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Abstract

Language is an organic construct. It emanates from the need for communication
and changes through time, influenced by multiple factors. The resulting lan-
guage structures are a mix of regular syntactic and morphological constructions
together with divergent irregular elements. Linguistics aims at formalizing these
structures, providing a rationalization of the underlying phenomena. However,
linguistic information alone is not enough to fully characterize the structures in
language, as they are intrinsically tied to meaning, which constrains and mod-
ulates the applicability of the linguistic phenomena and also to context and
domain.

Classical machine translation approaches, like rule-based systems, relied com-
pletely on the linguistic formalisms. Hundreds of morphological and grammatical
rules were wired together to analyze input text and translate it into the target
language, trying to take into account the semantic load carried by it. While
this kind of processing can satisfactorily address most of the low-level language
structures, many of the meaning-dependent structures failed to be analyzed cor-
rectly.

On the other hand, the dominant neural language processing systems are trained
from raw textual data, handling it as a sequence of discrete tokens. These discrete
tokens are normally defined looking for reusable word pieces identified statisti-
cally from data. In the whole training process, there is no explicit notion of
linguistic knowledge: no morphemes, no morphological information, no relation-
ships among words, or hierarchical groupings.

This thesis aims at bridging the gap between the neural systems and linguistics-
based systems, devising systems that have the flexibility and good results of the
former with a base on the linguistic formalisms, with the purposes of improv-
ing quality where data alone cannot and forcing human-understandable working
dynamics into the otherwise black-box neural systems. For this, we propose
techniques to fuse statistical subwords with word-level linguistic information, to
remove subwords altogether and rely solely on lemmas and morphological traits
of the words, and to drive the text generation process on the ordering defined by
syntactic dependencies.
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The main results of the proposed methods are the improvements in translation
quality that can be obtained by injecting morphological information into NMT
systems when testing on out-of-domain data for morphologically-rich languages,
and the control over the generated text that can be gained by means of linking
the generation order to the syntactic structure.
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1. Introduction

Machine translation (MT) is the area within natural language processing (NLP)
that devises systems to translate text from a source language into a target lan-
guage. Since the early days of computation, different approaches have been
applied to try to address translation tasks. Currently, the dominant paradigm is
neural machine translation (NMT), which relies on artificial neural networks.

While the quality of the translations generated by NMT systems is higher that the
preceding MT paradigms, they are not error-free. Some of the errors present in
NMT translations include repeated words, inability to handle words that were not
part of the training data, addition of extra information that was not present in the
source sentence or missing parts from the original source sentence information.

Neural networks are said to be “black boxes”, as we cannot understand the
behaviour of the function learned by the network during training. This way,
when the network generates an undesirable output, we cannot identify any reason
why the output is different from the desirable one. This makes neural networks
difficult or impossible to fix in a traditional way a software bug is fixed. In the
same line, translations generated by NMT systems are not interpretable, in the
sense that we cannot establish a causal relationship between the parts of the
input sentence, specific pars of the computation and the generated output.

NMT systems are trained on raw textual data. This training data consists of a
collection of pairs of source sentence and its translation in the target language.
The number of sentence pairs in a normal training dataset is in the range of
millions. These sentences are segmented into smaller pieces of text called tokens,
normally defined at the level of words or even subword segments, and then the
most frequent tokens are selected to be part of the finite set of elements that the
MT system will handle, the vocabulary.

The ubiquitous vocabulary definition strategy used currently in NMT systems
is called byte-pair encoding (BPE). It finds subword segments that are statisti-
cally highly reusable in the training data. These subwords, nevertheless, have
not morphological grounding and may be totally unrelated to the morphological
segmentation that a linguist may apply to words, preventing any morphological
interpretation of the internal model dynamics.
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1. Introduction

For the neural network, each sentence or document is just a sequence of symbols
from the vocabulary. The neural network, therefore, does not receive any infor-
mation about the syntax of the sentence or relationships among words or groups
of words, or the function each word plays in the sentence structure.

The fact that the information handled by the neural network is totally unrelated
to morphology, syntax or any other linguistic framework, together with the black-
box nature of neural networks, makes NMT translations unexplainable, even
more if compared with other formerly dominant MT paradigms, like rule-based
machine translation (RBMT), that relied completely on linguistic information
and were fully interpretable. This problem is more severe when NMT systems
are used to translate texts that are of a different domain that the ones used to
train it, as in these cases where the translations tend to have high fluency but
low adequacy (Koehn and Knowles, 2017).

In this regard, some lines of research have tried to “inject” linguistic information
into NMT systems, either with the purpose of improving the end results or to
make neural network internals closer to concepts that humans can understand
better.

The works developed as part of this thesis go in that line, aiming at bridging the
benefits that linguistic information brought to RBMT systems with the perfor-
mance of the currently dominant NMT systems.

1.1. Thesis Contributions

The goal of this thesis is to study different approaches to profit from linguistic
knowledge in neural text generation models. Specifically, the contributions to be
found in this thesis are:

• Linguistic Knowledge-based Vocabularies for Neural Machine Translation:
two linguistically-grounded approaches to extract the vocabulary of NMT
systems are proposed, studying their benefits in comparison with the dom-
inant subword-based NMT models, under different data scenarios.

• Sparse factored Neural Machine Translation: a novel approach to inject
linguistic knowledge into NMT where the linguistic annotation scheme is
not dense but sparse.

• Combining Subword Representations into Word-level Representations: a
reformulation of the Transformer NMT architecture is proposed, aiming at

2



1.2. Publications

combining the subword token representations into word-level representa-
tions and providing a natural point to incorporate extra word-level linguis-
tic or semantic information.

• Syntax-driven Iterative Expansion Language Models for Text Generation:
a new paradigm for introducing a syntactic inductive bias into neural text
generation, where the dependency parse tree is used to drive the Trans-
former model to generate sentences iteratively.

1.2. Publications

This dissertation presents several contributions to the incorporation of linguistic
information into neural text generation systems. Publications that are a direct
result of this work include:

• N. Casas , M. R. Costa-jussà, J. A. R. Fonollosa, J. A. Alonso, and R. Fanlo.
Linguistic knowledge-based vocabularies for neural machine translation.
Natural Language Engineering, page 1–22, 2020c. URL https://doi.org/

10.1017/S1351324920000364

• N. Casas , M. R. Costa-jussà, and J. A. R. Fonollosa. Sparsely factored
neural machine translation. 2020a. Under review

• N. Casas , M. R. Costa-jussà, and J. A. R. Fonollosa. Combining sub-
word representations into word-level representations in the transformer
architecture. In Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics: Student Research Workshop, pages 66–
71, Online, July 2020b. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/2020.acl-srw.10

• N. Casas , J. A. R. Fonollosa, and M. R. Costa-jussà. Syntax-driven iter-
ative expansion language models for controllable text generation. 2020d.
Accepted for publication at the EMNLP 2020 Workshop on Structured
Prediction for NLP

During the course of this thesis, other side works were developed, leading to
publications. While they are not specifically focused on the injection of linguistic
information, they are about relevant topics related to NMT. Among them, the
ones led by the author of this thesis were:
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1. Introduction

• N. Casas , J. A. Fonollosa, and M. R. Costa-jussà. A differentiable BLEU
loss. Analysis and first results. Presented at the Workshop of the Inter-
national Conference on Learning Representations (ICLR), 2018b. URL
https://openreview.net/forum?id=HkG7hzyvf

• N. Casas , C. Escolano, M. R. Costa-jussà, and J. A. R. Fonollosa. The
TALP-UPC machine translation systems for WMT18 news shared transla-
tion task. In Proceedings of the Third Conference on Machine Translation:
Shared Task Papers, pages 355–360, Belgium, Brussels, Oct. 2018a. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/W18-6406. URL
https://www.aclweb.org/anthology/W18-6406

• N. Casas , J. A. R. Fonollosa, C. Escolano, C. Basta, and M. R. Costa-
jussà. The TALP-UPC machine translation systems for WMT19 news
translation task: Pivoting techniques for low resource MT. In Proceedings
of the Fourth Conference on Machine Translation (Volume 2: Shared Task
Papers, Day 1), pages 155–162, Florence, Italy, Aug. 2019. Association for
Computational Linguistics. doi: 10.18653/v1/W19-5311. URL https:

//www.aclweb.org/anthology/W19-5311

The collaborations were the author of this thesis was not the main author are
the following:

• D. Torregrosa, N. Pasricha, M. Masoud, B. R. Chakravarthi, J. Alonso,
N. Casas , and M. Arcan. Leveraging rule-based machine translation knowl-
edge for under-resourced neural machine translation models. In Proceed-
ings of Machine Translation Summit XVII Volume 2: Translator, Project
and User Tracks, pages 125–133, Dublin, Ireland, Aug. 2019. European
Association for Machine Translation. URL https://www.aclweb.org/

anthology/W19-6725

• C. Basta, M. R. Costa-jussà, and N. Casas . Evaluating the underlying
gender bias in contextualized word embeddings. In Proceedings of the First
Workshop on Gender Bias in Natural Language Processing, pages 33–39.
Association for Computational Linguistics, Florence, Italy, Aug. 2019. doi:
10.18653/v1/W19-3805. URL https://www.aclweb.org/anthology/

W19-3805

• C. Basta, M. R. Costa-jussà, and N. Casas . Extensive study on the under-
lying gender bias in contextualized word embeddings. Neural Computing
and Applications, 2020. URL https://doi.org/10.1007/s00521-020-

05211-z

• M. Artetxe, G. Labaka, N. Casas , and E. Agirre. Do all roads lead to
Rome? Understanding the role of initialization in iterative back-translation.
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1.3. Thesis Structure

Knowledge-Based Systems, page 106401, 2020. ISSN 0950-7051. doi: 10.
1016/j.knosys.2020.106401. URL http://www.sciencedirect.com/science/

article/pii/S0950705120305335

• M. R. Costa-Jussà, N. Casas , C. Escolano, and J. A. R. Fonollosa. Chinese-
Catalan: A neural machine translation approach based on pivoting and
attention mechanisms. ACM Transactions on Asian and Low-Resource
Language Information Processing (TALLIP), 18(4):1–8, 2019. URL https:

//dl.acm.org/doi/abs/10.1145/3312575

• M. R. Costa-jussà, N. Casas , and J. A. Fonollosa. English-Catalan neu-
ral machine translation in the biomedical domain through the cascade
approach. In Proceedings of the Multilingual Biomedical Text Processing
Workshop of the 11th Language Resources and Evaluation Conference of the
European Language Resources Association, 2018. URL http://temu.bsc.

es/multilingualbio2018/wp-content/uploads/2018/03/LREC-2018-

PROCEEDINGS-MultilingualBIO.pdf

• J. A. R. Fonollosa, N. Casas , and M. R. Costa-jussà. Joint source-target
self attention with locality constraints. 2019. URL https://arxiv.org/

abs/1905.06596. Under review

1.3. Thesis Structure

This thesis presents and summarizes the work from some of the publications
listed in Section 1.2, reusing part of them and tailoring it as appropriate.

Chapter 2 provides the needed background to the rest of the thesis, presenting
as well the state of the art of the relevant subareas each contribution belongs
to. Each subsequent chapter cites the appropriate sections from the background
chapter that are relevant to it.

Chapter 3 studies novel morphologically-grounded strategies to define the vocab-
ulary of the source-side of NMT systems (Casas et al., 2020c).

Chapter 4 also addresses strategies for incorporating morphological knowledge
as input to NMT systems, but focuses on linguistic annotation schemes that are
not dense but sparse in terms of annotated features (Casas et al., 2020a).

In Chapter 5 we reformulate the Transformer model to better incorporate word-
level linguistic information in subword-based NMT architectures (Casas et al.,
2020b).
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1. Introduction

In Chapter 6, a new text generation paradigm driven by the sentence syntactic
structure is presented (Casas et al., 2020d).

Finally, Chapter 7 presents the conclusions drawn from this work.

Additionally, Appendix A describes the participation in international MT eval-
uation campaigns (Casas et al., 2018a, 2019).
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2. Background and Related Work

In this chapter we provide an overview of the topics that are most relevant to
the work presented in this thesis, regarding both foundational concepts as well
as state of the art research.

In section 2.1 we provide a brief overview of natural language processing (NLP)
in general, describing the NLP tasks that relate most to the ones presented in
this work. In section 2.2 we provide some background on machine translation
and the different paradigms that have dominated the MT paradigm over the
years. In section 2.3 we describe neural MT and neural language models. In
section 2.4, we describe what kind of linguistic knowledge is used in the work
presented in this thesis, and identify the sources to extract it. Finally, in section
2.5 we describe how such kinds of linguistic knowledge have been imbued into
neural models in the literature.

2.1. Natural Language Processing

Natural Language Processing is the area that studies the processing of natural
language textual data. This area is very broad, and comprises several tasks where
different problems are explored. In this section we describe some of the relevant
ones in relation with the use of linguistic knowledge and with the work in this
thesis.

Sentence classification aims at assigning to sentences a label that marks they
belong to a specific category within a taxonomy. An example is sentiment classi-
fication, where the sentence can labeled as positive, negative or neutral. A special
case of sentence classification is natural language inference (NLI), sometimes re-
ferred to as textual entailment, which receives two sentences and classifies their
relationship as entailing, contradictory or neutral. The architectures for sentence
classification are very related with the encoder part of NMT models and, many
of the approaches used to incorporate linguistic knowledge for text classification
have also been applied for NMT.

Word Annotation tasks try to assign a tag to each word in the text. POS tagging
is the most representative word annotation task, together with lemmatization.

7



2. Background and Related Work

Syntactic structure analysis tasks annotate the words and their relationships,
like in constituency parsing, dependency parsing. Given their relationship with
linguistic knowledge, POS tagging, constituency parsing and dependency parsing
are further described in section 2.4.

Language Modeling is the task of modeling the probability distribution of text,
that is, estimating how probable a sentence or a piece of text is in the given
language. This task is further explored in section 2.3.3.

Machine Translation is the task of receiving a sentence in a source language and
translating it into a target language. This task is further explored in section
2.3.2.

2.2. Machine Translation Paradigms

The first machine translation systems were Dictionary-based, using bilingual
dictionaries to translate word by word the source sentence into the target lan-
guage. Such an approach neglected any notion of syntax or context-dependent
meaning and offered poor results. This led to the appearance of Rule-based
Machine Translation (RBMT) systems, which made use of formal grammars
to analyze the source sentences and to transform them into the target language.
While the results obtained by these systems were far better than with dictionary-
based systems, their translations frequently lacked idiomatic constructions and
were perceived as mechanical. While RBMT systems are not the focus of this
thesis, they are used as a source of linguistic knowledge to imbue into neural sys-
tems; being relevant to this work, they are further described in section 2.4.4

Statistical Machine Translation (SMT) (Brown et al., 1993; Koehn et al.,
2003) systems tried to mitigate the lack of idiomatic translations by using trans-
lation examples as a means to learn how to translate from source to target
language. SMT systems need therefore to be trained before they can actually be
used for translation (i.e. inference). The input of the SMT training is a large par-
allel corpus, that is, a collection of translation example pairs, each one containing
a sentence in the source language and its translation in the target language. The
size of parallel corpora used for SMT ranged from several hundred thousand par-
allel sentences to several million parallel sentences. SMT training is based on
devising an alignment model that finds out the correspondence between words
in the source sentence and words in the associated target sentence. This model
is subsequently used to compute a probability table, which contains a mapping
between words in the source language and their equivalent translations in the
target language, together with the estimated probability of such a translation,
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2.3. Neural Netwoks for Text Generation

and the same for the opposite translation direction. This type of word-level prob-
ability table was later evolved to contain small sequences of words (i.e. phrases)
instead of individual words, and were called phase tables. The third element
in a SMT system is a language model (LM) of the target language, a statisti-
cal model that can evaluate the likelihood of an arbitrary word sequence to be
a correct utterance in the target language. When the SMT system is used for
inference, these three models are leveraged to first compute the most probable
target phrase correspondences and their ordering and then to score them to draw
the one showing the highest probability of being the correct translation of the
source probable sentence.

SMT ceased to be the dominant MT paradigm in the second half of the 2010
decade. Neural Machine Translation (NMT) models, which also rely on large
parallel corpora to be trained, are currently the state of the art paradigm for
MT, having translations perceived as more idiomatic and natural compared to
SMT. NMT is further described in section 2.3.2.

2.3. Neural Netwoks for Text Generation

Neural networks regained attention after the success of Krizhevsky et al. (2012)
with the AlexNet convolutional architecture for image classification and the ap-
pearance of GPU hardware capable of powering the neural computations at scale
in affordable time.

Later, neural networks achieved success also in NLP, first in discriminative tasks
(e.g. classification) and later in generative tasks (e.g. translation). Some early
factors that constrained the application of neural networks to NLP tasks were
the discrete nature of text (as opposed to the continuous signals from the image
domain) and the variable length of textual sequences.

The mapping of discrete textual tokens to continuous representations made it
possible to represent text in an appropriate format for the inputs of neural net-
works. However, given the multiple levels of granularity at which information
is encoded in text, together with the inherent limitations of the current neu-
ral models, text representation is not yet totally solved. This aspect is further
elaborated in section 2.3.1.

The variable length of textual sequences was initially mitigated in discriminative
models with recurrent architectures, like LSTMs, that allowed to accumulate
a joint representation of the whole sequence. In generative models, recurrent
architectures used in an autoregressive manner were also the initial response,
using a conditioning signal when needed, like in NMT. Attention mechanisms
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first were used to complements recurrent units and later to replace them as main
computational building block. In sections 2.3.3 and 2.3.2 we describe in detail
the dominant neural architectures for LM and NMT in the last years, while in
section 2.3.4 we explore the recent lines of research of non-autoregressive text
generation.

2.3.1. Representation of Textual Data

In NLP tasks, text is received either as input or generated as output (e.g. machine
translation, language modeling). In order to process text, it is common for
neural networks applied to NLP tasks to split the original character string into a
sequence of substrings, and to represent each substring as a discrete token. The
granularity used to split the original text into substrings is part of the design of
any NLP system.

Languages themselves offer information packaged at different natural granularity
levels: sub-character information (e.g. radicals in Chinese characters), char-
acters, morphemes, words, multi-word expressions, sentences and documents.
Apart from the linguistically natural information packages, it is also possible to
build synthetic partitions (e.g. statistically-discovered subwords (Sennrich et al.,
2016c), byte-level representations (Costa-jussà et al., 2017)) as well as hybrid
granularity levels (e.g. hybrid word-character representations (Luong and Man-
ning, 2016)).

The representation granularity defines how to split a piece of text into a sequence
of discrete tokens and is a key design aspect in any NLP system because it
determines the type of information it can directly profit from. This way, a word-
level system can profit from word-level information (e.g. semantics), while a
character-level system does not have direct access to such a type of information.

The set of all possible tokens is referred to as vocabulary and, normally, the
higher the representation granularity, the larger the size of the vocabulary. This
way, the set of all possible words is larger than the set of all possible characters.
Nevertheless, given the open nature of language, any finite size word-level vo-
cabulary is to face the problem of words that are not part of the vocabulary and
hence can not be properly represented.

The selection of an appropriate granularity level is also influenced by the capabil-
ity of the downstream NLP system to handle the resulting vocabulary. This way,
while symbolic systems can handle very large vocabularies (i.e. several hundred
thousand different tokens), current neural networks can only handle moderately
large vocabularies (i.e. tens of thousand different tokens). This makes is desirable
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for Neural network-based NLP systems to keep the vocabulary size constrained
while trying to maximize the representation ability.

The vocabulary is defined prior to the training of the neural network, normally
by means of an algorithmic approach that “extracts” the possible tokens from
the training data according to the chosen token granularity.

Character-level vocabularies define one token for each different character present
in the training data. Their size ranges from tens to thousands of characters, de-
pending on the language. In English, this would include all letters, both lowercase
and uppercase, punctuation symbols, blanks, etc. A character-level vocabulary
allows to represent any text that contains the characters in the vocabulary, not
only the words from the training data.

Word-level vocabularies define a token for each different word present in the
training data. Given the huge amount of different words, only the N most
frequent words are kept in the vocabulary, dropping the less frequent ones. The
selection of hyperparameter N is driven by different factors, including hardware
memory constraints, scaling limitations of the network architecture (e.g. softmax
for network output) and the scarceness of lower frequency words in the training
data (it is not useful to represent words whose frequency of appearance in the
training data is not enough for the network to learn how to use them). A frequent
default value is N = 32k tokens. A special token <UNK> is usually introduced in
the vocabuly in order to represent words that are not part of the vocabulary (i.e.
unknown words, or out-of-vocabulary (OOV) words).

Multi-word level vocabularies extend word-based ones and try to find sequences
of words that conform a single lexical unit or are part of an idiomatic construct
(Mikolov et al., 2013).

Subword vocabularies have word-pieces as tokens, which are extracted statisti-
cally from the training data based on their frequency of appearance. For lan-
guages with regular morphology, extracted subwords may match morphological
word parts, however, there is no guarantee of morphological soundness. Sub-
word vocabularies normally do not have an <UNK> token because, apart from the
multi-character subwords, there are usually single-character subwords that allow
to represent any input text. The currently dominant subword vocabulary extrac-
tion approach is Byte-Pair Encoding (BPE) (Sennrich et al., 2016c). This
approach consists in taking all words from the training data and building sub-
words starting from a character-based vocabulary (with all characters present in
the training data) and creating new tokens by iteratively merging the two tokens
that appear together most frequently. Subwords that can be followed by other
subwords are normally marked with suffix @@, which is removed when decoding
text back. This is illustrated in Figure 2.1. BPE and some of its variants, such
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as word-pieces (Wu et al., 2016) are the dominant subword vocabulary definition
strategy in the state of the art neural machine translation (NMT) architectures.

tokenizationvocabulary extraction

word #count
dog 413
dogs 321
cat 150

houses 75

subword token ID

<pad> 0
<eos> 1

s 2
e 3

cat@@ 4
house@@ 5
dog@@ 6

the 7
are 8
in 9

the dogs are in the house
training 
corpus

[the, dog@@, s, are, in, the, house, <eos>]

7 6 2 8 9 7 5 1

iterative 
subword 

composition

Figure 2.1.: Byte-Pair Encoding (BPE) vocabulary extraction and tokenization.

Despite the flexibility of character-level vocabularies, they delegate the learning
of word formation to the network and the resulting token sequences are very
long, which, for some tasks like machine translation (MT), leads to a decrease in
the quality (Gao et al., 2020). On the other hand, word-level vocabularies relieve
the network completely from learning word formation, but they frequently lead
to OOV words and they aren’t aware of the connection of different forms of
the same word, leading to worse training data utilisation, especially for highly
inflected languages and agglutinative languages. Subword vocabularies are a
compromise between both, and are indeed used in the current state of the art of
several NLP tasks, like MT.

Nevertheless, the benefits of word-level vocabularies lie in the fact that tokens
can be associated with the word they represent, which can be key to certain tasks
related to the meaning of the word or setups related to the word-level granularity
(reuse of pretrained word embeddings for sentiment classification, induction of
cross-lingual word embeddings); character and subword vocabularies lack such a
trait and this makes them less suitable for such tasks.

