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Abstract

This paper examines the decision problem of a homeowner who maximizes her expected profit

from the sale of her property when market conditions are uncertain. Using a large dataset of real

estate transactions in Pennsylvania between 2011 and 2014, I verify several stylized facts about

the housing market. I develop a dynamic search model of the home-selling problem in which the

homeowner learns about demand in a Bayesian way. I estimate the model and find that learning,

especially the downward adjustment of the beliefs of sellers facing low demand, explains some of the

key features of the housing data, such as the decreasing list price overtime and time on the market.

By comparing with a perfect information benchmark, I derive an unexpected result: the value of

information is not always positive. Indeed, an imperfectly informed seller facing low demand can

obtain a better outcome than her perfectly informed counterpart thanks to a delusively stronger

bargaining position.

JEL classification: D83, R2, R3.

Keywords: housing, pricing, imperfect information, Bayesian learning.

∗This work was supported by the Agence Nationale de la Recherche - ECHOPPE project, grant ANR-17-CE41-0008-01.
I gratefully acknowledge my advisor Thierry Magnac for his regular guidance and feedback. I also thank Robert Miller,
John Rust, Michel Le Breton and the participants of the TSE Econometrics and Applied Microeconomics workshops and
the CMU Micro Lunch for their comments, plus the participants of the IAAE and ESEM 2018 conferences.
†Email: christophe.bruneel@gmail.com

1

christophe.bruneel@gmail.com


1 Introduction

Real estate transactions involve large financial amounts ($206k, on average, in Pennsylvania between

2011 and 2014) and take time (109 days). A lengthy or negative outcome of the home-selling process can

make a substantial difference to the seller’s well-being, and making a successful sale can be challenging.

Contrary to many other markets, the homeowner does not post a take-it or leave-it price. Instead, she

posts a list price which impacts transaction outcomes less directly (Han and Strange, 2016). Indeed,

even though the list price influences negotiations between sellers and buyers, the transaction frequently

occurs at a different sale price (85% of the time in my sample).

Of utmost importance to the seller is that a higher list price should yield a higher sale price but at the

expense of a longer time on the market (Miller and Sklarz, 1987). This trade-off is complex, especially

because the seller has imperfect information about the demand (Salant, 1991). Indeed, houses are

highly differentiated assets and the seller is often unable to observe more than a few recent transactions

of similar properties nearby. This lack of information impacts the seller’s welfare (Anenberg, 2016).

In this article, I investigate the home-selling decision of imperfectly informed sellers. I build a

single-agent dynamic search model of the housing market in which a rational seller is uncertain and

learns about demand in a Bayesian way. I estimate the model using an original dataset of real estate

transactions in Pennsylvania between 2011 and 2014. The estimated model yields insights on the opti-

mal list pricing strategies and how information frictions affect them. In particular, I estimate the cost

of uncertainty for the seller.

The literature establishes several stylized facts about the home-selling problem, and my model aims

to explain three of them. First, we observe that transactions are occurring at a price mostly below,

but also sometimes above or exactly equal to, the list price (Merlo and Ortalo-Magne, 2004). Second,

the housing market is illiquid. Third, the list prices are duration-dependent and adjust downwards

throughout the listing process, even when market conditions seem stable (Salant, 1991).

My main contribution is to make sense of the two first facts by modeling the number of buyers on

the market explicitly, independently from their valuations for the house.

First, there can be several buyers on the market. This allows me to explain the relationship between

the list and the sale prices. Indeed, as explained earlier, the sale price is determined after bargaining

between the seller and the buyer(s). In these negotiations, the list price serves as a ceiling: the seller

commits to accept any offer equal to or above it (Horowitz, 1992; Chen and Rosenthal, 1996a,b). Thus,

if there is only one buyer for the house, he will never make an offer greater than the list price. Sales

will occur either below, or exactly at, the list price (Arnold, 1999), but never above it. I endogenize
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such above list prices by introducing competition between several buyers, as in Han and Strange (2016).

More precisely, I derive the solution to a sequential bargaining game à la Rubinstein (1982) with several

buyers and one seller who commits to accepting offers higher than her list price. In this setup, the seller

can obtain a price above her list price. Indeed, when she bargains with the highest valuation buyer,

the second-highest buyer’s valuation serves as an outside option for the seller (Shaked and Sutton,

1984). This second-highest valuation can be above the list price, which sometimes allows the seller to

obtain a price above the ceiling set by the list price. Through this mechanism, modeling the number

of buyers allows us to endogenize sales above the list price in order to gain a better understanding of

the phenomenon. This is especially relevant since the proportion of sales greater than the list price has

been non-negligible in recent years: from only 4% in the mid-1990s (Han and Strange, 2014) to 15% in

the US during the 2000s boom, 10% after the bust (Han and Strange, 2016) and 11.42% in my sample.

Second, modeling the number of buyers in addition to their valuations helps to understand the

market’s illiquidity and how much of it is caused by the list price. Indeed, the list price serves as a

signal to attract buyers. The higher this price, the more buyers expect to pay and the less likely they

are to visit the house and bargain to buy it. If we observe no transaction, it is either because there are

no buyers on the market, or because the list price is too high and repels buyers. My specification of the

demand helps to disentangle the ‘list price induced illiquidity’ (low buyers valuations) from demand

illiquidity (no buyer on the market). For example, even with an extremely low list price (such that

even low valuation individuals would be willing to buy), the seller is not guaranteed to sell her home,

as there may simply be no buyer on the market during this period. My model explains this kind of

illiquid demand situation observed in the data. Moreover, using data on time on the market, list and

sale prices, I can identify the valuation process independently from the market thinness.

The third key fact is that the list price is non-stationary. To model this, I assume that uncertain

sellers dynamically learn about the demand. The gradual acquisition of information about an uncertain

demand can explain why a list price varies, even if market conditions are unchanged (Anenberg, 2016).

More precisely, the seller is uncertain about the liquidity process (the number of buyers on the market)

and progressively learns about it by observing visits. Recall that a buyer only visits the house if his

valuation is high enough with respect to the signal given by the list price. Thus, by only observing

visits, the seller does not necessarily observe all of the buyers on the market. If she sets a low list price

all buyers will visit and she directly observes the number of buyers on the market. Otherwise, by setting

a higher list price she may select some buyers, and learn less about the true number of buyers on the

market. In this original application of Bayesian learning, the decision variable (list price) influences

the informational flow (by influencing the odds of observable entries) and thus the learning pace. In
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addition to the usual trade-off between high price and short time on the market, the list price also

embeds a learning externality here: the lower the list price, the faster you learn.

Estimating the parameters of such a model in which optimal strategies are time-dependent (non-

stationary) requires detailed microdata. I use an original dataset of approximately 100,000 complete

listing histories (dated initial list price and revisions up to the final sale) of sold (with the help of a

realtor) single-family homes in Pennsylvania between 2011 and 2014. I collected the data from the

American real estate website, zillow.com. I study the home-selling problem in this new context (Penn-

sylvania 2011-2014) and observe similar stylized facts as the one described previously (see Knight, 2002;

Merlo and Ortalo-Magne, 2004; Han and Strange, 2014; Anenberg, 2016).

In terms of results, my learning model (seven structural parameters only) closely matches the data.

I find that progressive learning (in particular the downward adjustment of the initial rational beliefs of

sellers facing low demand) is key to explaining the observed decline of the list price. The model also

reproduces the distribution of time spent on market.

Finally, this paper contributes to the literature on the role of overconfidence (Odean, 1998; Piazzesi

and Schneider, 2009). I estimate the cost of uncertainty or value of information. To do so, I simulate

the model and compare it to a perfect information benchmark. Counterintuitively, I find that being

misinformed is not necessarily bad for the seller, at least for sellers facing low demand who are thus

initially ‘overconfident’. For them, the value of additional information may even be negative, as an

overconfident seller may obtain a further discounted sale price than her perfectly informed counterpart.

Indeed, by being wrongfully overconfident, she overestimates her reservation value. She has a genuinely

stronger position in the bargaining game, resulting in a higher sale price. However, she also refuses

offers more easily and sets higher list prices, implying fewer visits, leading to a longer time spent on the

market because of the overestimation. There is an ‘overconfidence area’, where the gain in sale price

offsets the overly long time spent on the market, resulting in a better outcome. Thus, sellers facing

low demand can be better off by not knowing this and starting with imperfect information rather than

being perfectly informed.

On the other hand, sellers facing high demand suffer twice from the imperfect information: they do

not pick the list price that maximizes their true outcome, and they have a weaker bargaining position.
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Related Literature: The role of the asking price has been extensively studied in the literature

(see Han and Strange, 2015, for a complete survey).

First, the literature establishes some key stylized facts about the relationship between sale and list

prices. On average, the ratio of sale to list price is around 96% (Case and Shiller, 1988, 2003; Merlo and

Ortalo-Magne, 2004; Han and Strange, 2014). Sales frequently occur below the asking price: generally

close to 75% of the recent sales in the US (Carrillo, 2013; Anenberg, 2016). Sometimes transactions

occur at a price greater than the list price. As mentioned, this was very uncommon in the 1990s:

around 4% of all transactions in England (Merlo and Ortalo-Magne, 2004) and in the US (Han and

Strange, 2014). However, this has recently become more frequent (15% during the 2000s boom, and is

currently around 10%).

