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Abstract

The rate of integration of the renewable energy sources in modern grids have significantly

increased in the last decade. These intermittent, non-dispatchable renewable sources,

though environment friendly tend to be grid unfriendly. This is precisely due to the issues

pertaining to grid congestion, voltage regulation and stability of grids being reported as

a result of the incorporation of renewable sources. In this scenario, the use of energy

storage systems (ESS) in electric grids is being widely proposed to overcome these issues.

However, integrating energy storage systems alone will not compensate for the issue

created by renewable generation. The control and management of the ESS should be

done optimally so that their full capabilities are exploited to overcome the issues in the

power grids and to ensure their lower cost of investment by prolonging ESS lifetime

through minimising degradation.

Motivated by this aspect this Ph.D work focusses on developing an efficient, optimal

control and management strategy for ESS in a microgrid, especially hybrid ESS. The

Ph.D work addresses this issue by proposing a hierarchical control scheme comprising

of a lower power management and higher energy management stage with contributions

in each stage.

In the power management stage this work focusses on improving aspects of real time

control of power converters interfacing ESS to grid and the microgrid system as whole.

The work proposes control systems with improved dynamic behaviour for power convert-

ers based on the reset control framework. In the microgrid control the work presents a

primary+secondary control scheme with improved voltage regulation performance under

disturbances, using an observer. The real time power splitting strategies among hybrid

ESS accounting for the ESS operating efficiencies and degradation mechanisms will also

be addressed in the primary+secondary control of power management stage. The design

criteria, stability and robustness analysis will be carried out, along with simulation or

experimental verifications.
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In the higher level energy management stage, the contribution of this work involves

application of an economic MPC framework for the management of ESS in microgrids.

The work specifically addresses the problems of mitigating grid congestion from renew-

able power feed-in, minimising ESS degradation and maximising self consumption of

generated renewable energy using the MPC based energy management system. A sur-

vey of the forecasting methods that can be used for MPC will be carried out and a

neural network based forecasting unit for time series prediction will be developed. The

practical issue of accounting for forecasting error in the decision making of MPC will be

addressed and impact of the resulting conservative decision making on the system per-

formance will be analysed. The improvement in performance with the proposed energy

management scheme will be demonstrated and quantified.

Keywords: Energy storage system, renewable generation, power management, en-

ergy management, reset control, disturbance observer, power splitting, stability, MPC,

ESS degradation, grid congestion, self consumption.
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Resumen

La integración de las fuentes de enerǵıa renovables en las redes modernas ha aumentado

significativamente en la última década. Estas fuentes renovables, aunque muy conve-

nientes para el medio ambiente son de naturaleza intermitente, y son no planificables,

cosa que genera problemas en la red de distribución. Esto se debe precisamente a los

problemas relacionados con la congestión de la red y la regulación del voltaje. En este

escenario, el uso de sistemas de almacenamiento de enerǵıa (ESS) en redes eléctricas

está siendo ampliamente propuesto para superar estos problemas. Sin embargo, la inte-

gración de sistemas de almacenamiento de enerǵıa por śı solos no compensará el problema

creado por la generación renovable. El control y la gestión del ESS deben realizarse de

manera óptima, de modo que se aprovechen al máximo sus capacidades para superar los

problemas en las redes eléctricas, garantizar un coste de inversión razonable y prolongar

la vida útil del ESS minimizando su degradación.

Motivado por esta problemática, esta tesis doctoral se centra en desarrollar una

estrategia de control y gestión eficiente para los ESS integrados en una microrred, es-

pecialmente cuando se trata de ESS de naturaleza hibride. El trabajo de doctorado

propone un esquema de control jerárquico compuesto por un control de bajo nivel y una

parte de gestión de enerǵıa operando a más alto nivel. El trabajo realiza aportaciones

en los dos campos.

En el control de bajo nivel, este trabajo se centra en mejorar aspectos del control

en tiempo real de los convertidores que interconectan el ESS con la red y el sistema de

micro red en su conjunto. El trabajo propone sistemas de control con comportamiento

dinámico mejorado para convertidores de potencia desarrollados en el marco del control

de tipo reset. En el control de microrred, el trabajo presenta un esquema de control

primario y uno secundario de regulación de voltaje mejorado bajo perturbaciones, uti-

lizando un observador. Además, el trabajo plantea estrategias de reparto del flujo de

potencia entre los diferentes ESS. Durante el diseño de estos algoritmos de control se
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tienen en cuenta los mecanismos de degradación de los diferentes ESS. Los algoritmos

diseados se validarán mediante simulaciones y trabajos experimentales.

En el apartado de gestión de enerǵıa, la contribución de este trabajo se centra en la

aplicación del un control predictivo económico basado en modelo (EMPC) para la gestión

de ESS en microrredes. El trabajo aborda espećıficamente los problemas de mitigar la

congestión de la red a partir de la alimentación de enerǵıa renovable, minimizando la

degradación de ESS y maximizando el autoconsumo de enerǵıa renovable generada. Se

ha realizado una revisión de los métodos de predicción del consumo/generación que

pueden usarse en el marco del EMPC y se ha desarrollado un mecanismo de predicción

basado en el uso de las redes neuronales. Se ha abordado el análisis del efecto del error

de predicción sobre el EMPC y el impacto que la toma de decisiones conservadoras

produce en el rendimiento del sistema. La mejora en el rendimiento del esquema de

gestión energética propuesto se ha cuantificado.

Palabras clave: Sistema de almacenamiento de enerǵıa, generación renovable, ad-

ministración de enerǵıa, administración de enerǵıa, control de reinicio, observador de

perturbaciones, división de enerǵıa, estabilidad, MPC, degradación de ESS, congestión

de red, autoconsumo.
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Resum

La integració de les fonts d’energia renovables a les xarxes modernes ha augmentat

significativament en l’última dècada. Aquestes fonts renovables, encara que molt con-

venients per al medi ambient són de naturalesa intermitent, i són no panificables, cosa

que genera problemes a la xarxa de distribució. Això es deu precisament als problemes

relacionats amb la congestió de la xarxa i la regulació de la tensió. En aquest esce-

nari, l’ús de sistemes d’emmagatzematge d’energia (ESS) en xarxes elèctriques està sent

àmpliament proposat per superar aquests problemes. No obstant això, la integració de

sistemes d’emmagatzematge d’energia per si sols no compensarà el problema creat per

la generació renovable. El control i la gestió de l’ESS s’han de fer de manera òptima,

de manera que s’aprofitin al màxim les seves capacitats per superar els problemes en les

xarxes elèctriques, garantir un cost d’inversió raonable i allargar la vida útil de l’ESS

minimitzant la seva degradació.

Motivat per aquesta problemàtica, aquesta tesi doctoral es centra a desenvolupar

una estratègia de control i gestió eficient per als ESS integrats en una microxarxa,

especialment quan es tracta d’ESS de natura h́ıbrida. El treball de doctorat proposa un

esquema de control jeràrquic compost per un control de baix nivell i una part de gestió

d’energia operant a més alt nivell. El treball realitza aportacions en els dos camps.

En el control de baix nivell, aquest treball es centra a millorar aspectes del control

en temps real dels convertidors que interconnecten el ESS amb la xarxa i el sistema de

micro xarxa en el seu conjunt. El treball proposa sistemes de control amb comportament

dinàmic millorat per a convertidors de potència desenvolupats en el marc del control de

tipus reset. En el control de micro-xarxa, el treball presenta un esquema de control

primari i un de secundari de regulació de voltatge millorat sota pertorbacions, utilitzant

un observador. A més, el treball planteja estratègies de repartiment de el flux de potència

entre els diferents ESS. Durant el disseny d’aquests algoritmes de control es tenen en

compte els mecanismes de degradació dels diferents ESS. Els algoritmes dissenyats es
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validaran mitjanant simulacions i treballs experimentals.

En l’apartat de gestió d’energia, la contribució d’aquest treball se centra en l’aplicació

de l’un control predictiu econòmic basat en model (EMPC) per a la gestió d’ESS en

microxarxes. El treball aborda especficament els problemes de mitigar la congestió de la

xarxa a partir de l’alimentació d’energia renovable, minimitzant la degradació d’ESS i

maximitzant l’autoconsum d’energia renovable generada. S’ha realitzat una revisió dels

mètodes de predicció del consum/generació que poden usar-se en el marc de l’EMPC

i s’ha desenvolupat un mecanisme de predicció basat en l’ús de les xarxes neuronals.

S’ha abordat l’anàlisi de l’efecte de l’error de predicció sobre el EMPC i l’impacte que

la presa de decisions conservadores produeix en el rendiment de el sistema. La millora

en el rendiment de l’esquema de gestió energètica proposat s’ha quantificat.

Paraules clau: Sistema d’emmagatzematge d’energia, generació de renovables,

gestió d’energia, gestió d’energia, control de restabliment, observador de pertorbacions,

desdoblament d’energia, estabilitat, MPC, degradació ESS, congestió de xarxa, auto-

consum.
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Acronyms
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LMI Linear matrix inequality

MA Moving average

ES Exponential smoothing

ARIMA Auto regressive integrated moving average

ARMA Auto regressive moving average
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Notation

Throughout the thesis...

R Reset controller

R set of real numbers

xr Reset controller states

x+
r Reset controller state after reset instance

Ar Reset controller state matrix

br Reset controller input matrix

cr Reset controller output matrix

Aρ Reset matrix for reset controller

uR Reset controller output

e Reset controller input

uci Clegg integrator output

upi PI output

F Flow set of reset controller

J Jump set of reset controller

n Measurement noise

w1 States for exogenous signal

A1 Exogenous signal state matrix

c1 Exogenous signal output matrix

r reference signal

xp Generic plant states

Ap Generic plant state matrix

bp Generic plant input matrix

cp Generic plant output matrix

y Generic plant output

x Reset control system states
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x+ Reset control system state after reset instance

A(ρr) Reset control system state matrix

c Reset control system output matrix

AR Reset matrix for rest control system

FC Flow set of reset control system

JC Jump set of reset control system

e System reference tracking error

Geu(s) Transfer function from e to uci

G(s) DC-DC converter transfer function

Pred(s) DC-DC converter transfer function reduced order

Fc(s) Compensating filter

kp Constant gain in PI controller for DC-DC converter

ki Integral gain in PI controller for DC-DC converter

T (s) Complementary sensitivity transfer function

S(s) Sensitivity transfer function

CS(s) Noise sensitivity transfer function

PS(s) Load sensitivity transfer function

ωb cut-off frequency

vnom Nominal microgrid voltage

vgrid Measured voltage at microgrid

igridr Reference value of total current injected to grid

igrid Total current injected into grid

Cv(s) Voltage loop controller model

Gi(s) Equivalent inner loop transfer function

Gg(s) Grid model

ξ Disturbance input to microgrid

ξ̂ Disturbance estimation

Gcd(s) Feed-forward controller

Cgrid Equivalent capacitance of the microgrid

xo Augmented system state

no order of the ESO

Ao Augmented system state matrix

bo Augmented system input matrix

cy ESO output matrix pertaining to grid voltage

co ESO output matrix pertaining to disturbance extimation
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lo ESO gain

x̂o ESO states

eb Tracking error of grid voltage

kpv, kiv Gain constants of voltage loop PI controller

F (s) Filter for power splitting between high power and energy density ESS

τf Time constant for F (s)

i
′
scr High frequency part of control action from Cv(s)

i
′
hess Low frequency part of control action from Cv(s)

ires Control action from SC charge restoration control.