There have been attempts to profit from word-level information in subword-
based vocabularies. These approaches addressed in different ways the mismatch
between those two different token granularity levels. The approaches by Bo-
janowski et al. (2017), Zhao et al. (2018) and Li et al. (2018) aim at computing
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pre-trained word representations from the subword information. Other proposals
integrate the computation of the word representation in the overall neural model,
either combining information from character level, like those by Luong and Man-
ning (2016) Costa-jussà and Fonollosa (2016), from n-gram level, like the one
by Ataman and Federico (2018), or from multiple granularities like the work by
Chen et al. (2018). Some other approaches like those by Wang et al. (2019)
and Gu et al. (2018b) try to extend this idea to obtain multilingual conceptual
representations from character-level representations.

2.3.2. Neural Machine Translation

Neural Machine translation (NMT) networks model the probability of each of
the tokens in the translation yt conditioning on both the source sequence tokens
x1, . . . , xT and also on the previous tokens y<t:

p (yt|x1, . . . , xT , y1, . . . , yt−1) (2.1)

Given (2.1), we can formalize the probability of the whole translation using an
autoregressive factorization as shown in (2.2).

p (y1, . . . , yT ′|x1, . . . , xT ) =
T ′∏
t=1

p (yt|x, y1, . . . , yt−1) (2.2)

The inputs to the neural network are therefore the source sentence tokens x1, . . . , xT
and the previous tokens from the target sentence already generated by the net-
work y1, . . . , yt−1. The output of the network is a probability distribution over
the target token space, from which a token is selected at each time step of the
generation process, so that the translation is generated token by token.

NMT is the currently dominant MT paradigm, showing a good level of transla-
tion quality for high-resource language pairs. In the following sections we explore
the different aspects that characterize NMT systems, including their neural ar-
chitectures that have been dominant over time, the different approaches to draw
tokens from the probability distribution over the token space (i.e. decoding) and
the evaluation measures used to gauge the quality of the translations generated
by the model.
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Neural Architectures

The first successful NMT models were sequence to sequence architectures
(Sutskever et al., 2014), which consist in an encoder-decoder structure where
both the encoder and decoder are recurrent cells (either vanilla recurrent neural
networks (RNN), long-short term memories (LSTM; Hochreiter and Schmidhu-
ber, 1997) or gated recurrent units (GRU; Cho et al., 2014)).

LSTM LSTM LSTM LSTM LSTM LSTM LSTM

embed.

Me gustas <eos>

embed. embed. embed. embed. embed. embed.

I like you<bos>

L = − ∑k
p(yi) log ̂yi

categorical 
cross entropy

I like you <eos>

p(yi |y<t, x)

Figure 2.2.: Sequence to sequence architecture at training time.

The recurrent units at encoder and decoder are unrolled at training time, using
a back-propagation through time scheme. As shown in figure 2.2, in the encoder
part:

• the input sequence tokens are embedded and fed to the encoder units,

• the context vector is passed from one unit to the next one,

• the output of all encoder units is discarded,

while in the decoder part:

• the first unit receives as input context vector the output context vector of
the last encoder unit,

• for each unit, the token generated by the previous unit is received as in-
put, except for the first unit, which receives the input BOS (beginning of
sentence) token,

• the output is a softmax representing the categorical probability distribution
over the output token space.
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For decoder unit at position i, the expected output is the token at position i in
the target sequence. The expected tokens are normally represented as one-hot
vectors, or their label smoothed version (Szegedy et al., 2016). The loss func-
tion used as minimization objectively is defined as the categorical cross entropy
between the output of the model and the expected output, taking into account
only the tokens that appear before the EOS token in the expected output.

It is frequent to use a variation of the back-propagation through time; this vari-
ation is called teacher forcing (Williams and Zipser, 1989): at training time, the
gold data tokens are used as outputs of the decoder units instead the prediction
of the previous unit. This variation allows to train in parallel (as one unit does
not need the output of the previous one). Nevertheless, as at inference time the
model is still used in an autoregressive manner, using teacher forcing induces an
exposure bias in the network as it is only trained with the real data as prefix,
but at inference time it uses its own predictions instead.

LSTM LSTM LSTM LSTM LSTM LSTM LSTM

I like you <eos>

embed.

Me gustas <eos>

embed. embed. embed. embed. embed. embed.

I like you<bos>

Figure 2.3.: Sequence to sequence architecture at inference time.

At inference time, this model is used in an autoregressive way, first predicting
token at the first position, then feeding such token to the input of the decoder
and computing the output again, and so on, as shown in Figure 2.3. This autore-
gressive nature makes the computation of the translation linear on the output
sequence length.

A notable problem of sequence to sequence models is that the encoder has to fit
all the information from the source sentence into a fixed length vector represen-
tation (i.e. the context vector passed from encoder to decoder). This posed an
information bottleneck that was overcome by the introduction of an attention
mechanism (Bahdanau et al., 2015; Luong et al., 2015) that allowed the decoder
to use a weighted sum of all context vectors from the encoder. The results of
sequence to sequence with attention outperformed those of vanilla sequence to
sequence models. This is illustrated in Figure 2.4.

After sequence-to-sequence models, Convolutional NMT (Gehring et al., 2017)
showed promising results, but it was soon surpassed by the current state of the
art NMT architecture, the Transformer model (Vaswani et al., 2017). This
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LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Me gustas <eos> <bos> I like you

softmax softmax softmax softmax
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attention

0.1 0.2 0.7

I like you <eos>

softmax

attention attention attention

0.2 0.2 0.6

softmax

0.5 0.4 0.1

softmax

0.8 0.1 0.1

softmax

α
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sum

weighted 
sum

weighted 
sum

weighted 
sum

α α α

concatconcat concat concat

Figure 2.4.: Sequence-to-sequence model with Bahdanau attention.

architecture relies mostly on replicated scaled dot-product attention, referred to
as multi-head attention blocks, as shown in Figure 2.5.

linear

scaled dot-product attention

linear linear linear

concat

V K Q

softmax

scale

Mask (optional)

matmul

matmul

V K Q

multi-head 
attention

Figure 2.5.: Multi-head attention block.

The Transformer architecture has an encoder-decoder structure where both en-
coder and decoder consists of stacks of multiple layers of multi-head attention
blocks together with layer normalization, residual connections and position-wise
feed forward layers. Unlike recurrent units, attention layers do not offer any
notion of data sequentiality, so extra positional embeddings are added to the
input and output tokens for the attention mechanism to distinguish between the
different positions. The model is trained in a completely parallel fashion while
at inference time it is autoregressive. In order to ensure the causality of the
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input embedding output embedding

multi-head attention

add & norm

add & norm

masked 
multi-head attention

feed forward

add & norm

× N
multi-head attention

add & norm

feed forward

add & norm

softmax

linear

positional 
encoding

positional 
encoding

× N

Figure 2.6.: Transformer architecture.

predictions at inference time, during training the decoder self-attention blocks
are masked. This architecture is depicted on Figure 2.6.

While there have been several proposals that improve slightly the results of the
Transformer model, including the Dynamic Convolution Model (Wu et al., 2019),
it is still the most widely used NMT architecture.

Decoding

In an encoder-decoder architecture, at inference time the encoder takes as input
a sequence of symbols and generates a sequence of vectors representing such an
input sequence, which are then received as input by the decoder. With these
vector representation, the decoder generates a probability distribution over the
output target language token space, conditioning also on the previous target to-
kens that have already been predicted. With the output probability distribution,
the decoding algorithm must select a token as prediction. The most straightfor-
ward way of doing so is to choose the token with highest probability, which is
referred to as greedy decoding.

However, conditioning greedily only on the previously generated symbols does not
necessarily output the sequence with the highest occurrence probability according
to the model, as the most likely sequence might not begin with the most likely
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symbol. Nevertheless, due to the combinatorial explosion, it is not feasible to
evaluate the whole set of possible sequences.

Beam search (Graves, 2012; Sutskever et al., 2014) is a decoding algorithm that
relies on the assumption that sequences with high probability have high proba-
bility conditionals. It is a form of greedy search where, instead of remembering
only the most probable token and condition on it on the next prediction step,
keeps the b most probable ones; these are referred to as the beam. At the next
step, the decoder generates predictions based on the beam from the previous
step. It then keeps the top b predictions as the step beam and the process is
repeated, only keeping the beam size b elements at each step, and evaluating
b · n sequences at each step, where n is the size of the vocabulary. For each end-
of-sequence symbol that is selected among the top candidates the beam size is
reduced by one and such a translation is added to the final candidate list. When
the beam size becomes zero, the search stops. Then, from the final candidate
list, the translation with the highest probability, normalized by the number of
target words, is chosen.

Evaluation

The evaluation of the translation quality is an open problem that has been faced
since the inception of MT. It presents challenges in many different aspects. The
first challenge is whether the evaluation is done by humans or automatically. The
idealized translation quality evaluation measure is human evaluation. How-
ever, its high cost makes it undesirable or directly unfeasible at scale. Further-
more, given the subjectivity of translation itself, human evaluation is not very
consistent once the quality surpasses certain degree. The optimal approach for
humans to evaluate translations is not agreed upon and the most widely known
machine translation competition, WMT1, has switched the human evaluation
approach several times (Bojar et al., 2016). Among the most used human evalu-
ation approaches are direct assessment (give a numeric grade to the translation
given a reference translation), sentence ranking (rank translations of different
MT systems) and evaluation of specific aspects such as fluency and adequacy.

Given its cost, human evaluation is normally dropped in favor of automatic qual-
ity measures. Currently, the ubiquitous translation quality measure that domi-
nates both the research and industrial landscapes is the BLEU score (BiLingual
Evaluation Understudy) (Papineni et al., 2002). It is a based on comparing the
candidate translation (hypothesis) with one or multiple reference translations.
However, in most cases only one reference translation is considered.

1http://www.statmt/wmt20/
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BLEU evaluates the precision of the translation at the n-gram level. However,
some modifications to the computation of the precision are performed in order to
avoid some known pathological cases. This way, the computation of the modified
n-gram precision of a candidate translation is as follows:

1. For each n-gram and for each candidate translation, count the maximum
number of n-gram matches in a single reference translation.

2. For each n-gram and for each candidate translation, clip the total number
of matches of a candidate n-gram by the maximal reference match.

3. For each n-gram, add up clipped matches over all candidate translations in
corpus.

4. For each n-gram, divide by the total number of unclipped candidate n-gram
counts in corpus.

Therefore, the expression that summarizes the precision of the n-grams for a
complete test corpus is:

pn =

∑
c∈{candidates}

∑
ngram∈c countclip(ngram)∑

c′∈{candidates}
∑

ngram ′∈c′ count(ngram ′)
(2.3)

BLEU combines the individual pn for different sizes n into a single measure.
Given that the modified n-gram precision decays at exponential rate with n, the
different pn are not combined with the arithmetic mean, but with the geometric
one. An equivalent formulation is to use the arithmetric mean of the logarithms of
pn, using weights wn to ponderate each term. In the reference implementation,
the weights are homogeneous, that is wn = 1/N , for every n, where N is the
number of different values of n taken into account.

BLEU also introduces a brevity penalty to discourage candidate translations that
have length c that is too short compared to that of the reference translation r:

BP =

{
1 c > r

e1−r/c c ≤ r
(2.4)

This way. the final BLEU metric can be expressed as follows:

BLEU = BP · e
∑N

n=1 wn log pn (2.5)

The main approach to compute BLEU is the multi-bleu.perl script from Moses
(Koehn et al., 2007) and sacrebleu (Post, 2018), which tries to standarize the
evaluation on popular benchmark test datasets.
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BLEU has been criticized for its lack of awareness regarding sentence semantics,
syntactic structure and morphology, as well as its dependency on a specific tok-
enization and occasional lack of correlation with human judgement (Babych and
Hartley, 2004; Callison-Burch et al., 2006; Tan et al., 2015).

Despite the availability of evaluation methods that try to alleviate these prob-
lems, such as METEOR (Denkowski and Lavie, 2014) or ROUGE (Lin, 2004),
BLEU is currently the main approach to gauge translation quality.

2.3.3. Neural Language Models

Neural Language Models (LM) compute the probability of a sequence y1, . . . , yT
by factorizing it in an autoregressive manner2:

p (y1, . . . , yT ) =
T∏
t=1

p (yt|y1, . . . , yt−1) (2.6)

LMs can therefore be used to estimate the probability of a specific piece of
text. Nevertheless, they can also be used as generative models, by using them
autoregressively to generate tokens one by one, either from scratch or providing
an initial piece of text to be used as context.

Note that LMs can work at any token granularity, with character-level and word-
level being the predominant granularities in LMs meant as probabilistic models
and subword tokens in LMs meant for text generation (e.g. GPT-2 by Radford
et al. (2019)).

In this section we study the different neural architectures used by neural LMs
throughout the literature, their use for text generation and finally describe some
recent proposals for non-causal LMs.

Neural Architectures

The first attempts of neural LMs were based on feedforward networks (Bengio
et al., 2001, 2003) with hyperbolic tangent activations, receiving as input embed-
ded representations of words and using a final projection and a softmax activation
to obtain a categorical probability distribution over the token space.

2As shown in (2.2) and (2.6), the probability factorization used in LM is the same as the one used in NMT
systems, without conditioning the output on a source sentence.
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After that, the dominant architectural choices shared the evolution of the decoder
part in NMT models: first with recurrent units like LSTMs, shortly followed by
convolutional models, with the currently dominant ones being those based on
self-attention layers from the Transformer model. Among the recurrence-based
LMs, the first applied vanilla RNNs (Mikolov et al., 2010, 2011). Later, the
recurrent units were replaced with LSTMs (Zaremba et al., 2014), which were
subsequently improved with optimization based on averaged stochastic gradient
descent (ASGD) and weight dropping regularization (Merity et al., 2018) (AWD-
LSTM). The main difference of these models with respect to recurrence-based
decoders in NMT models is their use of “continuous batches” and truncated
back-propagation through time (TBPTT): the sentences in the training corpus
are concatenated into a single sequence, which is sliced and arranged in mini-
batches of N fixed-length sequences so that each sequence at position i in a
batch is the continuation of the sentence at the same position in the previously
trained batch, and the last hidden state of each sentence is reused as initial state
for the next batch, but without propagating the gradients across batches. This
enables the network to exploit more context than the used sequence length during
training.

Convolutional architectures were also applied to LMs, first directly (Pham et al.,
2016) and then with a gated CNN mechanism (Dauphin et al., 2017). These
approaches never became dominant and were mostly niche.

The currently dominant architectures are based on self-attention blocks from the
Transformer model (Vaswani et al., 2017). They have shown that, with large
training data, they are able to achieve state of the art performance in language
modeling as well as in multiple downstream tasks using pretrained language
models, with the most remarkable example in OpenAI’s GPT2 model (Radford,
2018; Radford et al., 2019). The analogous to TBPTT in the Transformer model
was proposed in the Transformer XL architecture (Dai et al., 2019), which reuses
the inner states of the whole previous batch.

Decoding

LMs can also be used as generative models by using as input their own predic-
tions in an autoregressive manner. However, the actual output of an LM is a
probability distribution over the token space. In order to obtain tokens from such
a probability distribution there are multiple options. For this, we could apply
the same techniques used for NMT, namely greedily take the highest probability
token at each timestep, or use beam search. These maximization-based decod-
ing strategies, however, lead to text that is often incoherent or contains word
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repetitions. Instead, the state of the art decoding strategies are either to sam-
ple among the k most probable tokens (i.e. top k decoding) (Fan et al., 2018)
or nucleus sampling (Holtzman et al., 2020), where the tail of the probability
distribution is nullified and the tokens are decoded by sampling from the tokens
that accumulate most of the probability mass.

Evaluation

Language models can be evaluated either as probabilistic models of text or as
text generators.

When evaluated as probabilistic models, the standard measure is perplexity over

a test set, which is defined as 2−
1
N

∑N
t log p(xt|x<t), where xt is each token in the

test corpus, x<t are its previous tokens and p(xt|x<t) is the probability computed
by the LM. Note that perplexity comparisons are only fair for word-level and
character-level LMs, where the token segmentation is unique; on the other hand,
subword-level vocabularies cannot be fairly evaluated with perplexity, as there
exist multiple valid word segmentations that should be taken into account when
computing the probabilities.

When evaluated as unconditional text generators, there is not a standard evalu-
ation procedure. The current trend is to use the language model to generate a
piece of text, which is then evaluated in terms of quality and diversity. Quality is
normally evaluated by means of the BLEU score over a test set, while diversity is
evaluated against the very generated text, evaluating each sentence against every
other generated sentence. Given that the probability distribution computed by
LMs is normally implemented by a softmax function, it is possible to introduce
an extra temperature term τ that regulates the balance between quality and
diversity. Therefore, text generation models are normally evaluated for quality
and diversity under different values of τ , to understand the performance at every
generation regime (Caccia et al., 2020).

Non-Causal LMs

The LM architectures described in previous sections rely on the probability fac-
torization from (2.6), making the token probability predictions causal, that is,
each prediction depends on the previous tokens according to the sequential or-
dering in the sequence.

However, there are other language models that are non-causal. The most re-
markable example is BERT (Devlin et al., 2019), a masked language model,
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where some of the input words are replaced by a special [MASK] token at train-
ing time, so that the model can learn to guess them. BERT drops the causal
mask in transformers’ decoder self-attention blocks, thereby predicting masked
tokens based on the whole sentence context.

XLNet (Yang et al., 2019), on the other hand, makes use of the Transformer
self-attention mask to impose an arbitrary token dependency factorization, po-
tentially completely different from the typical autoregressive one. With this
mechanism, it trains the Transformer model with multiple permutations over
the tokens’ probability factorization, therefore predicting each token with an ar-
bitrary subset of the other tokens in the sentence, aiming at learning more robust
representations.

While masked LMs and permutation LMs are only meant to learn representations
for transfer learning and not for text generation, they are the foundation of ideas
on which non-autoregressive iterative generation approaches rely, and these are
directly related to the work presented in this thesis.

2.3.4. Non-sequential Text Generation and Modeling

While traditional language models rely on an autoregressive decomposition of
the probability distribution and traditional text generation models are autore-
gressive, recent lines of research break from such a paradigm and propose novel
generation schemes.

Some approaches define variable ordering approaches. Stern et al. (2019) propose
the Insertion Transformer, a conditional generative model that iteratively gener-
ates pairs of tokens plus the position at which they should be inserted within the
sequence, with the ability to generate text from left to right or in a parallel fash-
ion, by decoding according to a balanced binary tree. Emelianenko et al. (2019)
simultaneously propose the same approach, going one step further and optimizing
the generation order by sampling from the ordering permutations. Chan et al.
(2019) propose a similar idea but optimizing a lower bound of the marginalized
probability over every possible ordering. A variation of this approach consists in
using syntactic information as generation ordering; this is further described in
Section 2.5.4.

Other approaches propose a latent variable model where the generation order
is treated as latent variable and the training tries to optimize over the gener-
ation order space. Gu et al. (2019a) propose to have the generation ordering
captured as the relative position through self-attention, optimizing the evidence
lower bound (ELBO) to train the model. Gu et al. (2019b) propose Levenshtein

23



2. Background and Related Work

Transformer, a model trained with reinforcement learning to generate token in-
sertion and deletion actions. Welleck et al. (2019) propose a cost minimization
imitation learning framework where a policy is learned to generate a binary tree
that is used to drive the token generation.

A third non-autoregressive generation paradigm relies on iterative refinement.
Lee et al. (2018) propose a latent variable non-autoregressive machine transla-
tion model where first the target length is predicted by the model, and then,
the decoder is iteratively applied to its own output to refine it. Mask-predict
(Ghazvininejad et al., 2019) also predicts the target sentence length and then
non-autoregressively predicts the sentence itself, iteratively refining it a fixed
number of times, masking out and regenerating the tokens it is least confident
about. Lawrence et al. (2019) follow a similar approach and start with a sequence
of placeholder tokens (all the same) of a specified length, and they iteratively
replace them with normal tokens via masked LM-style inference. As the masking
strategy for the training data, the authors propose different stochastic processes
to randomly select which placeholders are to be uncovered.

2.4. Linguistic Knowledge and Where to Find It

There are multiple types of linguistic information that can be imbued into neu-
ral text generation systems, as well as multiple possible sources of such a kind
of knowledge. In this section we describe these options as well as remarkable
application examples from the literature.

2.4.1. NLP Formalizations of Linguistic Knowledge

There are several tasks in NLP that directly involve explicit formalizations lin-
guistic knowledge. Among them, the ones most related to the work presented in
this thesis are lemmatization, part of speech (POS) tagging, constituency parsing
and dependency parsing.

Lemmatization consists in finding the lemma of each word. The lemma is the
base form of the word. For instance, in English, the infinitive of a verb is the
lemma of a verbal form (e.g. “stop” is the lemma of verbal form “stopped”);
and the singular form of a noun is its lemma (e.g. “cat” is the lemma of “cats”).
Depending on the degree of morphological complexity of the language, a single
lemma may have associated a high number of surface forms.
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In POS tagging, each word in the text is associated with a label that denotes the
category the word belongs to among a linguistic taxonomy. Some typical exam-
ples of such categories in English are noun, verb, adjective, adverb, preposition
and conjunction.

Constituency parsing consists in recursively decomposing a sentence into its con-
stituents, casting a tree form that represents the syntactic structure of the sen-
tence.

Dependency parsing consists in identifying the relationships among words in
a sentence, obtaining a tree structure with the “head” words and the words
modifying them, together with labels that characterize the type of relationship
(e.g. “adverbial modifier”).

2.4.2. Human-Annotated Corpora

The optimal way to obtain linguistic knowledge is to have human annotators
incorporate it to corpora, on which to train the neural systems. However, the
effort needed to annotate a corpus is very high and therefore the available human-
annotated corpora are small and scarce.

In POS tagging, the Brown Corpus (Francis and Kucera, 1979) is the most
frequently used dataset for English.

In constituency parsing, the most relevant corpus for English is the Penn Tree-
bank (PTB; Marcus et al., 1993), specifically a subset made available by Mikolov
et al. (2010). This dataset is also frequently used for dependency parsing after
applying some transformation rules to obtain dependency parse trees from the
constituency trees.

In dependency parsing, the Universal Dependencies initiative (Nivre et al., 2019)
compiles dependency parse corpora for multiple languages, all sharing a common
set of dependency labels and structures.

2.4.3. Trained Annotation Systems

As human-annotated corpora are very small and scarce, and given the need of
neural systems for large training datasets, a practical approach to augment or
simply create training data with linguistic knowledge is to train machine learning
systems on human-annotated corpora and then use these systems to annotate
more data.
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As the annotation quality of a trained system is lower than a human, it is ex-
pected than the resulting annotated data contains some errors and that it is more
noisy.

2.4.4. Rule-based Machine Translation Systems

In Rule-Based Machine Translation (RBMT) systems, the linguistic knowledge
itself is formalized in a set of rules and procedures to analyze the source language
structures and generate target language ones. This formalization, while not com-
parable to a human, is designed to generalize well over unseen structures, making
RBMT systems more suitable to create synthetic linguistic training data.

One of the sources for linguistic knowledge used in this work is the Rule-based
Machine Translation system Lucy LT (Alonso and Thurmair, 2003). This tool
relies in knowledge distilled and formalized by human linguists in the form of lex-
icons and rules, and provides a consistent source of linguistic knowledge across
several languages, including English, German, Spanish, French, Russian, Italian,
Portuguese and Basque. Apart from translations, it provides linguistic analy-
sis byproducts at different levels, which are used here as sources of linguistic
information to devise the vocabularies proposed.

