmospheric CO2 predictions.
The annual 2020 CO2 emissions reduction signal cannot be identified
in global annual 2020 observations due to the noise in the carbon
cycle13. In order to be successful with this prediction and to distill the
signal, one would need to constrain the noise. This is where initialized
carbon cycle predictions come into play.

e.1.6 Predictability of the Global Carbon Cycle

The decadal prediction community strictly differentiates between ini-
tialized predictions and uninitialized projections. Lorenz [1975] char-
acterizes them as predictability of the first and second kind.

Like in numerical weather prediction, an initialized climate predic-initial value predictability

tion integrates the initial conditions forward and thereby attempts to
predict the near-term [Meehl et al., 2009]. Predictive skill arises in an
"initial value problem" where the memory of the system stems from its
initial conditions, which constrain internal variability at the beginning
of the simulation.

Uninitialized projections attempt to foresee the long-term climateboundary value predictability

state independent of initial conditions. In a "boundary value problem"
predictability arises from the boundary conditions, e. g. the pathway-
dependent CO2 concentration at the end of the century, which mainly
determines the external forcing for the new climate.

Decadal climate prediction has an ambivalent relation to these two
sources of predictability. On the one hand, climate prediction sits at
the sweet spot, benefiting from both sources of predictability. On the
other hand, both sources of predictability are weaker on the decadal
two-to-fifteen-year time-scale compared to the predictive skill in their
respective limits.

Decadal predictions have proven to constrain near-term uncertainty
from internal climate variability in multi-year retrospective forecasts,
so-called hindcasts, in which forecasts aim to predict the past evolution
of climate as a means to verify prediction systems [Smith et al., 2007;
Keenlyside et al., 2008; Pohlmann et al., 2009; Marotzke et al., 2016].

The ocean carbon cycle community is leveraging this established pre-
diction skill from the physical oceanography community, because pre-
dictive skill in the ocean physics is carried into the physics-dependent
ocean carbon cycle. The global carbon sink is predictable for two to
three years [Li et al., 2019; Lovenduski et al., 2019a; Ilyina et al., 2021].
Also the global terrestrial carbon sink is predictable against reconstruc-
tion simulations or the global carbon budget estimates for two years

13 However, regional CO2 emissions reductions were observed locally [Tohjima et al.,
2020; Chevallier et al., 2020].
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[Lovenduski et al., 2019b; Ilyina et al., 2021].

How can carbon predictions inform policy-makers? Modeling in CO2 predictions for
policy-makersgeneral explores alternative scenarios by changing boundary condi-

tions. Initialized ESMs can showcase alternative scenarios14 of CO2

emission reductions reflecting more or less progressive aggregated
NDCs. Furthermore, initialized ESM predictions constrain the near-
term carbon cycle variability to anticipate the short-term CO2 re-
ductions signal, because the noise of internal variability is damp-
ened. Initialized CO2 predictions here provide policy-makers with
an evidence-based forecasting tool to explore policy alternatives. By
knowing about internal variability in advance, atmospheric CO2 can
be anticipated ahead-of-time, i. e. the predictions show the most likely
evolution of atmospheric CO2 based on the current climate state and
proposed CO2 emission reductions.

As a first step towards ESM-based initialized CO2 predictions, I pitching paper II

perform idealized perfect-model initialized potential predictability
experiments to estimate the limits and drivers of atmospheric CO2

predictability in chapter II [Spring and Ilyina, 2020].

e.1.7 Reconstruction of the Global Carbon Cycle

Climate predictions require two ingredients: an Earth System Model
and initial conditions representing the observed climate state to start
predictions from. In assimilation simulations, so-called reconstructions,
climate predictions are confined to track the reanalysis, i. e. observation-
constrained model simulations, closely [Meehl et al., 2009]. Recon-
structions describe where anthropogenic carbon went and therefore
represent a near real-time verification of CO2 emissions [Peters et al.,
2017]. Such reconstructions serve as the initial conditions for initial-
ized predictions representing ahead-of-time verification of CO2 emis-
sions. Physical oceanographers rely on annual initializations since the
late 1950s in their hindcasts to establish multi-year predictive skill15,
which is enabled by global physical climate reanalysis projects [like
Balmaseda et al., 2013, starting in 1958]. However, globally-reaching
observations of the carbon cycle are limited.

The spatio-temporal resolution of the observed state of the oceanic limited ocean carbon
observationsCO2 system is insufficient to initialize hindcasts for predictions, de-

spite efforts of the observations community to develop gridded data
products [Bakker et al., 2016]. The largest problem in creating reliable
observations-based products is the lack of bygone observations. Con-
tinuous monitoring of the oceanic carbon started in the 1980s at the

14 like the Representative Concentration Pathways (RCP) in CMIP5 [Meinshausen et
al., 2011] in CMIP5 [Taylor et al., 2011] and Shared Socioeconomic Pathways (SSP)
[Meinshausen et al., 2019] in CMIP6 [Eyring et al., 2016]

15 Seasonal and numerical weather predictive skill is backed by much larger initialization
and ensemble member statistics and thus more robust.
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islands of Hawaii and Bermuda [Karl and Lukas, 1996; Phillips and
Joyce, 2007]. The earliest gridded oceanic CO2 dataset, dating back to
1982, is powered by machine-learning gap-filling [Landschützer et al.,
2015], and is taken as verification for reconstructions and predictions
only [Li et al., 2019; Ilyina et al., 2021].

Historically, the land carbon cycle is observed at individual loca-limited land carbon
observations tions. Air-land CO2 flux is measured at eddy-covariance flux towers.

Above ground terrestrial biomass is estimated via remote sensing [Issa
et al., 2020]. Inversion models can constrain the geo-spatial patterns of
CO2 flux based on atmospheric CO2 concentrations top-down [Rayner
et al., 1999], but do not describe the sources of CO2 flux bottom-up.
Due to the sparse record of air-land CO2 flux observations and the
complex land surface structure, there currently exists no community-
wide adopted gridded air-land CO2 flux observation-based product.
Commonly the multi-model global carbon budget estimate is taken as
a pseudo-observational verification of the global land carbon sink by
modelers [Ilyina et al., 2021].

The atmospheric carbon cycle is continuously observed only in indi-
vidual measurement stations, e. g. in Mauna Loa, Hawaii since 1958.
Atmospheric CO2 concentrations can be measured via remote sensing
with global atmospheric CO2 coverage, which was introduced in 1996

[Kobayashi et al., 1999]. However, the satellite coverage is too short
for hindcast initialization. On the other hand, carbon cycle forecastersatm. CO2 as verification

rather than initial value
reconstruction

would not assimilate atmospheric CO2 directly, as the predictability
of atmospheric CO2 does not arise from processes in the atmosphere,
but from the land and ocean carbon sinks below. Atmospheric CO2

is transported around the globe as an inert gas and mixes globally
within 1-2 years [Keeling et al., 1989b]. As atmospheric CO2 integrates
the land and ocean CO2 fluxes, atmospheric CO2 observations should
rather be used to verify the quality of the land and ocean carbon cycle
reconstructions.

These observational carbon cycle records are insufficient to initializecarbon cycle observations too
sparse to initialize long-lasting hindcasts. A first marine biogeochemical assimilation by

Carroll et al. [2020] was just released and only runs back to 1995. Fur-
thermore, assimilating biogeochemical properties into an ESM easily
triggers drifts [Toggweiler et al., 1989; Park et al., 2018]. Therefore, cur-
rent state-of-the-art prediction models do not reconstruct the carbon
cycle initial states from observations, presuming that the reconstructed
climate initializes the carbon cycle indirectly [Ilyina et al., 2021]. Thepitching paper III

often mentioned hypothesis that carbon cycle predictions would bene-
fit from direct carbon cycle initialization [Séférian et al., 2018; Ilyina
et al., 2021] is challenged in chapter III [Spring et al., 2021].
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e.2 overview of methodologies

I now introduce the main concepts used in this dissertation and present
a brief overview on their main characteristics.

e.2.1 Disentangling the Origin of Variations in Atmospheric CO2

Disentangling the sources of observed inter-annual variability in atmo-
spheric CO2 remains a challenge. Both the land and the ocean carbon
sinks respond to climate variability and the resulting local surface CO2

flux anomalies dissipate quickly [Rödenbeck et al., 2003]. Bacastow
[1976] and Bacastow et al. [1980] hypothesized that the oceans caused
the inter-annual variations in atmospheric CO2, which correlate with
ENSO. Here, general circulation models advanced the understanding
of the carbon cycle. Only the mechanistic ocean carbon cycle modeling past challenges of attributing

near-term CO2 variationsstudy by Winguth et al. [1994]16 could confirm the terrestrial biosphere
origin of atmospheric CO2 increase due to El Niño, which was previ-
ously suggested by a transport model [Keeling et al., 1989a] and later
confirmed by observations [Keeling et al., 1995; Francey et al., 1995].

The dynamics of the Earth System including the carbon cycle are
nowadays described by Earth System Models (ESMs), numerical mod-
els coupling physical and biogeochemical processes [Flato et al., 2013].
Only coupling of land and ocean carbon cycles by resolving atmo-
spheric CO2 shows the full interplay of climate and carbon [Cox et
al., 2000; Jones et al., 2001]. To further understand atmospheric CO2

variability, also in the context of predictability, the contributions from
ocean and land variability need to be isolated.

I disentangle the contributions of land and ocean carbon sinks on separate land and ocean in
atm. CO2 variationsatmospheric CO2 by diagnosing atmospheric CO2 (XCOdiag

2 ) variations
compatible with the carbon sinks. Utilizing the conservation of mass,
I aggregate the deviations from the ensemble member i, scenario s
and temporal t mean of the global land and/or ocean carbon sink
Gland and/or ocean

i,s,t over time. The conversion factor 2.124 converts CO2

flux magnitudes in units of petagram (1 PgC = 1 GtC = 2.124 ppm)
carbon to a globally dispersed atmospheric CO2 in units ppm [Keeling
et al., 1982; Ballantyne et al., 2012]. The resulting atmospheric CO2

variations are then added to a forced emissions signal of atmospheric
CO2 fs:

XCOdiag
2,i,s (t) =

t

∑
t′

Gland and/or ocean
i,s,t (t′) · ppm

2.124PgC
+ fs. (1)

In ESMs, the carbon cycle coupling can be configured in two carbon cycle model
configurationdifferent setups concentration-driven and emission-driven simulations.

16 The ocean biogeochemistry model was the Hamburg Ocean Carbon Cycle model
version 3, which is a predecessor of HAMOCC 6 used for this thesis [Ilyina et al.,
2013].
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In concentration-driven simulations, atmospheric CO2 concentrations,
which are calculated by simplified climate models (Integrated Assess-
ment Models (IAMs)) based on anthropogenic emission pathways, are
prescribed to the model. Therefore, the land and ocean carbon cycle
do not alter atmospheric CO2 levels in these simulations. Hence, CO2

fluxes are diagnostic from the atmosphere’s point of view. In order
to still analyze the expected global atmospheric CO2 variations of
these simulations, such as in Spring et al. [2020], I diagnose a variable
global atmospheric CO2 tracer from both land and ocean CO2 fluxes
combined [Ch. I].

Alternatively, the atmospheric CO2 mixing-ratio can be calculated
based on CO2 emissions and the response of the land and ocean carbon
sinks. These emission-driven or prognostic atmospheric CO2 simulations
resolve a spatio-temporal variations of atmospheric CO2, but do not
reveal their driver. Therefore, I use equation 1 in prognostic atmo-
spheric CO2 simulations, such as in [Spring and Ilyina, 2020] under
pre-industrial conditions ( fi=0), to disentangle the individual contri-
butions of the land and ocean carbon sink to the atmospheric CO2

evolution [Ch. II]. This allows me to discern whether atmospheric CO2

is predictable due to the ocean or the land carbon sink. A thorough
verification of this method can be found in section I.SI.1.

e.2.2 Forecast Verification

The value of forecasts depends on whether or how forecasts are used
[Murphy, 1993]. Why should users like business or governmental
resource managers trust a forecast? Anyone could issue forecasts,
e. g. for atmospheric CO2 levels in two years.

Forecasts must be reliable for users to trust it. Forecasts are falsi-verification to trust forecasts

fiable [Palmer, 2020] and repeated evaluation of forecasts lends the
forecaster credibility [Murphy, 1993], thereby influencing decision
makers and hence becoming valuable. If a forecast worked in the past,
and the climate system did not change considerably, it ought to work
in the near future. This process is named forecast verification and
achieved by issuing retrospective forecasts, which are then evaluated
based on past observations [Boer et al., 2016]. Many past forecasts are
compared to simpler reference forecasts. If the initialized forecasts
outperform a persistence forecast or the uninitialized historical pro-
jection two years after starting the forecast, the initialized model has
predictive skill over the persistence or uninitialized forecast at lead
year two.

Forecast verification is a standardized exercise from numericalcurrent challenges of forecast
verification weather to decadal climate prediction. Many different attributes of

forecasting skill can be evaluated. The increasing volume of prediction
data calls for the use of distributed and parallelized software and
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hardware. Furthermore, the replication of forecast verification code is
unnecessarily error-prone and not inherently advancing the prediction
science.

To standardize the code base, leverage on new software frameworks pitching paper IV

in python [Hoyer and Hamman, 2017; Rocklin, 2015] and enable
interactive workflow, I co-created17

climpred, a forecast verification
software, which is developed open-source on GitHub. The reference
paper [Brady and Spring, 2021] is attached as chapter IV, but not
summarized further in this essay.

e.2.3 Perfect-Model Framework

The conceptual modeling framework overarching the three research
papers is the perfect-model framework. The term perfect-model con- what makes my model perfect

fronts the popular quote that "all models are wrong" [Box, 1976]. When
climate models are evaluated against the observed Earth System, in-
deed these models represent processes imperfectly, calculate on too
coarse spatio-temporal resolution, are limited by imperfect boundary
conditions and start from imperfect initial conditions. However, by
defining the model itself as the truth to evaluate against, the model
now represents processes perfectly, perfect spatio-temporal resolution,
perfect boundary conditions, even perfect initial conditions. When
started from identical initial conditions on the same software and
hardware architecture, a climate model is even deterministic - being
able to reproduce an identical simulation - a truly perfect model in its
limited scope.

However, this perfect-model framework cannot predict the real what a perfect-model fails at

world, i. e. the observed Earth System. It is merely a studying tool,
from which the forecaster can learn about the tool used for real world
forecasts in an idealized setup, which is not convoluted by technical
burdens of reconstruction to the reanalysis product. Given that the
model reproduces observed variability [see section II.SI.7], the perfect-
model framework can estimate the limits of predictability of a given
ESM, which are eventually imposed by the chaotic atmosphere.

Historically, the predictability science started with perfect-models
[Pohlmann et al., 2004], which were followed by retrospective pre-
dictions [Pohlmann et al., 2009; Scaife and Smith, 2018] and finally
operational predictions [Marotzke et al., 2016]. Hence, perfect-model
studies [Séférian et al., 2018; Spring and Ilyina, 2020; Fransner et al.,
2020] lay the foundations for carbon cycle predictions [Li et al., 2016;
Li et al., 2019; Lovenduski et al., 2019a; Lovenduski et al., 2019b; Ilyina
et al., 2021].

Chapter I uses a perfect-model, because the factual and counter- perfect-model used in papers

17 This software was co-developed with Riley X. Brady, then PhD candidate from Boulder
University. Code: https://github.com/pangeo-data/climpred. Documentation: https:
//climpred.readthedocs.io/.

https://github.com/pangeo-data/climpred
https://climpred.readthedocs.io/
https://climpred.readthedocs.io/
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factual18 worlds are both described by the model. Chapter II marks
the classic perfect-model predictability study for the global carbon
cycle. In chapter III, I reconstruct the initial conditions of the global
carbon cycle, which I aim to recreate in perfect-model simulations,
i. e. the same model as the perfect pseudo-observations come from and
test whether direct carbon cycle reconstruction improves carbon cycle
predictability.

With these methods in mind, I will now summarize the three previ-
ously announced papers in individual sections.

18 Please find an introduction of the factual and counter-factual world in sections E.3
and I.2.1.
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e.3 paper i : variability of the global carbon cycle

Atmospheric CO2 concentrations driven by CO2 emissions are the motivation

carbon signal in the atmosphere, but how strong are atmospheric CO2

variations compared to changes in CO2 emissions? Once CO2 emission
reductions are implemented on a global scale, questions about the
immediate effects of these emission reductions will be raised [Tebaldi
and Friedlingstein, 2013; Marotzke, 2019; McKenna et al., 2020]: When
will global mean surface temperature stop increasing? Even more
closely linked and along the lines of Peters et al. [2017] and Schwartz-
man and Keeling [2020], I add: When will CO2 emission reductions
be detectable in atmospheric CO2? And how can it be ensured that it
is the emission reductions that caused an atmospheric CO2 slowdown
and not notorious internal variability?

This question is similarly raised about potential imprints of a re-
duced CO2 emission signal due to COVID-19 lock-downs, but when
aiming to detect a signal, the noise also needs to be considered. The
growth rate of atmospheric CO2 on inter-annual time scales is largely
controlled by the response of the land and ocean carbon sinks to
climate variability. Only on longer time-scales, substantially longer
than the ENSO cycle of two to seven years, do CO2 emissions deter-
mine atmospheric CO2 trends [Keeling et al., 1989a; Keeling et al.,
1995]. Therefore, internal variability might disguise CO2 emission
reductions. Here, I ask what the probability is that a slowdown in
near-term atmospheric CO2 growth is attributable to a policy change
implementing emission reductions, such as a transition from scenario
Representative Concentration Pathway (RCP) RCP4.5 to RCP2.6, in the
face of internal climate variability. This causation question is desirable
to answer, as policy-makers will want to ensure that CO2 emission
reductions are the cause of decelerating CO2 growth and not internal
variability. In particular, I ask whether CO2 emission reductions cause
a CO2 deceleration in the near-term. I formulate the following guiding
research questions:

1. What is the probability that CO2 emission reductions cause research questions

a slowdown in atmospheric CO2 growth over five years in the
face of internal climate variability?

2. After how many years do such CO2 emission reductions cause
reduced atmospheric CO2 trends for certain?

These questions become policy-relevant once policy-makers assess
the efficacy of emission reductions in the global stocktake [UNFCCC,
2015, Art.14] every five years [Peters et al., 2017; Schwartzman and
Keeling, 2020].
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In the MPI-ESM Grand Ensemble (MPI-ESM GE) simulations [Maher
et al., 2019], I diagnose atmospheric CO2 variations compatible withmethods: diagnosed atm. CO2

the natural carbon sinks variations as calculated by equation 1.
I define a slowdown of atmospheric CO2 increase as a first robust

response to declining CO2 emissions, reasoning that smaller CO2

emissions should lead to a weaker atmospheric CO2 increase. Pleasedetecting an atm. CO2
deceleration note that this response is not a reversal to an actual reduction in

atmospheric CO2 concentrations, which is mathematically described
by a negative first derivative. In contrast, I detect a slowdown in the
still increasing atmospheric CO2 growth, mathematically described
by a negative second derivative. Thus, decelerating atmospheric CO2

grwoth is a first step towards stable atmospheric CO2, which is a
sufficient condition19 for a stable climate.

I aim to detect decelerating atmospheric CO2 growth in comprehen-causation

sive causation framework [Pearl, 2000; Hannart et al., 2016; Marotzke,
2019]. I compare growth trends of atmospheric CO2 before and af-
ter the onset of CO2 emission reductions in 2020. I use the scenario
RCP2.6 implementing CO2 emission reductions in contrast to scenario
RCP4.5, which is closest to the pledged and current policies [Rogelj
et al., 2016b] without CO2 emission reductions until 2035 [Thomson
et al., 2011].

From probabilities of CO2 deceleration in a factual and counter-
factual world represented by either RCP2.6 or RCP4.5, I compute the
probability that CO2 emission reductions cause the atmospheric CO2

deceleration in a sufficient, necessary, or sufficient and necessary cau-
sation sense. Translated into the quest of CO2 deceleration detection,
sufficient means asking in advance in an RCP4.5 world whether CO2

emission reductions will cause the slow-down; necessary means asking
in retrospect in an RCP2.6 world whether CO2 emission reductions
were needed for the slowdown; necessary and sufficient combine the
two causation attributes describing that only CO2 emission reductions
can decelerate atmospheric CO2.

I only use atmospheric CO2 observations to verify whether the diag-
nosed atmospheric CO2 growth from the model is inside the observed
range [Fig. I.SI.7]. This analysis is carried out in an idealized perfect-
model framework because only initial conditions and two different
CO2 emission pathways distinguish the simulations. Therefore, model
uncertainty and bias with respect to the real world are not subjects
of this study. However, all models, as well as the observable Earth
System, are subject to this internal variability, which hinders clear
causation in near-term observations.

19 Sufficient and/or necessary causation as in Pearl [2000] and Hannart et al. [2016] is
different from sufficient and/or necessary condition in logic meant here [Bloch, 2011,
p.8-9].
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I find a 70% probability that atmospheric CO2 decelerates in the CO2 results:
deceleration probabilityemission reductions scenario RCP2.6, while trends remain impartial

without CO2 emission reductions. This implies a 30% chance that
atmospheric CO2 accelerates despite CO2 emission reductions. The
global carbon cycle response to climate variability can trigger this
counter-intuitive response, e. g. when tropical forests release more CO2

in response to an El Niño event than is mitigated by CO2 emission
reductions [Jones et al., 2001; Betts et al., 2018] [Fig. I.SI.8].

These probabilities translate into CO2 emission reductions being causation probability

sufficient to cause a five-year trend reduction beforehand by 42% and
in hindsight necessary by 31%. The probability that a policy change
from RCP2.6 to RCP4.5 is indeed needed and will suffice to bring the
desired outcome considering five-year trends is only 22%. These prob-
abilities are far from certain (implying 100%). Analysing increasing
periods centering around the year 2020 of CO2 emission reduction
separation, I find that virtually certain sufficient causation is reached
regarding ten year trends and necessary causation regarding 16 year
trends.

The pentadal global stocktakes make the five-year internal vari- conclusion: internal
variability hinders clean
causation

ability highlighted in this study especially relevant for policy-makers.
This analysis shows that a five-years assessment cycle is likely domi-
nated by internal variability noise and not by a potential CO2 emission
reductions signal.

1. CO2 emission reductions are sufficient by 42%, necessary by key findings

31% and both necessary and sufficient by 22% to cause re-
duced atmospheric CO2 five-year trends.

2. Certainty implying sufficient or necessary causation is only
reached after, respectively, ten and sixteen years.

This study demonstrates the inherent uncertainty in atmospheric initialized predictions as
partial solutionCO2 projections [Spring et al., 2020]. Initialized ESM-based prediction

systems may reduce this uncertainty by predicting natural variations
of the global carbon cycle and thereby provide a partial solution to the
challenge of identifying signals in the internal variability noise.
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e.4 linking global carbon cycle variability to global

carbon cycle predictability

As an insertion, linking internal variability of atmospheric CO2 withpredictability of atmospheric
CO2 in the MPI-ESM GE the following predictability of atmospheric CO2 chapter, I want to

feature the same set of simulations from the MPI-ESM Grand Ensemble
as a perfect-model framework initialized in the year 2006. In particular,
I show how initialized ensembles predict atmospheric CO2 better than
uninitialized projections by constraining internal variability.

Figure E2: Predictive skill of detrended global annual diagnostic atmo-
spheric CO2 in the MPI-ESM Grand Ensemble perfect-model
framework initialized in the year 2006. The initialized skill (red)
starts from near perfect and approaches the limits of the resam-
pling uninitialized skill (blue). Red numbers indicate the probabil-
ity that the uninitialized ensembles are more predictable than the
initialized ensembles. For a detailed methodology refer to section
II.2.3.

Identifying 100 initializations (formerly seen as ensemble members)
with three members (formerly seen as RCP scenarios) each up to 10

lead years, until which the external forcing is nearly indistinguishable,
allows me to calculate initialized perfect-model predictability. Different
attributes in diagnostic atmospheric CO2 are predictable for a couple
of years [Fig. E2]:

The anomaly correlation coefficient (ACC) measures linear associ-
ation between a two-member forecast and one-member verification
between ensemble members. Initialized atmospheric CO2 is signifi-
cantly predictable over all ten lead years. The first three lead years
yield ACC values larger than 0.6, commonly considered as useful for
predictability [Fig. E2a].

Root-mean-square-error (RMSE) measures the accuracy between
forecast and verification. Initialized atmospheric CO2 is predictable
for up to four years. The RMSE most directly shows the potential of
how the full range of internal variability of the uninitialized ensemble
(blue) can be constrained for four years by initialized ensembles (red)
[Fig. E2b].