S Sigmoid Function

as, cs Sigmoid function constant

ibatr Set point for battery current loop

ifcr Set point for FC current loop

isc, ibat, ifc Aggregated output from SC, battery and FC storage system

G1(s) Transfer function of SC current loop

G2(s) Transfer function of battery current loop

G3(s) Transfer function of FC current loop

Q(s) Low pass behaviour representation from equivalent model of ESO

Gyξ(s) Approximated disturbance rejection transfer for ADRC scheme

Wξ(s) Weighting function for ESO design

Pe(s) Extended plant model used in Lo determination

ne Order of extended plant

v1, v2, ....vk−1 previous values of the time series used in forecasting unit

V̂t Forecast output of the time series for instant t

p, d, q Parameters of ARIMA model

f(l) Function defining behaviour of ReLU

N Prediction horizon length

uk|i Output sequence from MPC for sampling instant i (u(0 + 1), u(i+ i)..u(k + i))

cb Battery capacity

csc SC capacity

cfc Hydrogen storage capacity of FC

Eload Total annual energy demanded by load

Epv Total annual energy generated by PV

Ts Sampling time for MPC

η Converter efficiency
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x ESS state

xloα Value of lower limit of ESS state

xupα Value of upper limit of ESS state

pb Battery power

pg Power exchanged to main grid from microgrid

dk|i Sequence of bounds on forecast error at sampling instant i

ppv Generated PV power

pl Load power

λ Penalising weights in MPC cost function

ε Slack variable for soft constraints

J MPC cost function term

pvcons Amount of annual PV energy generated utilised by the consumer

pvgen Total annual PV energy generated

Cf Capacity fade of battery

pcurr Curtailed power in PV generation

ppvm Maximum output from a PV array for an irradiation level

psc SC power

pfc FC system power

pgen Dispatchable generator power

z Auxiliary variable in MLD formulation

δ Boolean variable in MLD formulation

O Computational time complexity.
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Chapter 1

Introduction

1.1 Why energy storage systems in grids??

The need for contribution from renewable energy sources (RES) towards the global

energy consumption is increasingly evident [3,9]. In light of this, at least in the electric

power sector, the least decade has seen more than doubling of the renewable energy

generation capacity being integrated. This has coincided with renewable power being

more cost-competitive compared to conventional fossil fuel power plants [3]. Currently

there is a global installed capacity of more than 33% from renewable sources which had

produced 26.2% of the global electrical energy production in 2018 [3, 10]. The share of

various renewable sources in the total electrical energy production is shown in Figure1.1.

This share is only projected to increase and by 2023 it is expected that renewable sources

produce 30% electric power demand [10].

5.5% wind power

2.5% solar PV

2.2% Bio power

0.4% Geothermal, CSP,

 Ocean power

15.8 %
Hydro

power
26.2 %
Renewable

electricity

73.8 %
Non-renewable

electricity
Renewable electricity 

generation

Figure 1.1: The share of renewable sources
in the global electrical energy production
(Source: [3])

The renewable generation, from an

environmental standpoint, is highly ben-

eficial but from perspective of electric

power networks they do not tend to be

grid friendly. This is due to the inher-

ent nature of renewable sources that can

be characterised as decentralised, non-

dispatchable and intermittent [11]. As a

result, the increased integration of renew-

able sources has led to many issues re-

ported in power networks related to grid congestion and stability [12–16].
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Figure 1.2: The supply/demand imbalance arising from mismatch between typical PV
generation and load demand. Data from Lindenberg, Germany [7].

Grid congestion is any situation in power networks which can drive the voltage and

frequency (in AC grids) beyond their permissible limits. It arises when there is too

much electricity demand or generation in grid. In electric networks with conventional

generation this was mostly isolated to periods of peak demand. The non dispatchable,

intermittent nature of renewable generation increases the likelihood of this scenario as

the generation is not coupled to load demand. This results in generation not occurring

during peak load period, resulting in grid imbalance. A classical case is shown in Figure

1.2, where PV generation in a power network and the associated load profile is shown.

The high PV generation in the afternoon is not countered by the load demand, resulting

in peak PV power feed-in to the grid. Considering increasing penetration of renewable

sources such feed-ins from multiple sources can severely congest the grid. This is capable

of affecting the voltage quality in the grid. [12, 17–19]. There has been many reported

incidents in European countries like Germany, Spain , Ireland and Belgium among oth-

ers. pertaining to voltage quality in the grids, especially on the low voltage (LV) side,

resulting from the increased penetration of renewable energy sources [13,15,20]

The issue with stability stems from the reduced inertia associated with the grid

under increased renewable energy penetration. In the conventional generation there is

energy buffer (inertia) available through the kinetic energy of large rotational masses

formed by the synchronously connected generators and turbines. This inertia caters to

sudden power imbalances in grids, thereby arresting the frequency drop in the network,
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while the control system increases the set points for the generators. In case of renewable

sources this is not the case. Source like PV system have very little stored power in them

leading to low energy buffer. In cases like wind turbines the power converter interface

connecting them to grid electrically decouples them, thereby limiting their contribution

to the total system inertia. [21,22]. A recent blackout event in Australia [23] highlighted

the limited contribution from wind generation in preventing the same.

These issues calls for supplementary measures to be put in place to facilitate a better

transition to a renewable source based generation in electric grids. Currently a widely

employed practise by the grid operators is curtailing the renewable generation by putting

limits on the maximum feed-in power from these sources to the grid. An example of

this is the German Renewable Sources Act of 2012, where PV systems with capacity

less than 30 kW are to limit their grid feed-in to 70% of their nominal power rating.

This brings about 30% curtailment of PV power during peak generation period [24] and

thereby limiting their contribution to the total electricity demand.

Alternate enabling techniques, for integrating RES, that are now being considered

involve Demand response (DR) and Energy storage systems (ESS). DR encompasses

“different strategies by which commercial, residential, and industrial electricity cus-

tomers are incentivized to adjust, in the short-term, when they use electricity” [25].

This will ultimately result in peak shaving and valley filling from the load perspective

promoting more supply-demand balance in the grid. The pre-requisite, though, for DR

is that there are willing consumers having flexible loads whose operation can be shifted

in time to coincide with the peak generation period of renewable sources. The major

drawback of DR is that they are constrained by the spatial and temporal patterns of

load consumption [25,26].

ESS includes various technologies like battery storage system (BESS) [27, 28],

pumped hydro storage (PHS) [29], compressed air energy storage (CAES) [30], hydro-

gen storage [31], supercapacitors (SC) [32]. These ESS can store energy during periods

of high generation to be used at later time, thereby providing valley filling and peak

shaving capabilities. The advantage with ESS is that they don’t have the spatial and

temporal constraints. The major drawback is the technological readiness in some case

and the storage capacity of these systems [1]. It should be noted that not one technique

alone, DR or ESS, can effectively solve all the issues that can rise in electric networks

due to renewable generation. In fact both these (DR and ESS) have been earmarked as

strategic techniques to facilitate the integration of renewable sources [25]. This Ph.D



6 Chapter 1 : Introduction

work focusses on the role of ESS in facilitating the growing integration of renewable

sources. The specific focus area will be discussed in the upcoming sections.

1.2 An overview of ESS in electric grids

The use of ESS in stationary applications like grid connected system can be traced back

to early days of power generation where lead acid accumulators were used to provide

residual DC load when power generating units where shut down at night. In the era of

AC generation and transmission, when utility companies identified the flexibility offered

by the ESS the first energy storage system, PHS, was put to use in 1929. Nevertheless,

they were all limited to very specific application [33]. During the oil crisis of 1970s the

idea of ESS as an alternative for intermediate and peak loading units gained promi-

nence. Nevertheless, a large scale implementation of this never materialised due the

price reduction in fossil fuels once the oil crisis was over [34]. Nonetheless, large scale

storage system like PHS and CAES continued to be used sparsely in the grid to achieve

load levelling, valley filling functionalities [35]. Currently integration of ESS in electric

grids is undergoing a renaissance, mainly driven by the following factors [36–38]

• Increased penetration of intermittent renewable sources

• Need for alleviating transmission network congestion due to capacity constraints

• Obtaining maximum benefit from price arbitrage, through load shifting in a dereg-

ulated electricity market.

• Increasing interest in electric vehicles

• Growing emphasis to smart grids, distributed generation and load aggregation

• Advancements in various ESS technologies.

The ESS provide different roles and services across the network for various stake-

holders namely, power system operators, utilities and customers. In the case of utility

operators, the benefits that can be drawn from ESS vary depending on the nature of

the storage systems, whether they are long or short terms storages. The long term stor-

age systems provide functionalities like energy arbitrage, load levelling, peak shaving,

non-spinning/spinning reserve and black start capabilities which improve the flexibility
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Power system operator Utilities Consumer

Load levelling Transmission deferral Improved power quality

Peak Shaving Distribution deferral Increased self sufficiency

Spinning reserve Resource adequacy Back-up power

Energy arbitrage Congestion relief Bill management exploiting
variable pricing

Black start capabilities

Frequency, voltage control

Improving grid resiliency

Table 1.1: Functionalities of ESS in the electric grids.

of grid operation. The short term storages enable improving power quality through an-

cillary services like frequency, voltage control. They can also improve the grid resiliency

during increased and prolonged outages caused by extreme weather scenarios [1, 4, 38].

Utility services including the transmission and distribution networks are mainly ben-

efited by the ESS through upgrade deferral of these networks, by providing resource ade-

quacy and congestion relief. Through proper deployment of ESS, infrastructure upgrade

can be delayed or entirely avoided providing economic benefits. They can also provide

cheaper alternatives to generation upgrade and alleviate congestion in the networks.

In the customer level, deployment of ESS as a behind the meter system can provide

bill management capabilities by enabling selective drawing of power during periods of

low power pricing. In the customer premises ESS can ensure more self-sufficiency for

prosumer (producer/consumer) effectively managing the power within them through

minimum interaction with main grids. They can also provide ride through capabilities

during minor grid anomalies and improvement of power quality. The different functions

provided by the ESS across the grid is summed up in Table 1.1 [1, 4, 38].

1.2.1 Classification of ESS

As mentioned above there are different types of ESS, being considered and currently

employed in the electric grids. Nevertheless, not all ESS are of the same type, nor can
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Electrical en-
ergy storage

Mechanical en-
ergy storage

Chemical energy
storage

Thermal energy
storage

Supercapacitors PHS Battery (Lead acid,
Li-ion, NiCd, NiMH,
NaS, Redox flow
Batteries)

Aquiferous cold en-
ergy storage, cryo-
genic energy storage

Superconducting
magnetic energy
storage (SMES)

CAES Fuel cells (Hydrogen
based or Methanol)

Steam or hot water
accumulators

Flywheel Solar hydrogen, So-
lar Metal

Table 1.2: ESS classification based on the form of energy storage.

they do all the above mentioned functions and they differ in the way energy is stored.

An understanding of the different ESS is essential in identifying which ESS is to be

considered for a specific application.

The different ESS store electrical energy in different forms. This can be as electrical,

mechanical, chemical or thermal energy. The classification of ESS based on the nature

of their energy storage is provided in Table 1.2 [1, 2, 39].

Figure 1.3: Classification of ESS based on
their functionality [1, 2].

The ESS can also be classified based

on the applications they are subjected

to in the grid. This is shown in Fig-

ure 1.3, where the ESS are classified

based on the two generic functionalities

they are subjected to in the grid namely,

power quality-reliability management and

energy management. This categorization

is done based on the physical capabilities

of the ESS, whether they have high power

or energy density. High energy density

storage systems are those characterised by their ability to store large amount of en-

ergy. These include the storage systems that are used for energy management due to

their ability to take in and supply energy for longer durations. Nonetheless, these stor-

age systems are usually characterised by their slow response sometimes mostly due to
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their physical constraints [1,37,39,40]. The high energy density ESS contribute mainly

towards alleviating congestion issues in the power grids and energy arbitrage.

The ESS used in the power quality and reliability (stability) management usually

exhibit high power density. The power quality and reliability issues in electric grids are

caused by sudden power variations. In this scenario, to ensure the power quality, the

ESS used should be capable of very fast power response to counteract sudden changes.

High power density ESS can provide or absorb large amount of power, albeit for a

short duration as they have low energy capacity. Battery storage can fall under both

categories depending on their sizing. The high power density ESS contributes to tackling

the stability issues through emulation of virtual inertia in the grid [1, 37,39].

The ESS should also be identified based on their ability to store energy without

undergoing self discharge. ESS like Flywheels are characterised by their very high self

discharge rates, which limits their energy retention capabilities. This requires that

the energy stored in them be utilised quickly and cannot be used in scenarios where

high storage duration is needed [1]. Lithium ion (Li-ion), Nickel Cadmium (NiCD)

and lead acid based battery technologies can store energy in them for several days

due to very less self discharge (2%-5% per month). On the other hand Nickel metal

Hydriode (NiMH) and Sodium Sulphur (NaS) based battery technology shows higher

self discharge rate of 5%-30% per month [1,4,27]. Electrical energy based storage systems

like supercapacitors, SMES have discharge rate in the range of 5%-40% and 10%-30%

per day receptively [4, 41, 42]. Finally hydrogen based storage technologies, Redox flow

Batteries, PHS, CAES and thermal energy based storage systems exhibit negligible if

not no self discharge [1].