The Lucy RBMT system divides the translation process into three sequential
stages: analysis, transfer and generation, as illustrated in figure 2.7.

parse 
+ 

analysis
transfer generationsource 

sentence
MIR 
tree

transfer 
tree

target 
sentence

word morphology features
… … …
… … …
… … …
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analysis grammar
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… … …
… … …
… … …

monolingual lexicon

generation grammar

target language

source 
word

target 
word applicability

… … …
… … …
… … …

transfer grammar

bilingual lexicon

source to target

Figure 2.7.: Workflow of rule-based machine translation systems.

The analysis phase receives a sentence in the source language. After being tok-
enized, the sentence is morphologically analyzed, leveraging a monolingual lex-
icon to obtain all possible morphological readings of each word in the sentence.
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For instance, for the English word “works”, the two valid morphological readings
are:

“work” (NST) + “s” (N-FLEX)

“work” (VST) + “s” (V-FLEX)

where NST stands for Noun Stem, N-FLEX for Nominal Inflectional Suffix, VST for
Verb Stem and V-FLEX for Verbal Suffix.

A chart parser together with an analysis grammar converts the sequence of valid
morphological readings of the words comprising the sentence and outputs a parse
tree. The terminal nodes of the parse tree (i.e. the leave nodes) depend on the
monolingual lexicon used during the parse phase. Based on entries in such a
lexicon, the parser tries to find inflectional and derivational constructions.

An example of parse tree is shown in figure 2.8.
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Figure 2.8.: Parse tree for sentence “The dogs stopped barking”.

The terminal nodes of the parse tree are the source of the morphological analysis
used to create the Morphological Unit Vocabulary described in section 3.1.
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The parse three is then applied a second set of rules that annotate, rearrange and
mutate the original parse tree nodes, to output an analysis tree, which resembles
a projective constituency tree (non projective constructs are rearranged into
projective versions). In this tree, words are no longer separated into different
nodes representing their morphological parts, but are assembled into a single
node with features expressing its morphological traits (e.g. gender, number,
verbal tense, person, case).

There is an extra post-processing sub-stage called mirification that performs the
final retouches, outputting the MIR (Metal Interface Representation3) tree. An
example of MIR tree is shown in figure 2.9. While there is a noticeable depth
reduction in comparison with the parse tree for the same sentence shown in figure
2.8, there are also other non-evident differences: flexions have been merged with
their associated lemmas, and the morphological information has been condensed
as node features, which are not show in these tree representations.
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〈s〉

〈s〉

Figure 2.9.: MIR tree for sentence “The dogs stopped barking”.

The whole analysis phase is only dependent on the source language and can there-
fore be reused for language pairs with the same source language. This phase relies
in a monolingual lexicon that contains entries for words in the source language,
together with meta-information that allows their inflection and morphological
derivation. It also relies in an analysis grammar, that is, a set of declarative
rules that are matched to the input tokens and structures and allow the iterative
construction of the parse and analysis trees.

The terminal nodes (i.e. leaves) of the MIR tree are used as the source of the
morphosyntactic analysis of the sentence used to create the Lemmatized Vocab-
ulary described in section 3.2. In the MIR tree, terminal nodes represent at

3Metal MT is the name of the system developed by the University of Texas and Siemens on which the Lucy
RBMT system was initially based (Lamiroy and Gebruers, 1989)
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least one word: during the analysis phase, any flexion node is merged with the
main word node and such a node gets annotated with morphological features
like gender, number, person, tense, case, etc. The presence of these features is
language-dependent (e.g. some languages lack case or gender). The morphologi-
cal features are disambiguated as much as possible taking information from other
parts of the sentence (e.g. the person of a verbal form may be disambiguated
by the sentence subject). Where not possible, the uncertainty is expressed (e.g.
stating all the possible persons the verbal form can be in).

The Lucy analysis takes into account the presence of multi-word expressions
(MWE) and handles them as a single element when they are included in the
lexicon. This helps capturing the semantics of such constructs during the trans-
lation process. This includes not only fixed MWEs (e.g. “in front of”), but also
flexible MWEs. For instance, verbal constructions like “take into account” are
identified and grouped into a single element.

In the transfer stage, the MIR tree is annotated and mutated into a transfer tree
that is suitable as input for the generation phase. There are different types of
transfer operations, such as language-pair dependent operations (e.g. mapping
of idiomatic expressions), contextual transfer and lexical transfer.

The transfer stage is language-direction dependent. It relies on a bilingual lexi-
con that contains word and expression translations, together with their context-
dependent applicability criteria. It also relies on a transfer grammar, that is, a
set of imperative rules that implement the needed transformations and annota-
tions.

The generation stage receives as input the transfer tree and generates the final
translation, performing any needed reorderings and adaptations. This stage is
only dependent on the target language (i.e. it can be reused for any source side
language). It relies on a monolingual target language lexicon, together with a
generation grammar, that is, a set of imperative rules to generate the output
sentence.

2.5. Linguistic Knowledge in Neural Models

Since the inception of the first NLP methods, there have been active lines of
research trying to imbue linguistic knowledge into them, with aim at improving
the system performance. This approach has been applied to symbolic systems,
to statistical models and also to neural models.
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Linguistic information was first introduced in a neural NLP system by Alexan-
drescu and Kirchhoff (2006), who proposed an LM where words are represented as
a sequence of factors, that is, the word itself plus pieces of linguistic information
associated to the word, like its POS tag or the its morphological characterization.
Factors of different types are embedded in the same continuous space and the
sequence of the previous n−1 embedded vectors is fed to the LM, which consists
in a multilayer perceptron. The LM then generates the probability of the n-th
token over the word space. In order to address the unknown word problem, they
compute the average of all words belonging to the same POS tag; this way, if
an unknown noun is to be fed to the network, all noun vectors in the embedded
space would be averaged to compute the average noun vector.

Another landmark use of linguistic knowledge are recursive neural tensor net-
works Socher et al. (2013), that allowed to profit from the syntactic structure of
the text to drive the composition of representations to address text classification
for sentiment analysis.

Since then, multiple proposals have imbued different types of explicit linguistic
knowledge into neural NLP systems. In this section we explore those that are
most related to the work presented in this thesis.

2.5.1. Linguistically Grounded Vocabularies

Data sparsity is a problem specially affecting morphologically-rich languages,
where the amount of different surface forms can be very big to use word-level
vocabularies (see Section 2.3.1). To overcome such a problem, some lines of
research study how to profit from linguistic information to allow expressing words
differently.

Some approaches consist in using automatic annotation tools to obtain linguistic
information of the input text, and then using such information to modify the
representation of the original words. Following this paradigm, Goldwater and
McClosky (2005) study the incorporation of linguistic information to SMT on
Czech, which is a highly inflected fusional language and therefore suffers from
data sparsity of non frequent surface forms. Their approach consists in lem-
matizing low-frequency words and attaching to them extra “pseudo-words” that
carried information about the case or the tense, leading to large improvements
over word-based baselines. (Tamchyna et al., 2017) propose an NMT system
where the decoder, instead of generating words or subword tokens, generates
a lemma and a series of morphological tags for it. These are combined in a
postprocessing step into the final surface form. Experiments are carried out for
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German and Czech, both being morphologically-rich fusional languages, obtain-
ing improvements of up to 1.5 BLEU points over BPE baselines. The linguistic
vocabularies we propose in Chapter 3 follow this paradigm.

A different approach is to rely on unsupervised morpheme discovery algorithms,
like that of Morfessor (Virpioja et al., 2013). Leveraging it, it is possible to obtain
morphologically sound word segmentations without an explicit linguistic super-
vision signal. In that line, Shaik et al. (2011) study different morphologically-
grounded subword partition schemes applied to LMs, including morpheme-based,
syllable-based and graphone-based, as well as their mix in the same vocabulary
with word-based representations for the most frequent words, obtaining improve-
ments of 5% in the word error rate and significat reduction of OOV words. Vania
and Lopez (2017) study the effects of subword vocabularies in language models,
including BPE and morphologically extracted subwords with Morfessor. In their
work, the predictions are normal words selected among the most frequent ones,
but the input of the model are aggregations of subwords, either by mere addi-
tion or by means of biLSTMs. Ataman et al. (2017) and Passban (2017) study
different word segmentation strategies and their influence over NMT translation
quality, respectively for Turkish and Turkish, German and Russian. They focus
on segmenting words into morphologically sound subword units by leveraging
Morfessor’s unsupervised morpheme discovery. This approach showed to work
best on agglutinative languages like Turkish, where independent affixes are added
to the word to enrich its meaning, as opposed to fusional languages, where the
inflections contain information regarding different semantic aspects, like the case,
the gender, etc.

2.5.2. POS Tags, Lemmas and Morphology for NMT

The use of linguistic information was first introduced in NMT in the work by
Sennrich and Haddow (2016). In their approach, lemmas, morphological features
(case, number and gender for nouns, person, number, tense and aspect for verbs),
POS tags and dependency labels are used as linguistic information to enrich
the source-side of an NMT system. These pieces of word-level information were
attached to each of the subwords belonging to the associated word, for the source-
side sentences. Apart from the linguistic information, subwords were tagged
with information about whether they are at the beginning, at the middle or
at the tail of the word. Hoang et al. (2016) also proposed the factored NMT
approach, and studied the effect of different attention variants on it. While the
factored NMT approach was tested on the sequence-to-sequence with attention
architecture (Bahdanau et al., 2015), Armengol-Estapé et al. (2020) studied its
applicability to the Transformer model (Vaswani et al., 2017). All the approaches
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mentioned before depend on an external automatic annotation tool to enrich the
input text with linguistic information. While some types of linguistic information
can be associated to any word type (e.g. POS tags), there are other pieces
of morphological information that are specific of certain surface forms. This,
depending on how the linguistic information is incorporated in the NMT model,
can lead to data sparsity problems. In Chapter 4 we propose sparsely factored
NMT, a variant of the approach by Sennrich and Haddow (2016) that is more
appropriate for such cases.

While the previous approaches inject linguistic information into the encoder part
of the network (i.e. the source side text), it is also possible to do analogously
for the target side. In their work, Garcıa-Martınez et al. (2016) proposed to
modify the decoder part of a standard word-level sequence-to-sequence model to
generate two elements per position of the output sentence: the first element is the
lemma of the word, while the second element is the morphosyntactic information
of the original word, which is referred to as factors. Each of the two outputs per
position casts the probability over the lemma and factor space respectively. A
similar approach was proposed by (Song et al., 2018) for the Russian language;
they modify the decoder of a normal sequence-to-sequence with attention model
to generate first the stem of the current word, and then its suffix based on the
internal states and output of the decoder units, and then using a composite loss
with a separate terms for stems and for suffixes.

The generation of proper surface forms of morphologically rich languages has
been studied in the literature, especially in transduction from morphologically
simpler languages (e.g. English-to-German translation). With that purpose,
Conforti et al. (2018) proposed to predict the morphological information of a
morphologically rich language from merely the lemmas and word capitalization
scheme.

2.5.3. Dependency LMs

The use of dependency parse trees to drive a language model was first proposed
by Chelba et al. (1997), with a similar structure to an n-gram LM, but where
the context of a word is its preceding bigram plus a list of preceding words whose
parent does not precede it. Their model was not generative, but was only meant
to compute the perplexity of an input sentence. They suffered from the same
problem as our Iterative Expansion LMs (see Chapter 6), namely that they need
both a sentence and a candidate dependency parse tree to compute the perplexity.
In order to be able to approximate the unconditional perplexity (which would
need to marginalize over all possible dependency trees for the given sentence),
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the authors use the product of the probability of the sentence given the parse
tree and the probability of the parse tree given the sentence.

Shen et al. (2008) make use of the dependency tree in a probabilistic LM, as part
of an SMT system. They computing the probability of each word conditioned
on its parent and the sibling words between both. Their approach is also an
approximation to the perplexity based on heuristics. Given that the purpose of
their LM was just to compare different sentences generated by the SMT system,
the value of the perplexity was not the focus, but rather the relative value for
different candidate translations.

Mirowski and Vlachos (2015) propose a dependency LM based on RNNs, where
the dependency tree is decomposed into a collection of unrolls, that is, paths from
the root to one of the leaves, and where the probability of a word can be predicted
from these unrolls. In order to enable the computation of the sentence-level
perplexity, they assume that each word in a sentence is conditionally independent
of the words outside of its ancestor sequence in the dependency parse tree. Buys
and Blunsom (2018) propose a shift-reduce transition-based LSTM (Hochreiter
and Schmidhuber, 1997) dependency LM that can be used for language modeling
and generation by means of dynamic programming.

In the early experiments of Iterative Expansion LMs (see Section 6.7), we dis-
carded their use to compute perplexities because the approximations we experi-
mented with drew values that were not comparable with sequential LMs, which
do not need marginalizing to obtain perplexities.

2.5.4. Syntax-driven Generation and Modeling

While most text generation model are autoregressive, there are several recent pro-
posals for non-autoregressive generation (see Section 2.3.4). Normally, those ap-
proaches either define explicitly the generation ordering or handle the generation
order as latent variables and try to optimize over the insertion ordering space.
There are other approaches that try to assimilate the mentioned latent vari-
ables with syntactic information, either dependency parse trees or constituency
trees. Following this paradigm, recurrent neural network grammars (RNNG;
Dyer et al., 2016) are recursive models that operate with a stack of symbols
that can be populated with terminals or nonterminals or “reduced” to gener-
ate a syntactic constituent, obtaining as a result a sentence and its associated
constituency parse tree. In the same line, syntactically supervised transformers
(Akoury et al., 2019) make use of a simplified form of the constituency parse tree
as latent variables, modeling it autoregressively in a supervised way to later use
it as input for a fully non-autoregressive transformer that generates the output
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sentence. Our proposal for Iterative Expansion LMs from Chapter 6 follows this
same paradigm.

Other models try to model syntactically sound tree structures while avoid a
syntactic supervision signal. Shen et al. (2018) propose parsing-reading-predict
networks, where skip-connections are used to integrate constituent dependency
relations with RNNs. Their model does not need syntactic supervision but can
learn the underlying dependency structures by leveraging a syntactic distance
together with structured attention. Ordered neurons (Shen et al., 2019) are a
modified version of LSTMs where the latent sentence tree structure is used to
control the dependencies between recurrent units by means of special “master”
input and forget gates.

34



3. Linguistic Knowledge-based Vocabularies

for Neural Machine Translation

In neural networks for text generation, text is normally represented as discrete
tokens, either with one token per word (word-level vocabulary) or splitting indi-
vidual words into subwords and representing each subword with a differen token
(subword-level vocabulary). Further background on discrete text representation
in neural networks can be found in section 2.3.1.

In this chapter we propose two different strategies that rely on linguistic infor-
mation to provide morphologically sound vocabulary definitions for their use in
neural networks applied to NLP tasks. As illustrated in Figure 3.1, we propose
to use a linguistic engine, which is described in detail in section 2.4.4. Such an
engine was used in both the vocabulary extraction phase, were the vocabulary
is defined based on a training corpus, and in the token encoding phase, where
the vocabulary is leveraged to encode the text as token identifiers. Note that
the vocabulary extraction phase takes place before training the network and the
token encoding phase takes place both at training time (to encode the training
texts) and at inference time.

token encoding phasevocabulary extraction phase

the dogs are in the house

training 
corpus 7 6 2 8 9 7 5 1

vocabulary

token identifiers

encodinglinguistic 
engine

linguistic 
engine

Figure 3.1.: Vocabulary extraction and token encoding phases.

In the following sections we describe both the vocabulary extraction phase and
the token encoding phase for each of the two proposed approaches. Related work
in the application on linguistic knowledge for vocabulary creation can be found
in section 2.5.1.
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3.1. Morphological Unit Vocabulary

The goal of the Morphological Unit Vocabulary is to serve as a linguistically-
grounded subword vocabulary, aiming at addressing the out-of-vocabulary prob-
lem of word-level vocabularies while allowing a morphological interpretation of
the segmentation. This vocabulary definition strategy relies on the morphological
analysis of a sentence, which comprises a sequence of morphological units that
may be lexical morphemes, multi-morpheme stems, separate inflectional mor-
phemes or even fixed/semiflexible multi-word expressions, e.g. “in front of”.

During vocabulary extraction, all sentences in the training data are analyzed
and their morphological units are used to elaborate the vocabulary, as shown
in Figure 3.2. The specific information from the node that is incorporated as
a token comprises the string associated with the node (being it a lexical mor-
pheme, a word or a multi-word expression), together with its category, which is
loosely analogous to the Part-of-Speech (POS) tag (e.g. noun stem (NST), verb
stem(VST), noun flexion (N-FLEX)).

unit cat. #count
dog NST 413

s N-FLEX 150
work VST 75
the DET 1234

unit cat. token 
IDcat NST 0

s N-FLEX 1
dog NST 2
the DET 3
are VST 4
in PREP 5

training 
corpus

linguistic 
engine

vocabulary

morphological 
units

N most 
frequent

Figure 3.2.: Morphological subword vocabulary extraction.

In order to encode a text into a sequence of tokens, the text is analyzed by means
of a linguistic engine and the resulting morphological units are used as queries
to find the associated token indexes from the vocabulary table.

Given the high amount of possible tokens and the practical size limitations of a
vocabulary meant to be used with neural networks, only the N most frequent
tokens from the training data are selected to be part of the vocabulary.

If the analysis is driven by a lexicon, like in our case, this constrained vocabulary
implies a mismatch with the unconstrained vocabulary used by the linguistic
engine: when encoding the tokens of a text, the parse tree may contain terminal
nodes that we cannot encode because they are not part of the vocabulary, either
because they were not present in the training data or because their frequency of
appearance was not enough to grant an entry in the final size-limited vocabulary.
In order to eliminate such a vocabulary mismatch, once the Morphological Sub-
word Vocabulary is extracted, the lexicon used by the linguistic engine (which
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Figure 3.3.: Token ID encoding process with the morphological unit vocabulary.

drives the extraction of the morphological units) is pruned to remove any entry
that is not part of the extracted vocabulary. These results in the removal of
low-frequency words that, if encountered during the token encoding of a text,
will be encoded as unknown words.

Words that are not part of the training data are marked in the analysis as
unknown words. In order to cope with this OOV word situation, we can follow
the approach by Luong and Manning (2016) and reserve some of the tokens in
the vocabulary for character-based tokens. This way, any character found in
the training data has its own token in the reserve character-based token range.
As with subword vocabularies, this character-based subvocabulary makes <UNK>
tokens not necessary for Mophologic Unit Vocabularies.

The resulting layout of the tokens table is outlined in Figure 3.4, with an initial
range for special tokens like the end of sequence token or the padding token, an
optional small range for character-level tokens, and finally the largest range for
the morphological unit tokens.

Some examples of the resulting Mophological Unit tokenization are:

• The dogs are in the house: (the, DET), (dog, NST), (s, N-FLEX), (are, VST),
(in, PREP), (the, DET), (house, NST), 〈 /s 〉
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token ID token info
0

~5

1000

special tokens: <pad>, <eos>

(optional) character-level tokens: a, 们, ي

morpho.units: (work, NST), (s, N-FLEX)

Figure 3.4.: Overall distribution of the morphological units vocabulary table.

• My mom said I mustn’t tell lies : (my, DET), (mom, NST), (sai, VST), (d, V-FLEX),
(I, PRN), (must, VST), (n’t, ADV), (tell, VST), (lie, NST), (s, N-FLEX) 〈/s〉

3.2. Lemmatized Vocabulary

The goal of the Lemmatized Vocabulary is to decouple meaning from morpho-
logical information in each word. For this, each word generates two tokens: one
for the lemma and one for the relevant morphological traits of the word (e.g.
gender, number, tense, case).

The source of linguistic information in this case is the morphosyntactic analysis
of the sentence, which provides information for each word about its POS tag and
its morphological features, such as gender, number, person, tense, case, etc. The
presence of these features is language-dependent (e.g. some languages lack case
or gender). Note that the morphological features do not contain information
about the semantics of the word, but only about the morphological traits that,
when added to the lemma, conform the specific surface form of the word.

During the vocabulary extraction phase, all sentences in the training data are
analyzed and the resulting lemmas and morphological features are used to elab-
orate the vocabulary, as shown in Figure 3.5. For each word, the lemma is added
to a lemma frequency counter, and the morphological features are added to an
analogous morphological feature-set frequency counter.

In order to encode a text into a sequence of tokens, the text is analyzed by means
of the linguistic engine. For each word, we obtain the lemma and the set of its
morphological features (e.g. verb in present tense first person singular). For each
lemma and for each morphological feature set we then query the vocabulary table
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Figure 3.5.: Lemmatized Vocabulary extraction.

for the appropriate token ID. This is illustrated in Figure 3.6, where the reuse of
morphological feature set token IDs is highlighted in bold font.

As in the Morphological Unit Vocabulary (see Section 3.1), the mismatch be-
tween the Lemmatized Vocabulary and the lexicon used for the morphosyntactic
analysis is solved by pruning the latter to only contain elements from the former.
The same way, unknown words are encoded by allocating a range of the token
indexes for character-based tokens and using such character-based subvocabu-
lary to encode any string that is marked as unknown. The distribution of the
different elements present in a Lemmatized Vocabulary is illustrated in Figure
3.7.

In order to cope with out-of-vocabulary words, we reserve a range of tokens for
character-level tokens so that any word or numeral can be encoded whether it was
seen or not in the training data. The layout of the Lemmatized Vocabulary table
is outlined in Figure 3.7, where we can see an initial range for special tokens,
an optional range for character-based tokens, the largest range for the lemma
tokens and the final range for every possible morphological feature set found in
the training data. Note that another possibility to address the OOV words is to
add the special token <UNK> to represent them and have a post-processing step
to handle such a token; a frequent approach is to use the attention vector of
sequence-to-sequence models to replace any <UNK> token at the output with the
word from the input sentence with the highest attention value.

The nature of the linguistic engine we use gives us a morphosyntactic analysis
with some deviations from the original sentence: first, the words in the sentence
are rearranged to turn its structure into a projective parse, if it was not pro-
jective already. This way, the English sentence “Who do you want me to talk
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Figure 3.6.: Token encoding phase with the lemmatized vocabulary.

to?” is rearranged as “You do want me to talk to who?”. A similar rearrange-
ment occurs for other cases like separable phrasal verbs, which are rearranged
so that the preposition sits next to the verb, and both form together a single
multiword; this way “You let me down” would be rearranged into “You let down
me”, and “let down” would be a single entity, with a single lemma and a single
morphological feature set. This word rearrangements and aggregations favor a
semantical interpretation of the sentence when used to represent the input to a
neural system.

Given that the morphological information tokens always follow the lemma to-
kens, and that there are words in natural languages that do only admit one
surface form, the lemmatized vocabulary can waste tokens that add no further
information. In order to avoid such a situation, we only include the morphologi-
cal information tokens if they are actually needed, that is, if the lemma they are
associated to admits more than one surface form and hence can be subject to
morphological variations.