E.4 linking carbon cycle variability to predictability 21

The sign of a trend change measured over an increasing trend length
of the initialized ensembles has a higher accuracy score than impartial
uninitialized ensembles [Fig. E2c]. These trend changes correspond to predictability of the atm. CO2

trend changethe variability assessed in chapter I [Spring and Ilyina, 2020]. Here, the
forecaster knows about the past evolution of atmospheric CO2. The
ESM forecasts whether CO2 will accelerate or decelerate over time due
to internal variability alone without any influence of CO2 emission
reductions.

Overall these results indicate a first glimpse of multi-year predictabil-
ity in atmospheric CO2. However, these simulations performed in 2013

contain merely three ensemble members, which allow me only to
compare a two-member forecast with a single-member verification in
turns. In order to gain predictive skill backed by more robust statistics
and to investigate spatially-resolved atmospheric CO2 predictability,
new initialized ensemble simulations with prognostic atmospheric
CO2 are required.
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e.5 paper ii : predictability of the global carbon cycle

Having demonstrated the large magnitude of diagnostic atmosphericmotivation

CO2 variability, I assess the predictability of prognostic atmospheric
CO2 in initialized perfect-model framework simulations. In order to
uncover potential anthropogenic CO2 signals, I specifically aim to
predict and constrain the noise from carbon cycle internal variability.
Initialized carbon cycle predictions answer the question where the
carbon will go in the near-term. Specifically, initialized carbon predic-
tions predict the land and ocean carbon sinks and thereby constrain
atmospheric CO2 variability.

So far, there is only one prediction method for near-term atmo-
spheric CO2: Betts et al. [2018] regress annual atmospheric CO2 in-
crements on the El Niño 3.4 index to predict next year’s atmospheric
CO2, based on extrapolated historical CO2 emissions and a six-month
Niño 3.4 prediction [Betts et al., 2016]. This prediction is computation-
ally cheap to perform, as they diagnostically predict CO2 based on
existing operational predictions. In contrast, ESM-based predictions
consume vast amounts of energy. To justify this effort, they promise
better and longer predictions, which the seasonal to decadal prediction
community in oceanography delivers [Merryfield et al., 2020]. While
operational ESM-based carbon cycle predictions are not yet available,
previous ESM-based studies find predictability in the global land
[Zeng et al., 2008; Séférian et al., 2018; Lovenduski et al., 2019b] and
global oceanic [Séférian et al., 2018; Li et al., 2019; Lovenduski et al.,
2019a] carbon sinks. However, multi-year predictability of prognostic
atmospheric CO2, i. e. resolving its variability and spatial distribution,
was unexplored.

Furthermore, the main driver of atmospheric CO2 predictability is
unknown. While the air-land CO2 flux has a larger variability ampli-
tude than the air-sea CO2 flux [Friedlingstein et al., 2020], the ocean
has much longer memory of variability making it much more pre-
dictable than processes on land [Meehl et al., 2013]. Which influence
will predominate atmospheric CO2 predictability? Thus, I formulate
the following guiding research questions:

1. What are the limits of predictability of air-sea and air-landresearch questions

surface CO2 flux as well as the resulting atmospheric CO2

mixing ratio?

2. What are the roles of the ocean or land carbon cycle in limiting
and enabling atmospheric CO2 predictability?

I perform initialized simulations in a perfect-model frameworkmethod: perfect-model
predictability framework [Griffies and Bryan, 1997]. Predictive skill is claimed when initialized

simulations perform better than resampled uninitialized simulations,
because of their constrained initial conditions. The last lead year with
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predictive skill is called the predictability horizon, which marks a the-
oretical upper limit of predictability for the given variable in a given
prediction system (here MPI-ESM1-2-LR [Mauritsen et al., 2019]).

I estimate the RMSE-based predictability horizon of the global results: CO2 flux

air-land and air-sea CO2 fluxes as two years [Fig. II.1a,b], similar to
predictive skill evaluated against reconstruction and observations [Li
et al., 2019; Lovenduski et al., 2019a; Lovenduski et al., 2019b]. Previ-
ous estimates of predictability horizons in a perfect-model were higher
[Séférian et al., 2018], but end up comparable when computed by my
proposed methodology, which is based on the established prediction
frameworks [Goddard et al., 2013; Marotzke et al., 2016; Yeager et al.,
2018] [see II.SI.4.3 for comparison of verification frameworks]. The
global ocean carbon sink predictability is dominated by the extra-
tropical oceans in the North Atlantic, North Pacific and Southern
Ocean, which are known for their high-variability low-frequency vari-
ations [Landschützer et al., 2016] [Figs. II.2, II.SI.2, II.SI.7]. The global
terrestrial CO2 flux predictability is dominated by the tropical forests
and mid-latitudes. Prediction error increases most strongly in the re-
gions susceptible to ENSO [Betts et al., 2018] [Figs. II.2, II.SI.2, II.SI.8].

I specifically focus on an accuracy metric like RMSE, because it takes
the magnitudes of the noise and predictability signal into account,
whereas correlation measures correspondence independent of scale.
For instance, longer regional predictability in the ocean is erased in
the noise of global oceanic CO2 flux. I also find correlation-based
predictability of air-sea CO2 flux of four years and air-land CO2 flux of
three years. But predicting the direction of CO2 flux has only scientific
value. What is of interest for the application by policy-makers is
the magnitude of internal variability constrained as aggregated in
atmospheric CO2.

The predictability horizon for the global atmospheric CO2 mixing results: atmospheric CO2

ratio is three years [Fig. II.1c]. The spatial distribution of atmospheric
CO2 predictability is homogeneous in the extra-tropics with features
of longer predictability up to six years across parts of the tropical
oceans. However, due to the sampling uncertainties stemming from
only twelve initial conditions, this feature is likely not robust for a
meaningful application. Atmospheric CO2 measured at the Mauna
Loa observatory in Hawaii is also predictable up to three years in
advance, surpassing the statistical prediction of Betts et al. [2018] in
maximum predictive skill lead time and beating their predictive skill
at lead year one [Spring and Ilyina, 2020] [Fig. II.SI.1c].

Considering temporally accumulated global surface CO2 flux as
a proxy for global atmospheric CO2 concentration [see equation 1,
and compare figs. II.1c,f], I find that the variations of atmospheric
CO2 only due to the ocean carbon cycle are predictable beyond a
decade, whereas they are predictable only for five years for the land
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carbon cycle [Fig. II.1d,e]. Therefore, the terrestrial carbon sink limits
atmospheric CO2 predictability.

This chapter demonstrates that ESM-based initialized predictionsconclusion: atm. CO2
potentially predictable for

three years
of the global carbon cycle with prognostic atmospheric CO2 have
the potential to deliver skillful multi-year outlooks on the evolution
of atmospheric CO2 mixing ratio, which represent an ahead-of-time
verification of potential CO2 emission reductions. They can also pro-
vide longer and more accurate predictions than a statistical regression
model [Betts et al., 2018]. Furthermore, I outline the importance to
assess CO2 flux predictability in a distance-based metric like RMSE,
when explaining atmospheric CO2 predictability and confirm the
global atmospheric CO2 predictability limits claimed in section E.4. I
conclude:

1. Global annual air-land and air-sea CO2 fluxes are predictablekey findings

for two years. Atmospheric CO2 is predictable for three years.

2. The land carbon sink is dominated by the tropical forests and
limits longer atmospheric CO2 predictability sustained by the
ocean carbon sink, which is mainly limited by the Southern
Ocean.
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e.6 paper iii : reconstruction of the global carbon cycle

After having established potential predictability in the global carbon motivation

cycle, incorporation of initial conditions close to observations is of-
ten mentioned as the next step towards near-real-time carbon cycle
predictions [Séférian et al., 2018; Ilyina et al., 2021]. Here, I ask how
important are carbon cycle initial conditions in determining where the
carbon goes next. Thereby explicitly asking whether the carbon cycle
signal can be better predicted when carbon cycle initial conditions are
constrained.

For state-of-the-art prediction systems, only the climate physics are
reconstructed. This indirect carbon cycle reconstruction method relies
on the assumption that biogeochemical cycles indirectly follow the
reconstructed climate variables. While plausible, this assumption is
currently untested. The direct reconstruction of the carbon cycle by
carbon cycle observations is often stated as having the potential to
improve carbon cycle prediction systems [Li et al., 2019; Lovenduski
et al., 2019a; Ilyina et al., 2021].

Fransner et al. [2020] tackle this challenge from a theoretical stand-
point using perfect-twin experiments, where either shuffled ocean
carbon cycle initial conditions are integrated with identical physics
or identical ocean carbon cycle initial conditions are integrated with
slightly perturbed physics. To the surprise of the authors, they find
that oceanic carbon cycle initial conditions do not matter for one year
ahead predictability. However, this approach does not investigate how
initial conditions are generated and how well the initial conditions
have in fact been reconstructed - both interesting from the perspective
of a modeler and carbon cycle forecaster who wants to understand
the initial conditions of their predictions. Here, I take into account the
integrated carbon cycle including the land and ocean carbon sink.

Therefore I test indirect and direct reconstructions of the global
carbon cycle in a perfect-model reconstruction [Servonnat et al., 2015]
and predictability framework [Spring and Ilyina, 2020] and I formulate
the following guiding research questions:

1. How well can initial conditions be reconstructed in the global research questions

carbon cycle?

2. Can initialization of biogeochemistry improve predictive skill
of biogeochemistry?

I therefore conduct reconstruction simulations comparing indirect methods: reconstructing an
ESM with itselfand direct carbon cycle reconstructions with a focus on the global

carbon cycle. I nudge atmospheric and oceanographic dynamics from
MPI-ESM-LR into MPI-ESM-LR mimicking an MPI-ESM-LR reanalysis
based on perfect MPI-ESM-LR observations. This reconstruction is then
compared to the ground truth, the perfect MPI-ESM-LR observations.
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Additionally for the direct carbon cycle reconstruction, I nudge oceanic
variables determining CO2 flux, namely dissolved inorganic carbon
and total alkalinity. For the lack of a nudging routine in the terrestrial
carbon cycle model JSBACH, I reset the restart files each January 1

st

to the target restart files, which resets the land model to the defined
ground truth. I compare how well internal variability is reconstructed
against a randomly resampling 95

th percentile threshold.
Then I use these reconstructed initial conditions to evaluate impli-

cations for initialized predictive skill. To account for offset biases in
mean state due to reconstructions, I also remove the mean bias before
calculating a debiased accuracy metric. Predictions are calibrated be-
fore being given to users [Atger, 2003; Gneiting and Raftery, 2007] and
the mean bias reduction is the simplest calibration method.

Reconstruction of only climate physics introduces systemic biasesresults: initial conditions
reconstruction in climate dynamics themselves [Fig. III.1]. Generally, reconstructions

improve association and accuracy with the target [Figs. III.3, III.SI.2],
while at the same time introducing regional biases, which are trans-
lated into the land and ocean carbon cycles [Fig. III.2]. Indirect carbon
cycle reconstruction tracks the carbon cycle in the target better than a
resampling 95

th percentile threshold. Direct carbon cycle reconstruc-
tion improves tracking metrics with respect to the carbon cycle target
over large parts of the globe, especially correlation and accuracy after
bias reduction. However, aggregated for the global carbon cycle, direct
carbon cycle reconstruction only marginally improves accuracy over
the indirect method after a mean bias reduction [Fig. III.5].

Directly initialized ensembles predict the target better than indi-results: predictive skill after
reconstruction rectly initialized ensembles, unless the direct reconstruction further

increases the bias as for oceanic pCO2 and atmospheric CO2. How-
ever, when globally aggregated, the same improvement from directly
initialized carbon cycle predictive skill can be achieved by a mean bias
reduction [Fig. III.6].

While reconstructions of the carbon cycle involve risks of driftsconclusions: confidence for
indirect carbon cycle

reconstruction
and biases, the improvements in initial conditions and predictive skill
on global scales are limited and similarly achieved by a mean bias
correction. Therefore I label these improvements trivial in Spring et al.
[2021]. Nonetheless, this result adds confidence to the current practice
of indirect reconstruction in carbon cycle prediction systems [Ilyina
et al., 2021]. Therefore understanding the physical reconstruction
biases and their effects on biogeochemistry is more promising than
initializing the carbon cycle to improve carbon cycle predictions. I
conclude:
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1. Indirect reconstruction of carbon cycle by nudging only cli- key findings

mate physics tracks the target better than a resampling thresh-
old representing internal variability.

2. Direct reconstruction of global carbon cycle initial conditions
does not improve predictive skill more than a simple bias re-
duction method does.



28 essay

e.7 conclusions

Although my thesis is based on an idealized perfect-model framework,
many conclusions can be transferred to real world predictions. First, I
demonstrate why this transfer is feasible and then I draw conclusions
from each of the three papers.

The largest difference between perfect-model and retrospectivetranslating to carbon cycle
hindcasts hindcast predictions is initialisation. Hindcasts are initialized from

observation-based reanalysis products, which are often created using
a different ESM in reconstruction simulations and hence follow a
different climatology. "Pulling" the ESM towards observations yields
accurate initial conditions and hence the hindcasts and forecasts can
be evaluated against observations. When hindcasts are evaluated
against observations, ESMs suffer from insufficient temporal or spatial
resolution and lack processes which would fully represent the real
world. While the global carbon cycle is subject to these deficiencies, at
least the climatology of the globally aggregated carbon cycle is bound
by observational constraints in the process of tuning the carbon cycle.
By design, the perfect-model framework does not suffer from the
above mentioned deficiencies other that it cannot be used to predict
the real world.

Both initialized perfect-model and hindcast predictions use the same
ESMs, i. e. the same boundary conditions, spatio-temporal resolution
and processes. Therefore, both also share the ultimate reason for en-
semble members to diverge: the chaotic nature of the atmosphere
[Lorenz, 1965]. Here, perfect-model frameworks can more cleanly
identify the processes driving predictability and are free from biases
with respect to their verification.

With the unprecedentedly large number of ensemble simulationspaper I: internal variability
may disguise the detection of
CO2 emission reductions in

the near-term

and a novel method to visualize the expected variability of atmo-
spheric CO2 in concentration-driven simulations, Spring et al. [2020]
shows that pronounced internal variability has the capacity to disguise
CO2 emission reductions for up to a decade. While the detection of
mitigation is found to be delayed much longer for global mean surface
temperature [Tebaldi and Friedlingstein, 2013; Marotzke, 2019], such
causation of mitigation detection of atmospheric CO2, the most directly
linked quantity, was previously unknown20. In particular, causation of
reduced atmospheric CO2 trends is far from certain over the pentadal
periodicity of the global stocktake. Hence, the global stocktake should
focus on CO2 emissions aiming for net zero CO2 emissions. Recent

20 The publication timelines of Spring et al. [2020] and Schwartzman and Keeling [2020]
overlapped, where Schwartzman and Keeling [2020] refined the method by Peters
et al. [2017]
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observations of atmospheric CO2 should be interpreted with caution.

Spring and Ilyina [2020] shows that ESM-based predictions can paper II: global atmospheric
CO2 is predictable for up to
three years

constrain internal variations in atmospheric CO2 by up to three years.
This, to my knowledge, first estimate of predictive skill of atmospheric
CO2 marks the upper achievable limit due to the chaotic Earth System.
As the perfect-model framework includes perfect initialization and a
perfect model, slightly lower predictive skill is expected to be found for
real-world predictions. I furthermore separate the predictive skill into
a predictability-sustaining ocean signal and a predictability-limiting
land signal. Therefore, more accurate predictions of the land carbon
sink will help to constrain near-term predictions of atmospheric CO2.
By reducing the internal variability uncertainty, the expected atmo-
spheric CO2 signal can be predicted, given specific CO2 emission
reductions. This will give confidence to short-term outlooks towards
future observations and will set realistic expectations of near-term
atmospheric CO2 evolution. Eventually, these CO2 predictions can
guide policy-makers towards ahead-of-time constrained projections of
the efficacy of mitigation efforts.

In order to generate real-world predictions, the global carbon cycle paper III: direct carbon cycle
reconstruction does not
improve initial conditions and
predictability

needs to be reconstructed in an ESM without triggering (too large)
artificial drifts introduced by assimilation of observations. Hence,
Spring et al. [2021] makes a first attempt to quantitatively assess
reconstruction skill for the carbon cycle assuming perfect carbon cycle
observations in an idealized perfect-model framework. I find limited
improvements after initializing the carbon cycle directly. Spring et al.
[2021] thereby challenge the previous hypothesis that carbon cycle
predictions are unconstrained from an initial conditions point of view
[Séférian et al., 2018; Ilyina et al., 2021]. I concluded that if the perfect-
model reconstruction does not improve initial conditions sufficiently
to increase predictive skill, the reconstruction towards observation-
based carbon cycle reanalysis would likely trigger even worse drifts.
Practically speaking, we have to accept that drifts occur [see Li et al.,
2019, SI Fig. 1] and learn how to minimize their consequences.

Until now predictive skill was mostly based on the bias-invariant
anomaly correlation coefficient. The mean bias correction I apply only
marks the most basic post-processing technique, bringing considerable
improvements and allowing bias-sensitive metrics to be verified after
bias reduction. Also the currently indirectly reconstructed carbon pre-
dictions can benefit from bias reduction. Likely, the effects of climate
physics reconstructions from different reanalyses on the carbon cycle
yield larger potential to improve predictions of the global carbon cycle.
Here Spring et al. [2021] serves as a test-bed for understanding how
an ESM responds to reconstructions.
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Reconstruction of the Global Carbon Cycle in ESMs is also impor-
tant for the Global Carbon Budget, in which separate reanalysis-forced
simulations for land and ocean aim to explain "where does the car-
bon go?" [Marotzke et al., 2017]. Ideally, the Global Carbon Budget
simulations should model prognostic atmospheric CO2 based on past
emissions. In this way, the partitioning of carbon between atmosphere,
land and ocean is internally consistent within the given ESM, which
may reduce the carbon budget imbalance [Friedlingstein et al., 2020],
which is required for the verification of real-time CO2 emission reduc-
tions [Peters et al., 2017; Schwartzman and Keeling, 2020].

In conclusion, this dissertation based on idealized Earth System
Model simulations tells the story how initialized predictions have the
potential to constrain internal variability of the global carbon cycle.
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e.8 outlook

I arrange the implications and inferences from this thesis in two parts:
the first, relevant to the carbon cycle variability and predictability
research community; and the second, relevant to the climate policy of
CO2 emissions.

e.8.1 Future Research Opportunities

In the following, I deduce a few subsequent research questions for
fellow carbon cycle variability & predictability research studies and
furthermore outline related applications:

My first paper Spring et al. [2020] relies only on one model and one
possible transition in CO2 emission reduction pathways, however the
trend sign method is very sensitive towards the ratio of internal vari-
ability and the magnitude of emission reductions over time. Therefore,
a study exploring the multitude of modeled internal variability [also
including observations-based internal variability like Schwartzman
and Keeling, 2020] versus a range of CO2 emission reduction path-
ways would better set the detectability of CO2 emission reductions in
atmospheric CO2 in context.

Furthermore I focus on annually and globally averaged atmospheric
CO2. The actual detectability might be larger for specific locations
[requiring prognostic atmospheric CO2 simulations as in Spring and
Ilyina, 2020] or seasons [analogous to the recovery of the ozone hole,
which was first detectable in September as reported by Solomon et al.,
2016].

Following Spring and Ilyina [2020], there are still many proper-
ties of carbon cycle predictability than remain unknown. All related
papers so far focused on annual aggregates of CO2 flux. Based on
the reported predictability limits of two to three years, seasonal or
monthly aggregation is more accurate and useful for most end-users.
In general, the carbon cycle prediction community can learn a lot
from the sea-ice predictability community, which operates on simi-
lar time-scales from months to three years but is methodologically
more advanced [Tietsche et al., 2013; Hawkins et al., 2016; Bushuk
et al., 2018]. Future carbon cycle research question include: Which
target months from which initialisation are better predictable than
others? How does carbon cycle predictability depend on initial states?
How does near-term predictability change in a high CO2 concentra-
tion world? Which processes sustain and limit predictability? How
model-dependent [Ilyina et al., 2021] and model generation-dependent
[Borchert et al., 2020] is predictive skill?
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Furthermore, understanding of the spatio-temporal near-term vari-
ability of atmospheric CO2 is vital to understand its predictability.
However, challenges in modeling near-term variability of atmospheric
CO2 remain [Keeling et al., 1989b; Keppel-Aleks et al., 2013], e. g. in
response to climate indices other than ENSO [Jones et al., 2001; Wang
et al., 2018] and compared to observations [Keeling et al., 1989a; Gier
et al., 2020].

Following Spring et al. [2021], the implications of climate reconstruc-
tions from different climate reanalysis products or direct observations
(via ensemble Kalman filter assimilation [Brune et al., 2017; Brune
and Baehr, 2020]) on the global carbon cycle should be reassessed.
Especially the switch between a reconstruction simulation and the
freely running model, triggering adjustments from the preferred freely
running model climatology to the reconstructed climatology and re-
verse [Spring et al., 2021], should be taken into account when deciding
for the best matching climate reanalysis of the given land and ocean
carbon cycle models [Saito et al., 2011; Lee and Biasutti, 2014; Hua
et al., 2019].

Spring et al. [2021] show that a simple mean bias reduction can
improve the quality of initial conditions and that a lead-time depen-
dent bias reduction effectively reduces drifts from initialization. Likely,
more advanced methods from the physical prediction community
can be adopted to improve predictive skill [Pasternack et al., 2018;
Feldmann et al., 2019].

On a general note, when restricting carbon cycle predictions topotential for predictions in
biogeochemistry predictions of atmospheric CO2 and CO2 fluxes, I cannot think of

any direct application other than carbon management and monitoring
derived from climate policy. But methodologically and tool-wise car-
bon predictions are identical to predictions of biogeochemistry, which
is an emerging field with a large range of application opportunities:
marine biogeochemical predictions could be used for fishing man-
agement [Park et al., 2019; Krumhardt et al., 2020; Koul, 2020] and
terrestrial biogeochemical predictions could predict agricultural yields
[Moemken et al., 2021]. Here, the biogeochemical ESM-based predic-
tion community still needs to prove that biogeochemical predictions
based on ESMs have additional value over offline biogeochemistry
or domain specific (e. g. fishery) models, which are just fed with the
physical climate output from ESM-based climate prediction systems
[Tommasi et al., 2017a,b; Payne et al., 2017; Årthun et al., 2018; Bett
et al., 2020]. Only this would prove that the biogeochemistry coupled
to climate needs to be predictable instead of just coupling biogeochem-
istry to physics predictions.

If seasonal-to-decadal predictions of biogeochemistry aim to informstep towards the usability of
predicts
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users, forecasters need to establish direct communication with users
[Merryfield et al., 2020]. Furthermore, scaled up hindcast statistics
(ensemble members and initializations) are required to establish ro-
bust skill [Palmer, 2020]; especially for probabilistic metrics, which
evaluate the full range of the ensemble rather than just the ensemble
mean and show whether a prediction is accurate and reliable and
hence valuable. Reliability, discrimination, the contingency table and
the continuous ranked probability score (CRPS) are implemented in
climpred [Brady and Spring, 2021]. Such a verification would also
be needed for real-world atmospheric CO2 predictions, which do not
yet exist.

e.8.2 Implications for Climate Policy

How should policy-makers interpret this dissertation on variability
and predictions? I partition the implications for climate policy into
the near-term and long-term.

This dissertation demonstrates that near-term internal variability internal variability determines
near-term atm. CO2in the global carbon cycle is so large that realistic CO2 emission reduc-

tions cannot, with certainty, cause policy-relevant five-year reduced
trends in atmospheric CO2. Analogous to the current COVID-19 CO2

emission reductions, it is important that our expectations are man-
aged and science provides robust estimates including uncertainties
[Marotzke, 2019; Samset et al., 2020]. The first global stocktake will
take place in 2023. Policy-makers should not be distracted by the
atmospheric CO2 signal21 and focus strictly on anthropogenic CO2

emissions.
What are the opportunities and limitations of carbon cycle predic- putting numbers in

perspectivetions? In the near-term, internal variability is the largest uncertainty
of the global carbon cycle. Carbon cycle predictions can constrain the
envelope of internal variability for a few years. This is a substantial
reduction opportunity because uninitialized, unconstrained internal
variability (2σ = 4.0 PgC/yr = 1.8 ppm) [Fig. E1, green errorbar] is
twice as large as the infamous historical mean Global Carbon Budget
imbalance22 (2σ = 1.6 PgC/yr = 0.8 ppm).

21 The quantification of 14C in atmospheric CO2 provides an alternative method to
separate natural carbon cycle-based variability from fossil-fuel CO2 emissions, as
fossil-fuel CO2 emissions are free of 14C [Levin et al., 2003; Turnbull et al., 2006]. Basu
et al. [2020] verifies fossil fuel CO2 emissions of the United States using inversion
modeling. Increasing coverage of the sparse 14C observations network is needed to
reduce biases. Instead, ESMs could resolve 14C, which is implemented only in ocean
models [Galbraith et al., 2011; Jahn et al., 2015; Tjiputra et al., 2020].