There also exists a mass point of sales (from 10% to 25%) occurring exactly at the list price. To

explain this, most housing search models treat the list price as a binding ceiling (Horowitz, 1992; Chen

and Rosenthal, 1996a,b).

Yet, as already mentioned, these models cannot explain why some sales occur above the list price. Han

and Strange (2016) fill the gap by modeling a bargaining search model between one seller and several

buyers. As in my model, competition can generate prices above the list price. In fact, their bargaining

rule is a particular distinction of this study: I allow for any valuations (for the seller and buyers) while

they specify a discrete distribution with only two types (high and low valuations buyers). They picked

this bargaining rule based on common sense to fit the data. I go further and show theoretically that it

is the solution to a sequential bargaining problem à la Rubinstein (1982).

The impact of the list price on time on the market has also been studied. A lower list price in-

creases the probability of visits and sale of the house (Salant, 1991; Horowitz, 1992; Carrillo, 2012).

Similarly, within a listing process, a downward adjustment of the list price increases the probability of

sale (de Wit and van der Klaauw, 2013). Using unique survey data about a buyer’s search behavior,

Han and Strange (2016) show that the list price directs the buyer in his search.

In addition, sellers of atypical houses are more likely to spend a longer time on the market (Haurin,

1988). This is consistent with the imperfect information story developed in my paper. Indeed, sellers of

atypical houses observe fewer past transactions of houses similar to theirs, thus, they are less informed

about the demand they face than their neighbors are. This may explain the difference in behavior: as

shown in reduced form evidence by Anenberg (2016), information frictions impact the seller’s decision.

Fewer studies have focused on the dynamics of list prices. In order to address this, it is necessary

to build a model with some time-dependence. Only two recent papers have done this, to date: Merlo
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et al. (2015) and Anenberg (2016).

Merlo et al. (2015) focus on dynamics, with their main objective to explain list price stickiness:

77.3% of the sales occur without any list price adjustment, and 20.8% with only one adjustment. They

show that an extremely small menu cost can generate the observed stickiness. Because it is already well

explained in their paper, I abstract from price stickiness in my model. To make sense of the optimal

decline in list price, they estimate a model with a rich time-dependent arrival probability function.

Overall, they fit their data very closely at the expense of a heavily parametrized model, while I get a

decent fit using only seven structural parameters by introducing learning and imperfect information in

the model.

Anenberg (2016) is the closest paper to mine. He builds a home-selling model with imperfect infor-

mation and learning. He formulates and estimates a model in which the seller is uncertain about the

buyer’s valuation for her property. However, she has a prior about the mean of the valuations distri-

bution. In this context, as in my work, the gradual acquisition of information by the seller can explain

the time-varying list price choices (which declines, but also rarely increases, for example). Because of

information frictions, a short-run aggregate price may take a longer time to adjust.

The main contrast with this paper is that I model the number of buyers explicitly, and not only their

valuations for the house. This allows the study of some aspects of the home-selling problems, which

were not the focus of Anenberg’s paper. First, I can give a micro-foundation to the bargaining side

of the problem. I endogenously generate sales above the list prices, while models with only valuations

cannot. Anenberg (2016) generates them with an exogenous probability, for instance. Given the im-

portant share of sales above the list price (more than 10% of sales in the US after 2010), being able

to endogenize and explain them is crucial: even more so because of their pro-cyclicality (Liu et al.,

2014). Moreover, my micro-founded bargaining rule also allows me to derive the paradoxical result that

uncertainty can be beneficial to the seller. Finally, using data on list prices, sale prices and time on

the market, I can separately identify low valuations (list-price induced illiquidity) from illiquidity (no

buyer).

This paper proceeds as follows. Section 2 describes the data. Section 3 develops a dynamic micro-

search model of the home-selling problem in which sellers learn. Section 4 details the estimation

methods and Section 5 presents the estimation results. Section 6 uses the estimated model to analyze

the value of information. I conclude the paper in Section 7.
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2 Data

2.1 Source

My data contain transaction records of properties sold between August 2011 and July 2014 in Pennsyl-

vania, gathered from the real estate platform, zillow.com. The website is one of the leading online real

estate marketplace sites. It is a real estate listing aggregator which gathers listings from real estate

agents, in partnership with MLS services and from private national companies (Century 21, Coldwell

Banker and Sotheby’s, for example). Consequently, this is a collection of some of the most exhaustive

data about real estate transactions in Pennsylvania.

I focus on the sales of single-family homes for which there is a complete history record of the transaction

available. For each of these sales, the data include the usual property attributes (square footage, lot

size, number of beds, number of baths, year when the house was built, etc.). For approximately 33% of

all transactions, a complete record of the last transaction history is available. As displayed in Figure 1,

this history contains all of the seller’s decisions: the initial list price, its eventual adjustments through

the sale process, potential intermediary listing removals, and the final sale price.

Figure 1: Example of transaction history record

This property was sold after five months on market in 2013, after
four list price adjustments. It was finally sold at a price of $328, 000,
slightly below the final list price of $329, 900.

In order to study list price dynamics and time on the market, I focus only on transactions for which

the history is available. It yields a standard selection bias. Indeed, the detailed history is available

for properties of better quality, resulting in a significantly higher sale price than the complete pool
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of transactions on average. However, this selection bias is present in most data used in the reference

literature, which are obtained from real estate agencies. In theory, zillow.com (hereafter, Zillow) allows

homeowners to list their house on their own (‘for sale by owner’). Unfortunately, these listings represent

less than 1% of the observations. As a consequence, these data cannot be used to understand the seller’s

choice to resort (or not) to using a real estate agent (as modeled by Salant (1991)), and I focus only on

transactions in which a real estate agent has intervened (as in Merlo et al. (2015) or Anenberg (2016)).

Zillow’s data exhibit two main flaws. First, the data are right-censored: I only observe transactions

which ended up in a success (sale). I do not observe properties that are still on the market or were

withdrawn by the sellers (except if they were relisted and sold afterwards). In the transaction history of

sold properties, I know whether or not the seller previously decided to pull her property off the market

(before relisting it for the final sale that I observe). As I observe the complete sale history, I know the

price choices/adjustments made before a potential withdrawal. A total of 17% of the final sales have

been withdrawn from the market and relisted later before being sold.1 One could imagine that a seller

who has already tried to sell her property (and failed) differs from a ‘new’ seller. In particular, these

two types of sellers should differ in terms of the information they have about the market conditions (one

of the two having accumulated information about the market demand with her failed listing). In order

to avoid these differences, and since I do not focus on the withdrawal decision here, I drop properties

which were withdrawn at least once from my sample and focus only on ‘first time’ sellers.

Second, as in most of the real estate data, I lack information about buyers’ offers and the eventual

rejection of these offers by the sellers. Thus, I am forced to keep the buyer’s side of my model relatively

simple (contrary to Merlo et al. (2015) who have information about buyers’ bids and can use it to model

their bargaining process, for example).

After selecting the observations and cleaning the data, I have 97,451 real estate transactions in

Pennsylvania between August 2011 and July 2014. The data are described in the next section.

1This implies that the proportion of sellers who fail to sell their property is larger than 17% overall, since I only observe
a part of the withdrawals: the properties that were relisted and sold afterwards.
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2.2 Summary statistics

Table 1: Summary Statistics

Variable Mean Std. Dev. Min Median Max

Price and Timing:
Price 206512 122209 15000 179000 745000
Days before sale (from last listing) 109 108 0 76 1112
Days before sale (from first listing) 118 110 7 84 1141
Number of adjustment before sale 1.12 1.56 0 1 10
Proportion of listing with adjustments 0.5046
Ratio sale/Final list price 0.9546 0.0847 0.1316 0.9679 4.3337
Ratio sale/Initial list price 0.9121 0.1089 0.1316 0.9365 4.3337
Proportion of sale price > Final list price 0.1142
Proportion of sale price = Final list price 0.1495
————————–
Properties characteristics:
Living area (sqft) 1850 711 780 1682 4572
Number of beds 3.34 0.74 1 3 7
Number of baths 2.1 0.81 0.5 2 5.5
————————–
Number of transactions 97451
Number of census tracts 1806

Table 1 and Figure 2 present the summary statistics of my sample. The Pennsylvanian data exhibit

common stylized facts to those observed in the literature and which have been extensively detailed

by Merlo and Ortalo-Magne (2004). First, prices are sticky and often not adjusted (see Figure 2a).

However, in my sample they are not as ‘sticky’ as usual: only 50% of the sellers sell their properties

without changing their list price at least once. This percentage is generally closer to 75%: equal to

76.79% in Merlo and Ortalo-Magne (2004) in the UK for example, and also closer to 75% in another

Zillow data set of properties on the East Coast of the United States. I choose not to focus on the

stickiness and not to model it. It has already been well explained by Merlo et al. (2015) and including a

menu cost in my model would be too computationally costly (I would need to add the previous period

list price as a state variable) and provide no interesting new insight.