Some examples of the resulting Lemmatized tokenization are:

• The dogs are in the house
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Figure 3.7.: Overall distribution of the lemmatized vocabulary table.

lemma: the, morpho:(DET:(NU (PL SG))),
lemma: dog, morpho:(NST:(NU (PL) PS (3))),
lemma: be, morpho:(VST:(MD (IND) NU (PL) PF (FIN) PS (3)...)),
lemma: in, morpho:(PREP:()),
lemma: the, morpho:(DET:(NU (PL SG))),
lemma: house, morpho: (NST:(NU (SG) PS (3))),
〈/s〉

• My mom said I mustn’t tell lies:

lemma: my, morpho: (DET:(NU (PL SG)),
lemma: mom, morpho: (NST:(NU (SG) PS (3)),
lemma: say, morpho: (VST:(MD (IND) NU (SG)...),
lemma: I, morpho: (PRN:(CA (S) NU (SG) PS (1))),
lemma: must, morpho:(VST:(MD (IND) NU (SG)...),
lemma: not,
lemma: tell, morpho:(VST:(MD (IND) NU (SG PL)...),
lemma: lie, morpho:(NST:(NU (PL) PS (3)),
〈/s〉

3.3. Experiments

In order to evaluate the vocabulary definition strategies proposed in Sections 3.1
and 3.2, we test them using machine translation as downstream task.

Neural Machine translation models compute the translation of a source sequence
of tokens x1, . . . , xT by predicting token by token of the translation sequence
y1, . . . , yT ′, which has a potentially different length T ′:
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p (y1, . . . , yT ′|x1, . . . , xT ) =
T ′∏
t=1

p (yt|x, y1, . . . , yt−1) (3.1)

The currently dominant NMT architecture is the Transformer model (Vaswani
et al., 2017), which surpasses in translation quality the original sequence to se-
quence models (Sutskever et al., 2011; Cho et al., 2014) and their variants with
attention (Bahdanau et al., 2015; Luong et al., 2015). In our NMT experiments,
we make use of the original implementation of the Transformer architecture by
their authors, who released it as part of the tensor2tensor library. We use a
standard configuration (transformer base), which can be found in the hyper-
parameter configuration shown in Table 3.1, with independent embeddings in
the encoder and decoder inputs in order to freely allocate the source embedding
table for the linguistic vocabulary and, in the target side, with the final projec-
tion tied with the embedding matrix. We also used parameter averaging after
convergence.

attention layers 6
attention heads per layer 8
hidden size (embedding) 512
batch size (in tokens) 4096 (× 4 GPU)
training steps 20 epochs
vocabulary type word pieces
vocabulary size 32K
optimization algorithm Adam
learning rate warmup + decay

Table 3.1.: Hyperparameters of the Transformer model for the NMT
experiments.

We performed experiments on English-German, French-English and Basque-
Spanish datasets. The purpose of choosing those languages is to test the pro-
posed vocabulary definition strategies both in morphologically rich languages
(i.e. Basque, German) and in morphologically simpler ones (i.e. English).

German nouns are inflected for number (singular and plural), gender (masculine,
feminine and neuter) and case (nominative, accusative, genitive and dative).
French nouns are inflected for number (singular and plural) and gender (mascu-
line and feminine). English nouns are only inflected for number (singular and
plural) and case (nominative and genitive). Spanish nouns are inflected for num-
ber (singular and plural) and gender (masculine and feminine). Basque nouns
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are inflected (or rather they take suffixes for) number (singular, plural and “mu-
gagabe”) and case (nominative, ergative, genitive, local genitive, dative, allative,
inessive, partitive, etc.).

As far as verbs are concerned, German verbs have different inflections for 1st, 2nd

and 3rd person singular and 1st/ 3rd persons and 2nd person plural in the present.
French verbs are inflected for number and person, and gender in perfective com-
pound tenses. English finite present tense verbal forms are only inflected in the
3rd person singular. Spanish verbs are inflected for person (1st, 2nd and 3rd),
number (singular and plural), tense (present, past, future), aspect (perfective,
punctual and progressive) and mood (indicative, subjunctive, conditional and
imperative). Basque verbs take different forms for person (1st, 2nd and 3rd, not
only for the subject but also for the direct and indirect objects), number (singu-
lar and plural), tense (present, past and future), aspect (progressive and perfect)
and mood (indicative, subjunctive, conditional, potential and imperative).

Also, German presents compounds, that is, concatenation of words with no sep-
aration in between:

Übersetzungsqualität → Übersetzung (translation) + s + Qualität (qual-
ity)

Speicherverwaltung → Speicher (memory) + Verwaltung (management)

For the English-German experiments, we make use of the WMT14 English-
German news translation data1. The characteristics of the used training dataset
are summarized in Table 3.2.

Corpus Sents. Words Vocab. Max.length Avg.length
German 96159821 3181111 2937 21.3
English

4520620
103664418 1909854 4225 22.9

Table 3.2.: Statistics of the German-English training data.

For the French-English experiments, we make use of a combination of the News
Commentary corpus and the Europarl corpus. The characteristics of the resulting
training corpus are shown in Table 3.3

Corpus Sents. Words Vocab. Max.length Avg.length
French 64894699 145953 245 31.1
English

2085044
58984908 117311 237 28.3

Table 3.3.: Statistics of the French-English training data.

1http://www.statmt.org/wmt14/translation-task.html
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For the Basque-Spanish experiments, we use the EiTB news corpus (Etchegoyhen
et al., 2016). Its characteristics are shown in Table 3.4.

Corpus Sents. Words Vocab. Max.length Avg.length
Basque 10102635 345351 318 18.3
Spanish

552752
15643597 225038 317 28.3

Table 3.4.: Statistics of the Basque-Spanish training data.

In order to evaluate the translation quality, we use BLEU (Papineni et al., 2002),
which consists of an aggregation of n-gram matches together with a penalty for
sentences shorter than the reference translations. The BLEU scores shown were
computed by means of the sacrebleu tool (Post, 2018) with the lower case
setting. Given the known problems BLEU presents (Callison-Burch et al., 2006),
we also include the METEOR (Banerjee and Lavie, 2005) scores, except for
Basque, which is not supported by METEOR.

Vocabulary
de-en en-de

BLEU METEOR BLEU METEOR

word pieces 31.81 0.3537 26.35 0.4800 (baseline)
(Sennrich and Haddow, 2016) 30.20 0.3386 25.90 0.4653 (baseline)
lemmatized 31.14* 0.3521 25.49* 0.4697
morpho.units 31.33* 0.3505 25.89* 0.4764

Table 3.5.: German-English and English-German translation quality (case-
insensitive BLEU score) with different source vocabulary strategies
(* p < 0.05 in the hypothesis test comparing with the word piece
baseline).

Vocabulary
fr-en en-fr

BLEU METEOR BLEU METEOR

word pieces 32.01 0.3554 34.36 0.5707 (baseline)
(Sennrich and Haddow, 2016) 27.60 0.3288 31.90 0.5430 (baseline)
lemmatized 29.66* 0.3404 33.68 0.5677
morpho.units 31.30* 0.3516 34.82 0.5758

Table 3.6.: French-English and English-French translation quality (case-
insensitive BLEU score) with different source vocabulary strategies
(* p < 0.05 in the hypothesis test comparing with the word piece
baseline).
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Vocabulary
eu-es es-eu

BLEU METEOR BLEU METEOR

word pieces 28.89 0.5072 24.48 - (baseline)
(Sennrich and Haddow, 2016) 24.16* 0.4654 21.45* - (baseline)
lemmatized 27.32* 0.4945 22.39* -
morpho.units 28.52 0.5045 23.83* -

Table 3.7.: Basque-Spanish and Spanish-Basque translation quality (case-
insensitive BLEU score) with different source vocabulary strategies
(* p < 0.05 in the hypothesis test comparing with the word piece
baseline).

In Tables 3.5, 3.6 and 3.7 we can see the BLEU scores obtained by using different
source vocabulary definition strategies, for German↔English, English↔French
and Basque↔Spanish respectively. As baselines, we used a word piece vocabulary
(Wu et al., 2016) and the linguistic factored approach by Sennrich and Haddow
(2016). The word piece vocabulary was used for the original implementation
of the Transformer model (Vaswani et al., 2017), with the same hyperparameter
configuration from Table 3.1, with shared embeddings in the encoder and decoder
inputs, and also in the final projection2. The factored

approach by Sennrich and Haddow (2016) is the standard way for incorporating
linguistic information; we used the same extra linguistic features as the authors,
namely the lemma, POS tag and syntactic dependency label; as a subword vo-
cabulary is used, each feature is copied to all subwords in the same word, and
the position of the subword within the word (beginning, end, middle) is also
added as feature; all feature embeddings are concatenated together with the
token embedding to form the subword representation. In order to make this
baseline comparable to the word piece baseline and to our own work, we added
the linguistic features to the Transformer model instead of the original LSTM-
based sequence-to-sequence with attention model from (Sennrich and Haddow,
2016), keeping all the hyperparameters from the word piece baseline, while using
the same linguistic feature-related hyperparameters from (Sennrich and Haddow,
2016), namely the feature embedding dimensionalities. We used the implemen-
tation of the factored NMT Transformer from OpenNMT-py (Klein et al., 2017)
with custom improvements in order to support specifying vocabulary sizes and
embedding dimensions for the linguistic features. We used the base hyperpa-
rameter configuration (see Table 3.1), with separate embeddings for source and
target sides, in order to freely allocate the source embedding space among the
factors. In the target side the output projection was tied with the embeddings.

2https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py
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3. Linguistic Knowledge-based Vocabularies for Neural Machine Translation

For the linguistic annotations we used Stanford’s corenlp (Manning et al., 2014)
for English and French, ParZu (Sennrich et al., 2009, 2013) for German, like in the
original work by Sennrich and Haddow (2016), LucyLT (Alonso and Thurmair,
2003) for Basque and Spacy (Honnibal and Montani, 2017) for Spanish. Note that
the Morphological Units and Lemmatized vocabularies include the character-level
subvocabulary described in Section 3.1 to handle OOV words.

In all cases, the target language vocabulary strategy are word pieces in order to
ensure a proper comparison.

As part of the experiments carried out, we also evaluate the influence of the
proposed morphologically-based vocabularies on the translation quality for out
of domain texts. For this, we use the WMT17 biomedical test sets, namely the
English-German HimL test set3 the French-German EDP test sets4, and a sample
of 1000 sentences of the Open Data Euskadi IWSLT18 corpus (Jan et al., 2018),
which contains documents from the Public Administration.

Given that these benchmarks are not included in sacrebleu, we used Moses’
multi-bleu.pl script, together with the standard tokenizer. The out-of-domain
results are summarized in Tables 3.8, 3.9 and 3.10.

In order to assess the statistical significance of the differences between our pro-
posed approaches and the word pieces baselines for the in-domain and out-of-
domain test, we made use of the bootstrap resampling approach (Koehn, 2004;
Riezler and Maxwell, 2005)5, taking 95% as significance level (p < 0.05 in the
hypothesis test comparing with the word piece baseline). Statistical significance
is reflected in the result tables with a * mark next to the BLEU score.

Vocabulary
de-en en-de

BLEU METEOR BLEU METEOR

word pieces 40.77 0.4059 36.75 0.5547 (baseline)
(Sennrich and Haddow, 2016) 37.64 0.3723 33.86 0.5160 (baseline)
lemmatized 41.35* 0.4059 36.04 0.5496
morpho.units 41.57* 0.4076 36.67 0.5549

Table 3.8.: German-English and English-German translation quality in out-of-
domain text (* p < 0.05 in the hypothesis test comparing with the
word piece baseline)

3http://www.himl.eu/test-sets
4https://www.statmt.org/wmt17/biomedical-translation-task.html
5Moses script bootstrap-hypothesis-difference-significance.pl was used to compute the significance

tests.
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Vocabulary
fr-en en-fr

BLEU METEOR BLEU METEOR

word pieces 16.85 0.2122 19.58 0.3763 (baseline)
(Sennrich and Haddow, 2016) 14.89 0.1993 18.02 0.3607 (baseline)
lemmatized 15.74* 0.2086 18.34* 0.3681
morpho.units 16.25 0.2146 19.36 0.3749

Table 3.9.: French-English and English-French translation quality in out-of-
domain text (* p < 0.05 in the hypothesis test comparing with the
word piece baseline)

Vocabulary
eu-es es-eu

BLEU METEOR BLEU METEOR

word pieces 16.94 0.4439 5.78 - (baseline)
(Sennrich and Haddow, 2016) 13.80* 0.3715 7.01* - (baseline)
lemmatized 19.85 0.4348 8.75 -
morpho.units 20.66 0.4423 9.06 -

Table 3.10.: Basque-Spanish and Spanish-Basque translation quality in out-of-
domain text (* p < 0.05 in the hypothesis test comparing with the
word piece baseline)

The obtained English↔German results suggest that, while for the morphologi-
cally poor language (English) the translation quality is the same as the strong
subwords baseline, the quality for the morphologically rich language (German) is
improved in a statistically significant way. On the other hand, for English↔French
results are weaker in the case of the lemmatized vocabulary, while the morpho-
logical units vocabulary presents comparable performance to the word pieces
baseline. For Basque and Spanish, we see a very large improvement of both lem-
matized and morphological unit vocabulary, with up to 3.5 BLEU points more
than the word pieces baseline for Basque→Spanish and 3.2 BLEU points for
Spanish→Basque. We conclude that for the morphologically poor language, the
use of linguistic vocabularies actually harms the translation quality for in-domain
data (Tables 3.5, 3.6, 3.7), while for a morphologically rich language there is sta-
tistical evidence that the quality is higher than the strong subword baseline for
out-of-domain data for German and Basque and comparable for French (Tables
3.8, 3.9, 3.10). This way, for the morphologically rich language with in-domain
test data and for the morphologically poor language with out of domain data
there is no statistical evidence to distinguish the quality of our proposed ap-
proaches from the strong subword baseline.
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Baseline (...) and were treated in intensive care stations

Morpho.units (...) and were treated in intensive care units

Reference (...) and were receiving care in intensive care units

Baseline (...) pest printing was regularly monitored

Morpho.units (...) the skull pressure was regularly monitored

Reference (...) had regular monitoring of pressure in the skull

Baseline Our objective was to investigate whether the number of

people who died changed by the appointment of antithrombin.

Morpho.units Our objective was to investigate whether the number of

people who died changed by administering antithrombin.

Reference Our goal was to investigate whether the number of

people who died changed by giving antithrombin.

Baseline it is not known whether the peripheral Iridium inhibits

the development or progression of a pigment plum in practice.

Morpho.units it is not known whether peripheral irridotomy inhibits

the development or progress of pigment glaucoma.

Reference it is unknown whether peripheral iridotomy reduces

the development or progression of pigmentary glaucoma.

Baseline (...) the use of Neuamine inhibitors

Morpho.units (...) the use of neuraminidase inhibitors

Reference (...) the use of neuraminidase inhibitors

Table 3.11.: German-to-English out-of-domain examples.

Table 3.11 shows some examples comparing the German-to-English outputs from
out-of-domain text of the baseline and the Morphological Unit Vocabulary. The
examples show that our linguistically-driven morphological segmentation has a
clear impact on choosing more appropriate lexical units. Improvements come ei-
ther from infrequent or specific words (e.g. glaucoma, irridotomy) or from generic
words that are adequate for the particular context (e.g. units, administering).

3.4. Discussion

The proposed linguistic knowledge-based vocabulary definition strategies offer a
way to profit from morphosyntactic information for downstream tasks like MT.
The two main differences with other approaches like factored NMT (Sennrich
and Haddow, 2016) derive from the use of a semantics-aware linguistic engine
and from its non-aggregative management of linguistic information.
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About the linguistic engine used, given that its ultimate goal is to perform rule-
base translation, it needs to analyze the semantics of the input sentence, and uses
it to disambiguate when multiple possible interpretations of a word are possible.
When the disambiguation is not possible (e.g. when the subject of a sentence is
not present and the verb conjugation admits more than one interpretation), the
uncertainty is reflected in the analysis and our proposed vocabularies use such an
information to compose the encoded representation. Another peculiarity of the
used linguistic engine is that its analyses are driven by a lexicon. This makes it
possible to adjust it to match the neural vocabulary in order to avoid mismatches
between word and multi-word representations in both sides.

The non-aggregative encoding strategy makes it possible for the systems address-
ing the downstream tasks to directly use linguistic information, but also makes
the resulting sequences longer. In order to further characterize the impact in se-
quence length, we computed the distribution of the ratio of the sequence lengths
of both the Morphological Unit Vocabulary and the Lemmatized vocabulary with
respect to a normal space and punctuation-based tokenization. The vocabularies
are extracted from the training data, while the distribution is computed over a
sample of 1000 sentences of the same dataset. We compute such a distribution
for a configuration of our vocabularies where the OOV words are encoded as an
<UNK> token and also where they are handled by a character-level subvocabulary,
in order to understand the influence of this type of words over the final sequence
length. The distribution of the same ratio for a word pieces vocabulary is also
computed as reference. Figure 3.8 shows the distributions for the Morphological
Unit Vocabulary, while Figure 3.9 shows it for the Lemmatized Vocabulary.

As we can see in Figures 3.8 (Morphological Units) and 3.9 (Lemmatized), the
sequence length with the proposed morphologically-grounded vocabularies with
respect to the number of words in the sentence is higher than with word pieces
(Wu et al., 2016), especially when the character-level subvocabulary is used to
cope with the OOV words.

As shown in the figures, the differences in length depend on the morphological
characteristics of the specific language. For English, with a simpler morphology,
the ratio of sequence length with the proposed morphology-based vocabularies
with respect to word pieces is higher than with German, French or Basque,
which have richer morphology and hence needs also more word pieces for a single
sentence.

This difference in length may affect the quality depending on the model’s ability
to handle long-range dependencies. For instance, multi-head attention mecha-
nisms are known to be able to properly handle such type of dependencies, while
RNNs present problems in that regard (Hochreiter, 1991; Bengio et al., 1994).
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Figure 3.8.: Distribution of the ratio of sequence length with the Morphological
Unit Vocabulary and a standard word-based tokenization.

The non-aggregative encoding strategy also allows using neural architectures
without any modification, unlike the factored approaches like those by Sennrich
and Haddow (2016) and Garcıa-Martınez et al. (2016), which need to account
for the different representation spaces for lemmas and factors and keep sepa-
rate embedding tables, which multiply the number of hyperparameters to tune,
namely the vocabulary size and embedding dimensionality for each of the linguis-
tic features. In this sense, the results obtained by factored approaches using the
same hyperparameter configuration as Sennrich and Haddow (2016) offer inferior
translation quality compared to the word piece vocabulary; this can be attributed
to the non optimality of the hyperparameters for our specific datasets and the
usage of the Transformer architecture instead of the original LSTM sequence-to-
sequence with attention model from (Sennrich and Haddow, 2016).

Therefore, compared to word piece approaches and to the linguistic approach by
Sennrich and Haddow (2016), the mophological vocabularies approach is suitable
for scenarios where the source language is a morphologically rich language like
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Figure 3.9.: Distribution of the ratio of sequence length with the Lemmatized
Vocabulary and a standard word-based tokenization.

German, where the chosen neural architecture can handle long-range dependen-
cies, like the Transformer model (in order to cope with the longer sequences),
and where the available training data does not match the domain of the text the
model is going to be fed as input at inference time.

3.5. Conclusion

Our experiments show that the proposed morphology-based vocabulary definition
strategies provide improvements or maintain comparable quality in the transla-
tion of out-of-domain texts for languages that present a rich morphology like
German and Basque. We also observe that no significant loss is suffered in trans-
lation quality for morphologically poor languages like English in that type of
texts.
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Qualitatively, whenever we inject linguistic information in our neural systems,
we are progressing in the interpretability of such systems. In this chapter we
proposed to do a linguistically-driven segmentation of our vocabulary, which
enables morphologically-aware interpretation of the performance in downstream
tasks. This is a line of research to be pursued in the future, especially in relation
to the use of linguistic vocabularies for text generation, for instance, using the
proposed vocabularies for the target side in NMT tasks.
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Domain shift is one of the main challenges yet to overcome by neural machine
translation (NMT) systems (Koehn and Knowles, 2017). This problem happens
when using an MT system to translate data that is different from the data used
to train it, mainly regarding its domain (e.g. the MT system was trained on news
data but is then used to translate biomedical data). The problem consists in a
drop in the translation quality with respect to translations of in-domain text.

Injecting linguistic information has been used in the past to improve the transla-
tion quality of NMT systems (see Section 2.5 and Chapter 3). The improvements
obtained for in-domain data are normally small, while those obtained for out-
of-domain text are usually larger (Casas et al., 2020c; Garćıa-Mart́ınez et al.,
2020). The most frequent and straightforward approach to inject linguistic in-
formation into NMT systems is to use annotation systems to obtain word lemmas
and part-of-speech (POS) tags. These pieces of information are then attached as
“factors” to each subword in the original word Sennrich and Haddow (2016). In
this scheme, however, it is assumed that each word has a value for each of the
possible factors. We refer to these as “dense” linguistic annotation schemes.

Nevertheless, not all linguistic annotations are dense. Some examples of mor-
phologically rich language features that are not dense include noun cases and
verb conjugations, where only some type of words can be tagged with such kind
of information. These “sparse” linguistic annotation schemes cannot be easily
accommodated in factored NMT architectures, as the space of possible values of
the morphological features factor is large (each word can have a combination of
such feature values) and a specific combination may seldom appear in the train-
ing data, despite the fact that each of its individual feature values may appear
frequently. This leads to a situation where many of the embedded vectors of the
morphological features factor are updated infrequently during training. This fact
is illustrated in Figure 4.1, where we show the frequency count of the morpho-
logical feature combinations versus the frequency count of each individual mor-
phological feature, for the training split of one datasets used in our experiments.
In that figure, we can appreciate that the number of different combinations is an
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order of magnitude larger than the individual features (580 combinations vs. 24
individual feature values), and that the frequency count is also multiple times
lower.

1 5 24 100 580
log(symbol index)

300k
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900k
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feature combinations

Figure 4.1.: Presence of the morphological information attributes in the training
data words. The grey histogram reflects the frequency count of the
different combinations of the morphological features factors in the
IWSLT14 de-en German data, while the purple histogram reflects
the frequency count of each morphological feature value with the
same textual data. The morphological features were extracted with
ParZu. The X axis is expressed in logarithmic scale.

In this chapter, we propose an approach to inject sparse linguistic annotations
into NMT systems. We refer to it as sparse factored NMT. Related work in
the application on linguistic knowledge for vocabulary creation can be found in
section 2.5.1.

4.1. Sparse factored NMT

In our proprosed approach, instead of taking raw text as input to translate, like
normal NMT systems do, we receive the text annotated by a linguistic annotation
system for the source-side. For training, in the target side we take raw text. This
aspect is the same as in the work by Sennrich and Haddow (2016). However,
in their work, for sparse linguistic annotation schemes, like the morphological
features they use, each annotation is a collection of attributes that may or may
not be present for each word type.

Instead of taking each combination as a different factor value, we propose to label
each word based on the morphological feature space instead of the morphological
feature combination space. For this, we keep an embedding table where each
entry is a value of a morphological feature. For instance, in the German sentence
“Wir brauchen Daten, keine Hilfe”, taken from the IWSLT14 validation data, in
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factored NMT pronoun “Wir” would be labeled with the morphological feature
combination 1|Pl| |Nom (first person, plural, nominative case), while in sparse
factored NMT the same word would be labeled with three tags: 1, Pl and Nom.