22 The Global Carbon Budget imbalance accumulates to 0% of all CO2 emissions for
1859-2019 in Friedlingstein et al. [2020], but fluctuated between 1959 and 2019 by 1.6
PgC/yr = 0.8 ppm/yr (2σ) and is also reported with an uncertainty of 1.6 PgC/yr =
0.8 ppm/yr (2σ).
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However, regarding mitigation, CO2 is not the only climate forc-
ing. While other greenhouse gases show earlier detection potentials
[Samset et al., 2020], CO2 is the most important one on the long run23.
Aiming for a net zero emissions goal, the current CO2 emissions of 10

PgC/year have a long way to go for zero or likely negative emissions.
The current level of CO2 emissions, corresponding to an increase of
2-3 ppm/year atmospheric CO2, dwarfs the potential of uncertainty
reduction from carbon cycle prediction.

Furthermore, climate policy and the public should turn the spot-
light on CO2 emissions [supported by EU projects: CHE, 2017; VERIFY,
2018, CoCO2]. Historically, CO2 emissions have mostly been reported
annually [Andrew, 2020; Friedlingstein et al., 2020]. But without (con-
tinuous) data, there can be no management and no verification of
progress [Janssens-Maenhout et al., 2020]. The recent Global Carbon
Budget also stresses the need for up-to-date data [Friedlingstein et al.,
2020]. Only recently have Liu et al. [2020] established a near-real-time
monitoring of CO2 emissions, which is an important step for CO2

emissions reporting and management.

On the one hand, the fate of atmospheric CO2 in the long-term willhow near-term predictions can
help the long-term solution be determined by anthropogenic CO2 emissions. On the other hand,

climate-carbon feedbacks are uncertain [Friedlingstein et al., 2013] and
emissions from permafrost thawing are not even included in most
model projections [Schuur et al., 2015; Burke et al., 2020; Turetsky et al.,
2020]. These known unknowns are not directly influenced by climate
policy but will unfold as the Earth warms. This uncertainty of the
remaining carbon budgets stresses the point that CO2 emissions, the
primary driver of atmospheric CO2 growth and influenced by climate
policy, need to approach zero as soon as possible to achieve the Paris
Agreement to limit global mean warming to 1.5 to 2°C [Friedlingstein
et al., 2014; UNFCCC, 2015; Rogelj et al., 2016b].

The only long-term solution to avoid dangerous climate change is
mitigation of greenhouse gas emissions [UNFCCC, 2015]. How do
initialized predictions, which operate on the near-term, help policy-
makers in that regard? First, policy-makers need to be better informed
about the role of near-term variability in the carbon cycle. Only then
will they acknowledge that future near-term CO2 predictions with
ESMs have the capacity to constrain CO2 uncertainty for up to three
years. These predictions bring clarity about whether the current and
near-future path is on track to limit warming to below 1.5°C or 2°C or
not. While Peters et al. [2017] and Schwartzman and Keeling [2020]
discuss real-time verification of CO2 emission reductions, initialized
CO2 predictions can deliver even ahead-of-time anticipation. Instead
of waiting to see what will happen, this approach is more action-

23 Peters [2018] argues "that obsession with cumulative carbon emissions and carbon
budgets has perhaps diverted attention from gains through non-CO2 mitigation."
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orientated, data-driven and allows for more frequent re-adjustments
[Rogelj et al., 2019]. Hence, relying on initialized near-term predic-
tions can prevent losing yet another decade of progressive mitigation,
when the efficacy of mitigation has not yet come into force. Due to
internal variability and the delayed impacts on temperature [Tebaldi
and Friedlingstein, 2013; Marotzke, 2019], there will not be enough
time to wait until mitigation measures show their effect, if the Paris
Agreement is to be fulfilled.

Connecting to the introductory quote and speaking for the value of
predictions [Murphy, 1993], near-term CO2 predictions have no value,
unless they inform and hopefully influence decisions of policy-makers.
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abstract

The growth rate of atmospheric CO2 on inter-annual time scales is
largely controlled by the response of the land and ocean carbon sinks
to climate variability. Therefore, the effect of CO2 emission reductions
to achieve the Paris Agreement on atmospheric CO2 concentrations
may be disguised by internal variability, and the attribution of a re-
duction in atmospheric CO2 growth rate to CO2 emission reductions
induced by a policy change is unclear for the near term. We use
100 single-model simulations and interpret CO2 emission reductions
starting in 2020 as a policy change from scenario Representative Con-
centration Pathway (RCP) 4.5 to 2.6 in a comprehensive causal theory
framework. Five-year CO2 concentration trends grow stronger in 2021-
2025 after CO2 emission reductions than over 2016-2020 in 30% of
all realizations in RCP2.6 compared to 52% in RCP4.5 without CO2

emission reductions. This implies that CO2 emission reductions are
sufficient by 42%, necessary by 31% and both necessary and sufficient
by 22% to cause reduced atmospheric CO2 trends. In the near term,
these probabilities are far from certain. Certainty implying sufficient or
necessary causation is only reached after, respectively, ten and sixteen
years. Assessments of the efficacy of CO2 emission reductions in the
near term are incomplete without quantitatively considering internal
variability.
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i.1 introduction

Substantial year-to-year variations in the growth rate of global atmo-
spheric CO2 concentrations show variations that cannot be explained
by land-use changes, fossil fuel emissions or the increase of carbon
sink capacities due to increasing atmospheric CO2 concentrations
[Friedlingstein et al., 2019; Peters et al., 2017]. The variations originate
instead from the variability of the global carbon cycle in response
to climate variability, which is inherent to the physics of the Earth
System. For instance, the variations of the tropical land carbon sink
is dominated by the El Niño-Southern Oscillation [Jones et al., 2001;
Zeng et al., 2005], and the pronounced Southern Ocean carbon sink
is susceptible to changes in atmospheric circulation patterns [Land-
schützer et al., 2015; McKinley et al., 2017]. Therefore, this internal
variability of the global carbon cycle in atmospheric CO2 may disguise
the detection of potential CO2 emission reductions in atmospheric CO2

observations. But CO2 emission reductions are required to achieve
the targets of the Paris Agreement [UNFCCC, 2015]. Here we ask
what the probability is that a slowdown in atmospheric CO2 growth
is attributable to a policy change implementing CO2 emission reduc-
tions as the difference between Representative Concentration Pathway
(RCP) 4.5 and RCP2.6, in the face of internal climate variability. This
question becomes policy-relevant as policy-makers assess the efficacy
of CO2 emission reductions in the global stocktake every five years
[Peters et al., 2017; Schwartzman and Keeling, 2020]. Furthermore, we
ask after how many years this policy change will cause atmospheric
CO2 growth rates to slow down for certain.

The challenge of emissions reductions verification in atmospheric
CO2 concentrations was first outlined by Peters et al. [2017]. We ad-
dress this challenge by using a large ensemble of Earth System Model
(ESM) simulations [Maher et al., 2019]. We integrate 100 simulations
based on the code of a single ESM with slightly perturbed initial
conditions that serve as different realizations of the Earth System.
Our analysis compares RCP4.5, which is close to the pledged and
current policies until 2035 [Rogelj et al., 2016b; Hausfather and Peters,
2020], with an emission reductions scenario compatible with the Paris
targets under RCP2.6 [Fig. I.SI.4]. We attribute a reduction of trend in
atmospheric CO2 concentrations to CO2 emission reductions in the
comprehensive causation framework of Pearl [2000] and Hannart et al.
[2016]. In the context of CO2 emission reductions, necessary causation
means that a factual trend reduction would not have occurred without
a policy change. By contrast, sufficient causation implies that while a
policy change may trigger a trend reduction, this trend reduction is
not certain.

We go beyond approaches in previous studies [Tebaldi and Friedling-
stein, 2013; Peters et al., 2017; Marotzke, 2019; Samset et al., 2020;
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Schwartzman and Keeling, 2020] by comprehensively diagnosing at-
mospheric CO2 variability in an ESM, which is compatible with the
terrestrial and oceanic carbon sinks variations. The recently formalized
emissions reductions verification of Schwartzman and Keeling [2020]
uses an autoregressive model based on the observed carbon imbalance
and a different statistical framework. While Tebaldi and Friedlingstein
[2013] only focus on causation in a necessary causation sense, we here
complete the probabilistic setting by asking also about sufficient cau-
sation. We compare two RCP scenarios in a single-model framework;
formally only internal variability may undermine the detectability of
CO2 emission reductions. Assessing the contribution of our quantita-
tive results against structural model uncertainty and imperfections is
left for future study.

From a policy-maker’s perspective looking into the near-term future,
necessary and sufficient causation of CO2 emission reductions slowing
down atmospheric CO2 trends deal with two different questions [Pearl,
2000; Hannart et al., 2016]:

1. Will a policy change towards CO2 emission reductions suffice to
slow down atmospheric CO2 growth? Other factors, such as a
weakening uptake by the natural carbon sinks, may induce an
increase in atmospheric CO2 growth despite policy measures.
From the viewpoint of a pathway without CO2 emission re-
ductions, the uncertainty in this question is based on sufficient
causation.

2. Would a factual atmospheric CO2 growth slowdown have oc-
curred even without the policy change? This question asks
whether the policy change was necessary to achieve the policy
goal. From the viewpoint of a factual pathway of CO2 emis-
sion reductions and a factual slowdown, the uncertainty in this
question is based on necessary causation.

Based on this causation framework, we obtain probabilities that a
policy change causes atmospheric CO2 trends to decline. However,
this causation may be far from certain depending on the time-scale
assessed. Should CO2 emission reductions not soon lead to reduced
atmospheric CO2 growth trends, we might face a debate analogous
to the warming hiatus debate [Lewandowsky et al., 2015; Fyfe et al.,
2016] about why CO2 rises faster despite falling emissions. Therefore,
scientists need to communicate the role of internal variability to policy-
makers and the public [Deser et al., 2012].

Marotzke [2019] shows the uncertain effect of emission reductions
on global mean surface temperature (GMST) 15-year trends. As atmo-
spheric CO2 drives the forced GMST signal, the emissions reduction
signal should become detectable earlier in atmospheric CO2. Ana-
lyzing the effect of individual climate forcers, Samset et al. [2020]
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confirms that anthropogenic CO2 has the highest potential for emis-
sion reduction detection.

In our study, we also ask after how many years internal variability
can still obscure the identification of CO2 emission reductions in
atmospheric CO2. In other words, how long does it take until certainty
arises in causation? This is a distinctly different question than the
classical time-of-emergence of anthropogenic signals, which asks on
which timescales the climate change signal emerges from natural
variability [McKinley et al., 2016]. Here, we ask on which time-scales a
forcing change induced by this policy change causes a climate response
considering sufficient and necessary causation [Marotzke, 2019]. These
time-scales of CO2 emission reduction detection might be longer than
the periodicity of the global stocktake in which policy-makers will
assess the efficiency of mitigation measures.

i.2 methods

i.2.1 Causation Attribution Framework

To identify whether CO2 emission reductions cause a reduction in
atmospheric CO2 growth, we apply the concept of event causation
[Pearl, 2000; Hannart et al., 2016; Marotzke, 2019]. We use the scenario
RCP2.6 as implementing CO2 emission reductions and RCP4.5 for
the near-term future without CO2 emission reductions [for a detailed
justification see section I.2.2]. Taking a decline in atmospheric CO2

growth as an effective consequence of CO2 emission reductions policy,
we define a reduction in the linear trend in global atmospheric CO2

concentration as the policy goal, comparing the period before emission
reductions started with the period afterwards. While this response
is expected as the forced response averaged over all realizations, the
trend of single ensemble members could potentially increase due
to internal variability. For a five-year trend period and a scenario
separation in 2020, compatible with the switch from RCP4.5 to RCP2.6,
we hence compare the trends 2016-2020 and 2021-2025. The fraction
of responses in a given scenario s yields the probability of trend
reduction PRCPs. The two scenarios serve as either the real world,
labeled as factual, or the alternative world, labeled as counter-factual.
The probabilities of trend reduction can be translated into a probability
P{S,N} that the trend reduction is caused by the policy change [Pearl,
2000; Hannart et al., 2016]:

• In a currently pledged policy pathway (factual RCP4.5 world)
without CO2 emission reductions in near-term, we ask in ad-
vance whether CO2 emission reductions (a policy change to-
wards the counterfactual RCP2.6) would be sufficient to cause a
reduction in atmospheric CO2 trends. The probability PS means
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how likely a policy change would be sufficient to cause a reduced
trend:

PS =
PRCP2.6 − PRCP4.5

1− PRCP4.5
. (2)

In our case of CO2 emission reductions, PS is important when
answering questions whether the policy goal of reduced atmo-
spheric CO2 growth will be achieved from the perspective of a
planner.

• Considering CO2 emission reductions in RCP2.6 as the factual
where in retrospect atmospheric CO2 trends have indeed de-
clined and no CO2 emission reductions in RCP4.5 as the counter-
factual world, the probability PN that the policy change was
necessary to cause the trend reduction is:

PN = 1− PRCP4.5

PRCP2.6
. (3)

In our case of CO2 emission reductions, PN is important when
answering questions whether the policy goal would not have
been reached without the policy change.

• Combining the two aforementioned, PNS describes the probabil-
ity that the policy change is both necessary and sufficient to cause
the respective trend reduction:

PNS = PRCP2.6 − PRCP4.5. (4)

This strongest causation probability PNS means how likely a
reduced trend would occur in case of a policy change and would
not occur without.

These probabilities hence describe probabilities that trend reductions
over a given trend length are caused by the policy change, but how
long do these trends need to be in order to be virtually certain that CO2

emission reductions caused them? To answer this question, we define
Time to Detection of CO2 emission reductions in a causation sense D{S,N}
as the trend length around CO2 emission reductions start in 2020 for
which P{S,N} > 99%, using the probability framing of Mastrandrea
[2010]. This time-scale marks the maximum range of influence of
internal variability over changes in the forced signal due to a policy
change.

i.2.2 Choice of Scenarios

We identify RCP2.6 as roughly compatible with the Paris targets [van
Vuuren et al., 2011]. Compared to the pre-industrial control, MPI-
ESM Grand Ensemble warms by 1.4±0.2°C in RCP2.6 and 2.2±0.2°C
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in RCP4.5 until the end of the century [Suarez-Gutierrez et al., 2018;
Maher et al., 2019]. Anthropogenic CO2 emissions in RCP2.6 are
increasing until 2020; after 2020, emissions are expected to decrease by
2% per year in RCP2.6 until 2030 [Fig. I.SI.3]. By contrast, RCP4.5 has
similar anthropogenic CO2 emission levels as RCP2.6 until 2020 and
continues a moderate emissions increase until 2040 with a 1% per year
increase until 2030 [Figs. I.SI.3, I.SI.4]. This scenario was designed to
reach a forcing stabilization at the end of this century [Thomson et al.,
2011] at about 3°C warming. Although RCP8.5 is closer to the most
recently recorded combined land-use and fossil-fuel emissions, we
choose RCP4.5 as a reference scenario, because the differences between
RCP4.5 and reported emissions until 2018 originate in land-use change
whereas fossil-fuel emissions match [Fig. I.SI.3]. More importantly, the
levels of projected fossil-fuel emissions based on current and pledged
policy until 2035 parallel RCP4.5 [Rogelj et al., 2016b; Hausfather and
Peters, 2020].

In the above-described comparison under the causal theory frame-
work, we compare trends before and after this policy change to assess
causality of this policy change on changes in trends with respect to
the period before the policy change. This policy change is assumed to
happen in one scenario (RCP2.6), and not in the other one (RCP4.5).
Therefore, we require simulations under mostly identical forcing be-
fore this policy change. We assume that this policy comes into effect
as implemented by the RCP scenarios [Meinshausen et al., 2011]. We
identify the combination of RCP2.6 vs RCP4.5 with a scenario split
in 2020 as suitable scenario comparison. This scenario combination
and timing also describes the present quest aiming for an at most 2°C
warmer world with net emissions reduction of 3% per year over 10

years.
Comparing RCP2.6 with RCP8.5 would be another possible com-

bination. However, RCP8.5 entails higher fossil-fuel CO2 emissions
than recently observed and much higher levels than what current poli-
cies pledge for until 2035 [Rogelj et al., 2016b; Hausfather and Peters,
2020]. Furthermore, RCP2.6 and RCP8.5 separate at a time when emis-
sions in RCP2.6 still grow. This would make the definition of climate
event as trend reduction awkward, if our goal is to investigate the
effect of policy on possible trend reductions. Therefore we compare
RCP2.6 and RCP4.5 and include the comparison against RCP8.5 in the
supplementary material.

i.2.3 Large-Ensemble Simulations

The Max-Planck-Institute Earth System Model (MPI-ESM) Grand En-
semble comprises 100 members started from different initial conditions
branched off a pre-industrial control simulation [Maher et al., 2019].
MPI-ESM contains comprehensive terrestrial and oceanic carbon cycle
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sub-models, which capture the dynamics of the global carbon cycle
[Ilyina et al., 2013; Schneck et al., 2013; Li and Ilyina, 2018]. The Grand
Ensemble is based on a model version close to the CMIP5 version
[Giorgetta et al., 2013]. To our knowledge this is the largest ensemble
of comprehensive climate models available up to date [Branstator and
Selten, 2009; Kay et al., 2015; Rodgers et al., 2015; Kirchmeier-Young
et al., 2016; Frankignoul et al., 2017; Stolpe et al., 2018]. Its statistics
have proven to be useful in investigating internal variability in the
Southern Ocean carbon sink [Li and Ilyina, 2018] and enable a 1%
resolution for climate event probabilities [see section I.2.1]. From the
year 2006 onward, the 100 historical simulations are extended under
RCP2.6 and RCP4.5 [Meinshausen et al., 2011; Taylor et al., 2011]. The
Grand Ensemble simulations are forced with a scenario-dependent
prescribed atmospheric CO2 concentration, aerosols, non-CO2 green-
house gases and land-use change [Meinshausen et al., 2011; Taylor
et al., 2011].

i.2.4 Diagnostic Atmospheric CO2 Concentration

CO2 concentration-driven simulations do not represent a variable
atmospheric CO2 concentration tracer. To quantify the expected vari-
ations in global atmospheric CO2 concentration that are compatible
with variations of the global land and ocean carbon sinks, we diagnose
a virtual tracer of global atmospheric CO2 based on the changes due to
internal variability of the land and ocean carbon sinks in atmospheric
CO2 [Fig. I.SI.2]. The global residual CO2 flux Gi,s is the difference of
CO2 flux Fi,s of the each ensemble member i to the ensemble mean of
CO2 flux Fs:

Gi,s = ∑
global

(Fi,s −
1
M

M

∑
m=1

Fm,s) (5)

where M = 100 is the number of ensemble members and i the num-
ber of a single ensemble member and s the scenario. The ensemble
mean Fs is subject to all forcings (anthropogenic fossil-fuel CO2 emis-
sions, non-CO2 emissions, land-use change, aerosols) on CO2 flux,
but no internal variability. The remaining residual shows the varia-
tions of CO2 flux around neutral flux only due to internal variability.
The forced atmospheric CO2 signal fs is scenario s-dependent and
generated by a simplified climate model fed with emissions from inte-
grated assessment models [Meinshausen et al., 2011] incorporating the
strengthening of the carbon sinks with higher CO2 concentrations and
land-use CO2 emissions. This internal variability component of time-
accumulated global CO2 flux is then superimposed on the smooth
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atmospheric CO2 forcing fs and defines internally varying diagnostic
global atmospheric CO2 concentration XCO2,i,s:

XCO2,i,s(t) =
t

∑
t′

Gi,s(t′) ·
ppm

2.124PgC
+ fs. (6)

We assume that the internal variability of the global carbon cycle to
be driven by climate variability. This ignores the short-term effects of
atmospheric CO2 variability on CO2 flux as in all concentration-driven
simulations. Explicitly, for diagnostic atmospheric CO2, we use as forc-
ing fs the concentration scenarios generated by the simplified climate
model and not directly the CO2 emissions generated by the integrated
assessment models. This assumes that the emission scenarios from
the integrated assessment model roughly match the resulting concen-
tration scenarios from the simplified climate model [Fig. I.SI.9]. The
hereby diagnosed variations of global atmospheric CO2 capture the
observed global atmospheric CO2 variations [Figs. I.1, I.SI.7; Spring
and Ilyina, 2020]. For a detailed method description and verification in
emission-driven simulations, see Supplementary Information section
I.SI.1.

i.2.5 Method Limitations

The generalisability of our results strongly depend on the strength
and timing of the CO2 emission reductions underlying the two com-
pared scenarios, where causation probabilities P{N,NS} are even more
sensitive than the probabilities of reducing atmospheric CO2 trend
PRCPx in scenario x. Here, we present one special case of CO2 emission
reductions as the difference between RCP4.5 and RCP2.6 representing
a net 3% annual emission reductions until 2030. There is an active
debate whether RCP4.5 [argued for by Hausfather and Peters, 2020] or
RCP8.5 [argued for by Schwalm et al., 2020] tracks the current anthro-
pogenic CO2 emissions pathway best. Also the attribution probabilities
are contingent upon whether the climate model simulates realistic
magnitudes of internal variability [Marotzke, 2019]. Furthermore, our
attribution method focuses only on one observable variable under
internal variability, although atmospheric CO2 is the most important
indicator for CO2 emission reductions. Lastly, we use the atmospheric
CO2 concentration prescribed to MPI-ESM generated by the simplified
climate model based on CO2 emission scenarios from the integrated
assessment model and not the CO2 emissions from the integrated
assessment models themselves to calculate diagnostic atmospheric
CO2 Meinshausen et al. [2011]. While this is consistent with the forcing
applied to the the climate system in MPI-ESM, this leads to small dif-
ferences between in the compatible emissions of concentration-driven
RCPs and actual CO2 emissions as discussed by Jones et al. [2013] and
demonstrated for MPI-ESM [Fig. I.SI.9].



46 inherent uncertainty of atm . co2 growth

Figure I.1: The difference in diagnostic atmospheric CO2 concentration be-
tween CO2 emission reductions scenario RCP2.6 (green) and
currently most likely scenario for the near-term RCP4.5 (red)
appears after the start of CO2 emission reductions in 2020 (verti-
cal dashed gray line). Both scenarios are detrended with the com-
bined scenario mean forcing, see the otherwise identical Fig. I.SI.4
without detrending. Individual ensemble members are shown
in faded colors. The forced response (solid green and red) in at-
mospheric CO2 follows the prescribed atmospheric CO2 forcing
derived from the a simplified climate model with emissions from
integrated assessment models [Meinshausen et al., 2011]. The vari-
ation of global mean (black) and Mauna Loa (gray) atmospheric
CO2 observations by NOAA/ESRL [Dlugokencky and Tans, 2019],
mostly fall within the ensemble standard deviation (dotted green
and red).

i.3 probability of co2 emission reductions causing changes

in atmospheric co2 growth trend

We first assess the frequency distributions of five-year trends in atmo-
spheric CO2. These distributions over the period 2016-2020 in RCP2.6
and RCP4.5 are nearly indistinguishable [Figs. I.1, I.2a,d]. The most
recent 2015-2019 observations-based estimate for global atmospheric
CO2 [Dlugokencky and Tans, 2019] trend is in the upper tercile and
thereby captured by our model [Fig. I.2a,d, I.SI.7]. Comparing the
distributions before and after CO2 emission reductions onset in 2020

in RCP2.6, we find overlapping distributions with a tendency towards
lower trends after CO2 emission reductions [Fig. I.2a,b]. The ensem-
ble mean responds to CO2 emission reductions with a decrease in
trend of one ppm over five years. The trend reduces in 70 ensemble
members, resulting in PRCP2.6=70% [Fig. I.2c]. This implies that with
a 30% probability, atmospheric CO2 growth will strengthen despite
emissions reductions. In RCP4.5, the distributions of atmospheric CO2
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Figure I.2: Probability distributions of 5-year trends from 2016 to 2020 and
2021 to 2025 in diagnostic atmospheric CO2 in a 100-member en-
semble following scenarios RCP 2.6 and 4.5: (a) trends before
CO2 emission reductions start in RCP2.6, (b) trend after CO2 emis-
sion reductions started in RCP2.6, distribution of (a) is indicated
in gray contours for comparison, (c) trend reduction over time cal-
culated as (a)-(b). (d)-(f) as (a)-(c) but for scenario RCP4.5. PRCP2.6
marks the probability of trend reduction over time in the CO2

emission reductions scenario, PRCP4.5 marks the probability of
trend reduction over time in RCP4.5. Vertical dashed gray lines
show ensemble-mean trends per scenario. Dotted black vertical
lines mark zero trends. Recent observational atmospheric CO2

trends between 2015 and 2019 from NOAA/ESRL [Dlugokencky
and Tans, 2019] are shown in solid black.

trends before and after 2020 look similar because the emissions rise
steadily. Hence, only roughly half of the ensemble members show a
reduced trend, with PRCP4.5=48% [Fig. I.2d-f].