The average time on the market is about 16 weeks (Figure 2b). This is within the usual range: higher

than that observed by Merlo et al. (2015) in the UK (about 10 weeks), and slightly lower than that

observed by Anenberg (2016) in San Francisco and Los Angeles (about 18 weeks on market).

The list price is decreasing through the selling process: minus 8% between the first and the 30th

week (Figure 2c). Most sales happen below the list price (73.63%), many occur exactly at the list

price (14.95%) and the 11.42% remaining occur above it. This number of sales above the list price
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Figure 2: Descriptive Statistics
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is considerably greater than in the English data (3.9% in Merlo et al., 2015): this is why my model

emphasizes the endogenization of sales above the list price.

Unobserved private information: Figure 2d shows the distribution of sale prices normalized

either by the final list prices or by the predicted prices (hedonic values). The distribution of prices

normalized by the hedonic values of the property is less concentrated than the one normalized by

list prices. The list price contains extra private information about the property value, which is not

contained in the explanatory variables used in the hedonic estimation (number of bathrooms, number

of beds, living area, census tracts, etc.). I find that the list price is a better predictor of the sale price

than the hedonic fitted price, as is well known in the literature (Horowitz, 1992; Merlo et al., 2015). To
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soften the impact of this private information unobserved by the econometrician, I use mostly ‘relative

moments’ normalized by the list price when I estimate the model, for example, sale price distribution

relative to the final list price, or list price dynamics relative to initial list price.

3 Model

I model a discrete-time (with periods of two weeks), infinite horizon problem of a homeowner deciding

to sell her property with the objective of maximizing the sale price. As in Anenberg (2016), I introduce

uncertainty and Bayesian learning into this framework. To explain the previously described stylized

facts, one of the main features of the model is that the seller is imperfectly informed about the true

demand. More precisely, she has rational expectations about the distribution of the number of buyers

in the population, but she does not know the distribution of buyers interested in her house specifically

for each period, and she is learning about it progressively.

Each period t, given her information set, the seller picks a list price pLt in order to maximize her

expected gains from the sale. The chosen optimal list price will balance a classic trade-off between high

sale price and short time on the market. To this classic trade-off, the model adds a learning externality

to the list price decision: ceteris paribus, a lower list price choice allows the seller to learn more quickly

about the market conditions.

In addition to her dynamic list price decision, the seller also decides whether or not to accept an offer,

knowing that if she refuses (or if she receives no offer), she will incur a holding cost of keeping her

house for sale one more period, modeled as a discount factor δ.

In what follows, I first describe the within-period game: the explicit bargaining rules defining the sale

price, the demand modelization and the seller’s learning process. Next, I focus on the seller’s dynamic

optimization problem specification.

3.1 Bargaining rules

The sale price is determined after a sequential bargaining game (Rubinstein, 1982) of offers/counteroffers

with complete information between one seller (valuation vs) and n inspecting/visiting buyer(s) (with

ordered valuations vb(1) < vb(2) < ... < vb(n)). The list price pL serves as a commitment device in the

model: if a buyer makes an offer greater or equal to it, the seller has to accept it and sell him the

property. This bargaining game between n buyers and one seller with complete information has a

unique subgame-perfect equilibrium outcome (see Appendix A) which is my bargaining rule:

• if vs > vb(n) (or if n = 0): no sale.
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• Otherwise, gains from trade exist with at least one buyer, thus under complete information the

seller will sell her house to the highest valuation buyer at the price pS , where

pS = max
{
vb(n−1) , min

(
pL , vs +

1

2
(vb(n) − v

s)
)}

If n = 1, remove the vb(n−1) part (or consider it = 0).

In words, trade only occurs if there are gains from trade (vb(n) ≥ vs). If this is the case, under

complete information the seller will sell her property to the highest valuation buyer (buyer(n)) from

whom she can extract the higher sale price.

Without the presence of other buyers and without a list price, bilateral sequential bargaining between

the seller and buyer(n) would yield the classic Rubinstein (1982) outcome whereby they share the

‘transaction gains’. The seller gets a portion φ of (vb(n) − v
s) while the buyer gets the rest (the portion

1 − φ). Thus the sale price would be pS = vs + φ(vb(n) − v
s). For simplicity, I make assumptions such

that they share the transaction gains equally (φ = 0.5).2

Moreover, the seller has to accept any offer higher or equal to the list price. Thus, if the bilateral

bargaining price is greater than pL, this gives an opportunity for the buyer to make a lower offer,

equal to pL, that the seller must accept. As a consequence, bilateral bargaining between the seller and

buyer(n) with a list price would yield the sale price pS = min
(
pL , vs + 1

2(vb(n) − v
s)
)

.

Now, if another buyer (the second-highest valuation buyer, denoted buyer(n−1)) is present on the market,

his valuation vb(n−1) can serve as an outside option for the seller.3 If vb(n−1) is high enough (greater than

the bilateral bargaining with list price outcome), the seller can threaten buyer(n) to sell her property

to buyer(n−1) instead. Competition between the two buyers forces buyer(n) to offer at least pS = vb(n−1)

in order to ensure that the seller sells him the property. Adding this competitive outside option to the

bilateral bargaining of the seller with only buyer(n) yields the general sale price formula.

The main advantage of this bargaining rule is that it can endogenously generate prices below the list

price (vs+1/2(vb(n)−v
s)), at the list price (pL), and above it (in case of competition, with vb(n−1) which

can be higher than pL sometimes). The challenge here is to reproduce it in proportions comparable to

the data (15% equal to pL, 11.5% above and the rest below).

The bargaining rule is known by the seller (and the buyers). This implies that, though the seller

does not know the exact buyers’ valuations before meeting them, knowing the bargaining rule allows her

2To end up with an equal sharing of the pie as in Rubinstein (1982) sequential bargaining, I assume either that the
bargaining period length tends to zero or that all the agents are equally impatient with impatience factor tending to one
(see Appendix A).
An alternative to the equal share would be to give all the bargaining power to the seller (i.e. having her infinitely more
patient than the buyer), as done implicitly in Anenberg (2016).

3Notice that only the second-highest valuation can impact the sale price: ceteris paribus the other buyers’ valuations
are irrelevant.
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to compute what the hypothetical bargaining outcomes may be (sale or not, and eventual sale price) for

any scenario. Therefore, for a given number of buyers, if she knows the buyers’ valuations distribution,

the seller is able to build an expectation about the bargaining outcomes (using order statistics of the

highest and second-highest valuation for the given number of buyers). If she also has an idea of the

distribution of the number of buyers on the market, she can compute her expected profit from sale as

a function of the list price. Then she can pick the list price to maximize it: this is what the seller does

in this model.

The demand side of the model is detailed in the next section.

3.2 Buyer

The demand side is split in two main components: the number of buyers on the market during the

period (Nmarket
t ∼ Poisson(λ)) and the valuations of each of these buyers for the given property

(vb ∼ LN (µ, σ)).

For each property s and for each period t of two weeks, the number of buyers on the market

potentially interested in the property (Nmarket
t ) is drawn from a Poisson(λs) distribution. The rate of

arrival λ is a key demand parameter in the model. Each seller faces a specific λs drawn from the true

distribution Gamma(α0, β0). They have rational expectation and know that λs ∼ Gamma(α0, β0), but

they do not know the value of their individual draw λs. With the information they obtain through

their own listings, the sellers progressively update their initial rational belief about λs using Bayesian

learning.

The reservation values of every buyer on the market for a given property are defined as follows:

V b = ηs exp(θb)

⇐⇒ vb :=
V b

ηs
= exp(θb) with θb ∼ N (µ, σ)

⇐⇒ vb ∼ LN (µ, σ)

where θb represents the buyer specific taste for a given property and ηs represents the property intrin-

sic/predicted value (estimated via hedonic regression). I assume that the buyer knows his taste θb for

the property, as well as the property intrinsic value ηs. Thus, he also knows his reservation value (V b)

and his reservation value normalized by the hedonic value (vb). I focus on normalized values (vb) rather

than real monetary values (V b) in order to compare any type of homes on the same scale. By doing this,

I implicitly assume a linear homogeneity of the home-selling problem between the different properties,

as in Merlo et al. (2015). In other words, I assume that a $10, 000 deviation for a property worth

$100, 000 is perceived similarly to a $20, 000 deviation for a property worth $200, 000. In this way, I
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build a single representative problem for every seller, independently of the ‘quality’ of their properties.

Then, under the linear homogeneity assumption, I can compare data counterparts to the model price

outcomes; that is, the data prices normalized by their hedonic values.

The seller knows the buyer’s reservation value distribution vb ∼ LN (µ, σ) (but she does not know

the buyer’s exact taste shock realization before entering into bargaining with him). Thus, to build

expectations about the demand at the start of each period, her only unknown demand parameter is λs.