Also, regarding the use of word tokenization or subword tokenization (e.g. Byte-
Pair Encoding (BPE; Sennrich et al., 2016c)), we propose the following. Apart
from the morphological feature vocabulary described before, we also maintain a
lemma-vocabulary; when encoding text for sparse factored NMT, for each word
we check if it is a lemmatizable word (i.e. not a number, punctuation, etc) and
if its lemma is present in the lemma vocabulary. If it is, we encode the word
as the embedded vector of the lemma. This vector is added to the embedded
vectors of every morphological feature the word had to compute the word’s vector
representation.

If the word could not be lemmatized or if the lemma is not present in the lemma
vocabulary, we tokenize the word using BPE, for which we keep also an embed-
ding table. In this case, there are no morphological features incorporated, just
the subword token representation.

Therefore, our tokens can be either lemma plus morphological features or sub-
words. Once the text is encoded as a sequence of embedded vectors, it is passed
as input to a standard Transformer model (Vaswani et al., 2017). Note that our
proposal only affects the embedding layer of the encoder of an NMT architecture.
Therefore, it can be applied to both sequence-to-sequence with attention or the
Transformer.

We propose a further extension on top of the base variant described before: we
take a new hyperparameter, the “linguistic dropout” (LD), which represents the
probability of using a subword tokenization for a word instead of the (lemma +
morphological features) representation. During data preparation, both the sub-
word representation and the lemmatized representation (if available) are prepared
and, during training, a sample of the Bernoulli distribution with the LD probabil-
ity determines which representation is used for each word at batch creation time.
The purpose of LD is to make the model learn to handle the situation where
there is no linguistic information available (e.g. for out-of-vocabulary words).
Using LD, the subword token embeddings are more frequently updated during
training, leading to more robust systems, especially on out-of-domain data.

4.2. Experimental Setup

In our experiments, we make use of morphologically-rich languages, namely Ger-
man and Basque, with low-resource scenarios, testing with both in-domain and
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out-of-domain data.

German is a West Germanic Language with fusional morphology. Its nouns are
inflected in terms of number (singular and plural), gender (masculine, feminine
and neuter) and case (nominative, accusative, genitive and dative). Verbs inflect
for person (1st, 2nd and 3rd), number, mood (indicative, imperative, subjunctive,
infinitive), voice, tense (present, preterite, perfect, pluperfect, future, future per-
fect), grammatical aspect, and completion status. For the German experiments,
we use the IWSLT14 German→English dataset (Cettolo et al., 2014) as train-
ing data. Its statistics are shown in Table 4.1. For the in-domain translation
quality evaluation, we used the mentioned dataset test split, while for out-of-
domain translation evaluation we used the WMT17 biomedical test sets, namely
the English-German HimL test set1. The preprocessing used was the one rec-
ommended by fairseq for the IWSLT14 de-en data2, namely corpus cleaning,
tokenization and lowercasing with Moses scripts (Koehn et al., 2007), and the
BPE subword vocabulary had 10k merge operations.

Corpus Sents. Words Vocab. Max.len. Avg.len.
German 3.1M 113k 172 19.4
English

160k
3.3M 53k 175 20.4

Table 4.1.: IWSLT14 German-English training data stats.

Basque is a language isolate (not related to other languages), with agglutinative
morphology. Its nouns take suffixes to express number (singular, plural, “mu-
gagabe”) and case (nominative, ergative, genitive, local genitive, dative, allative,
inessive, partitive, etc). Verbs’ surface forms differ based on the person of the
subject, direct object and indirect object (1st, 2nd and 3rd), number (singular and
plural), tense (present, past, future), aspect (progressive and perfect) and mood
(indicative, subjunctive, conditional, potential and imperative). For the Basque
experiments, we use the EiTB news corpus (Etchegoyhen et al., 2016). Its statis-
tics are shown in Table 4.2. We split the original data3 into training, validation
and test subsets. The test split was used for in-domain translation quality eval-
uation, while a sample of 1000 sentences of the Open Data Euskadi IWSLT18
corpus (Jan et al., 2018) containing documents from the Public Administration,
was used for the out-of-domain translation evaluation. The preprocessing for the
data consisted in truecasing and tokenization (this preprocessing was already
applied in the original data), and the BPE subword vocabulary had 15k merge
operations.

1http://www.himl.eu/test-sets
2https://github.com/pytorch/fairseq/tree/master/examples/translation
3https://aholab.ehu.eus/metashare/repository/browse/basque-spanish-eitb-corpus-of-aligned-

comparable-sentences/5f5bd836b6f111e6b004f01faff11afa8b95c93ec1214a338167e5074ee90d09/
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Corpus Sents. Words Vocab. Max.len. Avg.len.
Basque 10.1M 345k 318 18.3
Spanish

550k
15.6M 225k 317 28.3

Table 4.2.: EiTB Basque-Spanish training data statistics.

The linguistic information used for the experiments was obtained with Lucy LT
(Alonso and Thurmair, 2003), a rule-based machine translation (RBMT) system
of transfer type. We took the analysis of the source sentences generated in
the intermediate stages of the translation, which annotates each word with a
bag of linguistic language-specific features, covering all the morphological and
grammatical traits of the word.

We train sparse factored NMT systems with and without linguistic dropout. For
LD, we used p = 0.25, that is, there is a 75% probability of using the (lemma +
morphological features) representation, if available, and 25% probability of using
the word’s subword tokens instead. The neural architecture used for out experi-
ments was the Transformer model, using the base hyperparameter configuration
of fairseq and a batch of 4096 tokens.

We included two baseline systems as reference. First, a vanilla Transformer
model with BPE vocabulary and shared encoder and decoder embeddings (and,
in the target side, the final projection before the softmax being tied to the in-
put embedding) without any linguistic information. Second, a factored NMT
system (Sennrich and Haddow, 2016). Both baselines use the same hyperparam-
eters: for IWSLT14 de-en, we use the hyperparameters recommended by fairseq
for that dataset while, for EiTB eu-es, we use the hyperparameters of the base
transformer, but with a smaller total batch size of 4096. For the German linguis-
tic information we used the ParZu annotation tool (Sennrich et al., 2009, 2013)
(which was the tool used by Sennrich and Haddow (2016)), while for Basque
we use the analysis by Lucy LT. For the factored NMT, we used OpenNMT
(Klein et al., 2017) (which supports token features) with its implementation of
the Transformer. For the vanilla Transformer we used fairseq (Ott et al., 2019).
For the sparse factored NMT system, we created a custom implementation on
top of fairseq’s Transformer.

Given the different input and output vocabularies, the embedding tables in en-
coder and decoder of the models with morphological information, both ours and
the baselines, were not shared. In the target side, though, the input embedding
is tied with the final projection before the softmax.

In our experiments, we studied the translation quality in terms of BLEU scores
(Papineni et al., 2002), obtained with Moses’ multi-bleu.perl script after to-
kenizing with the Moses tokenizer. Given that our datasets had been true-
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cased/lowercased, we compute the lower-case variant of the BLEU score (flag
-lc of multi-bleu.perl).

The hyperparameter tuning was done manually, trying a less than 8 configura-
tions, focusing on the dropout, linguistic dropout and number of attention heads.
All experiments were performed on a server with 4 nvidia 1080Ti GPUs.

4.3. Results

Table 4.3 shows the BLEU scores obtained by our sparse factored NMT, with
and without linguistic dropout, as well as the baseline systems, for the German
(de) → English (en) and Basque (eu) → Spanish (es) translation directions,
both with in-domain and out-of-domain tests.

eu→es de→en

Model in domain out of domain in domain out of domain

Without linguistic info 29.8 19.9 34.8 3.2

Factored 24.2 13.8 32.0 8.4

Sparse factored 28.6 19.7 32.6 8.0

Sparse factored + LD 29.4 20.7 34.3 9.2

Table 4.3.: Translation quality (case-insensitive BLEU scores) of the proposed
model (Sparse factored NMT, with and without linguistic dropout)
and baseline models: BPE without linguistic information and Fac-
tored NMT.

We can see that the factored NMT system in general performs worse than the
Transformer baseline without linguistic information. This can be associated with
the sparsity problem described in Section 4.1 and illustrated in Figure 4.1, which
is especially relevant for an agglutinative language like Basque, where the differ-
ence for in-domain data is 5.6 BLEU points.

We can also appreciate that with sparse factored NMT without LD, we also suffer
a loss in translation quality with respect to the vanilla Transformer. However,
using sparse factored NMT, we have comparable translation quality with respect
to the vanilla Transformer for in-domain data, but for out-of-domain data we
improve 0.8 BLEU points for Basque and 6 BLEU points for German.

From these results, we understand that, without LD, the subword token embed-
dings are under-trained. This problem is mitigated by the introduction of LD.
The results also suggest that the improvements can be larger in very low resource
scenarios, like the German experiments, with 160k sentences in the training data,
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a much smaller size than Basque, with 550k. For in-domain data, our approach
suffers a small loss, 0.4-0.5 BLEU points, which is normally considered compa-
rable.

4.4. Conclusion

We proposed sparse factored NMT, which is an approach to inject linguistic
information in the source-side of NMT architectures, especially appropriate for
annotation schemes where the morphological tags are not applicable to all word
types, leading to sparseness of the training signal in classical approaches like
factored NMT. We also proposed linguistic dropout, a complement to sparse
factored NMT that improves the training signal for the subword embeddings.

Our experiments showed that this approach maintains the baseline translation
quality, only with a minor loss, and improves drastically the translation quality of
out-of-domain text when the system has been trained in a low-resource setting.

Future work may include detailed analyses of the specific influence of some hyper-
parameters, like the sharing or not of the encoder and decoder embeddings, over
the final translation quality, as well as a qualitative analysis of the differences
in the outputs of the different studied models, including linguistic constructions
that are better handled by one or the other.
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into Word-level Representations

Currently dominant NMT architectures receive as input sequences of discrete
tokens taken from fixed-size source and target token vocabularies defined a priori.
Before being fed to the network, the input text is tokenized and the positions of
those tokens within the vocabulary table are the actual network inputs.

As commented in detail in Section 2.3.1, the granularity of the tokens in those
vocabularies can range from character-level, to subword-level, to word-level.

Character-level token granularity, while allowing maximum representation ability
with minimal vocabulary size for alphabet-based scripts, also delegates word
formation modeling to the network and makes token sequences to be much longer
than with word-based tokens.

Using word-level tokens leads to very large vocabulary sizes, especially for mor-
phologically rich languages, where the number of surface forms per lemma is
high. Large token vocabularies are impractical for the current neural architec-
tures and hardware so it is frequent to constrain the vocabulary size to a few
tens of thousand tokens, which is hardly enough to fit the number of symbols in
a complete word-based vocabulary; compositional word structures like numbers
pose further problems with such a granularity level, as well as proper nouns.
When word-based vocabularies are used, the vocabulary is built with the most
frequent surface forms in the training data, which normally leads to degradation
of translation quality.

Subword-level token granularity offers a compromise between representational
power and vocabulary size, especially statistically extracted subword vocabulary
strategies like Byte Pair Encoding (BPE) (Sennrich et al., 2016c).

Models with word-level token vocabularies can incorporate word-level informa-
tion as extra input to the model by combining it one-to-one with the token
representations. Some examples of word-level information are Part of Speech
(POS) tags, syntactic dependency relationships or lemmas. In order to make
use of word-level information in models with subword-level token vocabularies,
a usual approach is to assign the word information to all its subwords (Sennrich
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and Haddow, 2016). This approach, despite improving the translation quality,
introduces an information assignment mismatch, that is, the high-level linguis-
tic information belonging to the whole word is combined with low-level subword
token information, sometimes with subwords being a single letter inside a long
word.

In this chapter, we propose to modify the Transformer architecture (Vaswani
et al., 2017) to combine the learned subword representations into word repre-
sentations in the encoder block. This allows to naturally incorporate any extra
word-level information directly at the level of word-level representations.

The contents of this chapter are structured as follows: the proposed approach is
described in section 5.1, while the experimental setup is presented in section 5.2
and the results are described and discussed in section 5.3. Finally, the conclusions
are drawn in section 5.4. Also, the relevant related work is described in sections
2.3.1 and 2.5.2.

5.1. Subword to Word Transformer

In the standard Transformer architecture from Vaswani et al. (2017), the encoder
applies a series of self-attention layers to the input token embeddings. The
output of the encoder is then used at every layer of the decoder as key and value
of the multi-head attention. In these operations, the token representations in
the sequences in the source batch are masked according to the original sequence
lengths in tokens.

We propose to divide the encoder into two blocks of self-attention layers. The
first block receives the embedded subword-level token representations and pro-

cesses them through N
(e)
sw layers of self-attention like those from the nominal

Transformer. The subword-level representations obtained as result of the first
block are then combined into word level representations (different combination
strategies were studied, being described later in this section). A second block of

N
(e)
w self-attention layers processes these word-level representations. The output

of the second encoder block is then fed to the first N
(d)
w layers of the decoder,

while the following N
(d)
sw decoder layers are fed with the output of the first block of

the encoder. The appropriate padding masks are used in the decoder depending
on whether the encoder output used is subword or word-level. This architecture
is shown in Figure 5.1.

In our first tests we directly used the encoder word representations as keys and
values to every decoder layer (instead of using the encoder subword representa-
tions in the last layers of the decoder). This, however, led to poor results. We
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Figure 5.1.: Subword to Word Transformer model.

understand that such a configuration made it impossible for the network to prop-
erly handle token copying from source to target, which is usually needed in cases
of proper nouns or compositional structures like numbers. Other possible causes
for this degradation could be some mismatch on the encoder side e.g. positional
embeddings being subword-based but encoder embeddings being word-level. To
test this hypothesis, we added positional encodings after the point where sub-
word representations are combined into word-level representations. This led to
no improvement, suggesting that the inability to copy may be the cause of the
degradation.

Several strategies were studied for the combination of subword representations
into word representations , namely Long-Short Term Memories (LSTM; Hochre-
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iter and Schmidhuber, 1997), Gated Recurrent Units (GRU; Cho et al., 2014)
and simply adding all subwords within each word. In the case of LSTMs and
GRUs, the inputs to the recurrent units are the subword representations, while
only the outputs at the final subword position of each word are retained as the
outputs of the combination block. In the case of the simple addition, the sub-
word representations of each word get added together in a single vector. In all
cases, the lengths of the sequences in the batch after the combination block is
the number of word tokens in each sentence. After quantifying the effects of each
strategy, the specific approach chosen to combine subword representations into
word representations are GRUs.

The proposed approach provides a natural point to incorporate word-level infor-
mation: after the subword-level representations have been combined into word-
level ones. This way, as shown in Figure 5.1, the extra word-level information is
embedded into a vector space and added to the word-level representations of the
source sentence, after the word-to-subword combination.

5.2. Experimental Setup

We understand that there are two desirable properties for the proposed word-
subword combination model: to be able to retain the translation quality obtained
with the analogous subword-based model and to be able to better profit from
word-level information than other approaches.

In order to verify that the translation quality is retained, we performed exper-
iments on the IWSLT14 English-German data, both in English→German and
German→English translation directions, with a shared subword vocabulary with
10K merge operations. We studied the resulting translation quality with different
hyperparameter sets in order to understand their effect on the model.

In order to study the effectiveness of the proposed model with other approaches
to incorporate word-level information into a subword-based model, we used the
WMT16 English-Romanian data with the back-translated synthetic data from
(Sennrich et al., 2016a), using a shared subword vocabulary of 40k merge oper-
ations.

We used the proposal by (Sennrich and Haddow, 2016) as baseline, and compared
it to a vanilla Transformer baseline and to our proposed method.

For all experiments, we used the fairseq library (Ott et al., 2019), either with
its built-in models for the baselines or with custom model implementations for
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the approach by Sennrich and Haddow (2016) and for our own proposed archi-
tecture.

For the IWSLT14 de-en and en-de baselines we used the Transformer architec-
ture (Vaswani et al., 2017) with the hyperparameters proposed by the fairseq

authors1, namely 6 layers in encoder and decoder, 4 attention heads, embedding
size of 512 and 1024 for the feedforward expansion size, together with dropout of
0.3 and a total batch size of 4000 tokens, using label smoothing of 0.1. For the
WMT16 en-ro baseline we used the base configuration of the Transformer model
offered in fairseq, that is, 6 layers in encoder and decoder, 8 attention heads,
embedding size of 512 and 2048 for the feedforward expansion size, together with
dropout of 0.1 and total batch size of 32000 tokens, without label smoothing (fol-
lowing the baseline used by Gu et al. (2018a)). All reported BLEU scores are
computed with the model weights averaged over the last 10 checkpoints after
training until convergence.

5.3. Results

We studied the effect of different hyperparameter values over translation quality.
We measured the results obtained on the IWSLT14 de-en data by using different
types of subword combination strategies, as well as combining subwords at differ-
ent layer levels, chosen arbitrarily. Table 5.1 shows how the subword combination
strategy that obtains best results is to use GRU units that receive the subwords
as input and return the outputs at the positions of the final subword in each
word. The difference with the other alternatives is minimal, though. The rest of
the hyperparameters are the same as the IWSLT14 baseline, with a total batch

size of 12000 and the subword merging layers being N
(e)
sw = 3 and N

(d)
sw = 3.

Combination BLEU
Addition 33.93
GRU 34.02
LSTM 33.92

Table 5.1.: BLEU scores on IWSLT14 German-English for different subword
combination strategies.

Regarding the influence over the translation quality of the level at which subword
representations are merged, Table 5.2 shows that the best results are obtained
when merging subwords after the fifth encoder layer, and using again the subword
representations in the decoder after the third layer. The rest of hyperparameters

1https://github.com/pytorch/fairseq/tree/master/examples/translation
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are the same as the IWSLT14 baseline, with a total batch size of 12000 and GRU
as subword combination strategy.

N
(e)
sw N

(d)
sw BLEU

3 5 33.53
3 3 34.02
5 3 34.46

Table 5.2.: BLEU scores on the IWSLT14 German-English test set for different

values of N
(e)
sw and N

(d)
sw , using GRU as subword combination strategy.

Once determined that using GRU as subword combination and setting N
(e)
sw = 5

and N
(d)
sw = 3 is the hyperparameter configuration that gives the best results,

we checked whether the proposed architecture maintains the translation quality
with respect to a vanilla Transformer baseline. As shown in Table 5.3, the BLEU
scores are practically the same for both architectures and both German→English
while for English→German there is a small decrease. As commented in section
5.2, the baseline uses a batch size of 4000 while our approach uses 12000. Note
that for the baseline architecture, too large batch sizes actually decrease the
resulting translation quality due small size of the training data; the value used is
the standard one used for small training data sizes in fairseq2. The batch size
for our architecture was chosen by manual fine tuning.

The encoder and decoder embeddings of the base transformer baselines were
shared, with the final decoder projection being also tied to the embedding matrix.
In the models with linguistic information, both the factored baselines and our
models, given the differences between input and output vocabularies, we decided
not to share the encoder and decoder embeddings, while the final projection of
the decoder was tied to the input embedding matrix.

en-de de-en
Base Transformer 28.75 34.44
Word-subword model 28.29 34.46

Table 5.3.: BLEU scores on the IWSLT14 German-English data, using no extra
word-level information.

Finally, in order to assess our proposed approach at incorporating extra word-
level information, we compared it against the approach by Sennrich and Haddow
(2016) (with the Transformer as base architecture), which copies the word level
information to each of the subwords in the word; in our implementation, the

2https://github.com/pytorch/fairseq/tree/master/examples/translation
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subword embedding and the linguistic information are combined by adding them
together, which is analogous to the original alternative that concatenates them.
For the vanilla Transformer and the approach by Sennrich and Haddow (2016) we
used a total batch size of 32000 while for the word-subword model (our proposal),
we used a total batch size of 40000, GRU as subword combination strategy and

N
(e)
sw = 5 and N

(d)
sw = 3.

en-ro
Base Transformer 27.02
Word-level info copied to subwords 27.29
Word-subword model + word-level info 27.82

Table 5.4.: BLEU scores measured on the WMT16 English-Romanian data, with
lemmas as linguistic info.

The word-level linguistic information used was only the lemma (using a vocabu-
lary of 40k lemmas), which is the feature that should provide the largest improve-
ment according to Sennrich and Haddow (2016). We used Stanford CoreNLP
(Manning et al., 2014) to annotate the corpus with the English lemmas. The
obtained results are shown in Table 5.4, where our proposed approach obtains
the best BLEU score compared to the base Transformer model (Vaswani et al.,
2017) without any word-level information, and to copying the word-level info to
subwords (Sennrich and Haddow, 2016).

5.4. Conclusion

In this chapter, we proposed a modification to the Transformer architecture to
merge the subword representations from the first layers of the encoder into word-
level representations. Merging word-level representations inside the model allows
it to use the subword-level representations in the final decoder layers so that it
can handle compositional structures and other situations where copying from
source is needed. This approach provided an appropriate point to incorporate
linguistic word-level information and it is superior at doing so compared with
the reference approach by Sennrich and Haddow (2016).

Further work may include detailed characterization of the linguistical qualita-
tive differences between the output of the baselines and our proposed approach
to better diagnose the obtained quantitative results, as well as applying it to
character-level instead of subword representations, and using it for morpholog-
ically richer languages, especially low-resourced agglutinative ones, where our
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approach, together with the incorporation of linguistic information, may provide
larger improvements in translation quality.

Further extensions may include studying the behavior of more powerful subword
combination strategies and the application of subword merging to the target
side. Note that applying this approach to the encoder part, as we do in this
work, is straightforward, while applying the same approach to the decoder would
present a key challenge: at inference time, the target side tokens are generated
autoregressively one by one, which implies that it is not possible to combine all
of the subword tokens of a word until they have all been generated.
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Language Models for Text

Generation

The currently dominant text generation paradigm is based on generating a se-
quence of discrete tokens in a left-to-right autoregressive way. Most neural lan-
guage models (LMs) fall into this autoregressive generation category. Some neu-
ral architectures are sequential in nature, such as those based on recurrent neural
networks (RNNs), lending themselves naturally to the autoregressive approach
when used together with teacher forcing Williams and Zipser (1989). Other
architectures, such as Transformer Vaswani et al. (2017), while not intrinsically
sequential, have also been targeted for sequential generation. On the other hand,
some recent lines of research have focused on nonsequential generation.

In this chapter, we propose a new paradigm for text generation and language
modeling called Iterative Expansion Language Model, which generates the final
sequence following a token ordering defined by the sentence dependency parse
by iteratively expanding each level of the tree. Related works regarding non-
sequential language generation models is described in Section 2.3.4.

6.1. Iterative Expansion LMs

Our proposal is to train a new kind of language model where the token generation
order is driven by the dependency parse tree of the sentence and where the
generation process is iterative.

The input vocabulary contains terminal tokens as well as non-terminal special
tokens called dependency placeholders, each of which is associated with one of
the possible dependency relations to the heads. For the dependency tree in Fig-
ure 6.1, the dependency placeholders are [poss], [nsubj], [advmod], [xcomp],
[dobj] and [ROOT].
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My dog also likes eating sausage

poss

nsubj

advmod xcomp dobj

ROOT

Figure 6.1.: Example of dependency parse tree.

The input of the first iteration is the sequence with the [ROOT] element. At each
iteration, the model receives as input a sequence Itok with tokens from the input
vocabulary and non-autoregressively generates two new sequences, each with the
same length as the input.