ESS are also characterised based on the round cycle efficiency. The round cycle

efficiency is indicative of the energy lost in a charge discharge cycle of the ESS. This

measure can provide a good indication in the selection process of the ESS technology for

a particular application. The comparison of round cycle efficiency of the different ESS

technology is provided in Table 1.3. It should be noted that the conclusion depicted

here does not consider the self discharge of the ESS [1,37].
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Efficiency range Energy Storage System

< 60% Hydrogen Storage (with Fuel cell), Solar Hydrogen,
Solar Metal, Thermal energy storage

60%-90% PHS, CAES, Batteries (Lead acid, NiCd, NaS, Re-
dox flow batteries)

> 90% Batteries- Li-ion, SMES, flywheel, supercapacitors

Table 1.3: Round cycle efficiency comparison of different ESS technology [1, 2].

Figure 1.4: Comprehensive representation of ESS classification based on their capacity,
functionality and efficiency [1, 4, 5].
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1.2.2 Need for hybrid storage solutions

As evident from the previous section a single ESS technology cannot solve the multitude

of problems arising in electric networks. Therefore, it is essential that hybrid storage

solutions comprising of ESS belonging to different groups as shown in Figure1.3, 1.4

be considered in electric networks. The high power density ESS can meet the sudden

power change requirements in the grid while the slower, high energy density ESS ramp

up in power. This ensures that power quality is maintained in the grid while minimising

degradation effects in the slow acting ESS. Afterwards long term energy imbalances will

be met by high energy density ESS. The hybrid storage solutions offer lot of advantages

for ESS deployment in electric grids which can be summed up as follows [37,43,44]

• Optimal solution in terms of total capital cost of investment

• Optimal solution in terms of ESS sizing

• Improved thermal management for ESS

• Reduction in rate of degradation and improved lifetime of ESS.

The Figure1.4 shows how different ESS technologies contribute in terms of power,

discharge time and towards different functionalities in the grid. It enables a clearer

understanding on the need for hybrid storage solutions to cover the entire spectrum of

demands arising in the grid.

1.2.3 Current status of ESS integration in electric grids

As mentioned before there has been an increased deployment of ESS in electric grids

of lately. Currently the installed capacity of ESS around the world is around 167 GW.

The major share in this (160 GW) comes from PHS [3]. The higher contribution from

PHS arises due to the fact that it was the widely considered storage mechanism in grid

during the early days resulting in the wide scale deployment of them. Nevertheless,

they are not considered as the main solution when it comes to implementing ESS in

grids nowadays, due to their many disadvantages like high cost of investment, high lead

times, lack of suitable sites and maturing of other storage technologies [5, 45]. This is

also evident by the fact that PHS installation have been coming down in the last few

years [3].



12 Chapter 1 : Introduction

Electro-chemical storage currently accounts for 3.3 GW (considering only large grid

connected system without accounting for smaller behind the meter installations) of total

ESS installation in the world. The maturing of this technology has seen an increasing

deployment of the same highlighted by the fact that 50% of the total ESS commissioned

in 2018 is battery based systems. There has been an increased emphasis on combined

renewable energy (PV, wind) and storage projects (battery) in 2018 [3]. Many such

utility scale battery storage projects have been commissioned in 2018 like 25 MW (25

MWh) in Australia [46], 1 MW (1.3MWh) in Scotland [47], 48 MW (50 MWh) in

Germany (single largest installation in Europe) [48] and cumulative 200 MW in the

UK [49]. There are also plans on commissioning 568 MW (2.3 GWh) capacity battery

storage in the United states [50] and 13 MW (40 MWh) battery system in Republic of

Korea [3]. These utility scale installation have also shown to lower overall system costs

in electric grids [51]. Apart from these large scale installations, the last few years has

seen an increasing number of behind the meter installation in many European countries

and Australia [3]. The battery technology considered in most of the above cases have

been Li-ion based battery systems [3].

Hydrogen based storage using power to gas plants is also gaining in prominence [31].

The objective is to use surplus energy from renewable sources to generate hydrogen

through processes like electrolysis which can then be utilised to develop clean power using

technologies like fuel-cells (FC) for stationary applications [52]. Nevertheless currently

most of the Hydrogen (95%) used for energy storage is generated from fossil fuels [53].

Despite this, the general consensus is that Hydrogen based storage will play an increased

role in renewable generation integration and find extensive application in stationary and

transport sectors. This also evident by the increased commitment from China and Japan

towards the same [54,55]. Apart from high energy ESS, there has always been emphasis

on using high power density ESS for power quality improvement in many countries [3].

1.3 The role of microgrids in modern electrical networks

Another impact of increased penetration of renewable sources is the shift from cen-

tralised to distributed generation (DG) utilising distributed energy resources (DER).

DG is defined according to [56] as “An electric power source connected directly to the

distribution network or on the customer side of the meter”. DERs need not be neces-

sarily renewable sources, but the distributed nature of the renewable sources like wind
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and solar energies have accelerated the shift to distributed generation [21]. Another

major reason for the advent of DG is the ageing and saturated electric networks. In

this context DGs can provide economic benefit through deferral of investments in larger

generating units, transmission and distribution capacity enhancement. DERs also have

lesser lead time in deployment, can contribute to power quality improvement, provide

ancillary services and ensure enhanced reliability [21,57,58].

In order to facilitate the increased utilisation of DERs the concept of microgrids

where put forward to manage locally the energy generated by the DERs and demand

by forming subsections in the larger grid. In this context microgrid is defined according

to the US Department of Energy as [59] “A microgrid is a group of interconnected

loads and distributed energy resources within clearly defined electrical boundaries that

acts as a single controllable entity with respect to the grid. A microgrid can connect

and disconnect from the grid to enable it to operate in both grid-connected or island

mode”. As defined the microgrids have two modes of operation: a) grid connected mode

where there is power exchange between the microgrid and main grid and b) islanded

mode where microgrids support loads on its own and is disconnected from the main

grid. The islanded mode is usually enforced during fault events in the main grid or in

geographically isolated locations like islands where drawing long lines connecting to main

grid is physical and economically not viable [60]. In the latter the microgrid is always

operating in islanded mode. Traditionally intentional islanding in grids is something

which was not allowed to avert any risk to maintenance operations. Nowadays new

standards like IEEE Std 1547.4 [61] encourage islanded operation for microgrids and

provide guideline for the same. Apart from DG, the factors which have driven the

development of microgrids are summed up as [11]

• Economic Benefits- infrastructure cost saving through investment deferrals, fuel

savings by eliminating transmission/distribution losses, ancillary services.

• Energy Security- Microgrids can supply critical facilities in their vicinity even when

main grid is down from weather disruptions. Isolated operation of microgrid can

override cascaded outages and are less vulnerable to cyber-physical attacks

• Aids increased penetration of renewable sources.

Microgrids, due to their smaller generation capacities and dependencies on DER tend

to have very low inertia, resulting in need for a system which can emulate resilience.
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Apart from this, in the islanded mode of operation microgrids need to be self sufficient

in meeting their load demands. These requirements can be achieved to some extent

using ESS in microgrids. This again highlights the relevance of ESS in modern grids.

1.4 Why the need for research in ESS integration??

Though the title of this subsection poses a question as to why the need for research in

different aspects of ESS integration the answer should be fairly evident by now. ESS is

going to play a major role in the future grids with the increasing penetration of RES

and rise of microgrids. There is an ever increasing trend towards incorporating ESS in

stationary grid connected applications as highlighted in Subsection1.2.3. This makes

it imperative the need for research in these ESS technologies, their interfacing system

(power converters) and control/management of these devices to ensure maximum benefit

from the ESS integration.

In the area of research of ESS technology the focus is on developing newer more

efficient ESS, improving the older ones in terms of their lifetime and round cycle efficiency

which ensures economic benefit [62, 63]. In the case of interfacing power converters the

research focusses mostly on developing newer power converter topologies which can

be more efficient, more compact, requires lesser filtering requirement and utilisation

of more efficient wide bandgap semiconductor devices [4, 63]. Finally in the area of

control and management of ESS the research focusses on two aspects. The first, is in

developing robust control systems for ESS and interfacing power converters to ensure a

fast responding unit to load changes thus emulating grid resilience (synthetic inertia),

provide active-reactive power (for AC grids) control and maintaining power quality.

The second aspect of research is on developing algorithms which carries out energy

management of ESS and various generating sources in the grid so that certain objectives

are met. The objectives of these algorithms involves ensuring economic benefit from

energy arbitrage, grid congestion relief, increased self consumption of renewable power

or reduced degradation of ESS to name a few. Reducing the degradation rates of ESS

and in turn the increase in lifetime through energy management will ultimately lead to

economic benefit as it allows to get maximum returns from the investment made in ESS.

In this context, the general focus of the thesis is on the control and management of

ESS in microgrids. The thesis will focus on both the aspect of robust control system
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design and developing optimal energy management algorithm to meet some identified ob-

jectives (which will be discussed later). The specific problem statement will be presented

in the subsequent section. Prior to that an overview of the entire control architecture

and how the different aspects, robust control system and energy management stage,

mentioned above is integrated into this architecture, will be presented.

1.4.1 Control and energy management architecture for ESS

As mentioned above there are two stages of developing a robust optimal control ar-

chitecture for ESS in microgrids. The robust, real-time control side which takes care

of system stability and power quality is defined as the power management side. The

control action at this stage is fast, instantaneous, load following and results in real-time

control of the power in the system. The energy management side as the name suggests

manages energy stored in the ESS at any point of time. This needs to be done optimally

based on some predefined objectives. As it is about energy management the intended

control action is more long term and updated at a much slower rate in comparison to

power management side [64].

The power and energy management stage, therefore, works in two time scales. The

two stages are incorporated in the same system through a hierarchical control archi-

tecture. This hierarchical control scheme is classical in microgrid control [64, 65]. This

makes sense as the control and energy management of the ESS in turn results in stabil-

ity and energy exchange within the microgrid, effectively resulting in microgrid control.

The hierarchical control scheme is now recognised in the IEEE Draft Standard for the

Specification of Microgrid Controllers [66].

Adhering to the same, a hierarchical control architecture that will be adopted in

this work as shown in Figure1.5. The power and energy management stages are clearly

demarcated here. The control architecture presented here is a generic scheme for micro-

grid having RES generation, ESS and local loads. As can be seen the microgrid can be

operated in islanded mode or in grid connected mode. The microgrid is modelled as an

aggregated capacitance Cgrid whereas the load is modelled as an aggregated resistance

Rload. It should be noted that the ESSs are interfaced to the microgrid through power

converters thereby ensuring controllability over the power that is being supplied. An

overview of the different levels is provided next.
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Figure 1.5: Hierarchical control architecture for ESS in grids.

Power Management stage

The power management as mentioned above, ensures the stability, power quality in the

grid through the real time management of power among the ESS and within the grid.

In this regards this stage is characterised by very small sample times (ms − s range),

instantaneous fast control actions being updated at a higher frequency and operates

in real time. According to Figure1.5 this stage receives as input, the sampled value of

grid voltage, frequency (AC network), currents from each interfacing converter and SOC

of each ESS. The power management stage also receives set-points generated from the

energy management level as inputs as shown in Figure1.5. The power management level

is further distinguished into two parts: the converter control and the primary+secondary

control part.

The converter control stage deals with the control of each interfacing power con-

verters. The main objective is to regulate the power flow through the converter based

on set-points generated from the higher levels. In this context, the objective of this

control layer is to ensure robust set-point tracking by the power converters. The set

point tracking in power converters can be achieved in many ways like using the classical

PI controller [67], sliding mode controller [68] or differential flatness theory based con-

troller [69]. This control layer is embedded in each interfacing converter and the set-point

to each, is based on the output from energy management and primary+secondary level.
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This control layer is also provided the sampled current from the output of individual

converters as feedback input.