Inspection rule: Depending on his valuation, each buyer on the market will choose to inspect

the property (or not). An ‘inspection’ means that the buyer ‘visits the property and bargains with the

seller’: once he visits he always bargains in the model. Before inspecting, the buyer observes a detailed

advertisement about the property on the listing website and already knows his own valuation for it

(vb) without inspecting it.4 However, he only discovers the seller’s and potentially other inspecting

buyers valuations if he meets and start to bargain with them when he inspects the house. Since the

buyer suffers a cost of inspecting the property (I assume this cost to be infinitesimal for simplicity), he

only does so if he expects to have a chance to buy it (and thus benefit from his inspection). With an

infinitesimal inspection cost, it will be the case as long as vb > vs (as there is always a chance for him

to have no better competitor and to be able to buy the home in this case). Thus, to determine whether

or not it is beneficial for him to enter, the buyer must build expectation about unknown vs. The buyer

has limited rationality and uses the list price pL as a signal about vs to build a naive conjecture that

v̂s = g(pL).5 I use a simple affine functional form g(x) = a0 + a1x with 0 < a1 < 1. It yields the

following simple inspection/entry rule that all buyers follow:

a buyer inspects the property if vb > g(pL) = a0 + a1p
L

The seller only observes the number of inspections (Nt) and not the latent number of buyers on the

market (Nmarket
t ). Obviously, the seller can only sell her property to the inspecting buyers. She knows

the buyers inspection rule g(), and since she knows that vb ∼ LN (µ, σ), she is able to compute any

4An alternative story would be to say that visits are not costly at all (so all buyers visit and discover vb when they
do), but it is the decision to make a first offer which is costly. In this case the ‘inspection’ event would correspond to an
‘entry in bargaining’ or ‘offer to the seller’ instead of corresponding to a ‘visit’. Because of its cost (going to the bank and
dealing with all financial details), buyers also need to decide whether or not to ‘inspect’ (make an offer). If one chooses
to enter the bargaining, he learns about the seller and his competitors values. The final outcome is determined via the
bargaining rule.

5Buyers are very naive and uninformed in this model. This can be justified by the fact that they are simple one-shot
buyers, staying on the market only for one period. They do not have the time to gather information, thus they have a
naive expectation.
Obviously, the seller’s list price choice is more complex than the buyers’ conjecture and depends only partially on vs.
In fact, the list price choice even depends on the buyers’ believed functional form g() itself. I show in the results that
this belief turns out not to be self-fulfilling: sellers reservation values differ from the buyers’ simple conjecture. Since the
conjecture g(pL) might not be correct, i.e. v̂s 6= vs, a buyer entry in the bargaining process does not necessarily result in
a sale: in particular if vs > vb > v̂s, the buyer enters in a bargain with the seller, but both agents quickly realize that
there will be no profitable trade for both of them, and no transaction occurs (as specified in the bargaining rule).
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Pr(vb > g(pL)) for any pL > 0. As a consequence, the homeowner faces a classic trade-off when she

sets her list price; ceteris paribus, a high list price allows her to ‘sort’ buyers with a higher taste for her

property, leading to a higher expected sale price. However, this also signals a higher reservation value

to the buyers and thus reduces the probability that a buyer will visit and enter the bargaining process

(Pr(vb > g(pL))), leading to a longer time on the market. As staying on the market is costly for the

seller (she has to keep her home tidy, spend time for potential visits, etc.), the optimal list price, which

maximizes the seller’s expected profit from sale, balances two opposite objectives: short time on the

market and high sale price.

In addition to this classic trade-off, the list price also embeds an informational externality : ceteris

paribus, a lower list price allows faster learning about λs. I detail the seller’s learning process in the

next section.

3.3 Seller’s information and learning

When the seller decides to set her list price, she knows most parameters of the problem: she knows the

bargaining rules, the buyers’ inspection rule, the distribution of buyers’ valuations (she does not know

the realized value at the start of the period, but she knows that vb ∼ LN (µ, σ) and knows µ and σ

values), and that the number of buyers on the market will follow a Poisson(λs) distribution. However,

she has imperfect information about the demand since she does not know the value of λs: she only

knows that in the population, λs ∼ Gamma(α0, β0).

In period 0 (at the start of the listing), the seller forms an initial belief about λs, based on her

rational expectation that λs ∼ Gamma(α0, β0). Then for each period, she will update this belief via

Bayesian learning rules, using the information she will acquire.

Let us drop the index s from λs and denote it only λ from now on (but remember it is an individual

draw which is seller specific).

I determine the general learning rule for any period t. Suppose that the seller enters any period t with

the prior belief that λ ∼ Gamma(αt, βt) (i.e. fλ(λ) = λαt−1 β
αt
t e−βtλ

Γ(αt)
, E[λ] = αt/βt and V[λ] = αt/β

2
t ).6

To learn about λ, the seller will observe the number of inspections Nt (and not the latent number of

buyers on the market Nmarket
t directly) in period t, and update her belief using this information.

First, recall that Nmarket
t ∼ Poisson(λ), and each of these buyers choose to inspect the property if

their valuation is greater than g(pL). Thus, the process for the number of inspections depends on the

list price of the period, Nt ∼ Poisson
(
λ Pr(vb > g(pLt ))

)
: to learn about λ, the seller does not directly

observe the latent process determined solely by λ, but by another process which is more or less close to

6In this model, λ is fixed and does not vary with time. However, making λ vary through time in an unknown way for
the seller would not change the learning rule at all (the seller would still only be able to observe the number of inspections).
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it depending on the choice of list price. Nonetheless, computing the posterior distribution remains quite

simple in this case. For simplicity, we denote Pr(vb > g(pLt )) = ct. Then, the likelihood of observing

Nt = k inspections follows a Poisson(λct) distribution and is given by f(Nt = k|λct) = (λct)
ke−λct/k!.

Observing Nt, the seller updates her initial belief using Bayes formula to compute the posterior belief :

fλ(λ|Nt = k) =
f(Nt = k | λct) fλ(λ)

f(Nt = k)

= ...

=
(βt + ct)

αt+k

Γ(αt + k)
λαt+k−1e−(βt+ct)λ

⇐⇒ Posterior belief: λ ∼ Gamma
(
αt+1 = αt +Nt, βt+1 = βt + Pr(vb > g(pLt ))

)
The learning rule is fairly simple: the α parameter of the prior is updated by adding to it the observed

number of inspections, while we add the individual probability of inspection to the β parameter.

In this context, the list price pLt embeds a learning externality. To see this, note that when the

list price is so high that Pr(vb > g(pL)) → 0, the seller will always observe Nt = 0, no matter what

λ is. Her listing does not provide her any information about λ in this case, and the seller does not

learn anything, her belief stays the same over the period (since Pr(vb > g(pL)) = 0, she will observe

Nt = 0 ∀ Nmarket
t and thus αt+1 = αt and βt+1 = βt). As pL decreases, Pr(vb > g(pL)) increases and

non-entries of some buyers are more and more likely due to the fact that there was indeed no buyer

on the market (instead of being likely caused by a too low Pr(vb > g(pL))). This continues up to the

opposite extreme scenario where pL is so small that Pr(vb > g(pL)) → 1, in which case a ‘non-entry’

only occurs when there is no buyer and Nt = Nmarket
t (and the learning rule is actually equivalent to

simple Bayesian updating with the basic Poisson(λ) distribution where one adds 1 to β each period).

In general, a smaller list price leads to a higher probability of inspection, which makes the ‘number of

inspection process’ closer to the latent ‘number on market process’ and allows us to learn faster about

the demand parameter (λ) determining the number of buyers on the market.

3.4 Seller’s optimization problem

Figure 3: Timeline of events in the model

t
Seller

sets pLt
given his

information

Given pLt ,
the buyers present on the market

choose to visit or not

Seller observes the number
of visits and updates his belief
about the demand accordingly

If gains from trade exist
the seller sells his property

(the bargaining rule determines the price)

Otherwise, no trade
seller incurs cost δ (discount)

and goes to next period

...
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The timing of the model is summarized in Figure 3. At the start of each period, the seller sets an

optimal list price pLt in order to maximize her expected profit from the sale given her information set.

Her information set consists of her belief about λ at the start of the period (which can be summarized

by the two parameters (αt, βt)), and the knowledge of all the other parameters of the problem.

The number of buyers on the market is then drawn (from Poisson(λ)), as well as their valuations for

the property. Given pLt and the inspection rule, each buyer chooses to inspect the property (or not).

The seller then observes the number of inspections and updates her belief about λ according to the

Bayesian learning rule: it determines her updated reservation value for the bargaining.

Once the seller has updated her vs and all the buyers are entered, if at least one of the buyer has a

valuation greater than the seller’s, trade will occur according to the bargaining rule.7 Otherwise, there

is no room for beneficial trade and no trade occurs, the seller incurs a cost of keeping her property on

the market (δ under the form of a discount factor) and goes to the next period where she repeats the

same process, starting with her updated belief.

I repeat this game over an infinite horizon up to the point where the seller sells her property.8

Denote Ωt = (αt, βt) the seller information set at time t. Also denote the seller value vs(Ωt, µ, σ, a0, a1, δ)

simply as vs(Ωt). Notice that the seller’s valuation does not depend on λ directly and only depends on

what the seller believes λ to be. The true λ will only impact the updating process of this belief (by

generating the true number of buyers on the market that the seller will observe).