The first output sequence, Otok , contains tokens from a vocabulary with all pos-
sible textual tokens (terminal tokens). The second output, Oexp , is a sequence
of tokens called expansion placeholders, which are taken from a separate vocab-
ulary. Each expansion placeholder is associated with a pattern describing the
left and right dependencies of the token at that position in the Otok sequence.
An example of dependency expansion could be [nsubj-advmod-HEAD-xcomp] for
the word “likes” in the dependency parse tree from Figure 6.1.

After each iteration, the output of the model is expanded.1 This consists of
creating a new sequence by combining the tokens from Itok , Otok and Oexp .
This process is illustrated in Figure 6.2, making use of the dependency tree from
Figure 6.1.

When there is a padding token [pad] in the output (either Otok or Oexp ), this
means that the output at that position is ignored when computing the loss func-
tion. This occurs when the terminal token has already been computed in previous
iterations and has therefore been received as part of Itok , and the model does
not need to compute it again.

Note also that an empty dependencies token [HEAD] marks the end of a branch
and that there is no need for an end of sequence token <eos>. As shown in
the example from Figure 6.1, the generation of independent branches occurs in
parallel, needing only 3 iterations to generate a 6-token sentence.

The strategy for composing tree expansion tokens (e.g., [nsubj-advmod-HEAD-xcomp])
may not scale well when single words have many direct dependencies. To alle-
viate this, we introduce a preprocessing step to modify the dependency tree so

1The expansion of the output to be fed as input in the next iteration occurs in the CPU outside of the neural
model itself.
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Iteration 1

Itok : [ROOT]

Otok : likes
Oexp : [nsubj-advmod-HEAD-xcomp]

Iteration 2

Itok : [nsubj] [advmod] likes [xcomp]

Otok : dog also [pad] eating
Oexp : [poss-HEAD] [HEAD] [pad] [HEAD-dobj]

Iteration 3

Itok : [poss] dog also likes eating [dobj]

Otok : my [pad] [pad] [pad] [pad] sausage
Oexp : [HEAD] [pad] [pad] [pad] [pad] [HEAD]

Figure 6.2.: Example of iterative text generation.

that every word has at most one dependency to the left and one to the right.
For each word with more than one dependency on any of its sides, we rearrange
the tree to force left-to-right dependencies. Although this tree binarization
reduces the degree of parallelism, it reduces data sparsity and allows handling
constructions with a number of dependencies may otherwise be too large for the
model to properly capture, such as enumerations (e.g., “I bought a pair of shoes,
an umbrella, a beautiful jacket and a bracelet”).

Iterative expansion LMs can be naturally extended to subword vocabularies, like
byte-pair encoding (BPE; Sennrich et al., 2016c): for each word, we decompose
its node in the tree into as many nodes as subwords in the word, rearranging the
tree so that the head of the old word is now the head of the first subword, and
each subsequent subword depends on the previous one, while every dependency
of the old word node now depends on the last subword.

6.1.1. Neural Architecture

The neural architecture proposed is based on a Transformer decoder Vaswani
et al. (2017). To generate the dual output (terminal tokens and expansion place-
holders) we condition the generation of terminals on the expansions: the proba-
bility distribution over the expansion token space is generated first by projecting
from one of the intermediate layers’ hidden states. We sample from it and use the
resulting expansion IDs as an index to a trainable expansion embedding layer;
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the embedded vectors are added to the hidden state used to generate them for
use as input to subsequent layers.

As described in Section 6.1, the input and output token vocabularies are differ-
ent: the latter only contains terminal tokens (plus some special tokens such as
[PAD]); the former also contains dependency placeholders. However, for practical
purposes, at the model level, we define both vocabularies to be the same, both
with terminal tokens and dependency placeholders, and we mask the entries of
dependency placeholders in the final softmax.

To inject the syntactic dependency information as input into the model, we add
a layer of learned positional embeddings containing the position of the head of
each token, and we refer to this embedding layer as head position embedding.

The self-attention mask used in Transformer to force causality is not used in our
proposal. The input is therefore not masked at all, and the token predictions
have access to the full input sequence.

6.1.2. Training

For training iterative expansion LMs, the main input of the model is the tokens
at one of the levels of the dependency parse tree (Itok ), while the output is
the following level tokens (Otok ) and expansion placeholders (Oexp ). Secondary
inputs to the model are the dependency indexes (which are used in the head
position embedding) and the mask used for the constrained attention variant.

The model is trained with maximum likelihood on the categorical cross-entropy
for both tokens and expansion placeholders, then adding both sublosses into the
final loss. Tokens generated in previous iterations appear as [PAD] tokens in the
expected output and are ignored when computing the loss.

Training takes place in batches; as the trainable unit is a level transition, a
training batch is composed of level transitions from different sentences.

6.1.3. Inference and Text Generation

In iterative expansion LMs, inference takes place iteratively. The initial state
is a batch of [ROOT] tokens, together with the head positions initialized to the
special value representing the root node and, in constrained attention variants, a
mask with the self-dependency of the single node in each sentence in the batch.
At each iteration, the model generates the probability distributions for terminal
tokens and expansion tokens. We use nucleus sampling (Holtzman et al., 2020)
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to sample from them. The terminal token sequences are expanded according
to the expansion tokens (see Section 6.1), and these are the inputs for the fol-
lowing iteration if there are still unfinished branches. Before sampling from the
token and expansion probability distributions, we mask the <unk> token and the
dependency placeholders to avoid generating them.

6.2. Experimental Setup

6.2.1. Unconditional Text Generation

We conducted experiments on unconditional text generation following the method-
ology used by Caccia et al. (2020). The goal is to assess both the quality and
diversity of the text generated by the model and the baselines. For the quality
evaluation, we use the BLEU score Papineni et al. (2002) over the test set, where
each generated sentence is evaluated against the whole test set as a reference.
For diversity, we used the self-BLEU score Zhu et al. (2018), computed using as
references the rest of the generated sentences. For each model, the temperature
of the final softmax τ is tuned to generate text in the closest quality/diversity
regime to the training data.

Iterative expansion LMs are compared against a standard LM baselines, namely,
AWD-LSTM2 Merity et al. (2018) and a Transformer LM Vaswani et al. (2017),
both with word (w) and BPE subword (sw) vocabularies. The models were
trained on the EMNLP2017 News dataset enriched with dependency annotations
by corenlp. Syntax-driven generation baseline models were not included because
the only model with an available implementation that is able to do unsupervised
text generation are RNNGs, but they proved not to scale even to medium-sized
datasets like EMNLP2017 News. When sampling from models, we use nucleus
sampling Holtzman et al. (2020), a form of ancestral sampling that constrains
the candidate pool by discarding the distribution tail. Samples from the training
and validation data are included for reference.

6.2.2. Style Variation

Iterative expansion LMs drive the generation of text with the dependency parse
tree. It is possible to influence the generated trees by altering artificially the
probability of the different expansion tokens. To demonstrate this, we modified

2Abbreviation of ASGD weight-dropped LSTM, where ASGD stands for averaged stochastic gradient descent.
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the decoding process of iterative expansion LMs to force the probability of gen-
erating adjectival constructions to be higher than normal, aiming at generating
a more descriptive style: during decoding, we multiply the probabilities of the
expansion placeholders that express adjectival dependencies (i.e. those contain-
ing adjectival modifier “amod” relations), and renormalize the probabilities by
dividing by the sum.

We conducted this experiment with the word-level models trained on EMNLP2017
News data. We compute the ratio of adjectives per sentence to verify the in-
creased presence of adjectives, while controlling quality and diversity measures
over the generated text for potential degradation.

6.3. Datasets and Preprocessing

In this section we present the datasets used for our experiments, including the
relevant statistical figures, together with the preprocessing steps applied to the
data.

6.3.1. Dataset Statistics

Table 6.1 summarizes the statistics of the EMNLP2017 News dataset used in
our experiments. The training/validation/test split was taken from the work by
Holtzman et al. (2020).3

train valid test
sentences 268k 10k 10k
iterations 3.2M 122k 122k

expansion vocab 904
terminal vocab 8195

Table 6.1.: Statistics of the EMNLP2017 News dataset.

6.3.2. Data Processing Details

The tokenization of the EMNLP2017 News dataset is very nonstandard. To
appropriately prepare it to be used as input to the syntactic annotation tool

3The EMNLP 2017 News data can be downloaded from https://github.com/pclucas14/GansFallingShort/

tree/master/real_data_experiments/data/news
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corenlp, we detokenized the text and then retokenized it again with the Moses
tokenizer. For the experiments with BPE, we created the subword vocabulary
with 4000 merge operations and without further constraining the size of the
resulting vocabulary.

Text generation with AWD-LSTM. AWD-LSTM is trained with “continu-
ous” text batches. This implies that when used for text generation, it likewise
generates text. To obtain a predetermined number of sentences, we used AWD-
LSTM to generate a fixed number of tokens (e.g., 200). Then, we split this text
at the <eos> boundaries and removed the first and last sentences to avoid in-
complete ones. We repeated this procedure until we had the target number of
sentences.

Text generation with the Transformer. A Transformer LM was trained
following the data preparation instructions in the fairseq examples.4

Quality vs. diversity plots. The generated text was un-BPE’ed (for the
subword-level models) and detokenized by means of the Moses detokenizer.perl
script. Then, it was tokenized with the Moses tokenizer.perl script, and the
BLEU scores were computed with the NLTK corpus bleu function Loper and
Bird (2002), without smoothing.

GPT-2 perplexity computation. The text that served as input to GPT-2
was properly detokenized before applying the model’s own BPE tokenization.

6.4. Hyperparameter Configuration

In this section, we present the detailed hyperparameters used in our experiments.
They were obtained by manual exploration, observing the behavior of the loss
over the training and validation sets of each dataset. The number of manual
hyperparameter search trials were less than 10 for each model.

The hyperparameters of the iterative expansion LM models used for the text
generation experiments presented in Figure 6.3, for both the word and subword
vocabulary variants, are shown in Table 6.2.

The hyperparameters of the AWD-LSTM baseline are presented in Table 6.3.
Note that the AWD-LSTM variant used as a baseline is the base LM without
the continuous cache pointer mechanism, with tied weights. Additionally, note
that the terminal and expansion vocabulary sizes are different, which leads to a
different size of the expansion embedding table and therefore to a different total
number of parameters for the same values of the rest of the hyperparameters.

4https://github.com/pytorch/fairseq/tree/master/examples/language_model
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num. layers 6
num. heads 8
embed. size 1024

batch size 16384
num. params 96M

Table 6.2.: Hyperparameters of the iterative expansion LM used in the text
generation experiments.

hidden size 1150
embed. size 400
num. layers 3

batch size 20
BPTT 70

num. params 23.5M

Table 6.3.: AWD-LSTM baseline hyperparameters.

The hyperparameters of the Transformer baseline are presented in Table 6.4. We
used the implementation of the fairseq library and tuned it on the training and
validation data.

num. layers 6
num. heads 4
embed. size 512

batch size 16384
num. params 17M

Table 6.4.: Transformer baseline hyperparameters.

The batch size for ItExp is expressed in total number of tokens, while for AWD-
LSTM it is expressed as number of sentences, which, when multiplied by the back-
propagation through time (BPTT) length, gives the total number of tokens per
batch. Note that the criteria for the optimum batch size differ for transformers
and LSTMs.

Note that the hyperparameters of each model are tuned separately, independently
from the other models, leading to differences in the total number of parameters.
While this makes the models less comparable, just comparing models with similar
number of parameters would lead to artificially better or worse performance for
a specific dataset (characterized by its size, its word distribution, etc). Instead
of that, we chose for each model the best hyperparameter configuration for a
specific dataset. This, allows better understanding of the optimal characteristics
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of each model for a specific dataset profile and unveils the “parameter efficiency”
of each model.

To sample from both our proposed model and the baselines, we use nucleus
sampling Holtzman et al. (2020) with p = 0.9.

6.5. Results and Analysis

We assess the ability of iterative expansion LMs to unconditionally generate
text in terms quality (BLEU-5) vs. diversity (self BLEU-5), comparing against
sequential baselines, each with a softmax temperature τ tuned separately.
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Figure 6.3.: Quality vs. diversity on EMNLP2017 News (BLEU-5). Models with
word-level vocabulary on the left and subword-level on the
right. The point marker is color-filled for the chosen value of τ .
Each point represents the average over 20 generated text samples,
and is surrounded by a small colored ellipse representing the standard
deviation.

In order to tune the output softmax termperature τ , we generated text with
each model at different temperatures and chose the value of τ that was the most
similar to a sample from the training data in terms of BLEU-5 against a sample
from the validation set (proxy for quality) and self BLEU-5 (proxy for diversity).
Each model was used to generate 20 samples of 400 sentences, and self-BLEU5
and validation-BLEU5 were computed over each of them, taking the average
and the standard deviation. Figure 6.3 and Table 6.5 show these BLEU values,
highlighting the chosen τ for each model. Given the low values for the standard
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τ
ItExp (w) AWD-LSTM (w) Transformer (w)

valid ↑ self ↓ valid ↑ self ↓ valid ↑ self ↓
0.70 30.1± 0.8 22.3± 1.0 39.2± 0.9 33.4± 1.1 40.5± 0.6 35.0± 1.1
0.80 26.8± 0.8 16.0± 1.0 33.0± 0.7 23.2± 1.0 35.8± 0.7 26.3± 0.8
0.90 23.5± 0.7 12.4± 0.7 26.0± 0.6 14.7± 0.8 30.4± 0.7 19.0± 0.8
1.00 20.0 ± 0.6 9.4 ± 0.5 19.4 ± 0.6 9.0 ± 0.6 25.2± 0.5 13.3± 0.5
1.10 16.4± 0.5 6.8± 0.5 13.4± 0.4 5.0± 0.4 19.9 ± 0.6 9.0 ± 0.6
1.20 13.4± 0.6 5.1± 0.4 9.0± 0.5 2.9± 0.3 15.8± 0.5 6.2± 0.5

τ
ItExp (sw) AWD-LSTM (sw) Transformer (sw)

valid ↑ self ↓ valid ↑ self ↓ valid ↑ self ↓
0.70 28.6± 0.9 20.3± 1.1 39.0± 0.8 33.5± 1.1 36.9± 0.7 30.6± 1.2
0.80 25.5± 0.5 15.1± 0.7 32.3± 0.7 22.4± 0.7 32.5± 0.7 22.4± 1.0
0.90 22.7± 0.6 11.5± 0.7 25.6± 0.6 14.3± 0.6 27.8± 0.7 16.0± 0.8
1.00 19.9 ± 0.6 9.2 ± 0.5 19.2 ± 0.5 8.9 ± 0.5 22.9± 0.8 11.0± 0.7
1.10 16.9± 0.8 7.0± 0.6 13.9± 0.5 5.5± 0.4 18.4 ± 0.7 7.6 ± 0.6
1.20 14.1± 0.6 5.4± 0.5 9.7± 0.4 3.3± 0.3 14.5± 0.5 5.2± 0.5

Table 6.5.: Validation and self BLEU-5 scores of the text generated by the word-
level (top) and subword-level (bottom) models under study at
different temperatures τ , showing the average and standard deviation
over 20 different generated text samples. The selected generation
regime is highlighted for each model, being the closest to the training
sample, which has a validation BLEU-5 of 17.8 and a self BLEU-5 of
6.6.

deviation, we decided not to include it in subsequent tables to avoid unnecessary
clutter. Note that in all BLEU vs. self-BLEU figures, each model is shown as
a different line (each with its own color and/or dashed pattern) and that the
data points computed for each temperature value are plotted with a specific
marker shape (square, diamond, triangle, or flipped triangle). We can appreciate
that the temperature regimes affect AWD-LSTM and iterative expansion LMs
differently, with the latter concentrating around the training/validation sample
points.

Apart from BLEU scores, we also include extra quality measures, namely the
perplexity obtained by other language models: an AWD-LSTM word-level LM
and a Transformer word-level LM, both trained on EMNLP2017 News, plus
OpenAI GPT-2 (1.5 B parameters) Radford et al. (2019). The results are shown
in Table 6.6.

These results show how the generated text improves over AWD-LSTM in terms of
quality by all measures, with a comparable level of diversity. In comparison to the
Transformer, while the quality measured with BLEU-5 is better for ItExp, the
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τ
Test BLEU-5 Self BLEU-5 AWD-LSTM Transformer GPT-2

(quality ↑) (diversity ↓) perplex. ↓ perplex. ↓ perplex. ↓
AWD-LSTM (w) 1.0 22.9 8.9 37.0 47.9 99.5

Transformer (w) 1.1 23.8 9.0 33.6 18.6 66.5

ItExp (w) 1.0 23.7 9.4 40.8 40.7 85.2

AWD-LSTM (sw) 1.0 22.7 8.9 43.5 56.9 113.5

Transformer (sw) 1.1 22.1 7.6 37.5 31.6 77.1

ItExp (sw) 1.0 23.6 9.2 45.2 49.2 97.1

Train sample - 21.5 6.6 49.5 29.1 37.7

Valid sample - 21.2 7.2 53.3 44.7 36.7

Table 6.6.: Quality and diversity on EMNLP2017, with τ generating the closest
text to the validation data.

rest of the quality measures indicate that the text generated by the Transformer
is of better quality.

Adjective Adjs. per Test Self
probability sentence BLEU-5 BLEU-5

×1 1.2 23.7 9.4
×10 3.4 21.3 8.4
×20 4.2 20.6 8.8
×50 5.2 19.8 8.9

Table 6.7.: ItExp (w, τ = 1.0) with increased adjectives.

The results of the styled text generation experiments, shown in Table 6.7, confirm
that the style of the resulting text can be successfully modulated to the desired
degree and that the quality and diversity are only slightly degraded at moderate
increases of the probability of adjectival clause generation.

6.5.1. Human Evaluation

In order to better assess the quality of the generated text, we also include a
human evaluation. For this, we took a sample of 60 sentences of each model
under study, including also a sample of the same size from the validation data,
to serve as reference. The sentences were evaluated by a pool of annotators, who
were requested to rate the sentence in an integer scale from 1 to 5, taking into
account its fluency and correctness.

The pack of sentences rated by each annotator contained 10 sentences from each
of the models under evaluation. Each sentence under evaluation was part of the
packs of 3 evaluators; this redundancy was used to measure the discrepancies in
the rating of each sentence among annotators, which was quantified by means of
the average per-sentence standard deviation.
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Model
Average Per sentence
rating avg. stddev

AWD-LSTM (w) 3.08 0.74
Transformer (w) 3.43 0.78

ItExp (w) 3.28 0.73

AWD-LSTM (sw) 2.66 0.68
Transformer (sw) 3.33 0.83

ItExp (sw) 3.09 0.70

Valid sample 4.49 0.61

Table 6.8.: Human evaluation for the different models.

Table 6.8 shows the statistics of the obtained ratings, were we can see the average
rating of the sentences generated by each model, together with the average per-
sentence standard deviation, to understand how different the ratings for each
sentence were among the different evaluator ratings. We can see that the highest
human ratings were obtained by the Transformer, both with word and subword-
level vocabularies, followed by ItExp and then AWD-LSTM.

Adjective Average Per sentence
probability rating avg. stddev

×1 3.28 0.73
×10 3.16 0.79
×20 2.98 0.84
×50 3.19 0.70

Table 6.9.: Human evaluation for ItExp (w) models with increased adjectival
construction probability.

Table 6.9 shows the human evaluation for the models from the style variation
experiments presented in Table 6.7. As we can see, there is a small degradation
in quality as we force high levels of adjectival presence.

6.6. Further Comparison with Real Text

Given that the generation process in iterative expansion LMs is not sequential,
we studied the distribution of the sentence lengths it generates. This is shown in
Figure 6.4 for the text generated by a word-level iterative expansion LM trained
on EMNLP2017 News, along with the lengths of a sample from the training data.
We can appreciate that the sentence length distribution of iterative expansion
LMs is very similar to the distribution of real text.
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15 20 25 30 35 40 45
Sentence length in tokens

ItExp LM (w)
train sample

Figure 6.4.: Distribution of generated text length.

Iterative expansion LMs generate the dependency parse tree as they generate
text. We studied the depths of the dependency trees of generated text in re-
lation to those parsed from the training data, as shown in Figure 6.5. We can
appreciate that the dependency tree depth distribution of iterative expansion
LMs is remarkably similar to the distribution of real text.

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Dependency parse tree depth

ItExp LM (w)
train sample

Figure 6.5.: Histogram of generated text tree depth.

We also measured the degree to which the generated trees adhere to the trees
obtained by parsing their lexicalized representation. Specifically, we computed
the labeled and unlabeled attachment scores between both for the text generated
at different softmax temperatures τ .

τ 0.7 0.8 0.9 1.0 1.2
LAS 96.4 95.3 94.2 92.3 86.2
UAS 98.0 97.3 96.5 95.2 90.7

Table 6.10.: Attachment scores of the generated trees.

Attachment scores are the standard performance measure in dependency parsing
and are computed as the percentage of words that have been assigned the same
head as the reference tree, over a test set. The attachment score is ”labeled” if
the dependency label is taken into account or ”unlabeled” otherwise. As shown
in Table 6.10, the obtained labeled attachment scores (LAS) and unlabeled at-
tachment scores (UAS) are very high across the different values of the generation
temperature τ .
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6.6.1. Quantification of the Generation Speedup

Text generation with autoregressive models like LSTM or Transformer models of-
fers a linear computational complexity with respect to the length of the generated
sequence. In comparison, the dependency tree-driven decoding used by iterative
expansion LMs generates text in parallel for each branch in the tree. If the tree
was a perfectly balanced binary tree, then the computational complexity would
be logarithmic. However, dependency trees in general are not balanced and,
given the tree binarization postprocessing that we introduce, the parallelization
is slightly reduced.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Ratio of tree-based decoding steps with respect to sequential decoding

Binarized tree
Non-binarized tree
Ideal binary tree

Figure 6.6.: Histogram of the ratio of the decoding steps needed to generate a
sentence with tree-based decoding with respect to sequential gener-
ation.

Figure 6.6 shows the speedup of the needed decoding steps of tree-based decoding
with respect of auto-regressive decoding, taking a sample of the training data
and computing the needed steps to decode them should the sentences have an
idealized binary dependency parse tree, a normal parse tree, and a binarized
parse tree. On average, the binarized parse tree, which is the decoding used
by iterative expansion LMS, needs only 45% of the decoding steps needed by
autoregressive decoding.

Note that, while the computational complexity is improved with respect to au-
toregressive approaches, this improvement may not translate directly into exe-
cution speed. Some other factors to be taken into account in that regard are the
penalty imposed for having two projection and softmaxes (one for the expan-
sion tokens and one for the terminal tokens) instead of one, and the increasing
length of the batch computations as the sentence is decoded instead of the al-
most constant decoding for autoregressive approaches, where the previous steps’
computations are cached.
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6.6.2. Generation Examples

Table 6.11 shows a selection of text samples generated by iterative expansion
LMs with a word-level vocabulary, while Table 6.12 shows samples generated
with a subword-level vocabulary. We can see that, despite being generated non-
sequentially and each branch of the dependency parse tree being generated in
parallel, the resulting sentences maintain coherence and syntactic agreement,
confirming that conditioning on the token dependencies in the parse tree provides
enough information to generate it while speeding up the decoding process.