The primary + secondary layer of the power management level is tasked with the

maintaining stability, power quality and distribution of power among the ESS in the

microgrid. In the microgrid formed by the interconnection of the ESS, RES and loads,

this control layer monitors the grid voltage, frequency (AC network). Based on their

deviation from nominal value this control layer computes the necessary control action

to keep these parameters within prescribed limits. These system parameter variations

arise from unaccounted load or reactive (ac network) power variation and if not han-

dled properly can make the microgrid unstable or affect the power quality. The control

action generated by this layer needs to be split among the various ESS and dispatch-

able generating sources (if any available) appropriately. The power splitting is done by

the primary side of the primary +secondary control layer. In ESS this can be done

with frequency based splitting [70] or using droop control [71] based techniques. The

maintenance of system parameters (voltage and frequency) within prescribed limits is

achieved by the secondary control part of the primary +secondary control layer. Thus

to sum up, when sudden load change induced grid parameter value deviation occurs, the

primary+secondary control layer arrests this deviation and brings the system parame-

ter values to prescribed level while splitting the control action to the various units in

the microgrid (ESS or dispatchable generation unit) appropriately. This layer receives

reference values from the energy management side and modifies them depending on the

system behaviour to maintain stability/ power quality. This modified set-points are then

passed on to the converter control layer. This primary+secondary layer is provided with

the sampled value of system voltage and frequency (AC network) as feedback inputs.

In the power management stage the converter control layer is always faster than the

primary+ secondary layer.

Energy management stage

The energy management stage handles the energy scheduling among the different units

like ESS and dispatchable sources This is done such that some objectives like system

operation cost is optimised [72, 73], ESS degradation rate is minimised [74] or grid

performance like congestion is alleviated [75]. The minimisation degradation of ESS is

imperative as it allows maximum utilisation of the investments made in setting up the
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ESS. If the energy handled by the ESS is not properly managed they can undergo rapid

degradation which results in need for their replacement and more capital investment.

The grid congestion as mentioned before arises from the RES integration. Integrating

ESS will not simply solve the issues with RES. Inorder to ensure RES are grid friendly,

the energy should be managed appropriately using the ESS so that they are supplied

to the grid at right instances. These issues will be discussed in detail in later chapters.

Nevertheless, it should be emphasised that the energy management state is crucial to

achieving this. As this level deals with the energy interactions the control action is

updated in longer time intervals. As such this stage tends to be slower than the power

management side with sampling time in the range of minutes-hours. The input to this

stage is abstract like the system states which in this case will be State of charge (SOC)

or state of hydrogen (SOH) of the ESS. The grid parameters like voltage or frequency

are not considered here as their control require faster action. This stage is also provided

with prediction on RES generation and load profiles. The generated set-points from this

stage is then send as input to power management side. The energy management side can

be distinguished into two layers as well: the tertiary control layer and central/distributed

grid control unit.

The tertiary control layer forms the centralised energy management unit for the

microgrid. It can make the energy management decisions heuristically using rule

based [76, 77], fuzzy inference methods [78] or analytically using optimisation based

techniques [74] . The ESS states, predicted load and generation profile for the microgrid

are provided as input to this layer. The output of this layer are the set-points for ESS

and dispatchable generation sources which are applied to the power management side.

The power management stage will then work around these set-points and compensate

for the system variations that occur between the sampling instants of the tertiary layer,

thereby maintaining system stability

The central/distributed grid control unit deals with the energy interaction in the

main grid. The microgrid when viewed from the main grid can be abstracted as a

energy unit for e.g aggregated as the total energy stored in all the ESS. This control

layer will then allow the main grid to regulate this energy in a centralised or distributed

way such that, when needed, the microgrid can aid the operation of the main grid. This

layer forms the highest layer of the control architecture and is the slowest with sampling

times in the range of hours.
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Figure 1.6: The hierarchical control architecture for the control of ESS in electric grids,
represented from the perspective of the functions performed at each level. The flow of
information from the grid and control action to the physical system is shown

Therefore, the different layers in the hierarchical control architecture are brought

together, in a unified framework, to ensure the stable and optimal operation of the

microgrids. The different levels operate at different time scales achieving short term

power balance functionality and long term system operation optimisation. There is flow

of system information from the lower to higher levels whereas there is flow of system

control action from higher to lower levels. As the control action move down through

each layer they are amended to shorter time intervals which will be finally executed by

the converter control layer. The flow of system data, control action, the time scales and

the functions carried out by each layers can be visualised in Figure1.6
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1.5 Thesis objective

In light of all the above discussions the general objective of the thesis is defined as:

“Implement a control architecture for a hybrid ESS in a DC microgrid with RES such

that it

(a) aids the increased penetration and self consumption of RES at all instances

(b) provides robust stable microgrid operation and improved power quality under in-

termittent, non-dispatchable renewable generation

(c) provides real time power management among the hybrid ESS

(d) provides optimal energy management of ESS such that the renewable generation

remains grid friendly while maintaining efficient and economic microgrid operation

under intermittent generation.

(e) minimises rate of degradation of ESS during the continuous operation so that

maximum returns on the capital investment made can be achieved.”

The general control architecture presented in Figure1.5 will be considered for the

same. In achieving the general objective the following steps will be undertaken

• Identify the state of art and scope for improvement in each level of control archi-

tecture

• Improve converter control stage performance by proposing controllers for interfac-

ing power electronic converters which will not significantly impact the grid power

quality during ESS power interaction with the grid.

• Propose a primary + secondary scheme that provides a robust, stable control of

microgrid under intermittent renewable generation and ensures improved voltage

regulation performance. The proposed scheme will also include a optimal power

splitting strategy of the control action among the ESS based on their character-

istics. Special significance will be given to ensuring high operational efficiency

and to ensure that a particular ESS is not overly stressed leading to excessive

degradation.
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• Develop a tertiary control layer based on the identification of some real world

scenarios where RES poses issues to the current grid infrastructure. The devel-

oped tertiary scheme will implement state-of-the-art techniques to provide on-line

optimal energy management of ESS to mitigate these issues while ensuring mini-

mal ESS degradation. Critical to achieving this is having good predictions about

generation and load profiles. To this end emphasis will be placed on surveying,

developing forecasting techniques and identifying the most suited one for the con-

sidered scenario.

• Verify the proposed controllers through simulations and wherever possible through

experimental validation.

It should be noted that this thesis will not deal with the aspects of central/distributed

grid control layer discussed before.

1.6 Thesis outline

The rest of the thesis is outlined as follows. The Chapter 2 provides an overview of the

hybrid storage system considered in this work, their operating principle-characteristics

and general microgrid architecture for which the control and energy management solu-

tions are developed in this work.

Chapter 3 will deal with the contributions in converter control stage. An overview

of the existing state-of-the-art will be provided and a novel control strategy will be

proposed for the converter control. The objective of this controller will be to improve

the transient response of the converter system. This chapter will outline the design of

proposed controller, development of simulation models and experimental validation of

the same. Robustness and stability analysis will also be carried out in this chapter.

Chapter 4 will be about the primary+secondary control scheme. A novel power

splitting strategy for the hybrid ESS will be presented in this section taking into con-

sideration the degradation mechanism and physical characteristics of the different ESS.

This chapter will also present an improved voltage regulation control for the DC micro-

grid with the aim to improve the power quality and transient behaviour. In this context

the design of the proposed methodology will be presented and simulation models will

be developed.
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Chapter 5 will present the methodology employed for the predicting generation and

load profiles. The chapter will present some forecasting methodologies which can be

used in the tertiary level to enable better decision making in the energy management.

The formulation of prediction system and the results obtained from the same will be

presented.

Chapter 6 will outline the tertiary control layer. The main focus, as mentioned above,

will be on presenting some real world issues due to RES integration and demonstrating

how efficient energy management of ESS can be used to overcome the same. In this

context some state of the art energy management techniques will be analysed and devel-

oped for the microgrid with hybrid ESS system, in this chapter. The proposed energy

management system will be formulated to mitigate the issues in the grid arising from

RES integration, promoting self consumption of RES power and minimising degradation

of the ESS. An extensive analysis that demonstrates and quantifies the performance of

the tertiary control stage will carried out in the chapter. The chapter also addresses

the energy management problem in the grid connected and islanded mode of operation.

The verification of the proposed energy management system will be carried out through

simulations. Finally, the work in this Ph.D will be concluded through Chapter 7.



Chapter 2

Hybrid System Overview

This chapter introduces the DC microgrid and the hybrid ESS architecture considered in

the work. A generic overview of the microgrid with hybrid ESS considered is presented

along with a short discussion on the working principle, energy storage mechanism of

the different ESS. An overview of the test setup used for experimental verification of

various control strategies will also be presented. Finally a short overview of the design,

simulation and experimental implementation tools considered will also be discussed.

2.1 System overview

The Figure 2.1 represents the generic aggregated scheme of the microgrid with the hybrid

ESS considered in this work. In this work, the RES considered will be mostly PV system

and as such the same is shown in the microgrid scheme. The generating source and the

ESS are connected to a DC bus through its interfacing DC-DC converters. This ensures

controllability over the power that is delivered by these systems. The DC bus supplies

the microgrid load or interacts with the main grid through an DC-AC converter. The

proposed microgrid is capable of both grid connected mode of operation or in islanded

mode disconnected from the main grid. The different ESS considered in the work are SC,

battery and hydrogen storage with fuel cell (FC) -electrolyser system with DC output.

It can be seen that the case considered in this work utilises two high energy density

ESS for the microgrid system. Typically, a hybrid combination of one type of high energy

23
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Figure 2.1: Schematic of microgrid with PV generation and the hybrid ESS considered.

and high power density ESS is capable of meeting all the requirements in the grid. In

some scenarios like islanded operation a large energy storage capability will be beneficial

to ensure increased utilisation of RES generation, self-sufficiency and reliability in grid

operation. In this case, the capacity demanded from the high energy density ESS will

be high. Conventional high energy density storage like PHS or CAES can easily meet

this high capacity requirement in an efficient and economical manner [1]. Nevertheless,

the utilisation of these ESS are nowadays limited due to their adverse impact on the

environment and difficulty in obtaining suitable sites for their integration [5]. Battery

systems provide a very good solution when there is a need for high energy density,

especially from the perspective of operating efficiency. However, when large storage

capacity is need batteries may not be economically viable. This is mainly due to the

high storage costs associated with battery systems [37]. The reason for the same being,

battery stores energy internally resulting in a very large capacity battery that will be

expensive. Therefore, in scenarios where large storage capacity is needed the battery
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needs to be used in conjunction with another ESS that has low storage cost. The

FC-electrolyser system with hydrogen storage can ensure the same. The FC systems

store energy externally in the form of fuel (like hydrogen). As a result, increasing the

storage capacity only involves increasing the capacity of the external tanks storing the

fuel and not the FC system itself. This results in low storage costs [37]. The FC

system also presents an interesting choice among the other high energy density ESS due

ti technological readiness [1]. However, FC systems have poor round cycle efficiency

and using them alone as a high energy density storage device may not advantageous in

terms of efficiency. Therefore, in situations that demand high energy storage capability,

currently, a combination of battery and FC can provide optimal solution as a trade-off

between operation efficiency and economic factors [1, 37].

In this type of hybrid combination, the battery typically cater to mid-term imbal-

ance and hydrogen storage will take care of long term imbalances. Thus the imbalance

spectrum (long and short term) presented in Figure 1.4 are met by the chosen hybrid

ESS. This will be more evident through the discussion in the upcoming chapters

It should be emphasised that, in current scenario, most of the energy storage require-

ment can be achieved by using a battery alone. Nevertheless, in some case (especially

islanded operation) both the battery and FC system need to be used in conjunction.

In order to address all the scenarios, that can arise in the grid, the hybrid combination

of SC, battery and FC system is considered in this work. Developing a control scheme

accounting for all the characteristics of the three ESS, facilitates the development of a

very generic versatile control strategy. The developed control system will be flexible,

such that they can be easily modified to cater a less hybrid combination or even a single

ESS. Finally, it should also be emphasize that this work does not claim that the combi-

nation of three ESS, as shown above, is the best possible. In some situations where PHS

or CAES they can provide better solution, if they are an viable option. The operating

principle, energy storage mechanism and characteristics of the ESS considered above

(SC, Battery and FC system) is discussed next.