This value is pinned down by the following Bellman’s equation which represents the problem of the

homeowner when she sets her list price optimally given her information set at the start of each period:

vs(Ωt) = max
pLt

∞∑
k=0

E
[
Pr(Nt = k |pLt , λ)

∣∣∣Ωt

]
E
[
Πs(Nt = k, pLt , Ωt)

]
where the expected probabilities of receiving k visits based on the starting beliefs (Ωt) are

E
[
Pr(Nt = k |pLt , λ)

∣∣∣Ωt

]
=

∫
(x̂ P (vb > g(pLt )))ke−x̂ P (vb>g(pLt ))/k! fλ(x̂)dx̂

with fλ(x|Ωt) =
βαt

Γ(αt)
xαt−1e−βtx

and the corresponding profit function depends on the number of inspections and known updating in the

7The bargaining game is done within-period, meaning that future periods buyers can never enter it before the end
of the process: it is as if I assumed that the sequential bargaining period was infinitely smaller than the dynamic game
period of two weeks. The dynamic game only impacts the seller’s reservation value that is built based on her expected
gain (in the present or future): thus it only impacts her choice to leave the table in the bargaining process.

8In practice, to reduce the computational burden of the simulation, we choose a maximum number of weeks (e.g. two
years) on the market, after which we stop the simulation if no sale has occurred.
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case where this number of inspection indeed happens (i.e. vs(Ωt+1) instead of Ωt), as defined below:9

Πs(Nt = k, pLt ) =


δvs
(
Ωt+1

)
if vs(Ωt+1) > vb(k)

ps
(
vb(k), v

b
(k−1), v

s(Ωt+1), pLt

)
︸ ︷︷ ︸

bargaining rule function

otherwise

with Ωt+1 =
(
αt +Nt, βt + Pr(vb > g(pLt ))

)
. With the special case that Πs(Nt = 0, pLt ) = δvs(Ωt+1).

The expectation of seller profit is taken with respect to the two highest buyers’ values (which are the

only ones which potentially matter in the bargaining rule, and which are unknown to the seller when

she sets her list price) using the joint density of the two highest order statistics among k. This joint

density of two order statistics is in general given for any i < j ∈ 1, 2, ..., n, ∀x < y ∈ R by:

f(i,j):n(x, y) =
n!

(i− 1)!(j − i− 1)!(n− j)!
[F (x)]i−1[F (y)− F (x)]j−i−1[1− F (y)]n−jf(x)f(y)

where f is the truncated lognormal(µ, σ) on x > g(pL), and F its cdf.

This value function is estimated via value function iteration. The iteration is done on a discrete

grid of α and β values. Values for points inside the state space but out of the grids are approximated

via bilinear interpolation between the four surrounding points.

4 Estimation method and identification

The structural parameters that I want to estimate are: (µ, σ, a0, a1, δ, α0, β0). Denote the structural

parameters vector θ. θ is estimated via simulated method of moments (SMM). The idea of this esti-

mation method is to find the set of parameters for which the simulated sellers’ behavior will be the

closest to the observed sellers’ behavior. To do so, I select features from the empirical data that I want

to reproduce by picking a vector of N empirical moments of interest. I denote md this N × 1 vector of

moments. Then, for a given θ, I construct the corresponding counterpart vector of simulated moments

msim(θ). These simulated moments are computed on the selling outcomes data of S (=100000) iid

simulations of my model with underlying structural parameters θ.10

I estimate the seven unknown parameters by minimizing a distance function between empirical and

simulated moments such that:

θ̂ = argmin
θ

[
md −msim(θ)

]′
W
[
md −msim(θ)

]
9For any number of visits that occur when the seller chooses to set a given pLt , she knows how she will update Ωt to

Ωt+1, thus she knows the corresponding updated value that she would bargain with in each specific entry case (vs(Ωt+1)).
The probability of observing each specific number of entries are computed using the period starting belief Ωt.

10Recall that I normalized the data by the predicted sale price, which allows me to compare everything on the same
scale by using a single representative problem for every seller (independent of the ‘quality’ of the property). Hence, I can
run iid simulations of the representative problem and compare it to the normalized real data.
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where W is a N ×N positive definite weighting matrix equal to the inverse of the variance-covariance

matrix of my moments (computed using bootstrap). To find θ̂ I use a controlled random search

algorithm (Price, 1983).

To estimate the seven structural parameters I pick a list ofN = 61 moments representing the features

I want to reproduce with my model. These moments can be categorized in three main dimensions of

the selling process: the time on the market, the distribution of sale price and the list price dynamics

(see Appendix B for a list of all the moments). Most of the price moments are relative to the initial

list price. This allows me to reduce issues caused by the ‘scaling’ of the problem or to soften the

impact of unobserved heterogeneity not accounted for in the hedonic value estimation. I have only two

‘non-relative’ price moments: the average sale price and the average list price. They are compared to

their counterparts normalized by the predicted financial value (estimated by hedonic regression) in the

data.

These moments allow us to identify the parameters. Intuition about identification is non-trivial as

most parameters influence several features of the model simultaneously. (α0, β0) determines the initial

value and list price choice. By pinning down the λ distribution, they also determine the list price

dynamics and have a strong influence on the time on the market. (µ, σ) pin down the buyer valuations,

and thus the seller value and the list price level he can set. They also influence the final sale price

through the buyer and the seller value. In particular, (µ, σ) will directly determine the distribution of

sale price when it is above the final list price (as the model imply that in this case ps = vb(n−1) and

these two parameters solely determine the distribution of vb(n−1)). a0 and a1 are also identified via the

sale price distribution. In particular, they determine the minimum level of entry of buyers and thus

the minimum ratio of sale over list prices. δ only impacts the seller valuation and allows to adjust it

better than (a0, a1, µ and σ) which face more restrictions (as they determine more specific moments).
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5 Results

5.1 Value function and optimal list price

Figure 4: vs(α, β)
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(
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I obtain intuitive results for the value function (Figure 4) and optimal list price (Figure 5).

For the interpretations, recall that if λ ∼ Gamma(α, β), then E(λ) = α/β and V (λ) = α/β2.

First, the value increases with the expected number of buyers on the market. Second, at the fixed

average belief, the less uncertain the seller is (i.e., the smaller variance of the belief), the higher the value
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she obtains: as the uncertainty decreases, the value converges to the perfect information benchmark (as

if the seller knew its own λ draw). As for the optimal list price, the higher the expected latent number of

buyers on the market (higher expected λ), the smaller the chosen probability of inspection (via a higher

list price), which balances the expected number of inspections overall (depending on λPr
(
vb > g(pL)

)
.

5.2 Parameters and Moments

Table 2: Parameter Estimates of the Structural Model

Parameter Description Estimate Std.
Errors

δ Subjective discount factor (and cost of listing) 0.986 0.00009

Demand parameters

Valuation process: vb ∼ LN (µ, σ)
µ Mean of buyer valuation -0.0425 0.00044
σ Standard deviation of buyer valuation 0.1902 0.00039

Number of buyers: Nmarket ∼ Poisson(λ) and λ ∼ Gamma(α0, β0)
(and initial rational belief)

α0 α prior belief and true distribution 4.48 0.005
β0 β prior belief and true distribution 11.21 0.0057

Inspection rule buyer inspects if vb > a0 + a1p
L

a0 Buyer’s conjecture about seller reservation value: constant 0.409 0.0018
a1 Buyer’s conjecture about seller reservation value: slope 0.58 0.0015

Table 2 reports the parameter estimates. To understand the mechanism at play, we focus on the

screening of buyers implicitly done by the seller at the optimal parameters. Take the screening in

the initial period for example. The seller face a demand vb ∼ LN (µ = −0.0425, σ = 0.19002). She

sets an initial listing price of 1.106 (no heterogeneity in the first period since it is a representative

agent model and everyone starts with the same rational expectation). In this case, g(pL) = 1.05021,

Pr(vb > g(pL)) = 31.52%: the seller aims for high quantiles of the demand (top 31.52%). For example,

if λ is drawn at its average value (α0/β0 = 0.4), then the true rate of inspection λPr(vb > g(pL)) is

equal to 12.61%.

The sellers with a high draw of λ will have a considerably higher probability of sale than they expect, and

will thus spend a shorter time on the market than they would like to if they had perfect information

(however, some will stay on the market and increase their price in the next period if they received

multiple visits, they often choose to sell at a price they would have refused with perfect information
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in the end). On the contrary, sellers with a low draw of λ have a very small probability of sale and

are aiming at too high quantiles of the demand (compared to what they would do if they had perfect

information about λ): they will ‘survive’ longer on the market (than people with high λ). As they stay

on the market and obtain information that their λ is low, they will decrease their list price to aim at

lower quantiles of the buyer valuations in order to compensate for their lower λ and still have a chance

to sell their property.

The model is able to match the decreasing list price dynamics observed in the data thanks to the fact

that sellers who stay longer on the market (‘survivors’) are sellers with low draw of λ. These sellers

progressively learn and adjust their expectation about the demand (λ) downwards, and thus decrease

their list price choice. For these individuals with low draws of λ, the initial belief was too ‘optimistic’:

the correction of their initial belief via learning is the reason for decreasing list price.