American students were 62 percent more likely to die in a heart attack during the first week of 2004,

according to the study.

For 150 days, Hillary Clinton will do more to improve access to affordable quality care, support and

education funding for millions of Americans, she says.

For those on this list, it’s likely that I would rather be able to train them up, she said.

He made it clear the SNP repeated on Friday as a response, saying they discussed a contract getting

the extra cost here.

He’ll pay $25, 000 for rent and more buses and bring his collection to The Academy on Channel 31.

Six years later, at least eight people died as a result of the shooting.

The health prime minister told CNN Thursday that he was willing to back up against the US and

remove all of the relevant items at the end of the transition.

Then, another man told police that was a friend’s friend, and as a child, he made the decision to call

his mother.

They are 40 - 60 among the top 50, 000 women in the last year in that group since 2014 - 15.

They’ve worked hard on Twitter and they think they’ve tried to focus on our sport, she said.

We like to think that if you try to get this game done, we can get a lower success rate out of 15.

Table 6.11.: Samples of text generated by iterative expansion LMs with word
vocabulary.

Finally, Figure 6.7 shows examples of generated sentences together with their
dependency trees.

83



6. Syntax-driven Iterative Expansion Language Models for Text Generation

I feel that they’re going to Syria because we had this explanation, that they have an indication of their

advance.

The girl’s mother told the group of three she needed treatment and the family said her daughter would

still be alive with another child.

But she added: ”The data is important to the EU that the UK can attract more businesses.

Though he also spoke to Mr Wilson on Saturday morning at the Netherlands Police trial, Johnson

referred it to the No. 1 commission.

It’s a collective belief and it’s a statement to us, he said.

It’s just the first thing we’re feeling now and I don’t like it.

So if you want to be sitting in a garden, you have to wait for something to make sure that this does not

end.

So, for example, we need to argue about what the president did, but I’m just interested in having any

talk.

The British defence ministry confirmed action had been taken at the hospital but could not confirm the

details until now.

We’ll ask for a fair share of Russia to stop border security, particularly for people of color, he added.

Table 6.12.: Samples of text generated by iterative expansion LMs with subword
vocabulary.
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6.6. Further Comparison with Real Text
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6.7. A Note on Perplexity Computation

Language models, apart from being used for text generation, can usually esti-
mate the probability of a given sentence, or alternative its perplexity (see Section
2.3.3). Iterative Expansion LM can also be used for this but, like other syntax-
driven LMs described in Section 2.5.3, can only reliably compute the perplexity
of a sentence given a specific dependency parse tree of the sentence. While
it is possible to approximate the unconditional perplexity by introducing some
assumptions, our experiments showed that such approximations where not com-
parable with sequential language models.

6.8. Conclusion

We presented iterative expansion LMs, which are iterative non-autoregressive
text generation models that rely on syntactic dependency trees to generate sen-
tence tokens in parallel. As opposed to other syntax-driven generation mech-
anisms, the training of iterative expansion LMs can be naturally computed in
batches and they are amenable to subword-level vocabularies.

We showed that our proposed method generates text with quality between LSTMs
and Transformers, with comparable diversity, both regarding automatic measure-
ments and human judgement, while generating text in half of the decoding steps
needed by sequential LMs, and also allowing direct control over the generation
process at the syntactic level, enabling the induction of stylistic variations in the
generated text.
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7. Conclusion

The use of linguistic information in NLP systems has been a recurrent line of
research over time. However, with the dominance of NMT systems and the re-
cent abundance of training data, the edge once provided by linguistic information
has diminished, as training with more data can provide the same improvements.
This, however, only holds applicable for the cases where there is plenty of data
to train with. This is not the case of most of the languages in the world, which
are low-resourced. It does not apply either to domains where the amount of
available data is scarce. These are the cases where the use of linguistic infor-
mation can make an impact. As described in Chapters 3 and 4, the use of
morphological information can provide large improvements in translation quality
of morphologically-rich languages in out-of-domain texts.

The specific approach to inject linguistic information into NMT systems is still
an open problem, especially given the mismatch of the subword vocabularies
normally used in NLP and the word-level granularity of the linguistic information.
This mismatch also applies to other types of information that are defined at word-
level, like semantic annotations. Chapter 5 provides an initial attempt at opening
NMT systems to incorporating these types of input information.

Regardless of whether it can deliver improvements in the results in a specific
data setup, the injection of linguistic information can play another important
role: bridging neural networks and human understanding. Linguistic informa-
tion is not only a characterization of text, but a tool to understand its structure.
In Chapter 6, we force these linguistic structures into the very text generation
process of a neural network. The result is that the generation is understandable
by a human, as it is driven by syntactic constructions. Given this transparency,
the generation process can even be controlled externally, to influence the gen-
erated text. This makes the linguistic information a bridge for the human to
interact with the inner mechanisms of the network, forcing a small breach on the
black box.

From this thesis, I have come to the conclusion that the injection of linguis-
tic knowledge with the purpose of improving the results quality is still a useful
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7. Conclusion

resource in some scenarios, but that it will play a more important part in the fu-
ture devisal of interpretable and controllable neural systems that improve human
understanding of the underlying system dynamics.
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M. Garćıa-Mart́ınez, W. Aransa, F. Bougares, and L. Barrault. Addressing
data sparsity for neural machine translation between morphologically rich lan-
guages. Machine Translation, 34(1):1–20, 2020. doi: 10.1007/s10590-019-
09242-9. URL https://doi.org/10.1007/s10590-019-09242-9.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional
sequence to sequence learning. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pages 1243–1252. JMLR. org, 2017.
URL http://proceedings.mlr.press/v70/gehring17a.html.

M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer. Mask-predict: Par-
allel decoding of conditional masked language models. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 6114–6123, Hong Kong, China, Nov. 2019. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/D19-

1633.

S. Goldwater and D. McClosky. Improving statistical MT through morphological
analysis. In Proceedings of Human Language Technology Conference and Con-
ference on Empirical Methods in Natural Language Processing, pages 676–683,
Vancouver, British Columbia, Canada, Oct. 2005. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/H05-1085.

A. Graves. Sequence transduction with recurrent neural networks. In Repre-
sentation Learning Workshop, ICML, 2012. URL https://arxiv.org/abs/

1211.3711.

J. Gu, J. Bradbury, C. Xiong, V. O. Li, and R. Socher. Non-autoregressive neural
machine translation. In International Conference on Learning Representations,
2018a. URL https://openreview.net/forum?id=B1l8BtlCb.

J. Gu, H. Hassan, J. Devlin, and V. O. Li. Universal neural machine translation
for extremely low resource languages. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics:

96

https://www.aclweb.org/anthology/2020.acl-main.145
https://workshop2016.iwslt.org/downloads/IWSLT_2016_paper_2.pdf
https://doi.org/10.1007/s10590-019-09242-9
http://proceedings.mlr.press/v70/gehring17a.html
https://www.aclweb.org/anthology/D19-1633
https://www.aclweb.org/anthology/D19-1633
https://www.aclweb.org/anthology/H05-1085
https://arxiv.org/abs/1211.3711
https://arxiv.org/abs/1211.3711
https://openreview.net/forum?id=B1l8BtlCb


Bibliography

Human Language Technologies, Volume 1 (Long Papers), pages 344–354, New
Orleans, Louisiana, June 2018b. Association for Computational Linguistics.
doi: 10.18653/v1/N18-1032. URL https://www.aclweb.org/anthology/

N18-1032.

J. Gu, Q. Liu, and K. Cho. Insertion-based decoding with automatically
inferred generation order. Transactions of the Association for Computa-
tional Linguistics, 7:661–676, 2019a. doi: 10.1162/tacl\ a\ 00292. URL
https://doi.org/10.1162/tacl_a_00292.

J. Gu, C. Wang, and J. Zhao. Levenshtein transformer. In Advances in Neural
Information Processing Systems 32, pages 11179–11189. Curran Associates,
Inc., 2019b. URL http://papers.nips.cc/paper/9297-levenshtein-

transformer.

T. He, X. Tan, Y. Xia, D. He, T. Qin, Z. Chen, and T.-Y. Liu. Layer-wise coordi-
nation between encoder and decoder for neural machine translation. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 31, pages
7955–7965. Curran Associates, Inc., 2018. URL http://papers.nips.cc/

paper/8019-layer-wise-coordination-between-encoder-and-decoder-

for-neural-machine-translation.pdf.

K. Heafield. KenLM: faster and smaller language model queries. In Proceedings of
the EMNLP 2011 Sixth Workshop on Statistical Machine Translation, pages
187–197, Edinburgh, Scotland, United Kingdom, July 2011. URL https:

//kheafield.com/papers/avenue/kenlm.pdf.

K. Heafield, I. Pouzyrevsky, J. H. Clark, and P. Koehn. Scalable modified Kneser-
Ney language model estimation. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics, pages 690–696, Sofia, Bulgaria,
August 2013. URL https://kheafield.com/papers/edinburgh/estimate_

paper.pdf.

C. D. V. Hoang, R. Haffari, and T. Cohn. Improving neural translation models
with linguistic factors. In Proceedings of the Australasian Language Technology
Association Workshop 2016, pages 7–14, Melbourne, Australia, Dec. 2016.
URL https://www.aclweb.org/anthology/U16-1001.

S. Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma,
Technische Universität München, 91(1), 1991. URL http://people.idsia.

ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf.

97

https://www.aclweb.org/anthology/N18-1032
https://www.aclweb.org/anthology/N18-1032
https://doi.org/10.1162/tacl_a_00292
http://papers.nips.cc/paper/9297-levenshtein-transformer
http://papers.nips.cc/paper/9297-levenshtein-transformer
http://papers.nips.cc/paper/8019-layer-wise-coordination-between-encoder-and-decoder-for-neural-machine-translation.pdf
http://papers.nips.cc/paper/8019-layer-wise-coordination-between-encoder-and-decoder-for-neural-machine-translation.pdf
http://papers.nips.cc/paper/8019-layer-wise-coordination-between-encoder-and-decoder-for-neural-machine-translation.pdf
https://kheafield.com/papers/avenue/kenlm.pdf
https://kheafield.com/papers/avenue/kenlm.pdf
https://kheafield.com/papers/edinburgh/estimate_paper.pdf
https://kheafield.com/papers/edinburgh/estimate_paper.pdf
https://www.aclweb.org/anthology/U16-1001
http://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
http://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf


Bibliography

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computa-
tion, 9(8):1735–1780, Nov. 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.
1735. URL http://dx.doi.org/10.1162/neco.1997.9.8.1735.

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural
text degeneration. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rygGQyrFvH.

M. Honnibal and I. Montani. spaCy 2: Natural language understanding with
Bloom embeddings, convolutional neural networks and incremental parsing.
To appear, 2017.

N. Jan, R. Cattoni, S. Sebastian, M. Cettolo, M. Turchi, and M. Federico. The
IWSLT 2018 evaluation campaign. In International Workshop on Spoken Lan-
guage Translation, pages 2–6, 2018. URL https://cris.fbk.eu/retrieve/

handle/11582/316442/25776/iwslt18-overview.pdf.

M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat,
F. Viégas, M. Wattenberg, G. Corrado, M. Hughes, and J. Dean. Google’s
multilingual neural machine translation system: Enabling zero-shot transla-
tion. Transactions of the Association for Computational Linguistics, 5:339–
351, 2017. URL http://aclweb.org/anthology/Q17-1024.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush. OpenNMT: Open-source
toolkit for neural machine translation. In Proceedings of ACL 2017, System
Demonstrations, pages 67–72, Vancouver, Canada, July 2017. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/P17-

4012.

P. Koehn. Statistical significance tests for machine translation evaluation. In
Proceedings of the 2004 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 388–395, Barcelona, Spain, July 2004. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/W04-

3250.

P. Koehn. Statistical Machine Translation. Cambridge University Press, New
York, NY, USA, 1st edition, 2010. ISBN 0521874157, 9780521874151.

P. Koehn and R. Knowles. Six challenges for neural machine translation. In
Proceedings of the First Workshop on Neural Machine Translation, pages 28–
39, Vancouver, Aug. 2017. Association for Computational Linguistics. doi:
10.18653/v1/W17-3204. URL https://www.aclweb.org/anthology/W17-

3204.

98

http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=rygGQyrFvH
https://cris.fbk.eu/retrieve/handle/11582/316442/25776/iwslt18-overview.pdf
https://cris.fbk.eu/retrieve/handle/11582/316442/25776/iwslt18-overview.pdf
http://aclweb.org/anthology/Q17-1024
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/W17-3204
https://www.aclweb.org/anthology/W17-3204


Bibliography

P. Koehn, F. J. Och, and D. Marcu. Statistical phrase-based translation. In
Proceedings of the 2003 Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics, pages
127–133, 2003. URL https://www.aclweb.org/anthology/N03-1017.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi,
B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and
E. Herbst. Moses: Open source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics Companion Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic, June 2007. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/P07-2045.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012. URL
http://papers.nips.cc/paper/4824-imagenet-classification-with-

deep-convolutional-neural-networks.pdf.

A. Kunchukuttan and P. Bhattacharyya. Orthographic syllable as basic unit for
SMT between related languages. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 1912–1917, Austin,
Texas, Nov. 2016. Association for Computational Linguistics. doi: 10.18653/
v1/D16-1196. URL https://www.aclweb.org/anthology/D16-1196.

A. Kunchukuttan and P. Bhattacharyya. Learning variable length units for
SMT between related languages via byte pair encoding. In Proceedings of the
First Workshop on Subword and Character Level Models in NLP, pages 14–24,
Copenhagen, Denmark, Sept. 2017. Association for Computational Linguistics.
doi: 10.18653/v1/W17-4102. URL https://www.aclweb.org/anthology/

W17-4102.

B. Lamiroy and R. Gebruers. Syntax and machine translation: The metal project.
Lingvisticae Investigationes, 13(2):307–332, 1989. URL https://www.jbe-

platform.com/content/journals/10.1075/li.13.2.06lam.

G. Lample, A. Conneau, L. Denoyer, and M. Ranzato. Unsupervised machine
translation using monolingual corpora only. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=

rkYTTf-AZ.

C. Lawrence, B. Kotnis, and M. Niepert. Attending to future tokens for bidirec-
tional sequence generation. In Proceedings of the 2019 Conference on Empir-

99

https://www.aclweb.org/anthology/N03-1017
https://www.aclweb.org/anthology/P07-2045
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://www.aclweb.org/anthology/D16-1196
https://www.aclweb.org/anthology/W17-4102
https://www.aclweb.org/anthology/W17-4102
https://www.jbe-platform.com/content/journals/10.1075/li.13.2.06lam
https://www.jbe-platform.com/content/journals/10.1075/li.13.2.06lam
https://openreview.net/forum?id=rkYTTf-AZ
https://openreview.net/forum?id=rkYTTf-AZ


Bibliography

ical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1–10,
Hong Kong, China, Nov. 2019. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/D19-1001.

J. Lee, E. Mansimov, and K. Cho. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 1173–1182, Brus-
sels, Belgium, Oct.-Nov. 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1149. URL https://www.aclweb.org/anthology/D18-

1149/.

M. P. Lewis, editor. Ethnologue: Languages of the World. SIL International,
Dallas, TX, USA, sixteenth edition, 2009.

B. Li, A. Drozd, T. Liu, and X. Du. Subword-level composition functions for
learning word embeddings. In Proceedings of the Second Workshop on Sub-
word/Character Level Models, pages 38–48, New Orleans, June 2018. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/W18-1205. URL
https://www.aclweb.org/anthology/W18-1205.

C.-Y. Lin. ROUGE: A package for automatic evaluation of summaries. In Text
Summarization Branches Out, pages 74–81, Barcelona, Spain, July 2004. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/

anthology/W04-1013.

E. Loper and S. Bird. Nltk: The natural language toolkit. In In Proceedings
of the ACL Workshop on Effective Tools and Methodologies for Teaching Nat-
ural Language Processing and Computational Linguistics. Philadelphia: As-
sociation for Computational Linguistics, 2002. URL https://dl.acm.org/

citation.cfm?id=1118117.

M.-T. Luong and C. D. Manning. Achieving open vocabulary neural machine
translation with hybrid word-character models. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1054–1063. Association for Computational Linguis-
tics, 2016. doi: 10.18653/v1/P16-1100. URL http://www.aclweb.org/

anthology/P16-1100.

T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-
based neural machine translation. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 1412–1421, Lisbon,
Portugal, Sept. 2015. Association for Computational Linguistics. doi: 10.
18653/v1/D15-1166. URL https://www.aclweb.org/anthology/D15-1166.

100

https://www.aclweb.org/anthology/D19-1001
https://www.aclweb.org/anthology/D18-1149/
https://www.aclweb.org/anthology/D18-1149/
https://www.aclweb.org/anthology/W18-1205
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://dl.acm.org/citation.cfm?id=1118117
https://dl.acm.org/citation.cfm?id=1118117
http://www.aclweb.org/anthology/P16-1100
http://www.aclweb.org/anthology/P16-1100
https://www.aclweb.org/anthology/D15-1166


Bibliography

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. Mc-
Closky. The Stanford CoreNLP natural language processing toolkit. In As-
sociation for Computational Linguistics (ACL) System Demonstrations, pages
55–60, 2014. URL http://www.aclweb.org/anthology/P/P14/P14-5010.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated
corpus of English: The penn treebank. Comput. Linguist., 19(2):313–330, June
1993. ISSN 0891-2017.

S. Merity, N. S. Keskar, and R. Socher. Regularizing and optimizing LSTM
language models. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=SyyGPP0TZ.

T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur. Re-
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A. International MT Evaluation

Campaigns

One of the main focuses of this thesis is MT. This way, the participation in
international MT evaluation campaigns can be seen as the practical complement
of the pure research aspect.

In this chapter, we describe the participation of our research group, TALP, from
the Polytechnic University of Catalonia (UPC), in the evaluation campaigns of
the third and fourth conferences on machine translation, previously known as
Workshop on Machine Translation (WMT). In both participations, the prepara-
tion of the submitted translation system and the article writing was led by the
author of this thesis.

Note that the techniques proposed in previous chapters to imbue linguistic knowl-
edge in neural systems were not applied in these WMT participations. The cause
is twofold. First, these techniques require external resources to extract the lin-
guistic knowledge, which would make the submissions non-constrained, excluding
them from the main competition. Second, we understood that there conditions
for the proposed techniques to provide an improvement in the final translation
quality were not met. Therefore, we decide not to make use of them and instead
use the most appropriate tools for the situation.

A.1. Third Conference on Machine Translation
(WMT18)

The Third Conference on Machine Translation (WMT18)1 was co-located with
EMNLP18. Our participation, which is described in (Casas et al., 2018a), fo-
cused on the news translation shared task, specifically in the multilingual sub-
track, translating Finnish and Estonian to and from English. Both can be consid-
ered low-resource languages in general, and also in particular for this shared task,
based on the volume of data made available for training, especially Estonian.

1http://www.statmt.org/wmt18/
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Finnish and Estonian are respectively the official languages of Finland and Esto-
nia, having 5.4 and 1.1 million native speakers (Lewis, 2009). They are Finnic
Languages, a branch within the Uralic Language family.

Estonian and Finnish make use of the Latin alphabet with some additional let-
ters, each one incorporating extra letters (e.g. ä, ö, ü, õ, š, ž).

Finnish and Estonian are morphologically-rich agglutinative languages. Es-
tonian presents fourteen grammatical cases while Finnish presents fifteen. Verb
conjungations are very regular in both languages. Neither of them has grammat-
ical gender nor definite or indefinite articles. Both have flexible word order, but
the basic order is subject-verb-object.

Like other Finnic languages, both Finnish and Estonian present consonant gra-
dation (consonants are classified in grades according to phonologic criteria, and
such grades condition the combined appearance of the consonants in a derived
word), but the gradation patterns each one follows are different.

While Finnish has kept most of its late Proto-Finnic linguistic traits, Estonian
has lost some of its former characteristics, like vowel harmony (vowels in a word
cannot appear freely but their allowance is constrained by rules), which in Finnish
affects case and derivational endings. Also, Estonian mostly lost the word-final
sound, making its inflectional morphology more fusional for nouns and adjectives
(Fortescue et al., 2017). German language influence also led Estonian to use
more postpositions where Finnish uses cases. Geographical location has also led
to differences in the loanwords borrowed by each language.

A.1.1. Motivation

The application of NMT to low resource language pairs needs extra techniques
to achieve good translation quality. These are some of the frequently used ap-
proaches:

Back-translation (Sennrich et al., 2016b) consists in training an auxiliary trans-
lation system from target language to source language and use it to translate a
large target language monolingual corpus into theç source language, and then use
such synthetic source-target sentence pairs to augment the originally available
parallel corpus and train a new source language to target language translation
system on it. Back-translation can be applied iteratively until no further im-
provement is gained (Artetxe et al., 2020).
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Pivoting approaches use a third resource-rich language as pivot and train
translation systems from source language to pivot and from pivot to target lan-
guage. These auxiliary systems can either be used in cascade to obtain source-to-
target translations, or be used to build syntethic parallel source-target corpora
(i.e. pseudocorpus approach). A recent application of pivoting techniques to
NMT can be found in (Costa-jussà et al., 2018).

Adversarial learning (Lample et al., 2018; Artetxe et al., 2018) in a multi-
task learning setup so that there is an auxiliary text (denoising) auto-encoding
task whose internal sentence representation is aligned with the ones from the
translation task by means of a discriminator in feature space.

Pre-trained cross-lingual embeddings (Artetxe et al., 2016, 2017) can be
used complementarily to further reduce the need for parallel data.

Finding parallel data from a similar source language and the same target
language (or vice versa) and adding it to the original parallel corpus. With
such a composite training data set, a wordpiece-level vocabulary can leverage the
common word stems between the similar languages and profit from the combined
amount of data. This approach was used in this submission, as described in
Sections A.1.2 and A.1.3.

Multilingual translation. Among the different types of multilingual systems
there are the many-to-one approaches and the many-to-many approaches. The
former is aiming to translate to one single language and can simply concatenate
source languages (Zoph and Knight, 2016; Tubay and Costa-jussà, 2018). How-
ever, the latter either needs to use independent encoders and decoders (Schwenk
and Douze, 2017; Firat et al., 2016; Escolano et al., 2019) or when using uni-
versal encoder and decoders (Johnson et al., 2017) needs to add a tag in the
source input to let the system know to which language it is translating. This
many-to-many systems are an alternative to pivot systems. However, most these
multilingual systems are not able to achieve the level of performance of pivot
systems yet.

A.1.2. Corpora and Data preparation

All proposed systems in our WMT18 participation were constrained, using exclu-
sively parallel data provided by the organization. For the English - Finnish lan-
guage pair the data employed was the Europarl corpus version 7 and 8, Paracrawl
corpus, Rapid corpus of EU press releases and Wiki Headlines corpus. For the
English - Estonian data the Europarl v8 corpus, Paracrawl and Rapid corpus of
EU press releases corpus were employed.
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All language pairs have been preprocessed following the proposed scripts by the
organization of the conference. The pipeline consisted in normalizing punctua-
tion, tokenization and truecasing using the standard Moses (Koehn et al., 2007)
scripts. With the addition that, for tokenization, no escaping of special charac-
ters was performed.