The atmospheric CO2 may increase more strongly despite the onset
of CO2 emission reductions, when the global carbon cycle triggered
by internal climate variability releases more CO2 than CO2 emission
reductions save. For instance, this is possible when the tropical forests
react to higher temperature and less precipitation caused by a strong El
Niño event [Jones et al., 2001; Zeng et al., 2005]. The released CO2 from
the tropical biosphere persists in the atmosphere and can overwhelm
the reduction of anthropogenic emissions [Fig. I.1]. These stronger at-
mospheric CO2 growth trends despite CO2 emission reductions might
occur for trend comparisons around the CO2 emission reductions start
of up to ten years [Fig. I.3].

These probabilities of trend reduction of the two scenarios can be
converted into probabilities of trend reduction being caused by CO2

emission reductions [see section I.2.1]. If asked in advance in 2015,
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Figure I.3: Probabilities of trend reduction in diagnostic atmospheric CO2
between periods of varying trend length before and after CO2
emission reductions start in 2020. PRCP2.6 (green) shows the prob-
ability of trend reduction in CO2 emission reductions scenario
RCP2.6. PRCP4.5 (red) shows the probability of trend reduction
in the currently most likely scenario for the near-term RCP4.5.
PS (pale blue) show the probability that a change from RCP4.5
to RCP2.6 causes the respective trend reduction in a sufficient
causation sense. PN (blue) show the probability that a change
from RCP4.5 to RCP2.6 causes the respective trend reduction in a
necessary causation sense. PNS (dark blue) shows the probability
that change from RCP4.5 to RCP2.6 causes the respective trend
reduction in a sufficient and necessary causation sense. Error bars
show the 1% and 99% confidence intervals based on bootstrapping
with replacement. Dotted lines show 99% confidence interval for
time of virtual certainty in trend reduction or causation (D{S,N}).
Results for policy-relevant five-year trends are highlighted in the
gray box.

the answer would be that a policy change from RCP4.5 to RCP2.6
representing CO2 emission reductions starting in 2020 are sufficient
to cause a five-year trend reduction in atmospheric CO2 growth by
PS=42% [Fig. I.3]. Here, this policy change works toward a trend
reduction, but the trend reduction might also be prevented by internal
variability. Asking from a 2025 perspective looking into the recent past,
CO2 emission reductions in 2020 were necessary by PN=31% to cause
trend reductions [Fig. I.3]. This policy change causes the five-year
trend reduction in a necessary and sufficient sense by PNS=22% [Fig. I.3,
dark blue in box]. These results show that CO2 emission reductions
are far from certain to cause trend reductions in global atmospheric
CO2 growth when considering five-year trends.

To estimate the time-scales when CO2 emission reductions are vir-
tually certain to cause reduced atmospheric CO2 growth trends, we
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consider trends calculated over different time window lengths around
the CO2 emission reductions start. As expected, the shorter the trend-
lengths considered, the more dominant internal variability is. There-
fore, trend reductions are less likely occurring in the CO2 emission
reductions scenario. The three-year-trend probabilities of trend reduc-
tion even overlap with the 50% random forecast [Fig. I.3]. Conversely,
when longer trends are considered, the influence of the signal of
emissions change becomes stronger. CO2 emission reductions reduce
atmospheric CO2 trends in RCP2.6 virtually for certain only when
considering ten-year-trends [Fig. I.3]. In contrast, trend reductions are
still possible due to internal variability despite the absence of CO2

emission reductions for much longer in RCP4.5 [Fig. I.3]. Note that
under RCP4.5 the annual anthropogenic CO2 emissions increase very
little until the 2040s. Therefore, a few members can still have reduced
trends over time. Consequently, PRCP4.5 does not drop to 1% until 2042.

The low causation probabilities over short time-scales show the in-
ability to clearly attribute reduced atmospheric CO2 trends to a policy
change from RCP4.5 to RCP2.6 due to the large internal variability. The
longer the time-scales considered, the stronger the two scenario path-
ways differ, and the attribution probabilities rise. If PRCP2.6 > PRCP4.5

as assumed by the response to CO2 emission reductions, PS increases
more quickly than PN when PRCP2.6 approaches 1 faster than PRCP4.5 0.
Therefore, in the context of the scenarios RCP2.6 and RCP4.5, PS > PN

[Marotzke, 2019]. This means that in our context, sufficient causation
is a stronger causation facet than necessary causation. Sufficient cau-
sation PS describes whether the objective of reduced atmospheric CO2

trends is met, which might be prevented by internal variability. As
soon as growth trends decline in all realizations (PRCP2.6 = 1), also PS
saturates. In contrast, necessary causation PN describes whether the
response of reducing atmospheric CO2 would only have happened
in the presence of CO2 emission reductions. Therefore, as long as
trend reductions are possible even without CO2 emission reductions,
necessary causation will not be certain, that is, if PRCP4.5 > 0, then
PN < 1.

The time to detection of CO2 emission reductions D{S,N} describes
after how many years this policy change is virtually certain to cause
atmospheric CO2 growth trends to decline. CO2 emission reductions
sufficiently cause trend reductions after DS = 10 years and necessary
cause of reduction after DN = 27 years. We note that once sufficient
causation is certain, PS = 1 in 2030 see (1), necessary causation and
causation both necessary and sufficient coincide, PN = PNS; compare
(2) and (3) with PRCP2.6 = 1. Virtual certainty in P{N,NS} is hindered by
PRCP4.5 above 1%. Due to the slow increase in emissions in the 2030s,
internal variability allows a few members to have increasing trends.
Taking a less strict threshold of 95% certainty like in Tebaldi and
Friedlingstein [2013], we obtain DN = DNS = 16 years. This time-scale
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of CO2 emission reductions detection in a necessary causation sense
DN is a bit longer than the similarly defined estimate based on IPSL-
CM5A-LR [Tebaldi and Friedlingstein, 2013, Table 1]. Our analysis
also shows that whether this policy change from RCP4.5 to RCP2.6 can
be identified as the cause of reduced atmospheric CO2 trends after 10

or 16 years depends on the causation attribute. The differently defined
emission reduction detection protocol of Schwartzman and Keeling
[2020] finds a similar detection delay of 9±4 years for comparable 2%
net annual emissions reduction.

i.4 summary and conclusions

In the context of potential future CO2 emission reductions, we ask
whether atmospheric CO2 growth trend reductions in the near term
can be attributed to a policy change. We focus on one specific pathway
of CO2 emission reductions interpreted as a policy change from sce-
nario RCP4.5 without near-term CO2 emission reductions to emissions
reduction scenario RCP2.6 designed to achieve for the Paris targets rep-
resenting 3% net annual CO2 emission reductions until 2030. We apply
a causation framework comprising two perspectives of policy elabora-
tion [Hannart et al., 2016; Marotzke, 2019]. We diagnose atmospheric
CO2 variations compatible with the natural carbon sinks variations
and compare growth trends of atmospheric CO2 before and after the
onset of CO2 emission reductions in 2020 in RCP2.6. While five-year
trends reduce in 70% of all realizations in the CO2 emission reductions
scenario RCP2.6 (consequentially implying increasing trends despite
of CO2 emission reductions by 30%), there is 48% probability of trend
reductions in RCP4.5. This translates into CO2 emission reductions
from RCP4.5 to RCP2.6 being sufficient to cause a five-year trend
reduction beforehand by 42% and in hindsight necessary by 31%. The
probability that this policy change is both necessary and will suffice
to bring the desired outcome considering five-year trends is only 22%.
These probabilities are far from certain for up to a decade. It takes
ten or 16 years of CO2 emission reductions from RCP4.5 to RCP2.6 to
virtually certainty cause a trend reduction in a sufficient or necessary
causation sense, respectively. Communicating these probabilities in
a clear manner is challenging but needed to inform policy-makers
about the impact of internal variability on CO2 emission reduction
causation in the Earth system [Deser et al., 2012; Hannart et al., 2016;
Howe et al., 2019].

The five-year global stocktake following the Paris Agreement [UN-
FCCC, 2015] makes the five-year internal variability highlighted in this
study especially relevant for policy-makers. This study demonstrates
the inherent uncertainty in near-term atmospheric CO2 projections. As
a partial solution to this challenge, initialized ESM-based prediction
systems can reduce this uncertainty by predicting natural variations
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of the global carbon cycle. Global oceanic CO2 flux is predictable for
two to three years [Li et al., 2019; Lovenduski et al., 2019a] and global
atmospheric CO2 variations have the potential to be predicted for up
to three years in advance [Spring and Ilyina, 2020]. These multi-year
ESM-based predictions of the global carbon cycle thereby bring added
value about the expected natural variations of atmospheric CO2 to
policy-makers in the global stocktake process [UNFCCC, 2015].

Our analysis shows that it is crucial to have realistic expectations of
the efficacy of climate policy in the near term [Marotzke, 2019; Samset
et al., 2020]. Also Schwartzman and Keeling [2020] find a detection
delay of up to a decade in a different approach. Even if anthropogenic
emissions begin to decline after 2020, there still remains a substantial
probability that atmospheric CO2 trends will not have declined five
years afterwards. In this case, the effects of CO2 emission reductions on
other iconic climate variables, such as global mean surface temperature,
very likely get delayed even longer [Marotzke, 2019]. The likelihood of
this happening is substantial. For instance, there is a three-out-of-ten
chance that atmospheric CO2 rises even stronger in the five years after
CO2 emission reductions started compared to before. Assuming the
evolution of the RCPs [Meinshausen et al., 2011] and the magnitude
of internal variability in the global CO2 fluxes in MPI-ESM-LR, such
increasing atmospheric CO2 growth trends despite CO2 emission
reductions from RCP4.5 to RCP2.6 are possible for up to a decade.
Although this analysis relies on only a single model, internal variability
may disguise CO2 emission reductions efforts in the Earth System for a
couple of years. Should this be the case, climate science should explain
the observed atmospheric CO2 evolution honoring internal variability.
policy-makers should rather be informed by initialized predictions
about the internal variability in the near-term evolution of atmospheric
CO2 [Betts et al., 2018; Spring and Ilyina, 2020]. Evaluation of CO2

emission reduction efficacy from an atmospheric CO2 perspective
needs to take internal variability, and therefore longer than five-year
trends, into account.
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i.si supplementary information

i.si.1 Method Verification of Diagnostic Atmospheric CO2

Removing the ensemble mean from each member also removes the
increasing strength of the carbon sinks with respect to increasing
atmospheric CO2 concentration. This increase is however already
included in the Integration Assessment Models pathways. To minimize
the effect of long-term trends from model drift [Maher et al., 2019]
in the carbon sinks on atmospheric CO2, we initialize the method
in the year nearest to the analysis start in 2005 when the detrended
integrated global carbon sink is close to 0 PgC.

We assume instantaneous global atmospheric mixing [Ballantyne
et al., 2012], which is a fair assumption for an annual analysis time-
step considering the one to two year time-scales for inter-hemispheric
mixing. Furthermore, we assume that variability in the carbon cycle
is driven by climate variability, i.e. the internally varying changes in
atmospheric and oceanic circulation, temperature and precipitation
induce variability in the land and ocean carbon sinks. This also implies
that short-term effects of the variability of atmospheric CO2 variations
on terrestrial CO2 flux (short-term CO2 fertilization effect) and oceanic
CO2 flux (short-term effect of higher atmospheric CO2 after strong
land or/and ocean outgassing) is ignored as in all historical simu-
lations with prescribed atmospheric CO2 levels. These assumptions
and the method itself are similar to the concept of compatible emis-
sions [Jones et al., 2013]. However, here we diagnose atmospheric
CO2 concentrations (given in ppm) compatible with global carbon
sink variability, whereas Jones et al. [2013] diagnose anthropogenic
emissions (given in PgC annual CO2 emissions) compatible with the
RCP pathways and internal variability.

We verify our proposed method by comparing our diagnostic atmo-
spheric CO2 calculated offline from monthly output with prognostic
atmospheric CO2 calculated by the model itself at each time-step in
a 9-member simulation with prognostic atmospheric CO2 of the cur-
rent CMIP6 version of MPI-ESM [Mauritsen et al., 2019]. Diagnostic
atmospheric CO2 tracks the variations of prognostic atmospheric CO2

simulated by the model fairly well over the historical period (met-
ric=member mean ± member standard deviation: anomaly correlation
coefficient (ACC) = 0.994 ± 0.03, mean absolute error (MAE) = 0.130

± 0.036 ppm) [Fig. I.SI.1].
This method is applied in a non-transient climate in Spring and

Ilyina [2020].
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Figure I.SI.1: Verification of diagnostic atmospheric CO2: Comparing diag-
nostic (solid line) (see section I.2.4) with prognostic atmospheric
CO2 (dotted line) from a 9-member C4MIP CMIP6 MPI-ESM-
LR ensemble, where the members are shown in different colors.
Both diagnostic and prognostic atmospheric CO2 are detrended
by subtracting the ensemble mean prognostic atmospheric CO2

as the forced signal.

Figure I.SI.2: Schematic of contributions to diagnostic atmospheric CO2:
(green) terrestrial surface CO2 flux in units [PgC/yr], (blue)
oceanic surface CO2 flux in units [PgC/yr], (orange) atmo-
spheric CO2 forcing from a simplified climate model fed with
emissions from integrated assessment models in units [ppm],
(salmon) diagnostic atmospheric CO2 in units [ppm].
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i.si.2 Differences in Scenarios before 2020

Note that RCP2.6 has around 1 ppm higher atmospheric CO2 forcing
than RCP4.5 in the period 2015-2022 [Fig. I.1]. This gap is much
smaller than the possible ranges due to internal variability across
ensemble members. We decided against harmonizing the two scenarios
to identical levels up to CO2 emission reductions in 2020 to keep the
methodology straight-forward without modifying the scenarios.

Figure I.SI.3: Anthropogenic CO2 emissions: (a,d) fossil-fuel, (b,e) land-use
change and (c,f) combined. Observations (black) taken from
the Global Carbon Budget [Friedlingstein et al., 2019] and mod-
elling RCP scenarios (colors) taken from Meinshausen et al.
[2011]. The first row (a-c) shows absolute CO2 emissions per
year, the second row (d-f) shows changes in CO2 emissions per
year.

The land-use changes in RCP4.5 include strong reforestation [Fig.
I.SI.3] [Thomson et al., 2011]. Therefore, when combining fossil-fuel
emissions and land-use emissions into anthropogenic CO2 emissions,
RCP2.6 and RCP4.5 follow very similar combined emission pathways
until 2020 [Fig. I.SI.3]. The observed evolution of annual atmospheric
CO2 concentration until 2019 tracks the scenarios RCP2.6 and RCP4.5
more closely than RCP8.5 [Fig. I.SI.4].

i.si.2.1 Results for Harmonized Emissions before Emissions Separation
Date

To exclude the effect of differences in the period before the potential
CO2 emission reduction, we create a mean RCP2.6-RCP4.5 forcing
until the two forcings are meet in 2025. We therefore also set the date
of potential CO2 emission reductions to 2025, repeat the analysis and
find very similar results [Fig. I.SI.5].
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Figure I.SI.4: Diagnostic atmospheric CO2 concentration under different
scenarios: CO2 emission reductions scenario RCP2.6 (green)
and currently most likely scenario for the near-term RCP4.5
(red) and non-mitigation scenario RCP8.5 (orange). Individ-
ual ensemble members are shown in faded colors. The forced
response (solid) in atmospheric CO2 follows the prescribed
atmospheric CO2 forcing derived from a simplified climate
model fed with emissions from integrated assessment models
[Meinshausen et al., 2011]. The variations of observed global
mean (black) and Mauna Loa (gray) atmospheric CO2 range
within the member standard deviation (dotted green and red)
[Dlugokencky and Tans, 2019].

Figure I.SI.5: Probabilities of trend reduction in harmonized diagnostic at-
mospheric CO2 concentrations for periods of varying trend
length before and after CO2 emission reductions start in 2025,
where both scenarios are harmonized before 2025. Labels as in
Fig. I.3.
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Figure I.SI.6: Probabilities of trend reduction in diagnostic atmospheric
CO2 for periods of varying trend length before and after CO2

emission reductions emerge in (a) 2008 (separation of 0.001

ppm), (b) 2011 (separation of 0.1 ppm), (c) 2015 (separation
of member standard deviation ∼1 ppm) and (d) 2020 (same
separation time as for RCP2.6 vs. RCP4.5). Labels as in Fig. 3,
but with RCP8.5 instead of RCP4.5.

i.si.3 Comparison RCP2.6 vs RCP8.5

Comparing RCP2.6 to RCP8.5 slightly changes the question to whether
reduced emission increase would be visible in atmospheric CO2, be-
cause even in RCP2.6 emissions are rising until 2020 [Fig. I.SI.3].

Proving the limits of feasibility of the method, we here compare
RCP2.6 as an CO2 emission reduction scenario vs RCP8.5 without
any mitigation for different years of separation. The differences in
Fig. I.SI.6 highlight the sensitivity of the method across the year of
separation of trends before and after this policy change. The difference
towards Fig. I.3 show the sensitivity towards the chosen scenario
combination. Note that the assumption that a change from RCP8.5 to
RCP2.6 before 2015 is incompatible with the required climate response
of reducing atmospheric CO2 trends, because RCP2.6 emissions rise
until 2020.

Fig. I.SI.6 shows the probabilities of trend reduction PRCP2.6 needs to
be higher than PRCP8.5 to find sufficient or necessary causation. If both
probabilities are very close to each other, as when comparing RCP2.6
and RCP8.5 for a difference in scenarios after 2011, trends are not
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reducing for trend lengths longer than ten years, because the emission
increases in both scenarios are still overwhelming internal variability.
For short trend lengths up to seven years however, we identify close
to 50% reduced trends after CO2 emission reductions.

Fig. I.SI.6 shows how appropriate this method is to identify dif-
ferent attributes of causation of CO2 emission reductions leading to
reduced atmospheric CO2 trends in scenarios at different rates of CO2

emissions.

i.si.4 Comparison of Modeled & Observation-based Atmospheric CO2 Growth
Rate

Figure I.SI.7: Distribution of annual atmospheric CO2 growth rate from
1958-2018: (gray) modeled global diagnostic atmospheric CO2

based on MPI-ESM Grand Ensemble, (red) observed at Mauna
Loa (NOAA/ESRL) [Dlugokencky and Tans, 2019]

i.si.5 Spatial Origin in CO2 Flux Trends

The trends of strong positive or negative CO2 flux (and its time-
accumulating effect on atmospheric CO2) originate in the tropical
forest [Fig. I.SI.8] in a pattern that resembles the ENSO composites for
temperature and precipitation, which are known to drive terrestrial
CO2 flux changes.

i.si.6 Compatible Emissions

As the concentration-driven scenarios were created with MAGICC
tuned for 3K equilibrium climate sensitivity and medium climate/CO2-
carbon feedback, the compatible emissions [Jones et al., 2013] in an
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Figure I.SI.8: Distribution of modelled five-year 2021-2025 accumulated
CO2 flux trends after removing the forced signal in MPI-ESM
Grand Ensemble: (a) ensemble-member standard deviation, (b)
most positive trend, (c) most negative trend.

ESM (like in our case here MPI-ESM with its particular ECS and
feedbacks) can differ from the emission inputs to MAGICC, which
explains the higher compatible emissions in MPI-ESM concentration-
driven simulations than emissions used in MAGICC [Fig. I.SI.9]. The
three year time difference that compatible emissions decrease later in
RCP2.6, we attribute one year of that difference to the differencing of
the emissions growth rate and the time of adjustment of the land and
ocean carbon sink to changes in atmospheric CO2 concentration.
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Figure I.SI.9: Comparison of compatible and integrated assessment model
CO2 emissions: continuous lines show compatible CO2 emis-
sions [Jones et al., 2013] from ensemble mean concentration-
driven MPI Grand Ensemble simulations and dotted lines show
CO2 emissions from the integrated assessment model per RCP
scenario (colors) [Meinshausen et al., 2011].

i.si.7 Reproducibility

Scripts used in the analysis and other supporting information that may
be useful in reproducing the authors work are archived by the Max
Planck Institute for Meteorology: http://hdl.handle.net/21.11116/
0000-0005-467C-2.
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abstract

On inter-annual time-scales the growth rate of atmospheric CO2

is largely controlled by the response of the land and ocean carbon
sinks to climate variability. Yet, it is unknown to what extent this
variability limits the predictability of atmospheric CO2 variations.
Using perfect-model Earth System Model (ESM) simulations, we show
that variations in atmospheric CO2 are potentially predictable for three
years. We find a two-year predictability horizon for global oceanic
CO2 flux with longer regional predictive skill of up to seven years. The
two-year predictability horizon of terrestrial CO2 flux originates in
the tropics and mid-latitudes. With the predictive skill of the isolated
effects of land and ocean carbon sink on atmospheric CO2 of five
and 12 years respectively, land dampens the overall predictive skill of
atmospheric CO2 variations. Our research shows the potential of ESM-
based predictions to forecast multi-year variations in atmospheric CO2.

plain language summary

The amount of anthropogenic carbon emissions absorbed by land and
ocean from the atmosphere varies annually due to their sensitivity to
climate. Therefore, the atmospheric CO2 growth rate does not strictly
follow the emissions signal. Whether decadal prediction systems can
also predict variations of atmospheric CO2 has not been shown yet,
but is crucial to inform policy-makers about the efficiency of the im-
plementation of the Paris Agreement. Using numerical Earth System
simulations in an idealized prediction framework, we show that global
atmospheric CO2 is predictable up to three years in advance. The
global ocean and land CO2 fluxes are predictable for two years. The
isolated effects of the land and ocean carbon sink on atmospheric CO2

are predictable for five and 12 years, respectively. Therefore, the land
carbon cycle limits atmospheric CO2 predictability. Our study demon-
strates that simulation-based multi-year forecasts have the potential to
predict natural atmospheric CO2 variations.
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ii.1 introduction

The atmospheric CO2 mixing ratio rises in response to increasing
anthropogenic carbon emissions. The terrestrial and oceanic carbon
sinks modulate the atmospheric CO2 mixing ratio by currently ab-
sorbing about 30% and 25% of the anthropogenic carbon emissions,
respectively [Friedlingstein et al., 2019]. However, the inter-annual
atmospheric CO2 growth rate does not strictly follow the changes in
anthropogenic CO2 emissions [Bacastow, 1976; Keeling et al., 1995;
Peters et al., 2017]. This discrepancy is due to internal variability of the
oceanic and terrestrial carbon sinks driven by the large-scale modes
of variability of the climate system [Doney et al., 2006; Heinze et al.,
2015; McKinley et al., 2017; Li and Ilyina, 2018] and volcanic erup-
tions [Jones et al., 2001; Frölicher et al., 2013; Eddebbar et al., 2019].
Indeed, this internal climate variability of the natural carbon sinks
might obscure the identification of the anthropogenic emissions signal
in atmospheric CO2 mixing ratio [Peters et al., 2017]. This sensitivity
of inter-annual changes in atmospheric CO2 concentration to natural
climate variability is a major uncertainty in our understanding of the
near-term evolution of atmospheric CO2 and the remaining carbon
budget. How this sensitivity limits the near-term predictability of the
atmospheric CO2 growth rate has not been addressed before.

The Paris Agreement [UNFCCC, 2015] aims to limit global warming
to at most 2°C by mostly mitigation of fossil fuel emissions. Article 14

demands for an assessment of collective progress periodically every
five years "in the light (...) of the best available science". The potential
of prediction systems with prognostic CO2 has to be explored in
the context of their ability to predict near-term atm. CO2 variations
in response to the changes of the natural carbon sinks. Given that
CO2 predictions are feasible, changes in emissions can be earlier
separated from internal variability. Therefore, the near-term efficacy of
the planned mitigation efforts can be skillfully forecasted in atm. CO2

in advance until the prediction horizon, rather than being assessed
only in the following global stocktake. As a first step towards a viable
atm. CO2 prediction system, we here show its potential to be successful
in a idealized setup.

Over the last decade, multi-year climate predictions have been
established. Decadal prediction systems based on comprehensive Earth
System Models (ESM) take advantage of the memory of the climate
system. Observational products are assimilated into an ESM and used
as initial conditions of the forecast [Meehl et al., 2009]. While decadal
prediction systems are not perfect, they proved themselves successful
for many aspects of the climate system [Meehl et al., 2013; Marotzke
et al., 2016; Yeager et al., 2018]. Having established prediction skill
for many climate variables, which the carbon cycles are sensitive to,



64 predictability horizons in the global carbon cycle

prediction systems can be used to assess decadal predictability of the
global carbon cycle.