2.1.1 Supercapacitors

Supercapacitor, ultracapacitor or double layer capacitors as they are usually called are

devices that store energy in an electro chemical double layer and are used in applications

were fast charging, discharging is expected. In the physical structure, it is very similar to
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that of a battery and might come across as an electrochemical storage device. However,

unlike batteries these devices do not rely on a chemical process to store the energy but

rather the electric field [1]. The idea of energy storage in an electrochemical double

layer, used in SC, was put forward in [79]. The SC consists of two electrode plates

immersed in an electrolyte containing positive and negative ions, separated by an ion

permeable separator as shown in Figure 2.2. When an electric field is applied the energy

storage in a SC happens through the charge accumulation along the surface separating

the electrode and electrolyte as shown in Figure 2.2. There is no electron exchange

happening between the electrode and electrolyte unlike a battery. This principle aids

the faster charging and discharging of the SC. It can be seen in Figure 2.2 that the SC

has charge accumulations at the two electrode thereby forming two capacitances C1, C2

connected in series and hence the name double layer capacitor. The total capacitance

will therefore be Ceq =
C1 · C2

C1 + C2
.
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E
le

c
tr

o
d
e

E
le

c
tr

o
d
e

Seperator

Electrolyte ions

Figure 2.2: Supercapacitor internal assem-
bly.

If C1 and C2 are the same it is called a

symmetric supercapacitor. The large ca-

pacitance values are achieved by the SC

due to two main factors: the large surface

area of the electrode which is further en-

hanced using activated carbon and very

low gap between the electrode and elec-

trolyte (in the range of Å) [80] [81].

The charge accumulation at the elec-

trodes under the influence of applied elec-

tric field is fast since the process only in-

volves ions moving in and out. This al-

lows the SC to respond to sudden changes

in power requirement by charging and

discharging quickly making it suited for

catering sudden load variations. The ab-

sence of chemical reaction for energy stor-

age in SC also results in lower degradation of electrodes under charge-discharge cy-

cling [81]. Currently there are commercial SC from Maxwell that claim an energy

density of 2.3-4 WH/kg and power density of 3600-6800W/kg for the modules. Apart

from this commercial SC from Maxwell claim an estimated cycle lifetime in the range
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of 1,000,000 cycles and a projected DC life (held continuously at the rated voltage) of

10 years at 25◦C.

2.1.2 Batteries

Batteries are the oldest energy storage technology to be developed. The fundamental

unit of a battery is an electrochemical cell formed by a positive electrode (anode) and

negative electrode (cathode) separated by an electrolytic solution. In each cell redox

reaction occur, which is responsible for electrical to chemical energy conversion and

vice-versa. The electrolytic solution, formed by dissolved salts, forms a medium of

ion transfer whereas an external electrical connection between the electrodes enables

electron transfer and thus electrical power transfer [1, 27, 82]. A battery is formed by

many such electrochemical cells connected in series.

There are different battery technologies used in stationary grid connected applica-

tions like Lead acid, Nickel cadmium, Sodium sulphur and Lithium ion. Among them,

Lithium ion (Li-ion) batteries are increasingly utilised nowadays due to their higher en-

ergy densities, higher efficiencies, long cycle-life and rate capabilities [27]. This is also

evident with the recent commissioning of many Li-ion battery based storage solutions

for power grid and renewable sources like the Tesla Big battery in Australia [51], the

Batwind (offshore wind with battery storage) project in Scotland [47], the 50 MWh

battery storage in Germany [48] to name a few. The anode of the Li-ion battery is

made of graphite with layering structure housing Li cells in it. The cathode is formed

by Lithiated metal oxide like (LiCoO2, LiFePO4) and Li salt solutions make up the

electrolyte. Li-ion batteries based on LiFePO4 is increasingly used nowadays due to

their higher safety and cost factor [1, 27,82].

The ageing/degradation of the Li-ion batteries arises mainly from calender and cyclic

ageing phenomenons. The calender ageing is the irreversible capacity loss in the battery

occurring during the storage. In other words if a battery is kept in a charged state over a

long period of time it is bound to lose its capacity. The rate of capacity loss is dependent

on the operating conditions like temperature and charge (SOC) levels. Calender ageing

in Li batteries are accelerated under high temperature and high charge storage. In

high temperature operation, secondary reactions in the battery lead to loss of available

Lithium in graphite electrode causing degradation. The high charge storage leads to

huge potential disequilibrium at the electrode/electrolyte interface which accelerates
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the degradation of the solid electrolyte interphase which is essential to the functioning

of Li ion batteries. Therefore, high temperature and dwell times at high SOC levels

are main scenarios to be avoided with Li-ion batteries to prevent rapid degradation in

grid connected operation. The cycling ageing is the loss of capacity arising from the

persistent charging and discharging of the battery during its operation. The cycling

ageing is dependant on the factor ∆SOC, the cycle amplitude defined as the change

in SOC undergone by the battery in one charge-discharge cycle. The larger the cycling

amplitude the battery has to undergo, higher is the degradation. It should be noted that

cycling ageing is a direct consequence of the battery utilisation and cannot be avoided

entirely. Nevertheless care should be taken to limit, whenever possible, high magnitude

cycles which can lead to increased degradation [83–85]. The end of life (EOL) of batteries

is usually defined when the capacity fade arising from degradation reaches 80% of its

rated value. The Li-ion batteries have an average lifetime of 5-15 years depending on

the operating conditions or around 10,000 charge discharge cycles [1, 86]. The energy

density of Li-ion batteries vary between 70-200 Wh/kg and power density between 150-

315 W/kg [1].

2.1.3 Fuel cell-electrolyser system

The fuel cells and electrolyser, unlike batteries, is not an energy storage device. It

facilitates conversion of chemical energy to electrical energy using hydrogen as a fuel

and vice versa. Therefore, unlike batteries the energy storage is not done internally

in the device but externally with the fuel (hydrogen). This enables the fuel cell based

hydrogen storages to have a very high energy storage ability as this is directly dependant

on the amount of hydrogen that can be stored. In other words they tend to have very low

storage cost [37]. It should be noted that the fuel cell is simply a generator of electricity

using hydrogen and unlike batteries cannot be used for taking in surplus power in the

grid and the electrolyser is used to convert the surplus power to hydrogen.

First the fuel cell operation is discussed. The operation principle of fuel cell’s energy

conversion is very similar to that of a battery. It consists of two electrodes separated

by an ion exchange layer and an external circuit which facilitates the electron exchange.

The anode forms the negative and cathode forms the positive terminal in fuel cells unlike

in batteries. In comparison to battery, the electrode material does not react and store

the charge. Instead the external fuel undergoes redox reaction in the vicinity of the



2.1 : System overview 29

Bipolar plates

Figure 2.3: Fuel cell system with stacked bipolar plates and gas feeding channels (Source:
[6]).

electrodes to generate the energy. The basic hydrogen fuel cell utilises hydrogen and

oxygen as the fuels. At the anode hydrogen gas ionizes resulting in

2H2 −→ 4H+ + 4e− (2.1)

and the at the cathode oxygen reacts with the electrons and H+ ions generated at the

anode resulting in

O2 + 4e− + 4H+ −→ 2H2O. (2.2)

The ion exchange layer will facilitate the movement of H+ ions from anode to cathode

whereas the external circuit allows the electron movement though the electrodes. The

ion exchange layer can be either an acidic electrolyte solution, an alkaline solution or

polymer membranes. Commercial fuel cells widely use polymer membranes also called

as proton exchange membranes (PEM) in their fuel cell assembly. In most fuel cells,

to facilitate faster reaction and thereby energy generation, catalyst material, usually
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platinum, is used at the electrodes. As in the case with batteries, fuel cells also utilise

series connection of multiple cells to achieve higher voltage output. This is usually done

using bipolar plates stacked together to achieve an efficient series interconnection, higher

voltage and physical robustness. The bipolar plates are also made porous to ensure gas

diffusion and a high surface area of reaction. A typical PEM fuel cell with stacked

bipolar plate assembly is shown in Figure 2.3 . It should also be noted that the fuel

used in the fuel cell need not necessarily be hydrogen. A very attractive alternative that

is considered lately is the direct methanol fuel cells which utilise methanol instead of

hydrogen as the energy storage medium [6,87].

The continuous operation of the fuel cell is bound to ensue in degradation resulting

from water accumulation at gas diffusion pores affecting the surface area of reaction,

platinum particle sintering and reduced proton conductivity of the membrane due to im-

purities in the supplied fuel [88,89]. Another major cause of degradation under dynamic

operation of the fuel cell is that of the electrocatalyst under fuel starvation. Unlike the

other degradation phenomena the electrocatalyst degradation is a direct consequence of

the load behaviour supplied by the fuel cell system. The fuel cell system when subjected

to sudden changes in load demand undergo fuel starvation at the membrane electrode

assembly. This is because when there is a sudden increase in power output, the con-

sumed fuel is not replenished at the same rate by the fuel delivery system, which has a

slower response time. This fuel starvation will lead to reverse polarity at the cells as they

are sourcing more current than what is possible with fuel delivery. This cell reversal has

adverse effects on the catalyst material at the anode and cathode like surface areas loss,

dissolution to name a few. The fuel starvation is associated with severe, non reversible

damage in the fuel cells and should be avoided. Therefore, in fuel cell operation care

should be taken to ensure that the fuel cell is not subjected to sudden load variations

which can ultimately lead to fuel starvation and degradation.

The current target for fuel cells lifetime in stationary application (based on US

department of energy) is 40000 hours or 15 years [90] though no conclusive study exists

on how far this has been achieved. Commercial fuel cells from Ballard claim lifetime of

above 20000 hours. The energy density of the fuel cell is the highest among all the ESS

considered here at 800-10000 Wh/kg [1].

The electrolyser is nothing but a fuel cell working in the reverse mode, where surplus

power from the grid is used to generate hydrogen. The operation principle and physical

structure is same as that of the PEM fuel cells. However, the idea of its integration
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Figure 2.4: Test setup used for experimental verification in this work.

in stationary application is still at its early stage. There has been feasibility studies

conducted on converting surplus wind energy to hydrogen by the national renewable

energy lab (USA) [91]. A fuel cell system assembly having an electrolyser is also referred

to as the regenerative fuel cell system.

2.2 Test setup description, design and experimental im-

plementation tools

As discussed in Chapter 1 the control strategies proposed in this work will be verified

experimentally wherever possible. The experimental setup considered in this work is

shown in Figure 2.4. The experimental bench consists of a 1.2 KW Ballard Nexa fuel

cell system. The supercapacitor from MAXWELL has a capacitance of 165 F with

rated voltag eof 48 V and stored energy of 53 Wh. The storage systems are connected
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to the DC bus through DC-DC converters utilising semistack converter system from

Semikron. The DC-DC converters are switched at 20kHz. The experimental setup

also houses The Höcherl & Hackl NLseries programmable DC source/sink and ZS series

electronic load which can be programmed to emulate a renewable source, load behaviour.

The real time controller developed in this work will be implemented in FPGA of the

CompactRIO platform from national instruments. The setup also has a host computer

which can communicate with the CompactRIO system.

The main simulation software used in this work has been Matlab and Matlab

Simulink. The simulation of the power converter models and its controller verifica-

tion was done in Simulink whereas the coding of energy management algorithms where

done in Matlab. The FPGA programming was done with LabVIEW interface from na-

tional instruments. Python has also been used in this work to develop codes for the

machine learning algorithm used in the prediction of generation and load profiles.

2.3 Assumptions and limitations

It should be noted that this work does not explicitly deal with the problem of sizing of

hybrid ESS and focusses mostly on the aspects of the control and managing the ESS. It

should also be noted that the choice of the ESS in the hybrid framework is not defini-

tive. This can vary depending on the application. The author’s objective is to develop

a generic control and energy management framework when using ESS of all different

characteristics (physical and application wise). In this context, the microgrid architec-

ture shown in Figure 2.1 was considered. Depending on the application requirement the

composition of hybrid ESS can vary and the generic control scheme that will be proposed

in this work can be easily modified to cater the requirements of the system considered.