For the language pair of English - Estonian we found that from Paracrawl corpus
a considerable number of sentences were not suitable sentences in the intended
languages, but apparently random sequences of upper case characters. In order
to remove them, an additional step of language detection was performed using
library langdetect2, which is a port to Python of library language-detection

(Shuyo, 2010). The criteria for removing noisy sentences from the dataset was
that either one of the languages of the pair could not be identified as a language.

The sizes of the different data sets compiled for each language pair and once
cleaned as described earlier in this section are presented in Table A.1.

corpus lang set sentences words

En-Et
En

train 998547 23056922
test 2000 44305

Et
train 998547 17376004
test 2000 34733

En-Fi

En
train 3064124 62208347
dev 3000 64611
test 3002 63417

Fi
train 3064124 45692989
dev 3000 48839
test 3002 46572

Table A.1.: Corpus statistics in number of sentences and words for both parallel
corpora, English - Estonian and English - Finnish.

As Finnish and Estonian belong to the Finnic language family and are similar to
each other, we aimed at combining the individual parallel corpora (En - Fi and
En - Es) into a single larger corpus. For the translation directions where English
is the target language (i.e. Fi→ En and Et→ En) we prepared a combined Fi +
Et → En corpus by simply concatenating the original ones. This approach was
not applicable to the reverse directions, as we needed some way to convey the
information about whether to generate either Finnish or Estonian as part of the
input to the neural network. Following the approach in (Johnson et al., 2017), we
modified the individual parallel corpora to add a prefix to the English sentences
to mark whether the associated target sentence was Finnish or Estonian, and

2https://github.com/Mimino666/langdetect
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then proceed to concatenate both corpora into the final combined one En → Fi
+ Et. The prefixes used were respectively <fi> and <et>. This prefix needs to
be added likewise to the test English sentences when decoding them into Finnish
or Estonian.

As the combined corpora are concatenations of the individual ones, their sizes
can be computed from the figures in Table A.1 by mere addition of the individual
sizes of each language pair.

A.1.3. System Description

In this section we present the translation systems used for our participation,
both in terms of vocabulary extraction strategies followed (Section A.1.3), of
neural architecture used (Section A.1.3) and of needed post-processing (Section
A.1.3).

Vocabulary Extraction

The NMT models used for our submissions to the shared task, which are de-
scribed in Section A.1.3 made use of pre-defined sets of discrete tokens that
comprise the vocabulary.

The vocabulary of each of our translation systems (both the final submissions
and the systems trained for reference described in Section A.1.4) was based on
word-piece extraction (Wu et al., 2016). For each system, the source and target
vocabularies were extracted separately, aiming at a vocabulary size of 32K tokens.
Vocabularies are not shared between source and target languages in any case.

Word-piece vocabularies (or the very similar Byte-Pair Encoding (BPE) vocab-
ularies (Sennrich et al., 2016c)) are usually applied to extract vocabularies from
corpora that contain data from similar languages in order to try to find com-
mon stems and derivational suffixes so that the language commonalities can be
leveraged by the neural network training.

NMT Models

All the submissions presented to the shared task made use of the Transformer
NMT architecture, which is described in Section 2.3.2. We used the implemen-
tation released by the authors of (Vaswani et al., 2017) 3

3The authors of (Vaswani et al., 2017) made the source code available at https://github.com/tensorflow/

tensor2tensor. For this participation, version 1.2.9 was used.
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The complete hyperparameter configuration used for all the attention-based
neural machine translation models in our submissions (which consisted in the
transformer base parameter set in tensor2tensor) is shown in Table A.2.

hyperparameter value
attention layers 6
attention heads per layer 8
hidden size (embedding) 512
batch size (in tokens) 4096 (4 GPU)
training steps 800000
tokenization strategy wordpiece
vocabulary size 32K
optimization algorithm Adam
learning rate warmup + decay

Table A.2.: Hyperparameters of the neural model.

After the training, the weights of the last 5 checkpoints (having checkpoints
stored every 2000 optimization steps) are averaged to obtain the final model.

Post-processing

Following the inverse steps of the processing described in Section A.1.2, the
decoded outputs of NMT model need to be de-truecased and de-tokenized by
means of the appropriate Moses scripts.

A.1.4. Experiments

The hypothesis on which we based this work was that, given the similarity be-
tween Estonian and Finnish, a system trained with the combination of the data
from both languages would outperform systems trained on the individual lan-
guage datasets.

In order to validate this hypothesis, we conducted direct experiments, training
systems on the individual language datasets and also on the combined datasets
(as described in Section A.1.2), and comparing their translation quality. The
datasets used for testing the performance were newsdev2018 for Estonian - English
and newstest2017 for Finnish - English. The results of the experiments are
shown in Table A.3, were all figures represent case-insensitive BLEU score over
the aforementioned reference test corpora.
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direction individual combined ∆BLEU
En → Fi 24.36 25.21 +0.85
Fi → En 29.39 30.00 +0.61
En → Et 15.97 18.92 +2.95
Et → En 21.66 25.66 +4.00

Table A.3.: Comparison between translation quality (case-insensitive BLEU) of
systems trained on the individual language data vs. systems trained
on the combined data.

While the results for Finnish are not very different between the individual and
combined data trainings 4, the results for Estonian show an important improve-
ment of the training on the combined data over the individual data. This
correlates with the fact that the Estonian - English training set is less than
one third the size of the Finnish - English, therefore the size increase in the
Finnish - English combined training corpus is much smaller than the increase for
Estonian - English, as shown in Table A.1.

A.1.5. Conclusions

Our experiments in the WMT18 participation, suggested that for low resource
languages, enlarging the training data with translations from a similar lan-
guage can lead to important improvements in the translation quality when using
subword-level vocabulary extraction strategies.

English→ Finnish
Ave. % Ave. z System

1 64.7 0.521 NICT
63.1 0.466 HY-NMT

3 59.2 0.324 UEDIN
58.3 0.271 AALTO
57.9 0.258 HY-NMT-2STEP
57.4 0.238 TALP-UPC
55.9 0.184 CUNI-KOCMI
56.6 0.183 ONLINE-B

9 45.9 −0.212 ONLINE-A
45.3 −0.233 ONLINE-G

11 42.7 −0.334 HY-SMT
41.5 −0.369 HY-AH

Finnish→ English
Ave. % Ave. z System

1 75.2 0.153 NICT
74.4 0.128 HY-NMT
74.0 0.103 UEDIN
72.7 0.083 CUNI-KOCMI
72.9 0.078 ONLINE-B
71.9 0.047 TALP-UPC
71.5 0.045 ONLINE-A

8 66.1 −0.134 ONLINE-G
9 58.9 −0.404 JUCBNMT

Figure A.1.: Results of the TALP participation in WMT18 News Translation
Shared Task for Finnish ←→ English.

The results of the TALP participation in the WMT18 News Translation Shared
Task are shown in Figures A.1 and A.2. Our submission for Finnish→English was

4Improvements of less than 1 BLEU point are normally considered neglectable.
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English→ Estonian
Ave. % Ave. z System

1 64.9 0.549 TILDE-NC-NMT
2 62.1 0.453 NICT

61.6 0.427 TILDE-C-NMT
61.2 0.418 TILDE-C-NMT-2BT

5 58.6 0.340 AALTO
58.6 0.329 HY-NMT
57.5 0.295 UEDIN

8 55.5 0.216 CUNI-KOCMI
54.6 0.181 TALP-UPC

10 52.1 0.097 ONLINE-B
11 45.7 −0.132 NEUROTOLGE.EE
12 43.8 −0.195 ONLINE-A
13 37.6 −0.406 ONLINE-G
14 34.3 −0.520 PARFDA

Estonian→ English
Ave. % Ave. z System

1 73.3 0.326 TILDE-NC-NMT
2 71.1 0.238 NICT

69.9 0.215 TILDE-C-NMT
69.0 0.187 TILDE-C-NMT-2BT
69.2 0.186 UEDIN
68.7 0.171 TILDE-C-NMT-COMB
67.1 0.117 ONLINE-B
66.4 0.106 HY-NMT
66.8 0.106 TALP-UPC

10 65.4 0.063 ONLINE-A
64.0 0.007 CUNI-KOCMI

12 59.4 −0.117 NEUROTOLGE.EE
13 52.7 −0.341 ONLINE-G
14 34.6 −0.950 UNSUPTARTU

Figure A.2.: Results of the TALP participation in WMT18 News Translation
Shared Task for Estonian ←→ English.

featured in the first cluster of systems, while our submissions for English→Finnish
and Estonian→English were featured in the second cluster of systems, meaning
that their translations were not statistically distinguishable from any of the sub-
missions in the same cluster.

A.2. Fourth Conference on Machine Translation
(WMT19)

The Third Conference on Machine Translation (WMT18)5 was co-located with
EMNLP18. Our participation, which was described extensively in (Casas et al.,
2019), focused on the news translation shared task, specifically in the low resource
language pair Kazakh - English. The amount of available parallel Kazakh-English
data was very low. In order to overcome this problem in the frame of the shared
task, we made use of Russian as an pivot language. This way, we used English-
Russian and Kazakh-Russian data to train intermediate translation systems that
we then used to create synthetic pseudo-parallel Kazakh-English data. This data
enabled us to train the final Kazakh-English translation systems.

There are many techniques that can be applied to a low resource NMT scenario.
The most relevant ones are described in Section A.1.1. In the frame of the
WMT19 news translation shared task several of them were applicable:

An English+Russian→Kakakh multilingual system could be trained, but the
amount of Kazakh-Russian data is much larger than Kazakh-English, which
would bias the encoder toward Russian; as Russian is not similar to English this

5http://www.statmt.org/wmt19/
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would decrease the effectiveness of the approach, as opposed to what happens
for similar languages (Casas et al., 2018a).

Back-translation could also be applied in this context, but the amount of Kazakh
monolingual data is not very large and it is crawled data, with presumably low
quality. It could have been used additionally to other techniques, though.

Finally, pivoting approaches are also applicable to this scenario. The cascade
approach, however, would not allow to profit from the existing parallel English-
Kazakh data, making the pseudo-parallel corpus approach the most sensible op-
tion.

A.2.1. Corpora and Data Preparation

In order to train our MT systems, we used the data made available by the
shared task organizers, including the not only Kazakh-English data but also the
English-Russian and Kazakh-Russian data to train pivot translation systems. In
this section we describe the data used for each language pair and the processing
applied to each of them in order to compile appropriate training datasets.

Kazakh-English

The available parallel Kazakh-English corpora for the shared task included News
Commentary v14, Wiki Titles v1 and a crawled corpus prepared by Bagdat
Myrzakhmetov of Nazarbayev University.

Wiki Titles accounted for half of the available parallel segments, but its sentences
were around 2 tokens long in average. Therefore, we decided not to include it
in the training data, to avoid biasing the trained systems toward short transla-
tions.

After concatenating the training corpora, we used the standard Moses scripts to
preprocess them, including tokenization, truecasing and cleaning. The statistics
of the resulting training data are shown in table A.4.

Lang. Sents. Words Vocab. Lmax Lmean

Kazakh 1.2M 139.6K 85 11.7
English

99.6K
1.5M 85.3K 102 14.9

Table A.4.: Summary statistics of the Kazakh-English training data.

The WMT organization split a part of News Commentary to use as development6.

6The part of News Commentary provided as development data was excluded from the training set.
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From this data, we left 500 parallel sentences as hold-out to assess final system
translation quality and left the remaining 1566 segments as development data.

English-Russian

The available parallel English-Russian corpora for the shared task included News
Commentary v14, Wiki Titles v1, Common Crawl corpus, ParaCrawl v3, Yandex
Corpus and the United Nations Parallel Corpus v1.0 (Ziemski et al., 2016).

Following the rationale exposed for the English-Kazakh Wiki Titles data, we also
dropped the English-Russian Wiki Titles data.

Among the other corpora, some are of very large size. In order to assemble a
manageable final training dataset and taking into account the high presence of
garbage in the crawled datasets, before combining the individual corpora, we
filtered each corpus and selected from each a random sample of segments.

For the filtering, we applied heuristic criteria based on our visual inspection of
the data, including elimination of lines with repeated separation characters (like
++++ or ----), elimination of fixed expressions (like “The time is now”, which
appeared several times in some corpora) and eliminating lines with high ratio of
numbers and punctuation characters.

For the random sample, from UN Corpus we took 2M segments out of 23M,
from Common Crawl we took 200K out of 900K, from ParaCrawl we took 4M
out of 12M and from the Yandex Corpus we took all the 1M segments. These
samples were then combined and went through standard processing with Moses
scripts, including tokenization, truecasing and cleaning. After combining them,
we applied Moses corpus cleaning with more aggressive settings (sentences be-
tween 5 and 80 words and a maximum length ratio of 3.0 between source and
target). From the combined corpus, we extracted 4000 random lines as develop-
ment data and 1000 segments as hold out test set, leaving the rest for training.
The statistics of the resulting training data are shown in table A.5.

Lang. Sents. Words Vocab. Lmax Lmean

Russian 125.6M 3.2M 80 20.7
English

6.1M
144.9M 2.0M 80 23.9

Table A.5.: Summary statistics of the English-Russian training data.
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Kazakh-Russian

The available parallel Kazakh-Russian corpora for the shared task included News
Commentary v14 and a crawled Russian-Kazakh corpus prepared by Bagdat
Myrzakhmetov of Nazarbayev University.

After concatenating the training corpora, we used the Moses scripts for prepro-
cessing, including tokenization, truecasing and cleaning, using the same settings
as for the aggressive English-Russian data cleaning described before. From the
combined corpus, we extracted 4000 lines as development data and 1000 seg-
ments as hold out test set, leaving the rest for training. The statistics of the
resulting training corpus are shown in table A.6.

Lang. Sents. Words Vocab. Lmax Lmean

Russian 78.8M 1.4M 96 18.9
Kazakh

4.2M
75.3M 1.6M 70 18.0

Table A.6.: Summary statistics of the Russian-Kazakh training data.

A.2.2. System Description

The amount of available parallel training data for English-Kazakh was scarce.
When an NMT system was directly trained on this data, the resulting translation
quality was very low, as shown in Section A.2.3.

Given the amount of available English-Russian and Kazakh-Russian parallel
training data, we decided to use Russian as pivot language. Taking into account
the availability of some parallel Kazakh-English data, the pivoting approach that
best suits this case is to prepare pseudo-parallel English-Kazakh and Kazakh-
English corpora based on the Russian data and then combine it with the parallel
English-Kazakh data. Further justification of the technique used can be found
at the end of Section A.2.

In pivoting approaches, the final translation quality does not get influenced sig-
nificantly if synthetic data is used for the source language side; on the other
hand, using synthetic data for the target language side results in degraded
translation quality in the final system (Costa-jussà et al., 2018; Costa-Jussà
et al., 2019). Therefore, we will create two different pseudo-parallel corpora
for English→Kazakh and Kazakh→English.

In order to create the English→Kazakh synthetic data, we translated the Russian
side of the Russian-Kazakh corpus into English. To perform this translation, we
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need an intermediate Russian→English system. We made use of the Russian-
English corpus to train this pivot system.

In order to create the Kazakh→English synthetic data, we translated the Russian
side of the Russian-English corpus into Kazakh. To perform this translation, we
need an intermediate Russian→Kazakh system. We made use of the Russian-
Kazakh corpus to train this pivot system.

The preparation and training of the two pivot translation systems is further
described in Section A.2.2

Once the synthetic data was prepared by means of the pivot translation systems,
we combined each synthetic corpus with the parallel data, obtaining the respec-
tive training datasets for the two translation directions. This is further described
in Section A.2.2.

Finally, we trained the English→Kazakh and Kazakh→English translation sys-
tems on the previously described mix of parallel and synthetic corpora. The
NMT model used is presented in Section A.2.2.

Pivot SMT Systems

For the Russian→English and Russian→Kazakh pivot translation systems we
decided to use Moses (Koehn et al., 2007). The use of pivot approaches for SMT
has been studied previously, like the works by De Gispert and Marino (2006), Wu
and Wang (2007) or Utiyama and Isahara (2007). Another option would have
been to use a Neural Machine Translation (NMT) approach, but this would have
required large amounts of GPU time to translate the pseudo-parallel corpora.

While the English language presents simple morphology, Russian is morpholog-
ically rich and Kazakh is agglutinative. Therefore, the amount of surface forms
in a word-level vocabulary of the two latter languages is very high. This way, we
decided to apply subword-level tokenization before training the SMT systems.
For this, we used Byte-Pair Encoding (BPE) (Sennrich et al., 2016c) to extract a
vocabulary of subword parts based on frequency statistics. We prepared separate
BPE vocabularies for each language, with 32K merge operations each. Although
not frequent, there are some precedents for subword tokenization in SMT, like
the work by Kunchukuttan and Bhattacharyya (2016, 2017).

The use of subword tokenization leads to longer token sequence lengths compared
to the usual word-based vocabularies of SMT systems. In order to cope with
this fact, we configured the subword-based SMT systems to have longer n-gram
order for their Language Models (LM) and phrase tables: the typical n-gram
order used is 3 and we used 6. All other Moses configuration settings are the
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standard ones, using KenLM as language model (Heafield, 2011; Heafield et al.,
2013) and MGIZA++ (Gao and Vogel, 2008) for alignment.

The data used to create the respective target-side LMs consisted of the target
side of the parallel data used for training. Some improvement could have been
gained by using the available extra monolingual English and Kazakh data for the
LMs.

Combination of Parallel and Synthetic Data

The process followed to combine the parallel data with the synthetic data was
the same for English-Kazakh and for Kazakh-English: we oversampled at 300%
the parallel data and concatenated it with the synthetic data, obtaining the
final training datasets on which the translation systems for the submissions were
trained.

Joint Source-Target Self-Attention NMT

The translation system trained on the augmented Kazakh-English data and used
for the final WMT submissions is based on the architecture proposed by (He et al.,
2018; Fonollosa et al., 2019). This approach is based on the self-attention blocks
from (Vaswani et al., 2017), but breaks from the encoder-decoder structure and
has only a single decoder block that is fed both the source and target sentences,
therefore learning joint source-target representations from the initial layers. This
model resembles how a language modeling architecture is trained and used for
inference.

The positional encodings are applied separately to source and target. An ex-
tra embedded vector representation is added to the combination of token and
position in order to distinguish source and target parts.

The attention weights can be masked to control the receptive fields (Fonollosa
et al., 2019). Both source-source and target-target receptive fields are constrained
to a local window around each token, while target-source receptive fields are
unconstrained.

The hyperparameter configuration used was the same as the one originally used
by the authors for WMT’14 English-German (14 layers, 1024 as embedding di-
mensionality, feedforward expansion of dimensionality 4096 and 16 attention
heads).
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Direction RBMT SMT (w) SMT (sw) NMT NMT pseud.
Kazakh→English 1.51 6.34 7.48 2.32 21.00
English→Kazakh 1.46 3.53 3.82 1.42 15.47

Table A.7.: BLEU scores (cased) of the Rule-based baseline (RBMT), the
Moses system trained on the parallel Kazakh-English data with
word-level tokenization (SMT(w)), the Moses system trained on
the parallel Kazakh-English data with subword-level tokenization
(SMT(sw)), the NMT system trained on the parallel Kazakh-
English data, and the final systems trained on the augmented pseudo-
parallel corpus data (NMT pseud.)

For Kazakh-English we used separate BPE vocabularies with 32K merge opera-
tions, while for English-Kazakh we used a joint BPE vocabulary with 32K merge
operations, together with shared source-target embeddings.

A.2.3. Experiments and Results

In order to assess the translation quality of the systems, we computed the BLEU
score (Papineni et al., 2002) over the respective held out test sets.

As there is not much literature of current NMT approaches being applied to
English-Kazakh, we prepared different baselines to gauge the range of BLEU
values to expect:

• Rule-based machine translation system (RBMT): we used the Apertium
system (Forcada et al., 2011; Sundetova et al., 2014; Assem and Aida,
2013), which is based on transfer rules distilled from linguistic knowledge.
Using the BLEU score to compare an RBMT system with data-driven
systems is not fair (see (Koehn, 2010) §8.2.7) but we included it to have a
broader picture.

• Statistical Machine Translation with word-level tokenization (SMT(w)): we
trained a Moses system on the parallel Kazakh-English data, using normal
word-level tokenization

• Statistical Machine Translation with subword-level tokenization (SMT(sw)):
we trained a Moses system on the parallel Kazakh-English data, using BPE
tokenization with 10K merge operations7. Moses default values were used
for the rest of configuration settings .

7The low number of BPE merge operations is justified with the low amount of training data
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• Neural Machine Translation (NMT): we trained a Transformer model on
the parallel Kazakh-English data, using BPE tokenization with 10K merge
operations, separately for source and target. We used the fairseq (Ott
et al., 2019) implementation with the same hyperparameters as the IWSLT
model, namely an embedding dimensionality of 512, 6 layers of attention, 4
attention heads and 1024 for the feedwordward expansion dimensionality.

The translation quality BLEU scores of the aforedescribed baselines were very
low, as shown in table A.7.

In order to evaluate the pivot translation systems described in Section A.2.2, we
also measured the BLEU scores in the respective held out test sets, obtaining
36.05 BLEU for the Russian→English system and 21.06 for the Russian→Kazakh
system. With these pivot systems, we created two pseudo-parallel synthetic
corpora, merged them with the parallel data and trained a self-attention NMT
model that obtained BLEU scores one order of magnitude above the chosen
baselines, as shown in table A.7.

When we tested the final Kazakh→English system on the shared task test set,
we identified several sentences that remained completely in Cyrillic script. In
order to mitigate this problem, we trained a SMT system on the augmented
Kazakh-English data and used it for the sentences that had a large percentage
of Cyrillic characters. This lead to a mere 0.1 increase in the case-insensitive
BLEU score and no change for the uncased one.

A.2.4. Conclusion

Our experiments showcased the effectiveness of pivoting approaches for low re-
sourced scenarios, making use of SMT to support the data augmentation pro-
cess, while using the more effective attention-based NMT approaches for the final
translation systems.

The results of the TALP participation in the WMT19 News Translation Shared
Task are shown in Figure A.3. Our submission for Kazakh→English was fea-
tured in the second cluster of systems, meaning that its translations were not
statistically distinguishable from any of the submissions in the same cluster.
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Kazakh→ English
Ave. Ave. z System
72.2 0.270 online-B
70.1 0.218 NEU
69.7 0.189 rug-morfessor
68.1 0.133 online-G
67.1 0.113 talp-upc-2019
67.0 0.092 NRC-CNRC
65.8 0.066 Frank-s-MT
65.6 0.064 NICT
64.5 0.003 CUNI-T2T-transfer
48.9 −0.477 UMD
32.1 −1.058 DBMS-KU

English→ Kazakh
Ave. Ave. z System
81.5 0.746 HUMAN
67.6 0.262 UAlacant-NMT
63.8 0.243 online-B
63.8 0.222 UAlacant-NM
63.8 0.222 RBMT
63.3 0.126 NEU
63.3 0.108 MSRA-CrossBERT
60.4 0.097 CUNI-T2T-transfer
61.7 0.078 online-G
55.2 −0.049 rug-bpe
49.0 −0.328 talp-upc-2019
41.4 −0.493 NICT
11.6 −1.395 DBMS-KU

Figure A.3.: Results of the TALP participation in WMT19 News Translation
Shared Task.
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