In addition to this, the decreasing list price is also due to some selection/survivor effect (even for high

draws of λ): those who are unlucky (no matter what λ is) and observe no entries will stay longer on

market and have a decreasing belief. Thus, in general, those who stay longer on the market are likely

to have observed fewer entries (even though some stay because they refused offers, the majority stays

because they received none), and thus have a more ‘downward updated’ belief.

Table 3: Actual and Simulated Moments

Moment Actual Simulated

Mean sale price 1.008 1.02
Mean ratio sale/final listing price 0.955 0.962
Mean initial list price 1.107 1.106
% of accepted offers equal to list price 0.15 0.235
% of accepted offers below list price 0.734 0.712
Mean week on the market (knowing that <52 weeks) 14.817 14.736

Table 3 and Figure 6 illustrate how the model matches the moments. Overall, for a small number

of parameters (7), it fits the data reasonably well. The list price dynamics and the distribution of the

time on the market are well fitted. The sale price distribution (relative to the list price) is matched

correctly, except for the tails. In particular, I fail to reproduce the number of sales above the list price

(only 5.3% in the simulation against 11.6% in the data). This is because, even with the split demand,

the model is still unable to match the time on the market distribution and the sales above the list price

at the same time.
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Figure 6: Actual and Simulated Moments
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6 Value of information

All of the comparisons in this section are completed using the model at the estimated optimal parameters

given previously.

I use my estimated model to get an idea of the value of information: how much the seller would gain

from being better informed? To answer this, I compare the imperfect information outcomes to the

outcomes obtained by a perfectly informed (denoted PI) seller, who would know the value of her λ

draw.

I compare this benchmark to the value obtained by an imperfectly informed (denoted II) seller who does
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not know her draw λ and starts from rational expectation Gamma(α0, β0). To compute the ‘realized

value’ of this imperfectly informed seller, I simulate the complete selling process (with corresponding

dynamic belief updating) and observe the price pS and time spent on the market by the seller. From

period 0, the average (over several simulations) discounted sale price (δtpS) gives the empirical coun-

terpart to the theoretical seller value.

To establish an idea of the value of information, I compare the perfectly informed benchmark valuations

to the counterparts’ realized outcomes of imperfectly informed sellers. In particular, I do this for several

values of λ. In this way, I can see how far II sellers end up from the perfect information benchmark as

a function of their initial information error (how far the initial rational belief was from their true λ).

Figure 7: Value of Information: Sale Price and TOM
(average computed over 10000 simulations)
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Figure 7a shows the average sale price and time on the market (simulated) for different values of λ.

This is done for a PI seller who knows λ, and for a II seller who starts from initial rational belief that

λ ∼ Gamma(α0, β0) (calibrated at the model estimates) and who progressively updates it.

First for both types of sellers, I observe that the higher the λ the higher the sale price obtained and

the shorter the time spent on market.

More interestingly, we see that the sale price reacts more to λ for perfectly informed sellers. Indeed,

the average sale price obtained by a PI seller varies from 0.797 when λ = 0.05, to 1.187 when λ = 1.

While the average sale price obtained by a II seller (with initial belief Gamma(α0, β0)) varies from

0.986 when λ = 0.05, to 1.049 when λ = 1. The fact that imperfectly informed agents start from the
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same initial belief smooths the obtained sale price: at the time they sell, despite their updating, they

are generally still far from perfect information. Thus, their list price is far from the optimal one (if

perfectly informed they would set a lower price to sell faster), hence the final sale price difference. In

terms of sale price, sellers with bad draws of λ benefits from this, while sellers with high draws of λ get

a smaller price than what they could.

However, as shown in Figure 7b, imperfectly informed sellers with bad draws are able to earn more

only because they spend too much time on the market (about 98 weeks on average for a II seller with

draw λ = 0.05, compared to 62 weeks for her PI counterpart). In terms of value obtained by the II

seller, this overly-long time on the market attenuates the higher sale price obtained.

Similarly, imperfectly informed sellers with high draws spend a shorter time on the market than their

perfectly informed counterparts, since they put their listing at a suboptimal list price (and screen less

the demand than they would if they were perfectly informed). This could offset the loss in the sale

price they endure compared to the PI benchmark.

The question now is to determine how the effects on sale price and time on the market translates into

the average ‘value’ (average discounted sale price) obtained (from period 0).

Figure 8: Value of Information: Information Paradox
(average computed over 10000 simulations)
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Value as a function of λ (for fixed initial belief (α0, β0)).

The vertical grey line represents E[λ] at the initial ra-

tional belief (i.e. α0/β0).

Figure 8 shows how these two effects translate in terms of value. Obviously, the higher the demand

λ, the higher the value obtained for perfectly and imperfectly informed agents. However, one can notice

25



an informational paradox.

Indeed, one would expect the perfectly informed agent to always outperform the imperfectly informed

counterpart because she is solving the ‘true’ problem (knowing λ), and thus optimizes correctly. How-

ever, this is not always the case, and the imperfectly informed agent can perform better than her

perfectly informed counterpart in this model. Indeed, there is an area where the value obtained by the

imperfectly informed agent who starts from the belief that λ ∼ Gamma(α0, β0) is higher than that

obtained by her perfectly informed counterpart who knows λ (i.e. the area where the red-dotted curve

is above the black curve in Figure 8). This happens only to agents with bad draws (i.e., imperfectly

informed agents who expect λ to be considerably higher than what it truly is). The realized outcomes

(discounted sale price) with an ‘overoptimistic’ belief can be higher than the ones the agent could obtain

if she were perfectly informed and optimizing (choosing her list price) knowing the exact value of λ.

This means that having better information about λ is not necessarily beneficial for the seller, as the

value of additional information may indeed be negative.

This seems somewhat perplexing, as one should not be able to do better than a perfectly optimizing

agent who knows exactly what demand she should expect, and thus, what her true value vs should be.

The explanation lies in the estimation of her reservation value by the seller. Indeed, even if the overop-

timistic seller is not optimizing correctly with respect to the true λ (she sets a too high pL and stays too

long on the market by ‘screening’ too much and ‘over-rejecting’ some buyers offers), she genuinely over-

estimates her reservation value vs(α, β). This gives her a better ‘bargaining position’ (the threshold at

which she leaves the bargaining game) in the bargaining game, which allows her to obtain a higher sale

price than the one a PI seller would obtain if she was trading with the same buyers. One can directly

see this in the bargaining rule: ceteris paribus, if vs is higher, vs + 0.5(vb(n) − v
s) = 0.5vs + 0.5vb(n) is

also higher. There is some level of overconfidence where the overconfident seller obtains a sale price

sufficiently high to offset the longer time she spends on the market, yielding a better outcome overall.

At some point (not visible in Figure 8), the gains in the bargaining position are offset by a too large

‘expectation error’. By being ‘too overoptimistic’ the agents spend too long time on the market, which

offset the stronger bargaining position and yields a lower value than being perfectly informed.11

Notice that the highest values in case of overoptimism are only explained by this improved bargaining

position. To check this, I can recompute a variant of the model where the seller is infinitely more

patient than the buyers in the bargaining game. This way she has all the bargaining power and can

11It does not appear with our estimated set of parameters, but with other parameters, for very small λ draws, the black
curve will again be higher than the red one. There is an ‘optimal level’ of ‘overconfidence’ (not too large or too small)
for which the misinformed agent performs better than her perfectly informed counterpart. You can see this by zooming
in on Figure 8: the positive gap between II and PI values (when λ is low) has an inverted U shape.
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always extract the highest buyer valuation (vb(n)) without splitting the pie. Thus, she already has full

bargaining power and cannot have a stronger bargaining position due to her overconfidence. In this

case, the information paradox disappears: the perfectly informed agent always performs better (not

displayed here).12

This explains that while the imperfectly informed with a high draw of λ is, on the other hand, consid-

erably worse off than her perfectly informed counterpart, she does not only commit optimization errors

(setting a too low list price, resulting in less screening of buyers, lower sale price and shorter time spent

on market) due to her imperfect information set, but she also has a weaker bargaining position because

she is too ‘pessimistic’ in her reservation value estimation vs.

Thus, the cost of imperfect information is higher for people facing high demand. High demand sellers

would prefer to be perfectly informed of the demand that they face, while on some levels, the low

demand sellers can be better off by being overoptimistic and ignorant that they face a low demand.

7 Conclusion

Taking advantage of a new large dataset of real estate listings, I highlight some evidence that imperfect

information and sellers’ learning impact the selling outcomes on the housing market. I have developed

a simple theoretical model with a new Bayesian learning application in order to explain some of the

housing market stylized facts.

Learning about the demand by rational but imperfectly informed home-sellers is a key feature of the

model used to explain these facts. In particular, the progressive downward adjustment/correction of

the belief of individuals facing low demand is key to explaining the decreasing list price dynamics, and

matches well the distribution of time spent on market. My work also highlights a paradox that the

value of information is not necessarily positive. Indeed, by being imperfectly informed and overconfi-

dent about the demand, a seller can overestimate her reservation value and have a stronger bargaining

position. This allows her to extract a higher sale price, which can compensate her mis-optimization

and longer time spent on the market (with respect to her perfectly informed counterpart).

This theoretical work could serve as the foundation for future applications relative to the home-selling

problem. For example, it can be easily extended to study learning within complete neighborhoods, or

to study dynamic entry/withdrawal decisions of listings by the sellers to match market stocks.