The authors do not claim that this is the best configuration possible as it depends on

the application requirement, location of hybrid ESS deployment and economic factors.

In experimental validation, the test setup shown in Figure 2.4 does not include an

electrolyser and battery. The system comprises only of FC and SC. The experimental

validation, wherever possible, will be carried out using the FC and SC hybrid system.

Nevertheless, there exist the possibility of emulating the electrolyser, hydrogen storage

or battery system using the CompactRIO platform and programmable source/sink.

The scheme considered above allows decoupling of the DC, AC side operation using
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the DC-AC inverter. This allows utilisation of separate control systems for DC and AC

bus control. The author would like to emphasis that in this work the real time control

(power management stage) developed will focus on the DC bus control. As such in the

power management stage, the focus will be on the voltage regulation problem of the DC

bus since power imbalance affect the DC bus voltage. Nevertheless, the proposed control

strategy can be easily extended to the AC grid case to incorporate both frequency and

voltage regulation problem.

As highlighted the microgrid is capable of energy interaction with the main grid

which can in turn be utilised for grid support. The decision on the energy exchange

with the grid for grid support will be decided by the central/ distributed control unit

depending on the main grid operation. This work will not consider the decision making

strategies of the centralised/distributed grid control unit for controlling different micro-

grids and their power interactions with main grid. As a result the work considers only

the converter, primary+secondary and tertiary control stages.

Finally, the microgrid considered in this work is an aggregated representation of

multiple home applications. The control strategies and energy management developed

will be for these small microgrids. In this scenario centralised control schemes will be

mostly considered and developed in this work at the primary+secondary and tertiary

levels. The distributed schemes for the larger power grid will be mostly incorporated at

the central/ distributed control unit which is not considered here.

2.4 Concluding remarks

This chapter introduced the architecture of a microgrid with ESS integration to be

used as a base system in developing the control and management strategies discussed

in the upcoming chapters. The assumptions and limitations of this work has also been

established. An overview of the ESS considered in this work, their energy storage and

degradation mechanisms have also been highlighted. An overview of the important

aspects have only been provided, for the sake of brevity. Finally, the chapter also

introduced the test bench that will be used for the verification of control strategies

developed. Having established these introductory concepts the next part of the thesis

will focus on the development of power management stage of the control architecture.
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Chapter 3

Converter control

This chapter discusses the converter control stage and contributions of this work in this

level. In this context a reset controller framework for current control in converters is

introduced. The advantages of the proposed controller will be discussed, along with the

design criteria for the same. The chapter also deals with formal pre-input to state sta-

bility analysis for the proposed controller along with robustness analysis to parameter

uncertainty and to measurement noise. Finally, the capability of proposed reset con-

trollers will be demonstrated through simulation and experimental results.

The power management stage of the control architecture will be discussed in the

next two chapters. As outlined before the power management stage forms the lower

level of the control architecture and is characterised by real time, fast control actions

triggered by events in the grid pertaining to load or generation variation (RES). This

control level provides real time power balance thus maintaining the system stability

under these events, power quality and real time load sharing among the different sources

in the grid based on some predefined criteria. This stage comprises of two sub levels.

The converter control and primary+secondary control level. This chapter discusses the

converter control part of the power management stage and discusses the contributions

of this work at this level.

The converter forms the fundamental interfacing unit between the energy sources

(RES) or ESS to the grid. The increased penetration of RES and ESS has led to the

increased utilisation of these converter systems in modern grids. These converters are

37
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power electronic systems which, depending on the nature of the grid and sources can

provide DC/DC, DC/AC or AC/DC power conversion [67]. Considering the DC nature

of the grid and sources, DC/DC converters will be considered in this work.

3.1 Introduction and overview to converter control

The interfacing converters allow for regulation of the power flow from the RES or ESS to

the grid. The converter control stage forming the lowest layer of the control architecture

facilitates this power regulation. Unlike upper layers, the controllers’ objective at this

layer is reference tracking such that the individual converter supply the power defined

from the higher levels to the grid as a current injection. The controller set points are a

combination of the control actions from the energy management and primary+secondary

stage thus accounting for optimal system operation and stability.

In the power management stage, to counteract sudden load or RES variations and

to minimise their effects on voltage profile (power quality) the control action generated

from the primary+secondary level needs to be executed by the converter control stage

with minimum delay. This requires that the response of the reference tracking converter

control level should be fast. In converters the reference tracking problem is widely

addressed using PI controllers [67, 92]. In practical systems these PI controllers are

tuned such that grid parameters are maintained within prescribed limits at any instance.

Though robust PI controllers tend to produce high overshot and oscillatory behaviour at

the output during transient period when tuned for a fast response. The injection of such

oscillatory power into the DC bus of a weak microgrid can affect the power quality and

also the system robustness. This highlights a scope for improvement in the converter

controller performance.

An ideal behaviour from the converter system can be a fast response with im-

proved transient behaviour in terms of output overshoot. Higher order sliding mode

controls [68, 93, 94] and differential flatness theory based [69] control techniques have

been investigated in converter systems to achieve these ideal responses. However, these

require complex formulations in deriving their control law (sliding mode control) or

requires that the system have differential flat behaviour for its application.

Resetting the integrator output of a PI control can provide an improved transient
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performance. This idea of resetting the integrator output is not new and was first in-

troduced by J.C Clegg thorough his seminal work [95]. This work proposed the Clegg

Integrator (CI) which is a hybrid dynamical non-linear integrator that resets its output to

zero when input becomes zero, thus providing improved performance and reduced over-

shoot. This was followed by many works which expanded the class of reset controllers

to First Order Reset Elements (FORE) [96–100]. After the seminal works introducing

the CI and the FORE, general single-input single-output reset controllers derived from

linear and time invariant base system, were introduced in the late 90’s (see [101, 102]

and references therein). PI + CI controllers [103–105] belong to this group. The reset

controllers are capable of overcoming the limitations of its linear counterparts and pro-

vide improved performance [106]. A general background on reset control systems can

be obtained from the monograph [102].

The PI+CI is a reset controller derived from the classical PI controller. It employs

the CI along with a PI to improve its performance. The CI on its own is not able to

ensure zero steady-state error unless there is an integrator in the plant. The PI + CI

uses the integrator from the PI controller to eliminate the steady-state error and CI to

achieve improved performance by allowing fast response with reduced overshoot. There

has been many works done in the area of PI + CI controllers involving laying out

design criteria [104], [105] for different plants and stability analysis of such systems [103]

[107] [108]. The application of such controllers in real world applications like pH in-line

control [105], bilateral teleoperation [109], solar collector field [110], industrial wafer

scanners [111] and control of industrial heat exchangers [112] have highlighted its ability

for an improved transient performance over the classical PI controller.

This improvement in practical applications makes PI+CI reset controllers an inter-

esting solution in converter control systems, considering the demands for fast response

and improved transient behaviour. The idea for consideration of PI+CI at converter

control level is further reinforced by the controller’s proven ability to ensure a flat re-

sponse to step inputs in first order plants as highlighted in [105]. This has prompted

the use of PI+CI reset controller in this work at the converter control stage. The ob-

jective had been to improve the control system’s transient performance when required

to provide a fast response, as is the case here.
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3.2 PI+CI reset controller based converter control system

3.2.1 Controller modelling and analytical representation

α= tan(angle)

-u

e

(a) General reset system

-u

e

(b) Clegg integrator(CI)

Figure 3.1: Sector condition representing the flow and jump set of (a), general reset
controller and (b), PI+CI controller with α→∞.

The analytical representation of a general reset controller can be done using the

hybrid inclusions framework of [99,113] with a resetting law based on a sector condition

over its input-ouput pairs. This modelling has been followed in many subsequent works

including some generalizations, for example the model given in [114], which was adopted

in this work. According to [114] a generalised reset controller R is given by

R =


ẋr = Arxr + bre, if(e,−uR) ∈ F

x+
r = Aρxr, if(e,−uR) ∈ J

−uR = crxr

(3.1)

where xr ∈ Rnr , Ar,br and cr are the appropriate system matrices, −uR is the output

of the reset controller employed and e is the input. F ,J are the flow and jump sets of

the system respectively. In the set defined by F , the controller states flow according to

linear differential equation whereas the states undergo a jump at the boundary of set J .

x+
r represents the state of the controller after jump caused by the reset instance. The

matrix Aρ is the reset matrix which defines the system states after the reset instance.
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Figure 3.2: (a), PI+CI controller schematic with PI part highlighted in green and re-
set CI part highlighted in orange.(b), An equivalent representation of PI+CI with R
representing CI.

The flow set F is given by

F = {(e,−uR) ∈ R2|euR ≤ −
1

α
u2R}, (3.2)

while J is given by

J = {(e,−uR) ∈ R2|euR ≥ −
1

α
u2R} (3.3)

where α > 0 is as shown in Figure 3.1a The flow and jump sets defined using the above

equations can be illustrated in a two dimensional plane as sectors shown in Figure 3.1a.

The jump condition occurs along the boundary of F and J in Figure 3.1a [114]. The

general reset controller expression in (3.1) can be used to express all the different reset

controllers. For a detailed exposition to the hybrid inclusions framework, including

definition of hybrid time and the solution concept for reset systems refer to [113].

A PI+CI controller is obtained by introducing a CI along with the classical PI

controller and is schematically represented as in Figure 3.2. In this way the total integral

action of a classical PI controller is split between a linear inetgrator and reset CI. The

reset law in CI part is defined by the boundary of J with F . The term ρr is the

reset ratio and represents the percentage of the total integral action that gets reset

through the CI. For example, if ρr = 0 it results in a classic PI controller, which will

be referred henceforth as PIbase, whereas a ρr = 1 results in P+CI controller. Once

the PIbase controller has been designed, usually to obtain a fast response, the PI+CI

controller acts by removing (or minimizing) the overshoot (and hence the significance of

negative output of reset part). The desired design specification (a fast response without

overshooting) may be obtained simply by adjusting the parameter ρr. As such, in this
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work, the design problem will be to find a ρr value between 0 and 1 which will ensure a

improved transient performance over PI controller.

The PI+CI controller can be represented as in (3.1), using hybrid inclusion frame-

work by 
ẋr = Arxr + bre, if(e,−uci) ∈ F

x+
r = Aρxr, if(e,−uci) ∈ J

u = cr(ρr)xr + dre

(3.4)

where xr = [xi xci]
T are the states of the controller defined by the integrator (xi) and

CI (xci) states, and

Ar ,

0 0

0 0

 , br ,

1

1

 , cr , ki

[
1− ρr ρr

]
dr , kp, Aρ ,

1 0

0 0

 . (3.5)

Note that the dependence of cr on ρr has been explicitly shown in (3.4),(3.5). The sets

F and J for the PI+CI controller are defined as in (3.2, 3.3), where α > 0 typically

takes a large value (note that for α→∞ the CI developed in [99] is recovered and this

PI+CI controller is equivalent to that developed in [104], as far as its initial conditions

are taken in the set F). The −uci, upi are outputs of CI, PI part respectively and u the

total output of PI+CI as shown in Figure 3.2b. The resulting F and J for PI+CI is

represented as in Figure 3.1b. Although the PI+CI controller can also be built using a

variable ρr, see [105], for the purposes of this work variable reset ratio is not considered

and ρr will be a constant parameter.