In the emerging predictability studies of terrestrial and ocean car-
bon cycle components, only physical climate variables such as ocean
temperature and salinity are nudged towards observations due to the
sparse and short observational period of biogeochemical variables.
Li et al. [2016] find predictive skill of four to seven years in the win-
ter North Atlantic air-sea CO2 uptake when evaluating against an
ocean reconstruction with uninitialized biogeochemical components.
The global oceanic carbon uptake can be skilfully predicted for up to
two years evaluated against observations [Li et al., 2019] and ocean
reconstruction [Lovenduski et al., 2019a]. Séférian et al. [2018] esti-
mates the potential predictability horizon of the global carbon sink
predictive skill of four to six years in idealized perfect-model sim-
ulations. Unlike the previously mentioned ESM-based predictions,
Betts et al. [2016, 2018] use a statistical model to forecast the growth
rate of the atmospheric CO2 mixing ratio at Mauna Loa. A regression
of previous imprints of the El Ninõ-Southern Oscillation (ENSO) on
atmospheric CO2 mixing ratio and anthropogenic emissions predicts
the next-year atmospheric CO2. Although ENSO is one of the main
drivers of CO2 flux variability [Jones and Cox, 2005; Zeng et al., 2005],
this method lacks the representation of other dynamic processes and
a multi-year outlook. Zeng et al. [2008] demonstrate technical fea-
sibility of ESM-based seasonal air-land CO2 flux predictions. They
find a higher prediction skill for Mauna Loa atmospheric CO2 than
a statistical ENSO regression and thereby indicate the added value
of ESM-based carbon cycle predictions. A very recent study finds
two-year predictive skill in terrestrial net ecosystem production, which
is closely linked to terrestrial CO2 flux predictive skill [Lovenduski
et al., 2019b].

Previous studies on carbon cycle predictability lack a fully-coupled
global carbon cycle. Terrestrial carbon cycle based studies [Zeng et al.,
2008; Betts et al., 2018] miss the oceanic carbon sink and multi-year
lead times. (Oceanic) carbon cycle based predictability studies [Li
et al., 2016; Séférian et al., 2018; Li et al., 2019; Lovenduski et al., 2019a;
Lovenduski et al., 2019b] rest upon concentration-driven simulations, in
which atmospheric CO2 mixing ratio is prescribed. In such simulations,
air-sea and air-land CO2 flux do not alter atmospheric CO2 mixing
ratio. We go beyond previous studies by using fully-coupled carbon
cycle ESM simulations. In our simulations, the atmospheric mixing
ratio of CO2 is a prognostic property and can be physically-consistently
predicted. We examine the limits of predictive skill of air-sea and air-
land surface CO2 flux as well as the resulting atmospheric CO2 mixing
ratio. Furthermore, we determine the isolated contributions of the
terrestrial and oceanic carbon sinks to the limits of predictive skill of
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atmospheric CO2. We examine the relevance of different regions of the
overall land and ocean predictive skill based on two metrics.

We use a perfect-model framework, in which we assumes that the
model can reproduce observed variability [Griffies and Bryan, 1997].
As it is free of initialization from reanalysis products, the perfect-
model framework cannot perform predictions, but only estimate time
scales after which the state of initialization is lost in the ensemble
due the chaotic nature of the Earth system. The assimilation of re-
analysis products in prediction systems inevitably induces drifts from
the reanalysis climatology towards the native model climatology due
to biases between reanalysis and ESMs [Kröger et al., 2017]. As ma-
rine biogeochemical cycles are highly sensitive to changes in ocean
circulation, such ocean reconstructions can disrupt biogeochemical
tracer distributions [Toggweiler et al., 1989; Park et al., 2018]. This
perfect-model framework offers the only self-consistent setup to ex-
amine processes leading to predictive skill without methodological
artifacts due to initialization from reanalysis. We therefore use it as a
first-order approach study to examine the limits of predictive skill of
a fully-coupled global carbon cycle.

ii.2 methods

ii.2.1 Model Description

Our perfect-model framework study is based on perturbed initial-
conditions ensemble simulations from a pre-industrial control simula-
tion with prognostic atmospheric CO2 mixing ratio, which is known
as esm-piControl in the Coupled Model Intercomparison Project Phase
6 (CMIP6) framework [Eyring et al., 2016]. We use the close to equi-
librium spin-up simulation of the CMIP6 version of the Max Planck
Institute ESM (MPI-ESM)[Mauritsen et al., 2019] taken for the Coupled
Climate–Carbon Cycle Model Intercomparison Project (C4MIP) [Jones
et al., 2016] in its low-resolution configuration (horizontal resolution of
about 1.8°in the atmosphere and on land, and about 1.5°in the ocean).

The ocean general circulation model MPIOM [Jungclaus et al., 2013]
provides the circulation field to the marine biogeochemical cycle model
HAMOCC [Ilyina et al., 2013]. HAMOCC encompasses carbonate
chemistry and an NPZD-type ecosystem including additional nitrogen-
fixating cyanobacteria [Paulsen et al., 2017], nutrient-light-temperature
co-limitation, calcite and opal export treated explicitly and iron as a
macro-nutrient. The terrestrial carbon cycle model JSBACH incorpo-
rates wildfires, dynamic vegetation, soil carbon decomposition and
storage [Schneck et al., 2013]. The atmospheric general circulation
model ECHAM6 relies on a flux-form semi-Lagrangian scheme [Lin
and Rood, 1996] to represent the transport of the three-dimensional
atmospheric prognostic atmospheric CO2 tracer [Stevens et al., 2013].
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ii.2.2 Perfect-Model Framework

The simulations in the perfect-model framework are started from 12

randomly chosen initialization states. From each of those states of a
stable 300-year control simulation, we branch off 9 ensemble members
and integrate them for 20 years. Ensemble members are generated by
perturbing the stratospheric horizontal diffusion by 1.0000{member}
in the first year after initialization. This initialization approach induces
only tiny perturbations to the climate system as the ocean and land
initial conditions remain identical. Therefore, this perfect-model initial-
ization presents an upper limit estimate of predictive skill. As a result
of such initialization approach, the ensemble members first follow
a similar evolution and then diverge until reaching the time scale
of the predictability horizon, when temporal variability is statically
indistinguishable from variability across members [Fig. II.SI.1a].

ii.2.3 Predictive skill assessment

Because only slightly perturbed initial conditions distinguish ensem-
ble members, all ensemble members can equally serve as a verification
to compute predictive skill according to a certain metric. Therefore,
we compute predictive skill as the anomaly correlation coefficient skill
score (ACC) and root-mean-square-error (RMSE) between the ensem-
ble member mean, with verification member excluded, as forecast and
every single ensemble member as verification [Wilks, 2006; Jolliffe and
Stephenson, 2011]. ACC assesses the linear association of the forecast
and the verification and therefore measures synchronous evolution.
RMSE measures the second-order distance between forecast and verifi-
cation. RMSE describes how the individual ensemble members spread
over lead time and is therefore a more conservative attribute of pre-
dictive skill. The two metrics measure related but different attributes
of predictive skill [Murphy, 1988]. Find additional details about the
metrics in the supplementary information.

We assess the significance of initialized forecast predictive skill by
bootstrapping with replacement [Efron and Tibshirani, 1993; Goddard
et al., 2013]. To compare against random forecasts, we create hypothet-
ical uninitialized ensembles randomly drawn as 20-year chunks from
the control simulation. The p-value denotes the probability that ran-
dom forecasts are more skillful than the initialized forecast re-sampled
with replacement over all initializations based on 5000 iterations (ex-
cept noted otherwise). This non-parametric approach relies on no
further assumptions and is especially free from any normalization
choice, which can bias the predictability horizon [Hawkins et al., 2016].
We define the limit of predictive skill, the so-called predictability horizon
of a metric as the last significant lead year (with p-value <0.05).
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ii.2.4 Diagnosing Global Atmospheric CO2 Mixing Ratio

We furthermore disentangle the isolated effects of the global terrestrial
and oceanic carbon sinks on the global atmospheric CO2 mixing ratio.
For this we convert zero-mean free-of-trend (denoted by ’) temporally
accumulated global surface CO2 flux into diagnosed atmospheric
CO2 mixing ratio by multiplying with ppm

2.12PgC [Ballantyne et al., 2012;
Friedlingstein et al., 2019]:

XCO2,atm,diag(t) = XCO2,atm(0) +
t

∑
t′

CO2flux’(t′) · ppm
2.124PgC

where XCO2,atm(0) is a free choice parameter of initial diagnosed
atmospheric surface CO2 mixing ratio. This approach assumes the
atmosphere as one instantaneously mixed box and implicitly incor-
porates direct CO2 flux from land to ocean. Converting the sum of
terrestrial and oceanic CO2 flux into diagnosed atmospheric CO2

yields a very similar evolution as prognostic atmospheric CO2.

ii.2.5 Variance-weighted Mean Period

We infer potentially predictable regions from a single control simula-
tion following Branstator and Teng [2010]. Accordingly, the variance-
weighted mean period highlights regions with low-frequency varia-
tions with longer potentially predictable periods:

Px = ∑
k

V( fk, x)/ ∑
k

fkV( fk, x),

where V( f , x) is the variance per unit frequency for frequency f
at location x and k are the individual frequencies from the power
spectrum.

ii.3 predictive skill of air-sea co2 flux

We first examine predictive skill in the global ocean carbon sink. Global
annual air-sea CO2 flux is potentially predictable for two and four
years, when assessed with ACC and RMSE, respectively [Fig. II.1a].
This means that initialized ensembles predict each other significantly
better due to initialization than uninitialized ensembles. When assess-
ing predictive skill with the same metric RMSE and predictability
horizon definition as Séférian et al. [2018], global air-sea CO2 flux
predictability horizon in our model MPI-ESM-LR is comparable to
CNRM-ESM1 (for details see supplementary information section S3.3).

On a regional scale longer predictability horizons are found. For
instance, the North and Subtropical Atlantic as well as the North
and Subtropical Pacific have a predictability horizon of more than six
years and thereby exceed the global oceanic predictability horizon
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Figure II.1: Comparison of the mean potential prediction skill of the ini-
tialized ensemble (red) versus random uninitialized ensem-
bles (blue) in global annual surface quantities of the carbon
cycle. The anomaly correlation coefficient (ACC) on the y-axis
and root-mean-square-error (RMSE) on the x-axis are shown by
lead years represented as dots: (a) air-sea CO2 flux, (b) air-land
CO2 flux, (c) prognostic surface atmospheric CO2, (d) diagnosed
atmospheric CO2 based on oceanic carbon sink, (e) diagnosed
atmospheric CO2 based on the global terrestrial carbon sink and
(f) diagnosed atmospheric CO2 based on the global oceanic and
terrestrial carbon sink [see section II.2.4]. Errorbars show 95%
confidence intervals based on bootstrapping with replacement
(N=5000). The last lead year with a bootstrapped p-value (which
represents that uninitialized ensembles beat initialized ensem-
bles) lower than 5% marks the predictability horizon. Black stars
with white integer denote significant lead years in ACC and
RMSE, gray stars if only one metric is significant and lead years
non-significant in both metrics are blurred.

Figure II.2: Spatial distribution of ACC-based surface CO2 flux predictive
skill: (a-e) predictive skill over the first five lead years. White
areas indicate unpredictable areas where the uninitialized predic-
tive skill exceeds the initialized skill at 5% probability based on
bootstrapping with replacement (N=1000). (f) The predictability
horizon marks the last significant lead year.



II.3 predictive skill of air-sea co2 flux 69

Figure II.3: (a,b) Spatial distribution of variance-weighted mean period
[Branstator and Teng, 2010] from the 300-year control simu-
lation. In white areas the null hypothesis, that the variable is
independent and random, is not rejected at 95% significance level
based on N=500 re-samplings with replacement: (a) surface an-
nual CO2 flux and (b) prognostic annual surface atmospheric
CO2 mixing ratio. (c) Verification of diagnostic global annual at-
mospheric CO2 mixing ratio (gold) with prognostic atmospheric
CO2 (black) based on temporally accumulated surface CO2 flux
of ocean (blue) and land (green) in the control simulation [see
section II.2.4]
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[Figs. II.2, II.SI.2] [Li et al., 2016; Li et al., 2019; Lovenduski et al.,
2019a]. These are regions of potentially predictable low-frequency
air-sea CO2 flux variations [Fig. II.3b]. However, which areas support
the predictability of air-sea CO2 flux at the global scale? Assessing the
magnitude of CO2 flux spread between ensemble members measured
by RMSE shows very little relevance of the subtropical gyres for
the global oceanic carbon sink predictive skill [Fig. II.SI.2]. While
ACC shows linear association independent of magnitude, RMSE puts
weight on the distance between ensemble members. The subtropical
gyres are predictable in ACC up to a decade [Fig. II.2], but this region
is irrelevant for the global oceanic carbon sink predictive skill as
indicated by the low RMSE from this region in contrast to other regions.
The larger areas of the Southern Ocean are predictable only for one
year. We attribute this little memory in CO2 flux to the wind-driven
circulation which sets local oceanic pCO2 in the Southern Ocean, but
atmospheric processes with less memory are harder to predict than
oceanic processes [Pohlmann et al., 2004; Kirtman et al., 2013; Zhang
et al., 2017b,a]. Owing to the large magnitude of Southern Ocean CO2

flux and short predictability horizon, the Southern Ocean is the main
limiting contributor to the predictive skill of the global air-sea CO2

flux [Fig. II.SI.2, II.SI.5b]. The imprint of longer regional predictive
skill in the subtropical gyres is erased in the global predictive skill.

ii.4 predictive skill of air-land co2 flux

Analogous to air-sea CO2 flux, global air-land CO2 flux is predictable
for three years in ACC and for two years in RMSE, respectively [Fig.
II.1b]. These results are likewise comparable to Séférian et al. [2018].

On the regional scale, terrestrial biogeochemical processes have
weaker memory towards atmospheric circulation in contrast to varia-
tions of marine biogeochemical processes responding to lower-frequency
oceanic circulation [Fig. II.3a]. Also, the imprints of initial conditions
over land are faster lost than over the ocean as shown by faster and
stronger increasing RMSE [Fig. II.1a,b; II.SI.2a-e]. This results in lower
regional predictability horizons on land than over the oceans [Fig. II.2f,
II.SI.2f]. Terrestrial CO2 flux RMSE also increases to higher magnitudes
due to the larger magnitudes of variability of terrestrial CO2 flux [Fig.
II.SI.5b].

As for the oceanic CO2 flux predictive skill, we assess the relevance
of different region for the global terrestrial CO2 flux predictive skill.
Terrestrial high-latitudes and deserts CO2 flux is not predictable at
lead year one in both metrics indicating no inter-annual memory.
The mid-latitudes and tropical forests, which are highly variable [Fig.
II.SI.5b], are predictable up to two years and thereby dominate the
predictive skill of global terrestrial CO2 flux [Fig. II.2, II.SI.2]. Zeng
et al. [2008] find also highest ACC-based predictive skill in the tropics
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and mid-latitudes over three seasons, while skill in other regions drops
quickly within three months.

The high-RMSE mid-latitudes and tropics are also strongly variable
areas in which net primary production and heterotrophic respiration
respond heavily to temperature and precipitation patterns associated
with ENSO [Fig. II.SI.5, II.SI.6]. Our results support ENSO as the
limiting process of air-land CO2 flux predictive skill [Keeling et al.,
1995; Jones et al., 2001; Zeng et al., 2005; Zeng et al., 2008; Betts et al.,
2018; Lovenduski et al., 2019b]. Note that unlike global air-sea CO2

flux predictive skill, global air-land CO2 predictive skill is determined
by regions which also show the longest predictability horizon.

ii.5 predictive skill of atmospheric co2 variations

Having examined the predictive skill of surface air-sea and air-land
CO2 fluxes, we can now explain their implications for predictive skill
of the mixing ratio of surface atmospheric CO2. Our results indicate
that global atmospheric CO2 mixing ratio is predictable for three years
assessed with both metrics [Fig. II.1c]. Yet, if the combined global
terrestrial and oceanic CO2 flux is predictable for two years only
[Fig. II.1a,b], how can atmospheric CO2 mixing ratio be predictable
longer than the global surface CO2 flux? As surface CO2 flux directly
changes atmospheric CO2 content, atmospheric CO2 mixing ratio can
be regarded as an integrator of surface CO2 flux [Keppel-Aleks et al.,
2013]. Reliable predictions in CO2 fluxes up to two years result in
longer predictive skill of their imprints on atmospheric CO2.

To explain the limits of globally averaged atmospheric surface CO2

predictive skill, we diagnose the individual contributions of the global
terrestrial and oceanic carbon sinks to the atmospheric CO2 mixing
ratio. The predictive skill of diagnosed atmospheric CO2 mixing ratio
is very similar to that of prognostic atmospheric surface CO2 [Fig.
II.1c,f]. We find RMSE-based predictability horizons of five and 12

years for the global terrestrial and oceanic carbon sinks, respectively
[Fig. II.1d,e]. Consequently, the oceanic imprint on atmospheric CO2

would be predictable for more than a decade, but this atmospheric
CO2 signal is overlaid by the dominant imprint of the terrestrial carbon
sink on atmospheric CO2 mixing ratio. Note that the predictability
horizons of the individual contributions of oceanic and terrestrial
carbon sinks to atmospheric CO2 predictability are longer than when
combined [Fig. II.1d-f]. We explain this by a lower combined global
carbon sink variability compared to terrestrial CO2 flux [Fig. II.3c]. This
has been also illustrated in a previous study showing that the ocean
acts to suppress the atmospheric CO2 variability. [Doney et al., 2006].
Furthermore, the terrestrial and oceanic carbon sinks contributing to
the atmospheric CO2 reservoir are both driven by climate variability,
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but respond on different timescales with different magnitudes of
variability.

Figure II.4: Spatial distribution of ACC-based atmospheric surface CO2
predictive skill: (a-e) predictive skill over the first five lead years.
White areas indicate unpredictable areas where the uninitial-
ized predictive skill exceeds the initialized skill at 5% probabil-
ity based on bootstrapping with replacement (N=1000). (f) The
predictability horizon marks the last significant lead year. Red
crosses show location of long-standing atmospheric CO2 mixing
ratio measurement stations [Keeling et al., 2005].

The spatial distribution of atmospheric CO2 mixing ratio ACC-based
predictive skill [Fig. II.4] is strongly influenced by the subjacent surface
CO2 flux predictive skill [Fig. II.2, II.SI.2]. Atmospheric surface CO2

mixing ratio predictive skill persists over the first two lead years over
the whole globe. Predictive skill decreases faster and stronger over
areas close to the terrestrial biosphere. We explain this atmospheric
CO2 predictive skill, which is more skillful than for the surface CO2

fluxes, with the integrator feature of the atmospheric CO2 leading
to lower frequency variations [Fig. II.3a,b]. Strong high-frequency
perturbations from underlying air-land CO2 flux are subsequently
transported zonally on the time scale of months [Fig. II.SI.5b, II.SI.6a,b]
and dilute as they spread across the globe on annual time scales [Fig.
II.2].

Interestingly, the atmospheric surface CO2 ACC-based predictive
skill, which was lost over the tropics in lead year three, re-emerges
in the fourth lead year and persists over a few lead years over the
tropical oceans and Southern hemisphere [Fig. II.4]. The low prob-
abilities at which initialized forecasts beat uninitialized forecasts at
lead years three to seven in ACC indicate this re-emergence also on
global scale [Fig. II.1c]. However, this re-emergence, while significant,
is only slightly better than uninitialized ACC and therefore unlikely
to be exploited as a feature of atmospheric CO2 predictions. The lim-
ited number of twelve initializations, in which positive, neutral and
negative ENSO initial states are not normally distributed, might also
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have triggered this re-emergence. We explain the weak re-emergence
of ACC-based predictive skill with the oscillatory behaviour of ENSO.
Strong ENSO events inject a large pulse of CO2 into the atmosphere in
the tropics [Fig. II.SI.5], which is zonally transported within months
and dilutes meridionally over years [Fig. II.SI.6]. When the opposite
ENSO phase is reached after the typical 3-4 years, ensemble members
follow similar evolutions, which is measured with the ACC metric.
As RMSE-based predictive skill lacks re-emergence [Fig. II.SI.2], this
illustrates the different attributes of predictive skill and also shows
the metric-dependence of predictability horizon.

We further examine atmospheric CO2 predictive skill in the con-
text of the existing monitoring framework [Keeling, 2008]. Due to the
dilution and pole-ward transport of atmospheric CO2 signals, the mea-
surement station’s predictability horizon is quite homogeneous over
the ocean, but can be higher in the tropics due to re-emergence. The
predictability horizon decreases in proximity to terrestrial CO2 sources
explainable by high terrestrial CO2 flux variability [Fig. II.4f, Table 1].
The highest ACC-based predictability horizon from Christmas Island
station of six years is explained by the re-emergence of atmospheric
CO2 predictive skill originating in the tropical forests, which reach
this central Pacific island before the initial memory is lost [Fig. II.4f].
The atmospheric CO2 mixing ratio at the Mauna Loa station, which
is an appropriate observational reference for global atmospheric CO2

variations, is predictable in ACC for three years [Fig. II.4f, II.SI.1b,c].

ii.6 summary and conclusions

This study estimates decadal potential predictive skill of the fully-
coupled global carbon cycle. Using a perfect-model approach, we
estimate the upper bound of ESM-based predictive skill in the context
of two metrics. We find the RMSE-based predictability horizon of the
global air-sea and air-land CO2 flux to be two years [Li et al., 2019;
Lovenduski et al., 2019a; Lovenduski et al., 2019b]. While the ACC-
based four- and three-year predictability horizons of the air-sea and air-
land CO2 flux signal are longer, RMSE-based predictive skill illustrates
the relevance of individual sinks and regions for the predictive skill of
atmospheric CO2. Previous estimates of predictability horizon were
higher [Séférian et al., 2018], but end up comparable when computed
by our proposed bootstrapping methodology, which is backed by the
established prediction frameworks [Goddard et al., 2013; Marotzke
et al., 2016; Yeager et al., 2018].

We furthermore show that the global oceanic CO2 flux predictive
skill is mainly controlled by the Southern Ocean. The global terrestrial
CO2 flux predictive skill is dominated by the tropical forests and mid-
latitudes affected by ENSO. We find a different regional contribution
pattern for land and ocean to global predictive skill of CO2 flux. On
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land, predictive skill is maintained due to regions with the longest
predictability horizon. On the contrary in the ocean, regions with
longest predictability horizon are less relevant for the global signal.

The predictability horizon for climate modulated variations in the
global atmospheric CO2 mixing ratio is three years. The isolated effect
of global terrestrial carbon sink on atmospheric CO2 of five years
dominates over the oceanic contribution of 12 years. Consequently,
while the oceanic carbon cycle dampens the imprint of the terrestrial
carbon cycle on atmospheric CO2, the predictive skill of atmospheric
CO2 is limited by the terrestrial carbon sink.

The atmospheric CO2 predictability horizon is globally quite homo-
geneous, except over parts of the tropical Pacific, because of a weak
but significant re-emergence pattern which might also affect initialized
predictions. As the dominant features of terrestrial CO2 flux predictive
skill in the tropics arise from ENSO, multi-year forecasts performed
by initialized prediction systems for atmospheric CO2 variations are
expected to be challenging.

In this study, we demonstrate that ESM-based initialized forecasts
of the global carbon cycle may deliver multi-year outlooks on the
evolution of the atmospheric CO2 mixing ratio. Hence, ESM-based
predictions have the potential to constrain uncertainty of changes in
atmospheric CO2 due to internal climate variability in the near-term
future and can thereby inform the pentadal stocktakes [UNFCCC,
2015].
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ii.si supplementary information

ii.si.1 Reproducibility

The results in this paper were obtained using a number of different
software packages. The command line tool known as Climate Data
Operators cdo [Schulzweida, 2019] was used to aggregate output
and perform routine calculations on those files (e.g., the calculation
of temporal and spatial means). For more complex analysis and vi-
sualization, the python distribution called anaconda was used.
The python library called xarray was used for reading/writing
netCDF files and data analysis. The xarray-wrapper climpred was
co-developed by Aaron Spring and Riley X. Brady and is publicly
available at https://climpred.readthedocs.io/. In addition to mat-
plotlib (the main Python plotting library [Hunter, 2007]), cartopy

[Met Office, 2010] was used to generate the figures.
To facilitate the reproducibility of the results presented here, please

find scripts, raw input and intermediate results files archived at http:
//hdl.handle.net/21.11116/0000-0004-8276-4.