12Technically, when the seller is infinitely more patient, her reservation value (vs) vanishes from the bargaining equation
determining the sale price. For a given buyer value (vb), vs now only impacts the decision to reject an offer, without
impacting the sale price. Thus, it will only lead to a misguided rejection decision and the stronger bargaining position
will not matter (because the seller already has all the power). To be clear, II seller will still get a higher average sale
price (because she screens higher value buyers with her rejections). However, the longer time on the market will offset
this advantage and the PI seller will always be better off.
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Appendix A Bargaining rule

I study a simplified version of the problem with one seller and only two buyers and with normalized

valuations (as described next). This generalizes easily to N buyers with ordered valuations: only the

two buyers with the two highest valuations matter with complete information.

The proof is inspired from Shaked and Sutton (1984) and Binmore et al. (1989), i.e. bilateral bargaining

with outside option (for the player playing second). The problem setup and thus the result is also close

to the ‘auctioning model’ in Binmore et al. (1992).13

A.1 The Problem: 1 Seller - 2 Buyers

There is one seller of an indivisible good, with reservation value vs = 0. The seller can sell it to one

of two buyers H and L (high and low) with valuations vH = 1 > vL = v.14 The three agents have a

common discount factor ρ. The period length is τ . Denote for simplicity δ = ρτ . If the good is sold at

price p after t periods, the seller’s payoff is pδt, the successful buyer’s payoff is (vb− p)δt and the losing

buyer gets zero. Information is complete.

The timeline of the problem is as follow:

t

t=0 t=1 t=2

Buyers’

proposals

(simultaneous)

Seller

accepts

or not

Seller’s

common

counteroffer

Buyer H

accepts

or not

Buyer L

accepts

or not

Buyers’

proposals

(simultaneous)

...

In period t = 0, each buyer simultaneously makes a proposal to the seller. She may accept one of these

offer or reject both. If the seller accept one of the offer, the two players trade and the game ends. For

simplicity, if the seller wants to accept an offer that both buyers made (i.e., in the case of a tie), the

tie breaking rule is that the seller will opt for buyer H.

If the seller reject both offers, there is a delay τ and they go to the next bargaining period. The seller

then makes a common counteroffer to both buyers. The highest valuation buyer either accept or reject

it. If he rejects it, the low valuation buyer can then choose whether or not to accept it. If both buyers

13Except for a different timeline (buyers start for me, which change the result), and some notation/normalization
changes. However, no proof is provided in the book, and the references given to find the proofs are unavailable/unpublished
or do not contained the proof at all.

14I normalize vH = 1 so that the ‘size of the cake’ to share is one as usual. I denote vL as v for simplicity.
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reject the offer, they go to the next period (with delay τ) where they make simultaneous counteroffers,

as in the first period, and the game repeats itself, etc.

A.2 Solution

This game always has a unique subgame-perfect equilibrium outcome where the good is sold immediately

to buyer H (the seller accepts his offer directly) at a price:

• p = δ
1+δ if δ

1+δ ≥ v. Notice that this is the bilateral bargaining price of the seller with buyer H,

in this case, it is as if the second buyer was absent (he represents a non-credible threat for buyer

H / non-credible outside option for the seller).

• p = v if δ
1+δ < v. In this case the presence of the buyer L matters, gives more ‘power’ to the

seller, and forces buyer H to pay a higher price than if buyer L was absent.

A.3 Proof

As in the classic Shaked and Sutton (1984) proof, let mb and Mb be the infimum and supremum of

equilibrium payoffs to the buyer H in the game. Let ms and Ms be the infimum and supremum of

equilibrium payoffs to the seller in the companion game in which she would move first (i.e. starting

from period t = 1, for example). Let us also assume for now that the buyer L always makes the same

equilibrium offer denoted s (≤ 1 since vL ≤ 1 = vH). From the point of view of bilateral bargaining

between the seller and buyer H, it acts as an ‘outside option’ for the seller: if she accepts it, she obtains

s and she ‘leaves’ buyer H with nothing.15

As in the bilateral bargaining with outside option proof from Binmore et al. (1989), I have the following

system of inequalities which hold:

mb ≥ v −max{δMs, s} (1)

v −Mb ≥ max{δms, s} (2)

ms ≥ v − δMb (3)

v −Ms ≥ δmb (4)

Inequality (1) can be explained as follows: the seller must accept any opening offer greater than what

she can get by making a counteroffer to buyer H in the next period, or by accepting the low buyer

offer (thus no δ cost). As a consequence, the buyer H cannot get less than v −max{δMH
s , s}, hence

the first inequality. Inequality (2) follows from the fact that the seller must get at least either δmH
s by

15Obviously since buyer H can give more than L (since vH = 1 ≥ vL), he is always able to attract the seller to trade
with himself, by offering something greater or equal than s if necessary.
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making a counteroffer to buyer H, or s by accepting the low buyer offer. As a consequence, the buyer

H can get at most Mb ≤ v −max{δmH
s , s}, hence the second inequality. Similarly, inequality (3) and

(4) comes from the same reasoning but for buyer H and thus, there is no s involved (as if s = 0, i.e. no

offer from another seller that he could accept for example/no ‘outside option’).

Now, to determine the equilibrium outcomes, distinguish three cases:

• If s ≤ δms: (⇐⇒ the offer from L is irrelevant)

Combining (1) and (4) yields:

δ − δ2Ms ≤ δmb ≤ 1−Ms, thus δ − δ2Ms ≤ 1−Ms, which gives: Ms ≤ 1/(1 + δ).

Combining (2) and (3) (rewritten) yields:

1−ms ≤ δMb ≤ δ − δ2ms, thus 1−ms ≤ δ − δ2ms, which gives: 1/(1 + δ) ≤ ms.

Thus:

1

1 + δ
≤ ms ≤Ms ≤

1

1 + δ

Similarly, combining (2) and (3) for the upper bound, and (1) and (4) for the lower bound, yields:

1

1 + δ
≤ mb ≤Mb ≤

1

1 + δ

Thus, ms = Ms = mb = Mb = 1/(1 + δ) in this case (and buyer should offer 1/(1 + δ) to the

seller, who will accept in this case). Thus, this case should happen when δms = δ/(1 + δ) ≥ s

⇐⇒ s ≤ δ/(1 + δ). 16

• If δms < s < δMs: (2) becomes: 1−Mb ≥ s > δms, but we still have, as before: 1−Mb ≥ δms,

thus we will still find 1
1+δ ≤ ms ≤Ms ≤ 1

1+δ , which is a contradiction.

Thus, this case is not possible.

• If δMs ≤ s: (⇐⇒ the offer from L is greater than what the seller could get with classical bilateral

bargaining with H)

For the buyer, we directly have from (2) that: Mb ≤ 1− s, and from (1) mb ≥ 1− s. Thus:

1− s ≤ mb ≤Mb ≤ 1− s ⇐⇒ mb = Mb = 1− s
16Intuitively, instead of resorting to inequalities, see the proof as in Shaked and Sutton (1984) in each case. Let’s take

an example with the proof for the upper bound of Mb.
We focus on the subgame starting from period t = 2. The game which starts at this point is the same as the initial game
(its first repetition) but with a discounted sum of payoffs = δ2 (cannot get more than this). By definition, the buyer can
get at most δ2Mb at this point. Now, consider the (companion) subgame starting in the preceding period t = 1. Any
offer by the seller which gives the buyer more than the supremum of its payoffs (δ2Mb) should be accepted. So there is
no perfect equilibrium in which the buyer receives more than δ2Mb, and thus it follows that the seller should get at least
δ − δ2Mb in this period (it is δ − δ2Mb and not 1− δ2Mb since the discounted value of the total payoff at time t = 1 is δ
and not 1). In other words, ms ≥ δ− δ2Mb. As a consequence, starting in period t = 0, the seller will not accept anything
less than the infimum of what she will receive in the game beginning next period (which has present value δ − δ2Mb).
Thus, the buyer can get, at most Mb ≥ 1− δ + δ2Mb. This finally gives the upper bound: Mb ≤ 1/(1 + δ).
Obtain that mb ≥ 1/(1 + δ) and the results for the seller by similar reasoning.
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Which means that the buyer should immediately make an offer of s to the seller, and he will not

be able to obtain more.

We still need to compute the seller outcomes (to check when this case happen).

As before, from (1) and (4) we have: Ms ≤ 1−δ(1−s). From (2) and (3) we have: 1−δ(1−s) ≤ ms.

1− δ(1− s) ≤ ms ≤Ms ≤ 1− δ(1− s) ⇐⇒ ms = Ms = 1− δ(1− s)

Thus, this case should happen when δMs = 1− δ(1− s) ≤ s ⇐⇒ s ≤ δ/(1 + δ).

Therefore, if subgame-perfect equilibria exist, they generate a unique subgame-perfect equilibrium

outcome. In addition, existence is trivial: each player always demands his equilibrium payoff when

proposing, and accept his equilibrium payoff (or more) when responding.