3.2.2 Hybrid dynamical reset control system

The Figure 3.3 shows a general reset control system where a plant , P , is controlled using

PI+CI controller. The additive input in the feedback path represents the measurement

noise, n. The reference to the closed-loop system is represented by an exogenous signal

w1 in Figure 3.3. It is assumed that w1 is a Bohl function and is represented as

ẇ1 = A1w1,w1(0) = w10

r = c1w1

(3.6)
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Figure 3.3: Reset control system with a PI+CI controller and exogenous inputs in
reference w1 and measurement noise n.

where w1 ∈ Rn1 , A1 and c1 are appropriate system matrices. The plant, P , is repre-

sented in the state-space form as

ẋp = Apxp + bpu,

y = cpxp
(3.7)

where xp ∈ Rnp . Therefore, using (3.4), (3.6), (3.7) the closed-loop control system with

reset controller can be represented as a hybrid dynamical system (note that ρr is a

constant parameter, explicit dependence on it is shown) given by
ẋ = A(ρr)x, x ∈ FC

x+ = ARx, x ∈ JC

y = cx

(3.8)

where x ∈ Rnp+2+n1 is the state of closed-loop system defined by [xp,xr,w1]
T . The

matrices A,c,AR are defined as

A(ρr) ,



Ap − bpdrcp bpcr(ρr) bpdrc1

−brcp Ar brc1

0 0 A1


c , (cp 02 0n1), AR , diag(Inp ,Aρ, In1)

(3.9)
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CI

H
w

uci-

e

Figure 3.4: Reduced feedback interconnection from Figure 3.3 of LTI dynamical system
(H) and CI controller.

where I is unit matrix and 0 is a zero vector of appropriate order. The set FC ,JC is the

same as that in (3.2)-(3.3) but reformulated as a function of system states given by

FC = {x ∈ Rnp+2+n1 |xTMx ≤ 0} (3.10)

while J is given by

JC = {x ∈ Rnp+2+n1 |xTMx ≥ 0} (3.11)

where M = CF1
TCF2α+ CF2

TCF2

with CF1 =

[
−cp 02 C1

]
and CF2 =

[
0np 0 −kiρr 0n1

]
.

As the converter control focusses on reference tracking problem, the disturbance

inputs are not considered in the reset control considered in this chapter.

3.2.3 Robustness against sensor noise and stability for reset systems

The reset control system (3.8) trivially satisfies the so-called basic hybrid conditions

[113], since the flow and jump maps are continuous and the sets F and J are closed.

This gives us some desirable properties like robustness against sensor noise, and also

robustness in stability, see [113] for detailed results. In this work, the stability analysis

for reset system is based on [114]; and according to it, the stability notion is pre-input

to state stability (pre-ISS). Since developing an ISS Lyapunov function which can verify

the stability can be cumbersome in the case of hybrid systems like reset controllers,

in [114] a nice frequency domain based stability result for reset system is used.

In order to introduce this stability concept consider the Figure 3.4. It shows the

feedback interconnection of a dynamical system (H) and the CI controller. The system
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H includes all the linear part of the reset control system discussed in the previous

section and is represented by the highlighted region (orange) in Figure 3.3. The system

is considered minimal with

L{e} = Geu(s)L{uci}+ Gew(s)L{w1} (3.12)

where Geu,Gew are the transfer functions of the system from uci to e and w1 to e

respectively.

The stability of reset system can be guaranteed if it satisfies the following criteria

[114]:

1. The system matrix H is Hurwitz, that is its eigenvalues are strictly in the left half

side of complex plane.

2. The transfer function Geu(s) as in (3.12) satisfies

1

α
+Re( lim

w→∞
Geu(s)) > 0 (3.13)

and
1

α
+Re(Geu(s)) > 0 ∀w ∈ R (3.14)

provided matrices Ar, cr in (3.5) is detectable. Satisfying the above criteria will guaran-

tee the existence of a pre-ISS Lyapunov function which is smooth with negative derivative

between reset instants and decreases in value after a reset instance.

3.2.4 Design criteria of PI+CI reset controller

As mentioned before the PI+CI controller is capable of a flat response in first order

system subjected to step inputs. The selection criteria of ρr which ensure this flat

response will be used in this work to improve the performance of converter control

stage.

The solution of (3.8), unlike linear system, is expressed as a sequence of LTI system

responses [105] existing between reset intervals (tk, tk+1] given by

x(t) = eA(ρr)(t−tk)x(t+k ) (3.15)
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where tk is the reset instant and x(t+k ) = ARx(t). For a given k ∈ {0, 1, 2...} it can also

be defined as

xk(t) , x(t+ tk) = eA(ρr)tx(t+k ), ∀ t ≥ 0. (3.16)

The Laplace transform for the same is written as

Xk(s) = (sI−A(ρr))
−1x(t+k ). (3.17)

The resulting solution for (3.17) as a sequence of LTI system response is obtained by

inverse Laplace transform as

x(t) =



x0(t) t ∈ [0, t1]

x1(t− t1) t ∈ (t1, t2]

x2(t− t2) t ∈ (t2, t3]

......

(3.18)

The closed-loop system error can also be expressed in a similar way. The system error

for the reference tracking problem is defined as

e(t) = cEx(t) (3.19)

where cE = (−cp 02 c1). The Laplace transform of (3.19) is then

Ek(s) = cE(sI−A(ρr))
−1x(t+k ). (3.20)

The solution to (3.20) is also a sequence of LTI system responses of the form (3.18).

Consider a first order plant P (s) given by

P (s) =
b0

s+ a0
, (3.21)

subjected to an exogenous input w1 represented by a step signal of amplitude w10. The

solution for the closed-loop error is obtained by solving (3.20) using (3.21). The resulting

error equation, defined between the reset instances, is given by [105]

Ek(s) =
a0w10 − b0ki(1− ρr))xitk
s2 + (a0 + b0kp)s+ b0ki

(3.22)
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where, kp and ki are the PI controller constants shown in Figure 3.2a. Based on (3.22),

the value of ρr which forces the system error to zero at the first instance of zero crossing

and maintains it there, thus ensuring a flat response, is given by

ρr = 1− a0w10

b0kixI,1
(3.23)

where xI,1 is the value of the aggregated integrator state (xi + xci) at the first reset

instance. It should be noted that the value for ρr defined in (3.23) is dependant on the

nature of exogenous signal applied at the input of the system. The above expression

gives is an optimal value of ρr only for the step input.

3.3 Converter overview and modelling

Grid connected converters can be classified into grid-feeding, grid-supporting or grid

forming systems depending on their mode of operation [115–117]. The grid forming

converters act as an ideal voltage source in the DC bus and sets the nominal voltage,

frequency (AC grids) level for the grid. The grid feeding power converters are tasked with

delivering power to an already energised grid. They act like a power source connected

to the grid and follows a power reference through proper control. The grid supporting

converters are responsible for maintaining their grid voltage, frequency (AC grids) within

prescribed limits by regulating their output. In this work, the grid forming functionality

is not considered and the converters are typically operating either in grid feeding or grid

supporting mode. Considering DC microgrid, DC/DC converters are analysed in this

work. In general DC/DC converters can be either buck, boost or buck-boost type [67].

All these converter types can be modelled in the first order form of (3.21), when operated

in the grid feeding or grid supporting mode. This makes PI+CI controller ideal for the

converter control systems, wherein the design criteria for ρr given by (3.23) can be

directly utilised to obtain a near flat response to step inputs.

However, in practical applications additional filters can be incorporated in the con-

verter system. This is done mainly for smoothing the current drawn from the power

sources, so as to protect them, or for improving the power quality at the output. In

any case, this will result in deviation of the plant model from the first order form as

shown in (3.21). In this scenario, additional design considerations should be undertaken

to ensure that the PI+CI controller is still capable of flat response to step inputs.
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Figure 3.5: Schematic of the DC-DC boost converter.

An example of the same can be the FC converter, which is usually designed with an

input filter to protect the FC from high ripple input current demanded by the switch

mode converter system. This is vital to reduce the degradation in FC system due to the

high ripple current. A boost converter topology with input filter used for interfacing

a FC to DC microgrid is shown in Figure 3.5. The FC system is modelled as the DC

voltage source vdc in the above figure and the grid is represented as vgrid. The inductor

l1 and capacitor c1 in Figure 3.5 form the input filter. The inductor l2 enables the

boosting of input voltage. The resistors r1 and r2 are the effective series resistances of

l1 and l2 respectively.

The averaged large signal modelling approach [118,119] can be used to model these

converter systems. Defining the average voltage across the power electronic device

(MOSFET, IGBT) as vc = d′vgrid where d′ = 1 − d, the averaged converter model

can be developed neglecting the switching ripple. Applying the Kirchoff’s voltage and

current laws the averaged state equations are given as

l1
i1
dt

= vdc − v1 − r1i1

l2
i2
dt

= v1 − vc − r2i2

c1
v1
dt

= i1 − i2.

(3.24)

The converter model can then be defined as

I2(s) =
Vdc(s)− (c1l1s

2 + c1r1s+ 1)Vc(s)

l1l2c1s3 + c1(l1r2 + l2r1)s2 + (c1r1r2 + l1 + l2)s+ (r1 + r2)
. (3.25)
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Figure 3.6: The closed-loop reset control system employed for the boost converter.

A variable change is proposed for (3.25) as shown below

Vm2(s) ,
Vdc(s)

l1c1s2 + r1c1s+ 1
− Vc(s) (3.26)

resulting in a model given by

G(s) =
I2(s)

Vm2(s)
=

c1l1s
2 + c1r1s+ 1

l1l2c1s3 + c1(l1r2 + l2r1)s2 + (c1r1r2 + l1 + l2)s+ (r1 + r2)
. (3.27)

This variable change is important to ensure that at start up the voltage vc is same

as vdc thereby eliminating large in-rush currents. The above model for the converter

system does not conform with the first order model used for the reset controller gain

(ρr) determination.

3.3.1 PI+CI reset control design considering higher order converter

models

In the event converter systems are represented using higher order models, as given by

(3.27), the design process of PI+CI controllers should be modified to account for the

same. The calculation of reset gain using (3.23) is applicable only when the plant model

seen by the PI+CI controller is first order. Therefore, some compensation technique

should be introduced, so that from the controller’s perspective the higher order converter

model appears first order. This will ensure that (3.23) can be used to determine the

reset gain which will eventually guarantee a flat response to step inputs using the PI+CI

controller.

This can be achieved using a compensating filter transfer function added to the con-

trol loop as a shown in Figure 3.6. The generic converter model G(s) can be represented
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in terms of poles and zeros of transfer function as

G(s) =
k(s− z1)(s− z2)...

(s− p1)(s− p2)(s− p3)...
(3.28)

where the zeros z1, z2... and higher order poles p2, p3... are contributed by the input

or output filters in the converter circuit. The DC/DC converter of the buck, boost,

buck-boost topologies working in grid feeding mode and having input or output filters

can be expressed in this form. The order of G(s) will be decided by the order of the

filter used. In the example case shown above, the second order input filter resulted in

the third order plant model. Under this scenario compensating filter of the control loop

will be chosen as:

Fc(s) =
(s− p2)(s− p3)...
k(s− z1)(s− z2)...

(3.29)

such that the equivalent plant (Pred as shown in Figure 3.6) seen by the PI+CI reset

controller will be

Pred(s) =
k

(s− p1)
. (3.30)

The Pred(s) has the similar form as (3.21). Therefore, Pred(s) can be used for the

calculation of ρr as discussed in the previous section, for a flat response.

3.4 Reset control system design for the FC converter

The design criteria having been laid out, the FC converter represented by (3.27) will be

used to demonstrate the design procedure and highlight the improvements achieved with

reset control system employing PI+CI controller. The FC converter has been selected

for the same since they are usually working in the grid feeding mode following step

reference making them ideal for PI+CI controller implementation.

The converter parameters and passive component values used in the converter system

design is given in Table.3.1 and is the same as that shown in the test set up of Figure

2.4. The transfer function G(s) for the values shown in Table.3.1 is given by

G(s) =
I2(s)

Vm2(s)
=

1742 · (s+ 35.70± 1800i)

(s+ 87.1)(s+ 38.20± 2070i)
. (3.31)
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Component name Value

l1 140 µH

l2 434.3 µH

c1 2.2 nF

r1 10 mΩ

r2 42 mΩ

Switching frequency, fs 20 kHz

Input voltage, Vdc 32.5 V

Output voltage, Vgrid 75 V

Converter rated power 1kW

Table 3.1: Component value used in DC-DC converter.

The compensating filter for the same will then be chosen as

Fc(s) =
s+ 38.20± 2070i

s+ 35.70± 1800i
(3.32)

so as to cancel the effect of the zeros and poles from input filter. The same is demon-

strated through the bode plot of converter and compensating filter shown in Figure 3.7.