This computation section is inspired by Irving [2015] to foster repro-
ducibility in geosciences.

ii.si.2 Predictability Horizon at Atmospheric CO2 Measurement Stations

Lon Lat PH RMSE PH ACC

Alert 82 -62 0 3

Point Barrow 71 -156 0 3

La Jolla 32 -117 4 3

Mauna Loa 19 -155 4 3

Christmas Island 2 -157 3 6

American Samoa -14 -170 3 3

Kermadec Islands -29 -177 3 3

Baring Head -41 174 3 3

South Pole -89 -24 3 3

Table 1: RMSE- and ACC-based predictability horizon for atmospheric
CO2 mixing ratio at locations of long-standing atmospheric CO2
measurement stations in years. Station locations are taken from
https://cdiac.ess-dive.lbl.gov/trends/co2/sio-keel.html.

http://hdl.handle.net/21.11116/0000-0004-8276-4
http://hdl.handle.net/21.11116/0000-0004-8276-4
https://cdiac.ess-dive.lbl.gov/trends/co2/sio-keel.html
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Figure II.SI.1: Evolution of the annual mixing ratio of atmospheric CO2:
(a) globally-averaged and at Mauna Loa. The ensemble mean
(dark green) is taken from individual ensemble members
(green), which are branched off a pre-industrial control run
(black) at different ensemble initialization years (7 out of 12

shown in dotted gray). (c) Comparison of the mean poten-
tial prediction skill. Initialized ensemble (red) versus random
uninitialized ensembles (blue) of prognostic atmospheric CO2

at Mauna Loa, Hawaii with Anomaly correlation coefficient
(ACC) on the y-axis and root-mean-square-error (RMSE) on
the x-axis for lead years represented as dots. Errorbars show
95% confidence intervals based on bootstrapping with replace-
ment (N=5000). The last lead year with a bootstrapped p-value
(which represents that uninitialized ensembles beat initialized
ensembles) lower than 5% marks the predictability horizon.
Black stars with white integer denote significant lead years
in ACC and RMSE, gray stars if only one metric is signifi-
cant and lead years non-significant in both metrics are blurred.
For comparison with Betts et al. [2016, 2018], ones show pre-
dictive skill of the statistical model for lead-year one for the
transient forecast (blue) and the detrended forecast (orange).
Non-significant lead years are blurred.
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ii.si.3 RMSE-based Predictive Skill of Surface CO2 Flux

For completeness and comparison, we calculate predictive skill maps
of RMSE (for comparison to manuscript Figs. II.2 and II.4 in ACC)
for atmospheric CO2 mixing ratio and surface CO2 flux. Predictive
skill has similar patterns as ACC, but initialized forecasts perform
better than uninitialized forecasts for fewer lead years. Furthermore,
there is no re-emergence in RMSE-based predictive skill of surface
atmospheric CO2.

Figure II.SI.2: Spatial distribution of RMSE-based surface CO2 flux predic-
tive skill: (a-e) predictive skill over the first five lead years.
White areas indicate unpredictable areas where the uninitial-
ized predictive skill exceeds the initialized skill at 5% probabil-
ity based on bootstrapping with replacement (N=1000). (f) The
predictability horizon marks the last significant lead year.
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ii.si.4 Statistics

All skill metric results are based on means over all initialisations and
every member is used in turns as verification. Furthermore, we exclude
the member being used as verification when calculating the ensemble
mean forecast. This approach relies on a supervector comprised of
all available initializations and members and is also used in [Bushuk
et al., 2018] to calculate ACC over non-continuous initialization years.
Calculating first a distance metric over members or initializations first
and then average over the remaining makes only little difference in
for perfect-models.

(R)MSE-based predictive skill has been mostly used in the past to as-
sess potential predictability [Griffies and Bryan, 1997; Pohlmann et al.,
2004; Séférian et al., 2018]. However, here for atmospheric CO2 mixing
ratio, ACC-based (also used in [Bushuk et al., 2018]) predictive skill
comes closer to the raised expectation when predicting something and
is therefore primarily used in this study when assessing atmospheric
CO2 predictability.

ii.si.4.1 ACC

The anomaly correlation coefficient skill score (ACC) is defined as:

ACC(x) =
cov(x, x̂)√

var(x) · var(x̂)
=

1
NM ∑N,M

i,j=1(xi,j − xi,j)(x̂j − x̂j)√
∑N,M

i,j=1(xi,j−xi,j)2

MN ·
√

∑M
j=1(x̂j−x̂j)2

M

,

where xi and represent the forecast and reference for each of the N
lead years i and x̂ denotes the member mean, assess the synchronous
evolution of the forecast and the reference [Jolliffe and Stephenson,
2011].

ii.si.4.2 RMSE

The root-mean-square-error (RMSE), defined as:

RMSE(x) =

√
∑N,M

i,j=1(xi,j − x̂j)2

NM
,

measures the second-order distance between forecast and reference
[Jolliffe and Stephenson, 2011].

ii.si.4.3 Comparison of Predictability Horizon Definitions

The differences in predictability horizon between Séférian et al. [2018]
and our study arise from different interpretations of what defines
the predictability horizon. While Séférian et al. [2018] define the limit
at the saturation level of later lead years close to the magnitude of
the standard deviation, we define the predictability horizon above a
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threshold value at which initialized forecasts cease to perform bet-
ter than random, uninitialized forecasts as defined by Buizza and
Leutbecher [2015]. The break-point fit of Séférian et al. [2018] resem-
bles a 50% bootstrapping and results therefore in by design longer
predictability horizons compared to this study [Fig. II.SI.3].

Figure II.SI.3: Evolution of global CO2 flux RMSE over lead time with dif-
ferent definitions for predictability horizon. Definitions of
predictability horizon used in Séférian et al. [2018] (orchid)
leads to systematically higher predictability horizon than when
using the methodology from our study (blue).

ii.si.5 RMSE-based Predictive Skill Surface Atmospheric CO2

Figure II.SI.4: Spatial distribution of RMSE-based atmospheric surface
CO2 predictive skill: (a-e) predictive skill over the first five
lead years. White areas indicate unpredictable areas where the
uninitialized predictive skill exceeds the initialized skill at 5%
probability based on bootstrapping with replacement (N=1000).
(f) The predictability horizon marks the last significant lead
year. Red crosses show location of long-standing atmospheric
CO2 mixing ratio measurement stations [Keeling et al., 2005].
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ii.si.6 Influence of ENSO on carbon cycle variability

Figure II.SI.5: Spatial distribution of surface CO2 flux: (a) annual mean, (b)
inter-annual variability determined as standard deviation (c,
d) the composite of the positive/negative ENSO 3.4 index
states. Colored areas indicate that the composite is different
from the neutral ENSO 3.4 state assessed with a t-test at 95%
significance.

Figure II.SI.6: Spatial distribution of atmospheric CO2 mixing ratio over-
lain with 10m wind indicated as arrows: (a) annual mean,
(b) inter-annual variability determined as standard deviation
(c, d) the composite of the positive/negative ENSO 3.4 index
states. Colored areas indicate that the composite is different
from the neutral ENSO 3.4 state assessed with a t-test at 95%
significance.
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ii.si.7 Comparison of Modelled Inter-annual Variability with Observa-
tions

Transferring the time-scales of perfect-model predictability to the
real Earth system assumes that the model can reproduce observed
variability. Here, we compare internal variability of MPI-ESM from the
300-year pre-industrial control simulation with detrended observation-
based products under the transient climate. Due to the shorter time
period of 34 to 62 years, the observation-based products are likely to
show less variations compared to the modelled inter-annual variability.

Furthermore, observations are subject to the climate change trend
whereas our control simulation is stable. To compare the variability
of the model with observations-based products, we need to remove
the trend from the data products. Here, the choice of the detrending
polynomial introduces an additional uncertainty. Also changing from
a linear to a 4

th order polynomial trend removal is not a priori more
correct and lead to varying results.

ii.si.7.1 Oceanic CO2 flux

Figure II.SI.7: Spatial distribution of inter-annual variability computed as
standard deviation of annual mean oceanic CO2 flux: (a)
MPI-ESM pi-esmControl, (b) linear detrended SOM-FFN (1982-
2015) [Landschützer et al., 2016].

Hotspots of oceanic CO2 flux variability in SOM-FFN [Landschützer
et al., 2016] in the Southern Ocean and North Pacific are captured by
MPI-ESM. MPI-ESM under-estimates oceanic CO2 flux variability in
the equatorial pacific with respect to the detrended SOM-FFN. This
feature is less pronounced after 4

th-order detrending. Furthermore,
SOM-FFN is just one of several SOCOM data products [Rödenbeck et
al., 2015] which fill the various gaps of the gridded measurement data.
Given the existing uncertainty in data filling methods, a precise estima-
tion of variability is not conclusive. Furthermore, Landschützer et al.
[2019] show that the length of the observational records is insufficient
to fully capture natural variability signals.
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Figure II.SI.8: Spatial distribution of inter-annual variability computed as
standard deviation of annual mean atmospheric CO2 mix-
ing ratio: (a) MPI-ESM pi-esmControl, (b) second-order de-
trended atmospheric CO2 inversion Jena CarboScope sEXToc-
NEET_v4.3 (1957-2018) [Rödenbeck et al., 2018].

ii.si.7.2 Terrestrial CO2 flux

Terrestrial CO2 flux variability is highly unconstrained, as there is
currently no direct observation-based terrestrial CO2 flux product
available. However, for comparison here, we use the observations-
based atm. CO2 inversion [Rödenbeck et al., 2018] as an estimate for
spatio-temporal gridded terrestrial CO2 flux. While MPI-ESM gener-
ally over-estimates the magnitudes in terrestrial CO2 flux variability,
the origins of high variability in the tropics and mid-latitudes are well
captured.

ii.si.7.3 Surface Atmospheric CO2

Figure II.SI.9: Spatial distribution of inter-annual variability computed as
standard deviation of annual mean atmospheric CO2 mix-
ing ratio: (a) MPI-ESM pi-esmControl, (b) second-order de-
trended atmospheric CO2 inversion Jena CarboScope sEXToc-
NEET_v4.3 (1957-2017) [Rödenbeck et al., 2018].

The effect of the internal variability of both oceanic and terrestrial
CO2 flux on atmospheric CO2 is well captured by MPI-ESM. The
higher variability over the northern Hemisphere based on observations
may be explained by the anthropogenic emissions not present in MPI-
ESM esm-piControl. The other hotspots of variability from the CO2

inversion also appear in the model.
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abstract

State-of-the art climate prediction systems include a carbon compo-
nent recently. While physical state variables are assimilated in recon-
struction simulations, land and ocean biogeochemical state variables
adjust to the state acquired through this assimilation indirectly instead
of being assimilated themselves. In the absence of comprehensive bio-
geochemical reanalysis products, such approach is pragmatic. Here
we evaluate a potential advantage of having perfect carbon cycle ob-
servational products to be used for direct carbon cycle reconstruction.

Within an idealized perfect-model framework, we reconstruct a 50-
year target period from a control simulation. We nudge variables from
this target onto arbitrary initial conditions, mimicking an assimilation
simulation generating initial conditions for hindcast experiments of
prediction systems. Interested in the ability to reconstruct global at-
mospheric CO2, we focus on the global carbon cycle reconstruction
performance and predictive skill.

We find that indirect carbon cycle reconstruction through physi-
cal fields reproduces the target variations on a global and regional
scale much better than a resampling threshold. While reproducing
the large scale variations, nudging introduces systematic regional bi-
ases in the physical state variables, on which biogeochemical cycles
react very sensitively. Initial conditions in the oceanic carbon cycle
are sufficiently good reconstructed indirectly. Direct reconstruction
slightly improves initial conditions. Indirect reconstruction of global
terrestrial carbon cycle initial conditions are also sufficiently good
reconstructed by reconstructing the physics only. Direct reconstruction
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improves air-land CO2 flux negligibly. Atmospheric CO2 is very well
indirectly reconstructed. Direct reconstruction of the marine and terres-
trial carbon cycles slightly improve reconstruction while establishing
persistent biases at the same time. We find improvements in global
carbon cycle predictive skill from direct reconstruction compared to
indirect reconstruction. After correcting for mean bias, indirect and
direct reconstruction both predict the target similarly well and only
moderately worse than perfect initialization after the first lead year.

Our perfect-model study shows that indirect carbon cycle recon-
struction yields satisfying initial conditions for global CO2 flux and
atmospheric CO2. Direct carbon cycle reconstruction adds little im-
provements in the global carbon cycle, because imperfect reconstruc-
tion of the physical climate state impedes better biogeochemical re-
construction. These minor improvements in initial conditions yield
little improvement in initialized perfect-model predictive skill. We
label these minor improvements due to direct carbon cycle recon-
struction trivial, as mean bias reduction yields similar improvements.
As reconstruction biases in real-world prediction systems are likely
stronger, our results add confidence to the current practice of indirect
reconstruction in carbon cycle prediction systems.
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iii.1 introduction

Predicting variations in weather and climate yields numerous benefits
for economic, social, and environmental decision-making [Merryfield
et al., 2020]. Carbon cycle prediction systems have the ability of predict-
ing the near-term evolution of CO2 fluxes [Li et al., 2019; Lovenduski et
al., 2019b; Lovenduski et al., 2019a] and atmospheric CO2 [Spring and
Ilyina, 2020; Ilyina et al., 2021] to constrain the large internal variability
of the global carbon cycle [Spring et al., 2020]. Predictions require a
forecasting model and initial conditions representing observations.
However, due to sparse and temporally incomplete records, there is
currently no global biogeochemical reanalysis product to initialize
Earth System Models (ESMs). Therefore, direct initialization of the
carbon cycle is not possible. State-of-the-art carbon prediction systems
initialize the carbon cycle indirectly, by nudging the physical climate,
assuming that carbon cycle follows the initialized climate indirectly.
Whereas a direct initialization of the carbon cycle is not feasible due
to the lack of data. However, this indirect carbon cycle initialization
leaves the initial conditions of the carbon cycle unconstrained.

Here, we test how well indirect and direct carbon cycle reconstruc-
tions in an ESM initialize the carbon cycle in a perfect-model frame-
work [Table 2 presents an overview which variables are reconstructed
in which simulation]. We use the term reconstruction to describe meth-
ods of initialization of climate and the carbon cycle. Reconstructions
aim to reproduce the evolution of the target, like a reanalysis product,
in the ESM. Furthermore, we use the term "carbon cycle" to describe
the processes exchanging carbon across the surface boundary between
land, atmosphere and ocean, represented here by the air-land and
air-sea CO2 fluxes. We ask the following research questions:

• How well can initial conditions be reconstructed in the global
carbon cycle?

• Can initialization of the carbon cycle improve predictive skill of
the carbon cycle?

In this perfect-model framework, we have perfect knowledge about
the ground truth and a perfect model. Literally speaking, this asks
how well could perfect observations be reconstructed in an ESM.

Originally, data assimilation is used to align the model state to an
observations-based state, generally a reanalysis product [Schneider
and Griffies, 1999; Meehl et al., 2009]. However, here we use the
same data assimilation technique to assess how well variables can be
reconstructed in an idealized setup.

Thus, reconstruction in a climate model interferes with the freely
running climate model yielding gains and drawbacks: The main ad-
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vantage of climate reconstruction is that the reconstruction forces the
climate model to follow the target [Jeuken et al., 1996; Meehl et al.,
2009]. The main handicap associated with reconstruction is that the
mass conservation is violated and that the model dynamics and feed-
backs are obstructed [Zhu and Kumar, 2018]. Consequently, circulation
fields may change, and this has severe consequences for the biogeo-
chemical tracer distributions in the ocean and carbon pools on land,
because they are so sensitive and adapted to the previous climate
state [Toggweiler et al., 1989]. Therefore, reconstructions often lead
to biases. A partial solution can be bias removal by post-processing,
which is feasible if the bias does not change the climate or ecosystem
regime all together. Another solution is omitting nudging in sensitive
biasing regions such as the tropics, as demonstrated by [Park et al.,
2018]. Even if biogeochemical reanalysis products were available, it is
unclear whether the reconstruction benefits correct these handicaps.

The lack of reanalysis products available for the reconstruction of
carbon cycle initial conditions is often assumed as a weakness of
the current predictions systems [Li et al., 2016; Séférian et al., 2018;
Lovenduski et al., 2019a; Lovenduski et al., 2019b; Li et al., 2019; Ilyina
et al., 2021], but to our knowledge an elaborate assessment is missing.
The literature presents two alternative approaches to test the quality
of reconstructed initial conditions:

In a perfect-model study, Servonnat et al. [2015] nudge only ocean
surface temperature, salinity and sea-ice and assess how well this
surface reconstruction penetrates into the subsurface ocean physics,
without addressing biogeochemistry in their analysis. This target
reconstruction approach allows us to directly assess the quality of
reconstructed initial conditions, which is useful and practical to know
for forecaster issuing a forecast.

In a recent study Fransner et al. [2020] ask whether the initial con-
ditions of ocean biogeochemistry or the initial conditions of ocean
physics have a stronger influence on multi-year predictions using
perfect-model twin perturbed initial conditions experiments. In the
first set of hindcasts, they take identical initial conditions of the ocean
physics to ensure identical climate evolution but completely differ-
ent states from different members for ocean biogeochemistry. In the
other set of hindcasts, they slightly perturb the ocean physics to force
members on differing climate evolutions while keeping the ocean
biogeochemistry initial conditions identical. They find that ocean bio-
geochemistry initial conditions did not affect predictive skill later than
the first lead year. Their approach asks the more theoretical question
whether initial conditions of ocean biogeochemistry matter compared
to ocean physics initial conditions.

We go beyond previous studies by using the methodology of Ser-
vonnat et al. [2015], with the aim to understand the quality of initial
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conditions reconstruction. In contrast to Fransner et al. [2020], we aim
to answer the questions about quality of initial conditions produced by
different reanalysis approaches. We expand the scope by addressing
the global carbon cycle, including the land, ocean and atmospheric
compartments and the interactive exchange of CO2 fluxes between
them. We then assess the influence of these previously reconstructed
carbon cycle initial conditions for initialized predictions of the natural
carbon sinks and atmospheric CO2. We focus on the global carbon
cycle, because the land and ocean carbon cycle control the internal
variability of atmospheric CO2 [Friedlingstein et al., 2020].

After explaining the approach of target reconstruction in section
III.2, we separate reconstruction and its implication on predictive skill
in two parts: We first evaluate physical reconstruction representing
indirect biogeochemical reconstruction in sections III.3.2.1, III.3.3.1 and
III.3.4.1 for spatial maps and global aggregated values. Furthermore,
we test the potential tracking performance increase for direct carbon
cycle reconstruction in sections III.3.2.2, III.3.3.2 and III.3.4.2. In part
two, we assess the impact of different reconstruction methods on initial
conditions predictive skill in section III.4. Finally, the main findings
and conclusions of this study are summarized in section III.5.

iii.2 methods

iii.2.1 Model Description

We use the Max Planck Institute ESM [Mauritsen et al., 2019, MPI-
ESM], which was also used in the Coupled Model Intercomparison
Project Phase 6 (CMIP6) framework [Eyring et al., 2016]. We run
the model MPI-ESM1-2-LR, the low resolution configuration with 63

spherical harmonics in the atmosphere and with a horizontal reso-
lution of about 1.8° on land, and about 1.5° in the ocean with daily
coupling of the compartments. The time steps of the atmosphere/land
and the ocean are 600 and 4320 s, respectively. We run the model
with prognostic atmospheric CO2 mixing ratio under pre-industrial
conditions (esm-piControl).

The marine biogeochemical cycle model HAMOCC [Ilyina et al.,
2013] is embedded in the ocean general circulation model MPIOM
[Jungclaus et al., 2013]. HAMOCC includes carbonate chemistry and
an extended NPZD-type cycle including nutrient-light-temperature
co-limitation and nitrogen-fixating cyanobacteria [Paulsen et al., 2017].
The land carbon cycle model JSBACH includes dynamic vegetation,
wildfires, soil carbon decomposition and storage [Schneck et al., 2013].
The atmospheric general circulation model ECHAM6 transports the
three-dimensional atmospheric prognostic atmospheric CO2 tracer
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with a flux-form semi-Lagrangian scheme [Lin and Rood, 1996; Stevens
et al., 2013].

iii.2.2 Perfect-Model Target Reconstruction Framework

Simulations in a perfect-model target reconstruction framework aim
to reproduce the target climate evolution [Griffies and Bryan, 1997;
Servonnat et al., 2015], but are started from an independent initial
state. Therefore the initial conditions of the reconstruction simulation
and the the target to not match. But both target and initial conditions
share the same climatology. We choose a 50-year target period from
model years 1850 to 1900 and an uncorrelated restart file from model
year 2005 from the pre-industrial control simulation (esm-piControl)
submitted for the MPI-ESM1-2-LR model for C4MIP [Jones et al., 2016]
in CMIP6 [Eyring et al., 2016].

In order to assess how many variables are needed to sufficiently
reconstruct climate and biogeochemical cycles, we first perform recon-
struction simulations only reconstructing physical state variables in
atmosphere and/or ocean [Table 2]. In these simulations, the carbon
cycle is only indirectly affected by the reconstruction of physical vari-
ables. In further simulations, we test how much carbon cycle states
improve with respect to the target when carbon cycle state variables
are reconstructed directly.

iii.2.3 Reconstruction Simulations

Newtonian or Haney [1974] relaxation, which is often called nudging,
is a simple four-dimensional assimilation technique that dynamically
reconstructs variables in an ESM. A non-physical relaxation term with
relaxation coefficient R (units 1/s) is added to the prognostic equation
to drag the model variable X, which is subject to model forcing Fm,
towards its target Xt:

δX
δt

= Fm(X) + R(Xt − X) (7)

For reconstruction of the dynamics of the ocean, we reconstruct
three-dimensional temperature and salinity as well as sea-ice concen-
tration and thickness [Table 2]. We label this reconstruction indirect
[Table 2] from the carbon cycle’s perspective, as the carbon cycle is not
reconstructed directly, but instead indirectly follows the reconstructed
physical climate. Observational ocean data is often not available at
each model time step. Therefore, we interpolate (without adjustments
preserving the temporal mean) monthly model target output to daily
frequency as done in previous studies [Pohlmann et al., 2009]. We
choose a 60-day ocean relaxation time (converted to units 1/s) like
Servonnat et al. [2015] in their perfect-model target reconstruction
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Reconstructed variables for each realm (nudging relaxation time-scale)

Atmosphere:
Ocean
(60d):

Sea-ice
(60d):

Ocean carbon
(60d):

Land:

Reconstruction
simulations

temperature
(24h)

temperature concentration DIC all JSBACH

surface pressure
(24h)

salinity thickness alkalinity
(reset
restart

vorticity (6h) files Jan 1
st)

divergence (48h)

indirectATM only x

indirectOCEAN only x

indirect x x x

direct x x x x x

Table 2: Overview over different reconstruction simulations. The first column
title marks the labels of the experiments as used in the manuscript.
The reconstruction strength as relaxation time-scales is noted in
brackets, where h denotes hours and d days. The land carbon cycle
is not dynamically reconstructed at each time step, but by a hard
reset of restart files each January 1

st from the target run. These land
restart files include carbon and nitrogen pools, soil physics (moisture,
temperature, snow cover), vegetation cover (plant functional types
distribution), and canopy (leaf area index).

study. Reconstructions towards observations usually choose a stronger
nudging strength [Pohlmann et al., 2009; Keenlyside et al., 2008].

We reconstruct the physics of the atmosphere by nudging tem-
perature, vorticity, divergence and the logarithm of surface pressure
[Pohlmann et al., 2019]. The high-frequency 6 hourly output serves as
the target and is nudged into all 63 spherical harmonics. Temperature
and the logarithm of surface pressure are nudged with a relaxation
timescale of 24 hours, vorticity is nudged with a relaxation timescale
of 6 hours, and divergence is nudged with a relaxation timescale of
48 hours. Relaxation coefficients are converted to units 1/s and are
taken from previously used setups [Rast et al., 2012; Pohlmann et al.,
2019; Li et al., 2019]. Nudging the atmosphere with these quite short
relaxation times is similar to the forced simulations, such as the Model
Intercomparison Projects for ocean (OMIP) [Griffies et al., 2016; Orr et
al., 2017], land (LMIP) [van den Hurk et al., 2016] and Global Carbon
Budget [Friedlingstein et al., 2019] simulations, where (atmospheric)
external boundary forcing drives the carbon cycle.

For reconstructions of oceanic carbon cycle, we use the same nudg-
ing approach and strength as for physical ocean reconstruction but
on different variables. To reconstruct the components of the carbonate
system, we nudge three-dimensional dissolved inorganic carbon (DIC)
and total alkalinity [Table 2].

Unfortunately, there is no nudging module available in the land
surface model JSBACH. Here we choose to manually reset the initial
conditions every January 1

st to the target values instead of the dy-
namic reconstruction at each time step. We thereby reconstruct land



III.2 methods 91

biogeochemistry and land surface physics such as soil moisture by
resetting all restart variables every year. In supplementary information
section III.SI.3, we provide several sensitivity analyses by resetting
land only every two or five years and resetting the ocean every year
in the same way.

iii.2.4 Evaluating Tracking Performance

We compare the target with reconstructions in the various metrics
showing different attributes of tracking performance: bias, anomaly
correlation coefficient and root-mean-square-error. The non-physical
relaxation terms in the prognostic equations can disturb the dynamics
in the ESM and introduce biases defined as the differences in the
reconstruction compared to the freely running target over time. The
anomaly correlation coefficient skill score (ACC) shows the linear
association between the reconstruction and the target over time and
therefore measures synchronous evolution while ignoring bias. The
root-mean-square-error (RMSE) takes into account bias and measures
the second-order euclidian distance between reconstruction and target
simulation over time. Under the assumption that persistent biases can
be removed by post-processing, we also assess RMSE after having
the mean monthly bias removed. For equations please consult the
supplementary [sec. III.SI.1]. We calculate tracking performance over
running 10-year chunks to capture the variability within tracking
performance and reduce the influence of drifts over time.