Thus, we have the result that the buyer H makes an offer at p, which is immediately accepted by the

seller with the offer from the low buyer s as her outside option. With p defined as:

p =

{
1− 1/(1 + δ) = δ/(1 + δ), if s ≤ δ/(1 + δ)

s, if s ≥ δ/(1 + δ)

The result is quite intuitive: either the offer from buyer L is too low and is not taken into account by

the buyer H and the seller (irrelevant outside option for the seller, they do classic bilateral bargaining),

or it is high enough and allows the seller to gain a credible threat, which increases her payoff.

Now the question is to determine what is s, the equilibrium offer from the buyer L (if it exists).

Let’s assume that the buyer L cannot make an offer greater than his valuation v.17

17Even if it seems natural, this is an important assumption to get rid of absurd equilibria where L would bid more
than v in this setup. Because the buyers bids simultaneously with perfect information, it is close to the case of first price
sealed bid auction with perfect information without restrictions on bids. It is well known that the set of Nash equilibria
of this kind of auction is determined by three conditions: it is the set of profiles b of bids with bH ∈ [vL, vH ] = [v, 1],
bj ≤ bH∀j 6= H and bj = bH for some j 6= 1. Thus we could have any equilibrium offer > v from the low buyer, and the
proof may fall down.
On the other hand, if we impose that he cannot bid more than his valuation v - which makes sense in the context of
bargaining where the set of possible offers is between the valuation of the seller and the one of the corresponding buyer
- then the only Nash equilibrium is bH = bL = v (and because of the tie breaking rule, H wins). Indeed, it is clear that
any outcome with bH < v and bL < v is not an equilibrium since one of the two players would gain more by increasing his
bid. Similarly: bH = v and bL < v is not an equilibrium either, since in this case H would be tempted to decrease slightly
his offer in order to get more.
Otherwise, instead of making this assumption, one solution would simply be to make the buyers bid non simultaneously:
H first, then L, in which case L would never have interest to bid more than H’s offer if it’s higher than v, and thus H
would never bid more than v in a first price auction... One has to choose between the sequential bids or the simultaneous
bids with the natural assumption that the buyers cannot bid more than their value. I prefer the former since it seems
unnatural to make them bid sequentially with predefined order based on the valuations.
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• If δ/(1 + δ) > v then anyway L has no power to disturb bilateral bargaining between the seller

and H, s does not matter at all in the problem (irrelevant outside option). Buyer L could make

any offer s ≤ v in equilibrium, it would not change the equilibrium outcomes, let’s assume he

bids s = v in this case.

• If δ/(1 + δ) < v then L has some power (it is close to first price sealed bid auction with perfect

information in this case).

We find that s = v in this case is the only equilibrium. Indeed: if v > s, it is possible that buyer

H wins the auction by bidding bH below v and above s which is not an equilibrium since in this

case L would be better off by increasing his bid above bH . At the same time, it is not possible that

buyer L wins the auction in equilibrium (buyer H can always bid more). The only equilibrium

offer from L is s = v.

Thus, as expected, in equilibrium the low buyer will bid his valuation s = v. This yields the final result

that the only equilibrium payoffs is that buyer H makes an offer at p which is immediately accepted by

the seller (who have an offer v from the low buyer as outside option). With p defined as:

p =

{
δ/(1 + δ), if v ≤ δ/(1 + δ)

v, if v ≥ δ/(1 + δ)

A.4 Extension to N buyers

One can easily generalize to more than two buyers. Indeed, we do not really care about additional

buyers choices: as long as they are lower than v, they will not have any impact on the equilibrium

outcomes. Only the two highest valuations matter, so simply consider that in the proof here; that

buyer H and L are the two buyers with the highest valuations and the proof is already generalized for

any number of buyers.

A.5 Extension: list price

I slightly modify the problem by adding an exogenous list price pl. The list price serves as a commit-

ment device; thus, if a buyer makes an offer greater or equal to the list price in the first period, the

seller is obliged to accept to sell her good. If two buyers make offers greater than the list price, she

obviously accepts the greatest offer (and in case of tie, she chooses buyer H). The list price only works

in the first period; after which, the game is unchanged (in period t = 2 we go back to previous case

where the seller can refuse an offer greater than pL).
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The problem is as follows:

t

t=0 t=1 t=2

Buyers’

proposals

(simultaneous)

Seller

accepts or not

has to accept

if proposal ≥ pL

Seller’s

common

counteroffer

Buyer H

accepts

or not

Buyer L

accepts

or not

Buyers

proposals

(simultaneous)

...

Consequently, the list price only affects the buyer’s choice (in the first period), not the seller’s (who

only endure it). From the point of view of the seller, either she receives an offer higher than pL and

then she cannot ‘play’, or, she can play the game as before.

From the point of view of the buyer H, his choice is just to choose between offering pL (or more) or

bargaining with the seller as usual (i.e. entering the classic game). Thus it will be quite simple: if

he gets more by offering just pL, he will do that, otherwise he won’t. Buyer H simply has a choice to

resort to an ‘outside option’ before the game even starts. The only trick is that buyer L is still present

and can also offer more than pL: thus we still have a competition between H and L, even if H wants to

bid more than pL. It means that we do not have a classic outside option = pL for buyer H, but instead

an outside option = max{pL, v}: because there is no equilibrium where H has to pay less than v, thus

if v ≥ pL, then he will pay v instead of just pL immediately (and obviously we have no concern about

any bargaining since v ≥ pL implies that the seller must accept immediately).

Basically we only have bargaining when pL > max{δ/(1 + δ), v} now.

The equilibrium outcome is still that the seller accepts immediately (but sometimes because she has to

accept) the initial offer from the buyer H at price p, where p is now defined as follows:

p =



δ/(1 + δ), if v ≤ δ/(1 + δ) ≤ pL

v, if δ/(1 + δ) ≤ v ≤ pL

if pL ≤ v

pL, if v ≤ pL ≤ δ/(1 + δ)

= max

{
v, min

(
δ/(1 + δ), pL

)}
Now, if we assume that δ → 1 (either because the bargaining period τ → 0 or because both individual

discount patience parameter ρ→ 1), we get an equal share of the pie δ/(1 + δ) = 0.5. Moreover, if we
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rescale the problem to correspond to the one in the article, we get the same bargaining rule.

Appendix B Complete list of actual and simulated moments

Table 4: Actual and Simulated moments (complete table)

Moment Actual Simulated

Mean sale price 1.008 1.02
Mean ratio sale/final listing price 0.955 0.962
Mean initial list price 1.107 1.106
% of accepted offers equal to list price 0.15 0.235
% of accepted offers below list price 0.734 0.712
Mean week on the market (knowing that <52 weeks) 14.817 14.736
% unsold after 2 weeks 0.911 0.88
% unsold after 4 weeks 0.802 0.78
% unsold after 6 weeks 0.709 0.692
% unsold after 8 weeks 0.626 0.608
% unsold after 10 weeks 0.546 0.534
% unsold after 12 weeks 0.482 0.474
% unsold after 14 weeks 0.425 0.415
% unsold after 16 weeks 0.376 0.366
% unsold after 18 weeks 0.332 0.323
% unsold after 20 weeks 0.294 0.284
% unsold after 22 weeks 0.26 0.254
% unsold after 24 weeks 0.23 0.227
% unsold after 26 weeks 0.202 0.201
% unsold after 28 weeks 0.174 0.178
% unsold after 30 weeks 0.153 0.158
% unsold after 32 weeks 0.135 0.14
% unsold after 34 weeks 0.12 0.124
% unsold after 36 weeks 0.105 0.11
% unsold after 38 weeks 0.093 0.097
% unsold after 40 weeks 0.082 0.087
% unsold after 42 weeks 0.073 0.079
% unsold after 44 weeks 0.064 0.07
% unsold after 46 weeks 0.056 0.062
% unsold after 48 weeks 0.049 0.056
% unsold after 50 weeks 0.043 0.051
Mean list price in week 3 0.997 0.996
Mean list price in week 5 0.99 0.989
Mean list price in week 7 0.982 0.981
Mean list price in week 9 0.973 0.974
Mean list price in week 11 0.966 0.967
Mean list price in week 13 0.958 0.96
Mean list price in week 15 0.952 0.954
Mean list price in week 17 0.946 0.949
Mean list price in week 19 0.94 0.944
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Mean list price in week 21 0.935 0.932
Mean list price in week 23 0.931 0.922
Mean list price in week 25 0.927 0.923
Mean list price in week 27 0.922 0.915
Mean list price in week 29 0.917 0.906
% sales/listing <0.70 0.014 0
% sales/listing <0.80 0.036 0
% sales/listing <0.85 0.064 0
% sales/listing <0.90 0.129 0.053
% sales/listing <0.92 0.186 0.213
% sales/listing <0.94 0.279 0.368
% sales/listing <0.95 0.344 0.436
% sales/listing <0.96 0.426 0.505
% sales/listing <0.97 0.522 0.564
% sales/listing <0.98 0.618 0.619
% sales/listing <0.99 0.697 0.669
% sales/listing <1.00 0.886 0.947
% sales/listing <1.02 0.949 0.959
% sales/listing <1.05 0.981 0.973
% sales/listing <1.10 0.992 0.988
% sales/listing <1.20 0.997 0.997
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