How do we evaluate that a reconstruction is good enough? While
good enough is a subjective judgement, we resample the target simula-
tion along the time dimension with a block length of ten years to check
the metric of two randomly compared 10-year chunks. We consider
the 95

th quantile threshold for ACC and 5
th quantile threshold for the

remaining distance-based metrics as a baseline of internal variability to
be a good enough reconstruction [Efron and Tibshirani, 1993], which
we will refer to as "resampling threshold" in the following.

iii.2.5 Perfect-Model Predictive Skill Framework

In the second part of this study, we perform initialized perfect-model
experiments [as in Spring and Ilyina, 2020]. The simulations in the
perfect-model framework are started from the indirect and direct re-
constructions as well the target representing perfect initial conditions.
We take 19 initialization states chosen every second January 1

st be-
tween 1860 and 1896, after allowing a 10 years adjustment phase after
reconstructions were started. From each of those states from different
reconstruction simulations, we fork five ensemble members and simu-
late three lead years. The perfectly initialized ensembles are started
from the target initial conditions without any previous reconstruc-
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tion simulation. We generate ensemble members by perturbing the
stratospheric horizontal diffusion by a factor of 1.0000{member} in
the first year. This member generating approach provokes only tiny
initial perturbations to the climate system as the ocean and land initial
conditions remain identical.

iii.2.6 Predictive Skill Quantification

We compute predictive skill as the root-mean-square-error (RMSE)
between the ensemble mean and the target as verification [Wilks,
2006; Jolliffe and Stephenson, 2011] [sec. III.SI.1]. Please find addi-
tional details about the predictive skill metrics and the uninitialized
bootstrapping in Spring and Ilyina [2020]. Acknowledging that our
reconstruction simulation developed biases and that biases are com-
monly reduced by post-processing in predictability research, we also
apply a simple lead-time dependent mean bias reduction to the initial-
ized ensembles to show whether skill improvements go beyond what
a simple post-processing could deliver. For each initialization in turns,
we first calculate the mean bias for all but that given initialization and
then remove that mean bias from the given initialization. This implies
using information about future initializations as in bias-reduced hind-
casts [Marotzke et al., 2016]. We also evaluate predictive skill from
a perfectly initialized ensemble, which are started from the perfect
initial conditions taken from target simulation, whereas the ensembles
from reconstructed initial conditions are biased with respect to the
target [Fig. III.5]. This initialized predictive skill is also compared with
uninitialized ensembles randomly generated from the target simula-
tion representing ensembles without common initialization and hence
no memory. This uninitialized reference skill is used in predictability
research community to assign whether the skill increase stems from
initialization.

iii.3 reconstruction in an earth-system-model

As the carbon cycle is sensitive to the climate evolution, we first assess
how well the physical climate is reconstructed. Therefore, we first
evaluate the physical climate state after reconstruction in subsection
III.3.1]. Afterwards, we assess how these different reconstructions of
physical climate indirectly reconstruct the ocean, land and atmospheric
carbon cycle in subsections III.3.2.1, III.3.3.1 and III.3.4.1]. The direct
reconstructions are shown in subsections III.3.2.2, III.3.3.2 and III.3.4.2].

iii.3.1 Reconstruction of Physical Climate

Reconstructing the ocean and/or the atmosphere systematically dis-
turbs the freely evolving model, which leads to annual mean biases
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with respect to the original target. We identify atmospheric circulation
represented by winds and resulting precipitation and temperature
to be descriptive for the impact of circulation on the carbon cycle.
The gray stippling in figure III.1 shows where this reconstruction
bias is larger than the randomly resampling 5

th percentile mean ab-
solute error threshold and therefore labeling the reconstruction not
significantly better than internal variability.

All reconstructions yield identical results for winds and precipi-
tation tracking performance. Reconstructing the ocean and/or the
atmosphere introduces biases of up to 0.6 m/s in zonal and 0.9 m/s
in meridional 10-m wind speed, depicting a southward shift of the
Intertropical Convergence Zone (ITCZ). This bias results in a sig-
nificant weakening of the equator-ward latitudinal winds, whereas
extra-tropical latitudinal winds intensify [Fig. III.1a]. The intensifica-
tion and equator-ward shift of the easterly trade winds and weak-
ening of the southern hemisphere westerlies are both not significant
[Fig. III.1b]. Precipitation is heavily impacted by these biases in at-
mospheric transport across many regions of the globe. Precipitation
significantly shifts southward at the equator with changes of more
than 1 mm/day and increases in Western Canada, Western Russia
and Southern Australia [Fig. III.1c]. Unlike the previously described
variables, the 2m-temperature bias depends on whether the ocean is
reconstructed or not. Just reconstructing the ocean temperature and
salinity (indirectOCEAN only) leads to small, negative and significant
biases in the tropical Atlantic and West Pacific. Also Northern and
Southern Africa as well as the Amazon and China are subject to a
small cold bias, whereas Saharan Africa and Southeast Asia gets sub-
stantially warmer. The polar regions cool significantly [Fig. III.1d].
Only reconstructing the atmosphere (indirectATM only) leads to a warm
bias nearly across the all oceans, but less cold bias over Northern and
Southern Africa as well as China [Fig. III.1e]. Combining atmosphere
and ocean reconstruction (indirect) reduces the overall temperature
bias, especially over the oceans [Fig. III.1f].

While the above explained biases are liabilities of reconstructions,
the linear association measured by the Anomaly Correlation Coef-
ficient (ACC) benefits from reconstruction. Reconstruction recreates
climate variability of the target [Fig. III.1g-l]. The running 10-year
correlation between the target and the reconstruction in atmospheric
variables is in most grid cells above 0.4 and significantly better than
the randomly resampling threshold. Reconstruction over the oceans
is more successful in the tropics than in the extra-tropics, where the
Northern and Southern Hemisphere mid-latitude westerlies have low,
but still significant correlation. Generally, the atmosphere above the
ocean is better reconstructed than above land, showing the stabilizing
effect of an internally consistent ocean reconstruction on the atmo-
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sphere [Fig. III.1g-l]. The Southern Hemisphere tropical convergence
of winds is well reconstructed, but the meridional winds in central
Canada and tropical Africa are not significantly reconstructed [Fig.
III.1g]. Also zonal winds across North America, Southern Africa and
Siberia have low correlation with the target, but the tropical zonal
winds are very well reconstructed [Fig. III.1h]. Precipitation from the
central Atlantic over central Africa is worse reconstructed than the
resampling threshold, and the extratropical westerlies have low corre-
lation with the target [Fig. III.1i]. Temperature is well reconstructed in
the tropical oceans [Fig. III.1j-l]. Reconstructing both atmosphere and
ocean (indirect) improves 2m temperature correlation better than only
reconstructing a single realm. The indirect carbon cycle reconstruction
is significantly better than the resampling threshold except in central
Africa, where the ITCZ shift changes the climate regime [Fig. III.1l].

This physical bias due to reconstruction, especially in the tropics,
can be explained by the sensitivity of atmosphere-ocean coupling to
perturbation induced by nudging [Milinski et al., 2016]. The recon-
struction of ocean and atmospheric variables is perfectly aligned with
the model climatology into that same model. Hence, the reconstruc-
tion error does not arise from inconsistent observations, but from the
perturbed interaction of atmospheric and oceanic dynamics. While
reconstructing an increasing set of variables shows that nudging can
be an efficient way to reconstruct variability [Jeuken et al., 1996], this
reconstruction is biasing the climate state in the tropics at the same
time [also explained in Zhu and Kumar, 2018].

Nudging atmospheric and ocean dynamics including sea-ice all
at once (indirect reconstruction), as is often done in state-of-the-art
carbon cycle prediction systems, brings large-scale improvements over
random resampling and atmosphere-only (indirectATM only) reconstruc-
tion, but strong regional biases remain [Fig. III.1].

iii.3.2 Reconstruction of the Oceanic Carbon Cycle

iii.3.2.1 Indirect Reconstruction of the Oceanic Carbon Cycle

How do these regional physical biases affect the reconstruction of
oceanic carbon cycle? In order to assess the tracking performance in
the indirect reconstruction of the oceanic carbon cycle, we focus on
air-sea CO2 flux and surface oceanic pCO2 as the state variable of
the ocean carbon sink, which is the oceanic driver of air-sea CO2 flux
[Lovenduski et al., 2019a].

Reconstructing only the atmospheric dynamics (indirectATM only)
leads to strong positive biases across large parts of the global ocean,
which can be reduced by also reconstructing oceanic temperature and
salinity (indirect) [Fig. III.2a,b,d,e]. The weakening of the Southern
hemisphere westerly winds decreases the magnitude of air-sea CO2
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flux, but more importantly reduces the Southern hemisphere overturn-
ing circulation and upwelling of carbon-rich waters, which leads to
increased Southern Ocean carbon uptake [Fig. III.2b,e]. The intensifi-
cation of easterly trade winds [Fig. III.1b] strengthens upwelling and
therefore higher pCO2 in the tropical Atlantic [Fig. III.2b] [Lefèvre
et al., 2013]. The bias pattern of air-sea CO2 flux is dominated by the
bias of pCO2 [Lovenduski et al., 2019a] [Fig. III.2b,e].

The variations in the oceanic carbon cycle, described by the correla-
tion coefficient, are better reconstructed than the resampling threshold.
Indirect reconstruction of oceanic and atmospheric dynamics greatly
improves tracking performance over atmosphere-only indirectATM only
reconstruction. The additional reconstruction of the physical ocean
[Fig. III.1e,f] enables largely a correlation above 0.7 [Fig. III.3b,e]. Only
the carbon cycle in the tropical oceans remain difficult to reconstruct
due to the strong biases in atmospheric circulation [Fig. III.1a,b,c].
Note that the land and atmospheric carbon bias due to indirect recon-
struction are discussed in subfigures III.2g-o in sections III.3.3.1 and
III.3.4.1).

iii.3.2.2 Direct Reconstruction of the Oceanic Carbon Cycle

Next, we compare the previously shown indirect carbon cycle recon-
struction with direct carbon cycle reconstruction by nudging dissolved
inorganic carbon (DIC) and alkalinity (ALK) towards the target.

While direct oceanic carbon cycle reconstruction reduces the magni-
tudes of the bias across the ocean, biases are still evident [Fig. III.2c,f].
These biases are caused by the physical biases, which the dynamical
oceanic carbon cycle model is sensitive to. Hence, the biased ocean
physics inhibits additional improvements in tracking performance
from direct ocean carbon reconstruction.

Direct oceanic carbon cycle reconstruction improves the already high
correlations across the oceans [Fig. III.3c,f]. The resampling threshold
is surpassed nearly everywhere. Only coastal areas, especially in the
Eastern tropical Atlantic with strong wind and precipitation biases,
have a correlation below 0.7.

Section III.3.2 shows how well indirect and direct reconstruction of
the ocean carbon cycle work overall. While the direct reconstruction
has slightly larger biases in air-sea CO2 flux, direct reconstruction also
brings higher correlation. Note that the land and atmospheric carbon
bias due to direct reconstruction are discussed in subfigures III.2g-o
in sections III.3.3.2 and III.3.4.2).
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iii.3.3 Reconstruction of the Land Carbon Cycle

iii.3.3.1 Indirect Reconstruction of Land Carbon Cycle

How do these regional physical biases affect the reconstruction of
the land carbon cycle? In order to assess the tracking performance in
the best indirect reconstruction of the land carbon cycle, we focus on
the state variable cVeg, which represents carbon storage in vegetation
(leaves, stems, roots) and drives air-land CO2 flux and hence the land
carbon sink.

For the land carbon cycle, the reconstruction of the ocean tempera-
ture and salinity did not matter, when atmospheric temperature was
also reconstructed [Figs. III.2, III.3]. Indirect reconstruction leads to
biases compared to the target in carbon storage, and in particular cVeg
[Fig. III.2g,h], as the land carbon cycle is very sensitive to changes in
atmospheric circulation, which are strongest in the tropics due to the
ITCZ shift. In the Amazon and Southern Africa, the air-land CO2 bias
increases, most likely caused by the strong positive precipitation bias
in these regions [Fig. III.1c; III.2j,k]. Conversely, the carbon sink in
Southeast Asia and central Africa has a carbon release bias due to less
precipitation and a warm bias [Fig. III.2j,k].

The reconstruction correlations in the land carbon cycle are much
lower than for the oceanic carbon cycle. cVeg is well reconstructed in
the extratropics, but the biases in the tropics result in correlations with
the target lower than the resampling threshold [Fig. III.3g,h]. Air-land
CO2 shows the same patterns with lower correlations, which are below
the resampling threshold in the tropics [Fig. III.3j,k].

iii.3.3.2 Direct Reconstruction of the Land Carbon Cycle

Direct reconstruction of the land carbon cycle, which is here performed
by resetting all restart files of the land carbon sub-model to the target
every Jan 1

st, greatly enhances tracking performance of cVeg by simu-
lation design. A sensitivity analysis for less frequent resetting can be
found in the supplementary information [section III.SI.3].

This direct resetting reconstructs cVeg much better than the resam-
pling threshold in the extra-tropics. However, the physical climate
biases during the course of a year even introduce cVeg biases stronger
than the resampling threshold in the tropics [Fig. III.2i]. Also, the
biases in the air-land CO2 flux are not improved [Fig. III.2l], which
indicates that this hard reset of restart files introduces a shock to the
dynamical land model.

On the other hand, correlations in cVeg and air-land CO2 flux in-
creased to above 0.5 everywhere expect in the tropics, where the ITCZ
shift changes the climate regime [Fig. III.3i,l].
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Section III.3.3 shows the direct land carbon cycle reconstruction
yields stronger correlation improvements than ocean direct carbon
cycle reconstruction, because the indirect reconstruction of the ocean
was already quite good. Direct reconstruction reduces biases in land
carbon cycle state variables, but the resulting air-land CO2 flux biases
becomes worse.

iii.3.4 Reconstruction of the Global Carbon Cycle and Atmospheric CO2

Tracking performance for prognostic atmospheric CO2 integrates the
air-sea and air-land CO2 fluxes over time [Spring and Ilyina, 2020;
Spring et al., 2020]. As atmospheric CO2 mixes fast across the globe, we
first examine globally aggregated quantities driving globally averaged
atmospheric CO2 [Fig. III.4].

iii.3.4.1 Indirect Reconstruction of the Oceanic and Land Carbon Cycle

We first examine the indirect reconstruction represented by the green
error bars in figure III.5.

The indirect reconstruction has a negative bias in global pCO2

in the annual mean [Fig. III.4a], which is negative in boreal winter
and positive in boreal summer, indicating that the reconstruction
intensifies the seasonal cycle [Fig. III.SI.5]. This bias is mostly larger
than the resampling mean absolute error threshold, which resembles
the temporal standard deviation [Fig. III.5a]. The global oceanic CO2

flux is low biased but within the resampling threshold [Figs. III.4b,
III.5d].

On the other hand, the variations of the global oceanic carbon cycle
measured by ACC are well reconstructed surpassing the resampling
threshold [Fig. III.5b,e].

The accuracy or distance measured by root mean squared error
(RMSE) has strong seasonal errors especially in boreal winter up to
1.3 ppm. When biases are persistent, they can be reduced by a bias re-
duction procedure, which is often done when applying climate model
output to a real-world application. After applying a simple mean bias
reduction, RMSE is well below the resampling threshold at below 0.5
ppm [Fig. III.5c,f].

The indirect reconstruction also leads to biases in the land carbon
cycle [Fig. III.4c,d]. Vegetation carbon pools have a positive bias much
larger than the resampling threshold [Fig. III.4c]. The bias of global
air-land CO2 flux only surpasses the resampling threshold in August,
September and November, reducing the global seasonal cycle by 25%
[Figs. III.4d, III.5j].

Global cVeg has a 0.5 correlation with the target, which is lower than
the resampling 0.7 correlation. The 10-year running correlation also
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with a large range of ±0.3. Global air-land CO2 is well reconstructed
surpassing the resampling threshold [Fig. III.5h,k].

Without bias reduction, accuracy measured by RMSE is worse than
the resampling cVeg threshold. After bias reduction, cVeg accuracy is
still slightly worse than the threshold, but accuracy improved from 5

PgC to 1 PgC. Global air-land CO2 flux accuracy is below the threshold
until June and up to 0.3 PgC/month. But again when applying the
bias mean reduction, tracking accuracy is always below the resampling
threshold at 0.1 PgC/month [Fig. III.5i,l].

Global atmospheric CO2 has larger variations in reconstruction skill,
depending on which 10-year chunk is used to calculate the metric.
And the skill has a nearly constant level throughout the year. The
mean bias is close to zero [Figs. III.4e, III.5m]. Correlation with the
target is above 0.7 and slightly above the resampling threshold [Fig.
III.5n]. Accuracy is at 0.7 ppm slightly above the threshold, but below
the threshold at 0.5 ppm after mean bias reduction [Fig. III.5o].

Understanding the tracking performance of the ocean and land
carbon cycle, we can now evaluate the spatial distribution of glob-
ally averaged atmospheric CO2. Reconstructing only the atmosphere
warmed the globe and also increased atmospheric CO2 globally [Figs.
III.1k, III.2m]. Reconstructing additionally also the ocean keeps the
temperature stable, but introduces a less than 1 ppm low bias across
the Southern Hemisphere, reflecting the higher uptake of the Southern
Ocean carbon sink and the Southern Hemisphere land carbon sink [Fig.
III.2e,k,n]. The variations in atmospheric CO2 are well reconstructed
with correlation coefficients above 0.6 in the Southern Hemisphere,
but across the Northern extra-tropics and the land regions with strong
physics biases correlation is at 0.5 below the resampling threshold [Fig.
III.2m,n].

iii.3.4.2 Direct Reconstruction of the Oceanic and Land Carbon Cycle

Now, we assess the potential improvements in the global carbon cycle
due to direct reconstruction of the global carbon cycle variables shown
in orange in figure III.5.

The global ocean carbon cycle improves after direct DIC and al-
kalinity reconstruction. Monthly biases remain but are now within
the resampling threshold [Fig. III.5a]. Correlation improves from 0.8
to above 0.9 in surface pCO2. Air-sea CO2 does not improve, but
only because of correlations above 0.9 for the indirect reconstruction
were already very high. Correlation for boreal winter is above 0.95,
indicating that initial conditions in winter are well reconstructable to
initialize forecasts with for the oceanic carbon sink [Fig. III.5b]. Direct
reconstruction improves pCO2 accuracy to 0.3 ppm [Fig. III.5c].

All results for the direct reconstruction of the land carbon cycle
must be understood in the context of the method chosen for the direct
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reconstruction: Because we reset the restart files in Jan 1
st to the target,

the metrics are near to perfect in January by design. However, then
the biogeochemistry is not modified directly for twelve months and
only follows the physical climate reconstruction indirectly, so biases
triggered by physical biases unaligned with the reset land biogeo-
chemistry pools quickly build up and may approach the metric of the
indirect reconstruction. Likewise, there is no bias in global cVeg in
January by design. The bias increases with the physical biases, until
surpassing the resampling threshold in August increasing until the
end of the year [Fig. III.5g]. Global air-land CO2 flux has even stronger
bias than the indirect reconstruction [Fig. III.5j]. Correlation in the
global cVeg is near perfect in January by design and slowly decreases
to 0.8 in December while still better than the resampling threshold
[Fig. III.5h]. Global air-land CO2 flux maintains a 0.1 higher corre-
lation than indirect reconstruction [Fig. III.5k]. Direct reconstruction
improves global cVeg accuracy. Accuracy is better than the resampling
threshold after mean bias reduction. Direct reconstruction has worse
CO2 flux accuracy than the indirect, but after mean bias reduction the
accuracy is slightly better [Fig. III.5i,l].

The global CO2 bias in the direct reconstruction increase to +1.8
ppm [Fig. III.5m], but correlation increases from 0.7 to 0.9 [Fig. III.5n].
The direct reconstruction has worse accuracy than the indirect due to
the new bias, but after mean bias reduction the accuracy is slightly
better at 0.4 ppm [Fig. III.5o].

How does direct carbon cycle reconstruction affect tracking per-
formance in prognostic atmospheric CO2? Already the time series
indicate, that there is a 1-2 ppm atmospheric CO2 positive bias in the
direct reconstruction [Fig. III.4e]. This bias is very homogeneous over
the oceans [Fig. III.2o]. However, correlation strongly increased to 0.9
above the oceans and above 0.7 on land except for central Africa with
its persistent biases, where the reconstruction is not better than the
resampling threshold.

Section III.3.4 shows that atmospheric CO2 follows the reconstructed
land and ocean carbon cycle integrating their respective fluxes over
time. The direct carbon cycle reconstruction introduces a large bias in
the atmospheric CO2 distribution that the indirect reconstruction did
not suffer from, even after mean bias reduction [Fig. III.SI.3]. Globally
averaged atmospheric CO2 after direct reconstruction had a better
accuracy tracking performance after the mean bias reduction, showing
how global aggregation can balance regional biases. The direct land
and ocean carbon cycle reconstructions track target much better than
the indirect reconstruction, when measured by correlation.

Hence, in large, this first part showed how direct carbon cycle
reconstruction improves linear association between reconstruction
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and target (measured by ACC), but often increases biases degrading
accuracy (measured by RMSE). Only after bias reduction, accuracy
improves with respect to the indirect carbon cycle reconstruction.
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Figure III.1: Spatial distribution of the bias (construction - target) (a-f) and
anomaly correlation coefficient (ACC) (g-l) of different indi-
rect carbon cycle reconstructions relative to the target over
10-year running windows of annual means [see III.SI.1]. The
reconstruction metrics for 2m temperature are shown for the
indirectATM only (d,j), indirectOCEAN only (e,k) and indirect recon-
struction (f,l). Because of identical reconstruction skill for all
indirect methods, only one indirect reconstruction is shown for
other variables, zonal westward 10m wind (a,g), and meridional
northward 10m wind (b,h), and precipitation (c,i). Gray stippling
shows where the metric exceeds the 5

th (for a-f) or 95
th (for g-

l) percentile threshold from random target block resampling,
i.e. the reconstruction is not significantly better than internal
variability.
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Figure III.2: Spatial distribution of the bias between the target and differ-
ent indirect carbon cycle reconstruction methods over 10-year
running windows of annual means [see III.SI.1]. Columns show
the different carbon cycle reconstruction methods [see Table2].
Rows show the different variables: the ocean carbon cycle is
represented by (a-c) the partial pressure of surface CO2 in the
ocean (pCO2) and (d-f) surface air-sea CO2 flux (negative values
indicate carbon uptake by the ocean); the land carbon cycle is
represented by (g-i) the vegetation carbon pools and (j-l) air-land
surface CO2 flux (negative values indicate carbon uptake by
land); and the atmospheric carbon is represented by (m-o) the
atmospheric CO2 mixing ratio (XCO2). Gray stippling shows
where the bias exceeds the 5

th percentile mean absolute error
threshold from random target block resampling, i.e. the recon-
struction is not significantly better than internal variability.
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Figure III.3: As Fig. III.2 but for the anomaly correlation coefficient (ACC).
Gray stippling shows where the ACC is lower than the 95

th per-
centile ACC threshold from random target block resampling, i.e.
the reconstruction is not significantly better than a resampling
internal variability threshold.
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Figure III.4: Evolution in global annual mean of (a) surface ocean pCO2

(b), air-sea surface CO2 flux (negative values indicate carbon
uptake by the ocean) (c), vegetation carbon pools (g-i), air-land
surface CO2 flux (negative values indicate carbon uptake by
land) (d) and atmospheric CO2 mixing ratio (e). The target (gray)
is quite well tracked by the indirect (green) and direct (orange)
carbon cycle reconstruction. The solid line shows the different
reconstruction simulations, the dashed lines show the initialized
ensembles started from the different reconstructions.
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Figure III.5: 10-year running mean reconstruction skill per month in bias
(left), anomaly correlation coefficient (ACC, middle) and root-
mean-square-error (RMSE, right) for global aggregation of car-
bon cycle variables: (a-c) surface oceanic partial pressure of CO2,
(d-f) air-sea CO2 flux (negative values indicate carbon uptake
by the ocean), (g-i) vegetation carbon pools, (j-l) air-land CO2

flux (negative values indicate carbon uptake by land) and (m-o)
mixing ratio of atmospheric CO2. Whiskers show the 5

th and
5

th percentile of the running skill over time. Colors show differ-
ent reconstruction methods: indirect (green) and direct (orange).
Gray stars indicate perfect skill. Gray dots mark 95

th percentile
for ACC and 5

th percentile for the remaining distance-based met-
rics of random reconstruction skill block-bootstrapped from the
target control simulation as an unskillful reference skill. Crosses
show reconstruction skill of annual mean timeseries. Thin lines
show monthly RMSE skill after a mean bias reduction.
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iii.4 impact of reconstruction on global carbon cycle

predictive skill

The second part of the paper assesses how predictive skill improves
due to direct initialization of global carbon cycle variables. Specifically,
we verify the RMSE between the five ensemble members initialized
from the indirect and direct reconstructions across all initializations
based on raw and lead-time dependent bias corrected timeseries [Figs.
III.4, III.6].

Figure III.6: Predictive skill measured by root-mean-square-error (RMSE) be-
tween the initialized ensemble mean and the target as a function
of lead year for different initialization setups: perfect indicating
no reconstruction and hence perfect initial conditions to predict
the target (gray), indirect (green) and direct (orange). Columns
show global variables: for the ocean carbon cycle (a) oceanic
surface pCO2, (b) air-sea CO2 flux; for the land carbon cycle (c)
total land carbon pools, (d) air-land CO2 flux and in the atmo-
sphere (e) atmospheric CO2 mixing ratio. (f-j) show RMSE-based
predictive skill as (a-e) after mean bias reduction. Initialized
ensembles are resampled with replacement (N=500) along the
initialization dimension to account for initialization sampling un-
certainty [see Spring and Ilyina, 2020], where errorbars show the
resampled initialization skill uncertainty (±1σ). Uninitialized en-
sembles, shown at lead 0, are resampled from the target control
simulation and show the reference skill without initialization.

iii.4.1 Oceanic Carbon Cycle

The RMSE between the initialized ensembles and the target simula-
tions in annual globally-averaged pCO2 continuously increases from
lead year one to lead year three as expected. While perfectly and indi-
rectly initialized ensembles stay below the resampling uninitialized
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threshold for the first two lead years indicating that global pCO2 is
predictable due to initialization [Fig. III.6a], the direct initialization
has a larger error due to the offsets in global atmospheric CO2, which
pCO2 tries to equilibrate to [Fig. III.4e]. Therefore this persistent bias
causes lead year three to be not predictable. A simple mean bias reduc-
tion resolves this issue making all three lead years predictable. Direct
initialization only beats indirect initialization for lead year one with
RMSE of 0.35±0.05 ppm versus 0.45±0.05 ppm [Fig. III.6f].

Global air-sea CO2 flux is predictable for three years in all initial-
ization methods, which is one year longer than in Spring and Ilyina,
2020, possibly because here we use more and more equally distributed
initialization dates. Direct initialization is advantageous over the indi-
rect initialization, because the initial lead offset is smaller (0.14±0.01

PgC/year vs 0.18±0.02 PgC/year) [Fig. III.6b]. The simple mean bias
reduction improves skill of the non-perfect initializations to identical
magnitudes [Fig. III.6g].

iii.4.2 Land Carbon Cycle

Indirect initialization makes cVeg not predictable. The physical re-
construction biases drive larger errors in lead year one than in later
lead years, also to a lesser extent for the direct reconstruction where
some biases are corrected. But both reconstructed initialized ensem-
bles show decreasing distances towards the target, whereas increasing
distances are expected for vanishing predictive skill as in the perfectly
initialized ensembles [Fig. III.6c]. Mean bias reduction eliminates the
differences between direct and perfect reconstruction making both
predictable unlike the indirect reconstruction [Fig. III.6h].

Global air-land CO2 flux is predictable for three years, again one
year longer than found in Spring and Ilyina, 2020. Both reconstructed
initializations start with a higher error of 1.1±0.2 PgC/year in lead
year one compared to perfect initialized 0.7±0.1 PgC/year [Fig. III.6d].
Mean bias reduction brings non-perfect initializations within the error
bars of the perfect initialization after lead year one [Fig. III.6i].

iii.4.3 Atmospheric CO2

Perfect and indirect initialization atmospheric CO2 predict the target
for three years as found in Spring and Ilyina, 2020. While the perfect
initialization error grows continuously from zero, the indirect initial-
ization error stays nearly constant at 0.7±0.1 ppm, but the error stays
below the direct initialization error, which suffers from the bias in
the direct reconstruction simulation [Fig. III.6e]. Mean bias reduction
improves RMSE, making direct initialization better but still within the
margins of the indirect initialization. After lead year one, indirect and
direct initializations are similar to perfect-initialization predictive skill
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at 0.7 ppm [Fig. III.6j].

These initialized predictive skill results show that indirectly initial-
ized ensembles predict the target quite reasonably. Direct initialization
suffers strong shocks in some variables, when reconstruction is started
and stopped, but these shocks can be partly reduced by a mean bias
reduction. The improvements of direct reconstruction over indirect
reconstruction in the global carbon cycle predictive skill after bias
reduction are not significant [Fig. III.6f-j].
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iii.5 summary and conclusions

In this study, we assess how well the global carbon cycle is recon-
structed in an ESM and how well a ground truth target simulation can
be predicted by these initializations.

The main limitation of land carbon cycle reconstruction potential is
the hard reset of restart files which is fundamentally different to the
dynamical nudging applied for ocean and atmospheric physics. Our
study represents a first attempt to quantify whether initial conditions
reconstruction in land carbon cycle is indeed needed for address-
ing predictive skill of the global carbon sinks and atmospheric CO2

concentration. For a real-world application, our direct land carbon
reconstruction method should not be used. In practice satellite prod-
ucts of carbon cycle variables could be assimilated into the model
periodically or at each time step. However, just strong interference
with the model will likely result in strong drifts, especially in de-
pendent variables. For useful real-world applications of land carbon
cycle assimilation, sequential [Evensen, 1994; Balmaseda et al., 2007;
Zhang et al., 2007] or variational data assimilation techniques [Han
et al., 2004]. But still the problem of data availability for the reforecast
period remains. Haney reconstruction is the simplest approach to
data assimilation allowing little flexibility to the model. Many cen-
ters are now transitioning towards the ensemble Kalman filter data
assimilation which allows more variability [Park et al., 2019; Brune
and Baehr, 2020]. Applying such techniques to the carbon cycle may
lead to better reconstructions. A final limitation of the method is that
we use a model to reconstruct to itself. Therefore we do not have
any structural uncertainty other than the reconstruction method itself
and no processes missing in our framework. When reconstructing the
real world, our model lacks processes and resolution contributing to
structural uncertainty.

We find that reconstruction, which is an interference into the freely
evolving model, leads to biases in physical climate. Because of its sen-
sitivity to physical climate, the global carbon cycle is heavily biased
itself by these physical biases. In ESMs, first the atmosphere, then the
ocean and only then the carbon cycle is equilibrated and tuned for pre-
industrial control conditions. Once reconstruction slightly modifies the
mean state in the physical climate, the sensitive carbon cycle deviates
from the near-equilibrium state. A previous study reported biases
after reconstruction [Zhu and Kumar, 2018]. Yet, to our knowledge, we
present the first attempt at reconstructing in a perfect-model frame-
work, where no biases due to climatology differences are expectable.
Zhu and Kumar, 2018 also mention that reconstruction ability likely
depends on the model and application area, hence there seems to be
no out-of-the-box solution for all ESMs.
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We furthermore find that the commonly used indirect reconstruction
of carbon cycle, in which only climate physics are reconstructed and
the carbon cycle follows indirectly, tracks the target reasonably well. A
resampling threshold corresponding to internal variability is surpassed
across large parts of the globe. Only the areas with strong physical and
consequently carbon cycle biases miss that benchmark occasionally.
For the ocean carbon cycle, the reconstruction of the physical ocean
fields is critical to reconstruct carbon cycle initial conditions, which
explain why current state-of-the-art carbon cycle prediction systems
have skill despite not initializing the ocean carbon cycle with ocean
carbon cycle observations [Séférian et al., 2014; Park et al., 2018; Li
et al., 2019; Lovenduski et al., 2019a].

Direct reconstruction of ocean and land carbon cycle improves bias,
association and accuracy on a grid cell level, but aggregated on the
global scale, direct reconstruction does not improve over the indirect
reconstruction significantly. Also after a mean bias reduction, which
is a common post-processing technique applied to model output for
real-word use, accuracy measured in RMSE after direct reconstruction
is only slightly better, often still overlapping with indirect reconstruc-
tion. Because the advantage of direct reconstruction can similarly be
achieved by a simple mean bias reduction, we label these direct re-
construction improvements trivial with respect to the indirect method
on the global scale. More advanced data assimilation methods may
yield better reconstruction skill for the carbon cycle [Han et al., 2004;
Balmaseda et al., 2007; Zhang et al., 2007].

When the success of atmospheric CO2 reconstruction is evaluated,
caution is needed. Reconstruction of the ocean and land carbon sink
can easily introduce offsets from the target, because reconstruction
violates conservation of mass by creating or erasing carbon. This can
easily lead to offsets in the sinks which quickly accumulate in atmo-
spheric CO2. If CO2 reconstruction is the focus, i.e. in reconstructing
the transient climate from CO2 emission, and offsets appear, adjust-
ments of atmospheric CO2 might be needed to correct for these offsets.
However, we find that these offset biases are only of the order of 1-2
ppm in a perfect-model framework, which is small compared to the
range of carbon feedbacks seen in atmospheric CO2 in transient simu-
lations. Hence, these offsets due to the restart files are not in our focus.
Rather, equilibrated land and ocean carbon sinks with reconstructed
climate determine realistic reconstructed atmospheric CO2.

In the second part, we find that predictive skill after indirect initial-
ization is similarly good as after direct initialization. This means that
oceanic carbon cycle initial conditions are much less important that
physical ocean initial conditions for oceanic carbon cycle predictions,
which confirms the findings of [Fransner et al., 2020]. Reconstructed
initialized predictive skill is close to perfectly initialized predictive
skill after mean bias reduction, especially after lead year one.
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Because the improved global predictive skill after direct reconstruc-
tion can similarly be achieved by a simple mean bias reduction and
predictive skill after both reconstructions mostly overlaps, we label
these direct reconstruction predictive skill improvements trivial, with
respect to the indirect method on the global scale. This result is simi-
lar to Fransner et al. [2020], who find that ocean carbon cycle initial
conditions matter much less than physical ocean initial conditions for
annual carbon cycle predictions.

We conclude that the indirect carbon cycle reconstruction serves its
purpose of reconstructing variation in the global carbon cycle. How-
ever, our study is designed and conducted in an idealized framework.
When transferring our results into assimilation of real-world obser-
vations and its implications on predictability, structural uncertainties
(model resolution in space and time) and missing ecosystem processes
need to additionally be dealt with. Future studies, especially those
aiming to address regional marine ecosystems, could consider a wider
range of assimilation techniques and data breadth. Furthermore, more
advanced data assimilation techniques [Evensen, 1994; Han et al., 2004;
Balmaseda et al., 2007; Zhang et al., 2007] should be explored. Re-
ducing the physical climate bias with its consequences for the carbon
cycle holds more potential for improvements in initial conditions and
predictive skill than direct carbon cycle initialization [Saito et al., 2011;
Lee and Biasutti, 2014; Hua et al., 2019].

Nevertheless, our results add confidence to the current practice of
indirect reconstruction in carbon cycle prediction systems [Ilyina et al.,
2021].
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iii.si supplementary information

iii.si.1 Metrics

iii.si.1.1 ACC

The anomaly correlation coefficient (ACC) assesses the synchronous
evolution over time of the forecast, here reconstruction x(t) and the ref-
erence, here target x̂(t), [Jolliffe and Stephenson, 2011] and is defined
as:

ACC(x(t), x̂(t)) =
cov(x(t), x̂(t))√

var(x(t)) · var(x̂(t))

=
1
T ∑T

t=1(x(t)− x(t))(x̂(t)− x̂(t))√
∑T

t=1(x(t)−x(t))2

T ·
√

∑T
t=1(x̂(t)−x̂(t))2

T

.
(8)

iii.si.1.2 RMSE

In the initial conditions reconstruction part, the root-mean-square-
error (RMSE) measures the second-order distance between forecast
x(t), here reconstruction x(t) and the reference, here target x̂(t), [Jol-
liffe and Stephenson, 2011] and is defined as:

RMSE(x(t), x̂(t)) =

√
∑T

T=1(x(t)− x̂(t))2

T
. (9)

As a predictability metric, the root-mean-square-error (RMSE) mea-
sures the second-order distance between forecast x(t) and the target
x̂(t) over lead time t [Jolliffe and Stephenson, 2011]. RMSE is cal-
culated over all initialisations N and every member M is used as a
forecast and verified against the target. RMSE is defined as:

RMSE(x(t), x̂(t)) =

√
∑N,M

i,j=1(xi,j(t)− x̂j(t))2

NM
. (10)

iii.si.1.3 Bias

We set the target as the ground truth. Therefore any deviation from the
reconstructions x(t) to the target x̂(t) is seen as a bias, analogous to
the bias between a model simulation (reconstruction) and observations
(ground truth).

bias(t) = x(t)− x̂(t) (11)

iii.si.1.4 Removing the Bias

After removing the mean bias from reconstruction x(t) and target x̂(t),
the RMSE is also calculated as debiased RMSE.

RMSEdebiased(t) = RMSE
(
(x(t)− x(t), x̂(t)− x̂(t)

)
(12)
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iii.si.1.5 Running Metric

We calculate the mean tracking performance (mtp) over time for all
metrics as a running mean over s = 10 years. This reflects that re-
constructions are supposed to reconstruct the given climate states
within months to a couple of years and the metric should not be prone
to long-term trends that are not captured by the reconstruction. We
ignore the first c = 10 years (out of tmax = 48 years) of reconstruction,
where the model experiences an initial shock after adjusting to the
new reconstructed climate [Kröger et al., 2017].

tpm(metric) =
1

tmax − s− c

tmax−s

∑
t=c

metric(x(t=t..t+s), x̂(t=t..t+s)) (13)

iii.si.1.6 Resampled Threshold

To get an estimate of random tracking performance due to internal
variability, i.e. how well one 10-year chunk tracks just another random
10-year chunk, we randomly resample 10-year chunks from the target
simulation and apply the same tracking metrics. As a baseline skill
from this random resampling in the figures, we take the 95% threshold
for ACC and the 95% for the remaining distance-based metrics to
ensure that the tracking performance from a reconstruction simulation
is only worse compared to one out of 20 randomly resampled 10-year
chunks.
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iii.si.2 Reconstruction RMSE Maps

Figure III.SI.1: As Fig. III.1 but for Root-mean-square-error (RMSE) (a-f)
and for RMSE after bias reduction (g-l).
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Figure III.SI.2: As Fig. III.2 but for the Root-mean-square-error (RMSE).
Gray stippling shows where the RMSE is worse than the 5

th

percentile RMSE threshold from random target block resam-
pling, i. e. the reconstruction is not statistically significantly
compared to internal variability.
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Figure III.SI.3: As Fig. III.SI.2 but for Root-mean-square-error (RMSE) af-
ter bias reduction.
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iii.si.3 Sensitivity Analysis for Different Reconstruction Timestep in ...

iii.si.3.1 ... on Land Carbon Cycle

We perform sensitivity reconstructions of the land restart file reset-
ting to understand how sensitive this reconstruction method to the
frequency of resetting. We performed additional simulations resetting
the land model on Jan. 1

st every second or every fifth year [orange
triangles in fig. III.SI.4].

Global cVeg starts by definition with perfect skill in Jan after a reset.
When resetting only every second year, the mean January tracking
performance is already decreased, and decreases further. The negative
correlations for five-year resetting shows the shock to the system if
not immediately balanced by further resetting in the every (second)
year case.

The global air-land CO2 flux correlation degrades for less frequent
resetting towards the indirect performance, but bias and accuracy
improve.

Global atmospheric CO2 aggregates these results and is also sensi-
tive to biases developing in both sinks. Here, less frequent resetting of
the land carbon cycle reduces the bias and therefore accuracy.

The tracking accuracy is of similar magnitude after mean bias re-
duction.

iii.si.3.2 ... on Ocean Carbon Cycle

We perform the same kind of restart file resetting reconstruction
to the ocean model [blue line in fig. III.SI.4]. The motivation here
is to see whether a resetting of the ocean carbon cycle also yields
perfect accuracy (RMSE) skill for January. But the ocean carbon cycle
is sensitive to the physical climate and hence the direct ocean carbon
cycle resetting accuracy degrades compared to the indirect tracking
bias and accuracy, only correlation increases [Fig. III.SI.4a-f]. Contrary
to resetting restart files in the land model, initial conditions accuracy
measured by RMSE does not approach perfect skill of 0, because the
physical climate did not experience this hard reset but is nudged
dynamically.

In general, this hard reconstruction also seems to work for the ocean
carbon cycle, because the tracking performances are not very different
from the indirect method [Fig. III.SI.4a-f].

The tracking accuracy is of similar magnitude after mean bias re-
duction.
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Figure III.SI.4: As Fig. III.5 but for sensitivity simulations of the restart file
resetting reconstruction. In all simulations the physical cli-
mate is nudged as in indirect [Tab. 2]. directLR1ON describes
land resetting every year and ocean nudging and is the indi-
rect simulation. directLR2ON describes land resetting every
second year and ocean nudging. directLR5ON describes land
resetting every fifth year and ocean nudging. directLxOR1

describes no land reconstruction and ocean setting every year.
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iii.si.4 Seasonality

In reference for figure III.5 to better understand reconstruction skill in
context of target seasonality:

Figure III.SI.5: Seasonality of the target simulation for global aggregated
carbon cycle variables.

iii.si.5 Reproducibility

Forecast verification was performed with the python package climpred

[Brady and Spring, 2021] [https://github.com/pangeo-data/climpred],
which was co-developed with Riley X. Brady from University of Col-
orado, Boulder. Scripts and data to reproduce this analysis are archived
in http://hdl.handle.net/21.11116/0000-0007-A697-3.

https://github.com/pangeo-data/climpred
 http://hdl.handle.net/21.11116/0000-0007-A697-3
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iv.1 summary

Predicting extreme events and variations in weather and climate pro-
vides crucial information for economic, social, and environmental
decision-making [Merryfield et al., 2020]. However, quantifying pre-
diction skill for multi-dimensional geospatial model output is com-
putationally expensive and a difficult coding challenge. The large
datasets (order gigabytes to terabytes) require parallel and out-of-
memory computing to be analyzed efficiently. Further, aligning the
many forecast initializations with differing observational products
is a straight-forward, but exhausting and error-prone exercise for
researchers.

To simplify and standardize forecast verification across scales from
hourly weather to decadal climate forecasts, we built climpred: a
community-driven python package for computationally efficient and
methodologically consistent verification of ensemble prediction mod-
els. The code base is maintained through open-source development.
It leverages xarray [Hoyer and Hamman, 2017] to anticipate core
prediction ensemble dimensions (ensemble member, initialization date
and lead time) and dask [Rocklin, 2015; Dask Development Team,
2016] to perform out-of-memory and parallelized computations on
large datasets.

climpred aims to offer a comprehensive set of analysis tools for
assessing the quality of dynamical forecasts relative to verification
products (e.g., observations, reanalysis products, control simulations).
The package includes a suite of deterministic and probabilistic verifi-
cation metrics that are constantly expanded by the community and
are generally organized in our companion package, xskillscore.
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iv.2 statement of need

While other climate verification packages exist (e.g., s2dverification

[Manubens et al., 2018] written in r and murcss [Illing et al., 2014]
written with python-based cdo-bindings [Schulzweida, 2019]), clim-
pred is unique for many reasons. (1) It spans broad temporal scales of
prediction, supporting the weather, subseasonal-to-seasonal (S2S), and
seasonal-to-decadal (S2D) communities. (2) climpred supports dask

[Dask Development Team, 2016; Rocklin, 2015] and thus works across
all computational scales, from personal laptops to supercomputers
(HPC). This leads to verification of a global 5° x 5° resolution climate
prediction in a few seconds, compared to the 8 minutes required
by murcss. This allows for a truly interactive analysis experience.
However, note that benchmarking is inherently biased and murcss is
valuable for their rigorous replication of decadal climate prediction
metrics. (3) climpred is highly modular and supports the research
process from end-to-end, from loading in model output, to interactive
pre-processing and analysis, to visualization. (4) climpred is part of
the wider scientific python community, pangeo [Eynard-Bontemps et
al., 2019]. A wide adoption of climpred could standardize prediction
model evaluation and make verification reproducible [Irving, 2015].
(5) The climpred documentation serves as a repository of unified
analysis methods through jupyter notebook [Kluyver et al., 2016]
examples and collects references and literature.

iv.3 prediction simulation types

Weather and climate modeling institutions typically run so-called
“hindcasts", where dynamical models are retrospectively initialized
from many past observed climate states [Meehl et al., 2009]. Initializa-
tions are then slightly perturbed to generate an ensemble of forecasts
that diverge solely due to their sensitive dependence on initial condi-
tions [Lorenz, 1963]. Hindcasts are evaluated by using some statisti-
cal metric to score their performance against historical observations.
“Skill" is established by comparing these results to the performance
of some “reference" forecast, e.g. a persistence forecast [Jolliffe and
Stephenson, 2011]. The main assumption is that the skill established
relative to the past will propagate to forecasts of the future.

A more idealized approach is the so-called “perfect-model" frame-
work, which is ideal for investigating processes leading to potentially
exploitable predictability [Griffies and Bryan, 1997; Bushuk et al., 2018;
Séférian et al., 2018; Spring and Ilyina, 2020]. Ensemble members
are spun off an individual model (by slightly perturbing its state) to
predict its own evolution. This avoids initialization shocks [Kröger
et al., 2017], since the framework is self-contained. However, it cannot
predict the real world. The perfect-model setup rather estimates the
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theoretical upper limit timescale after which the value of dynamical
initialization is lost due to chaos in the Earth system, assuming that
the model perfectly replicates the dynamics of the real world. Skill
quantification is accomplished by considering one ensemble member
as the verification data and the remaining members as the forecasts
[Griffies and Bryan, 1997].

iv.4 climpred classes and object-oriented verification

climpred supports both prediction system formats, offering Hind-
castEnsemble and PerfectModelEnsemble objects. HindcastEnsemble is in-
stantiated with an initialized hindcast ensemble dataset and requires
an observational dataset against which to verify. PerfectModelEnsemble
is instantiated with an initialized perfect-model ensemble dataset and
also accepts a control dataset against which to evaluate forecasts. Both
objects can also track an uninitialized dataset, which represents a his-
torical simulation that evolves solely due to random internal climate
variability or can be used to isolate the influence of external forcing
[e.g. Kay et al., 2015].

Assessing skill for PredictionEnsemble objects (the parent class to
HindcastEnsemble and PerfectModelEnsemble) is standardized into a one-
liner [Listing 1]:

Listing 1: Example for predictive skill verification in climpred.

PredictionEnsemble.verify(

# Score forecast using the Anomaly Correlation Coefficient.

metric="acc",
# Compare the ensemble mean to observations.

comparison="e2o",
# Keep the same set of initializations at each lead time.

alignment="same_inits",
# Reduce the verification over the initialization dimension.

dim=" ini t ",
# Score performance of a persistence forecast as well.

reference=" persistence ",
)

Each keyword argument allows flexibility from the user’s end—one
can select from a library of metrics, comparison types, alignment
strategies, dimensional reductions, and reference forecasts. The most
unique feature to climpred, however, is the ability for users to choose
the alignment strategy to pair initialization dates with verification
dates over numerous lead times. In other words, initialization dates
need to be converted to target forecast dates by shifting them using
the lead time coordinate. This is tedious, since one must remedy
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disparities in calendar types between the model and observations and
account for the time span of or gaps in observations relative to the
time span of the model.

There is seemingly no unified approach to how hindcast initial-
ization dates are aligned with observational dates in the academic
literature. The authors of climpred thus identified three techniques,
which can be selected by the user: (1) Maximize the degrees of free-
dom by selecting all initialization dates that verify with the available
observations at each lead. In turn, initializations and verification dates
are not held constant for each lead. (2) Use the identical set of initial-
izations that can verify over the given observational window at all
leads. However, the verification dates change at each lead. (3) Use the
identical verification window at each lead, while allowing the set of
initializations used at each lead to change. These strategies are shown
graphically and explained in more detail in the documentation. Note
that climpred offers extensive analysis functionality in addition to
forecast verification, such as spatio-temporal smoothing [Goddard
et al., 2013], bias removal [Boer et al., 2016], significance testing [God-
dard et al., 2013; Boer et al., 2016; DelSole and Tippett, 2016], and a
graphics library.

iv.5 use in academic literature

climpred has been used to drive analysis in three academic papers
so far. Brady et al. [2020] used the HindcastEnsemble class to high-
light multi-year predictability of ocean acidification in the California
Current; Spring and Ilyina [2020] used the PerfectModelEnsemble class
to highlight predictability horizons in the global carbon cycle; and
Krumhardt et al. [2020] used the HindcastEnsemble class to illuminate
multi-year predictability in marine Net Primary Productivity.
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