The resulting equivalent first order representation of the plant seen by the controller is

then given by

Pred(s) = G(s) · F (s) =
1742

s+ 87.1
. (3.33)

This Pred is now considered for the calculation of ρr value. The design of the PI +CI

is then carried out as follows. First, the PIbase parameters kp and ki are calculated. A

base selection of these parameters were carried out using the AMIGO design technique

outlined in [120]. The kp, ki values of this base design were then tuned to improve the

system performance towards noise entering through plant input, as the AMIGO design

considers only output noise. This was done since in the DC-DC converter, switching

noise is introduced at the plant input by converting the control action u in Figure 3.6

to 20 kHz gate pulses for the IGBTs. A set of PIbase parameters were considered and

the one with better performance in the DC-DC converter set up was chosen. The kp, ki

used in the PIbase were 0.03316, 19.39 respectively resulting in a settling time of 0.055s.
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Figure 3.7: Bode plots showing the frequency response of the converter G(s) and com-
pensating filter Fc(s) highlighting the pole-zero compensation.

The fast settling time though results in a peak overshoot of 28%. The next step is

to calculate the value of ρr using (3.23) to obtain the flat response. The kixi,1 term

in (3.23) is the output of the PIbase integrator at the instance of first zero crossing of

system error. The value for kixi,1 was calculated off-line using a simulated model of

system controlled by PIbase and used in the calculation of ρr. This resulted in a value

of ρr = 0.4889 given by (3.23).

3.4.1 Stability analysis of proposed PI+CI control system

Stability of the DC-DC boost converter control system is analysed using the results in

Section 3.2.3. In the case of PI + CI controller employed for boost converter in this

work, the transfer function Geu(s) is

Geu(s) =
Pred(s)

1 + Pred(s)PI(s)
=

1742s

s2 + 144.9s+ 33780
. (3.34)
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Figure 3.8: Nyquist plot for the transfer function Geu(s).
.

The first criteria of the stability condition will be satisfied by designing a stabilizing

PIbase such that the linear system represented by H is stable which is also the case

here. The transfer function Geu(s) → 0 as w → ∞ is trivial thereby, satisfying (3.13).

Finally the fulfilment of (3.14) is explained through Figure 3.8. This shows the Nyquist

plot of the transfer function Geu(s). The sector condition for CI controller is defined for

α → ∞ resulting in the Re(Geu(s)) to lie on the right half side of the complex plane in

the Nyquist plot to ensure condition 2. This can also be observed in Figure 3.8. As a

result, it is shown that closed-loop system is stable according to Section 3.2.3.

The PI + CI controller used in this work is a hybrid controller and unlike linear

systems robustness analysis may not be straightforward. Well-posedness of the reset

control systems, as well as robustness to measurement noise and stability easily follow

by using the formal methods developed in [113]. The sense of robustness in [113] is

related with keeping a desired property, e. g. stability, for arbitrarily small values of for

example sensor noise. It is also interesting to analyze if the stability is maintained under
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Figure 3.9: Nyquist plots of Geu(s) for the varying values of the boost converter l1, l2, c1.

parameter uncertainty, which is also a basic issue in control practice. An additional

advantage of frequency domain analysis of Section 3.2.3 is that it easily allows this type of

parameter uncertainty analysis to be carried out efficiently. The values of inductors and

capacitors are usually mentioned within a range defined as a percentage of the nominal

value. Under such conditions an exact pole zero cancellation may not be possible and the

system may not be exactly first order. The stability of the system under such scenario

needs to be ascertained. The uncertainty in the nominal value of the components l1, l2

and c1 considered here is 10%, based on the data-sheet of these components. The

stability under uncertainty is ascertained using the results of Section 3.2.3. Satisfying

first condition of stability criteria and (3.13) is trivial. The effect of uncertainty on

the condition (3.14) is highlighted in Figure 3.9. The plot in Figure 3.9 is generated

using 100 random values of the components l1, l2 and c1 within the uncertainty range.

It can be noted that despite uncertainty, the Nyquist plots are always positioned on the

right half of the complex plane ensuring that (3.14) is always satisfied. This establishes

stability under uncertainty of parameter values.
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Figure 3.10: Magnitude plots of the system closed-loop transfer function (TF), Noise
sensitivity Function (CS), sensitivity function (S) and load sensitivity function (PS)
plotted for linear base system (ρr) = 0 and different reset ratios.

3.4.2 Describing function based robustness analysis

Having already established closed-loop stability of the system the analysis in this section

allows a heuristic understanding of the reset system robustness in comparison to linear

base system. This is done using describing function (DF), which will otherwise be

impossible by any other means. Although an approximated analysis, in control practice

it gives an adequate characterization of both stability margins and sensor noise effect

since the feedback loop has the necessary low-pass property. In this context, DF analysis

can present itself as a simple tool for a designer to provide an intuition on the robustness

of the designed reset controller using well established frequency domain techniques.

Whilst DF analysis have been found to fail in some cases it can still be an important

tool and its use in non-linear systems have been justified through the works in [121–123].

The describing function of a PI + CI is given by [102]

PI + CI(ω) = kp
j(wτi + 4

Π ρr) + 1

jωτi
(3.35)

where τi = kp
ki . The important characteristic of DF of the PI +CI controller is that the

function does not depend on the amplitude of the input but solely on the frequency of

input. This allows the use of frequency domain methods for robustness analysis.

The PI+CI controller has been proposed to overcome the inherent limitation of its

linear counterparts. Nevertheless it is necessary to investigate whether this is achieved
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without increasing the cost of feedback (sensitivity to sensor noise) or sensitivity to load

disturbance so that its application is justified. An understanding of this can be achieved

using the system transfer functions mentioned in [124], which are constructed using the

DF for PI + CI given by (3.35). The four system transfer functions considered for

the same [124] are system complementary sensitivity transfer function (T), sensitivity

function (S), noise sensitivity function (CS) and load sensitivity function (PS) given by

T (w) =
Y (w)

w1(w)
=

PI + CI(w) · Pred(jw)

1 + PI + CI(w) · Pred(jw)
(3.36)

S(w) =
Y (w)

N(w)
=

1

1 + PI + CI(w) · Pred(w)
(3.37)

CS(w) =
U(w)

N(w)
=

PI + CI(w)

1 + PI + CI(w) · Pred(w)
(3.38)

PS(w) =
Y (w)

D(w)
=

Pred(w)

1 + PI + CI(w) · Pred(w)
. (3.39)

The Figure 3.10 shows Bode plots of (3.36),(3.37),(3.38),(3.39) for varying values of

ρr. The frequency axis is normalised using the cut-off frequency wb. It can be observed

from Figure 3.10 that gains the system reference to output transfer function (T) are

very similar for the linear (ρr = 0) and reset system in the entire frequency range. The

linear system though will exhibit a higher overshoot compared to reset system based

on the plots. This is to be expected as the reset action ensures flat response. The

closed-loop bandwidth remains the same (w/wb = 1) and the reset system performance

is very similar to the base system at high frequencies.

The DC/DC converter, presented in this work, is a system where the noise will enter

through the plant input d (Figure 3.6) in the form of switching noise. The control input

u will be converted to 20 kHz gate pulses for the IGBTs using pulse width modulation

(PWM). Therefore an interesting plot to study will be the effect of plant output to noise

input d which is given by load sensitivity function (PS). This also allows understanding

of load disturbance rejection capability of the plant. It can be seen from Figure 3.10 that

the addition of reset action has actually reduced the sensitivity of the system towards

input disturbance. Nevertheless at switching frequency of 20 kHz the gain plots are

same showing similar performance. Finally, the effect of measurement (output) noise on

the plant performance is studied through the noise sensitivity (CS) and sensitivity (S)

functions. The linear base system still exhibits a higher sensitivity in comparison to the

reset systems. It should also be noted that in all the above cases higher the reset ratio
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lesser is the sensitivity of the functions. Therefore, a general consensus that can be drawn

from here is that the reset action does improve the system performance by producing a

fast flat response and provides a marginal improvement in system robustness, observed

by reduced gains in the sensitivity functions.

Nevertheless, it should be noted that the DF analysis only provides a heuristic un-

derstanding of system robustness and may not be truly reflective of the actual system

performance. The real impact of the reset system will be verified in the next section

where results from an actual converter system subjected to measurement and switching

noises will be presented.

3.5 Results

3.5.1 Simulation results

The simulation results obtained using models developed with Matlab-Simulink are pre-

sented first. First, the results with the averaged models developed for the converter

without using the switching elements and associated data acquisition systems are pre-

sented so as to effectively demonstrate the capabilities of the PI + CI reset controllers

The Figure 3.11 shows reference tracking performance of the plant controlled by the

PIbase and PI +CI controllers when subjected to a step change in reference value from

10A to 20 A. The ability of reset controller in improving the tracking performance is

clearly observable by the flat response that it produces in Figure 3.11(a). The maximum

overshoot with PI controller is around 22.8A and this was eliminated by the PI + CI

controller which resulted in 12 % reduction in overshoot.

The control action generated by the PI and PI + CIcontroller is shown in Figure

3.11(b). The reset action of the integrator state, at the instance of first zero crossing of

error is clearly visible here. This also gives an understanding of how the reset controller

achieves the flat response. It can be observed from Figure 3.11(b) that with classical

PI controller the integrator state, after the first zero crossing, takes a finite amount

of time to reach its steady state value which ultimately leads to large overshoot and

oscillatory response. In the PI + CIcontroller based system, this is avoided through

reset action which forces the integrator to its steady state value at first zero crossing.
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Figure 3.11: A comparison in simulation of (a) step response of the linear PI and the
reset PI + CI controllers showing the flat response that can be achieved and (b) the
control action.

The utilisation of reset ratio ρr obtained from (3.23) ensures that integrator output is

driven to its steady state value faster and oscillatory response at the converter output

is eliminated.

The DC-DC boost converter, in the application considered here, is operated in the

grid feeding mode with the objective to deliver a reference value of current (power) to the

microgrid. Under this scenario, the robustness of PI +CI controller can be ascertained

by assessing whether it can ensure a flat response to a step change in reference, while

also being subjected to a varying input voltage in vdc. This analysis is essential since the

input power source in grid connected DC-DC converters, like storage systems (batteries,

fuel cell etc) are subjected to voltage variations at their output. This voltage variation

exhibited by these sources tend to be of slow dynamics and can be emulated using a

DC voltage source superimposed with a low frequency sine wave as shown in Figure

3.12.(b). The converter response when subjected to such a varying power source, while

using PI + CI controller, is shown in Figure 3.12.(a) It can be seen that the PI + CI
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Figure 3.12: Step response of the controller under a varying input voltage (vdc) (a) Step
response comparison between PI and PI+CI controller (b) varying input voltage (vdc).

controller is still capable of eliminating the overshoot, in comparison to PI controller,

under input voltage variation. Nevertheless, it should be noted that in the steady

state both controllers exhibit a small oscillatory behaviour due to the input voltage

variation. This is to be expected as the PI + CI controller only targets and improves

the transient response by eliminating the overshoot and ensuring a fast settling to steady

state value. The robustness of controller to measurement noise will be discussed through

the experimental results presented in the next section.

Finally, in order to highlight the robustness of the PI +CI controller to parameter

uncertainty the results in Figure 3.13 are presented. This shows the step response of

the PI + CI based control system under parameter uncertainty. As is the case before

the uncertainty range considered in 10% the nominal value of the passive components.

The step responses shown in Figure 3.13 when employing reset control system based
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Figure 3.13: Step responses of the designed system for parameter variations in l1, l2, c1
for the designed value of ρr = 0.4889.

boost converter is obtained by taking 100 random samples within the uncertainty range.

Based on the results it is further evident that PI + CI can ensure a stable, near flat

response even under parameter uncertainty and highlights its robustness.

3.5.2 Experimental results

The experimental verification of the PI+CI controller for converter control was carried

out in the experimental setup shown in Figure 2.4. The controller was programmed

in the FPGA of CompactRIO from National instruments using LabVIEW. The data

acquisition is carried out using NI 9201 C series voltage input modules which captures

hall sensor outputs and samples at 16 µs per channel. The experimental results shown

here are based on the output of these modules obtained through LabVIEW interface.

The Figure 3.14 shows the reference tracking performance of the converter under

a varying reference alternating between 10A and 20A when used with PIbase (fast PI)

controller. The higher overshoot which arises at converter output due the fast control

action from the PIbase can be noticed in Figure 3.14 and is emphasised in Figure 3.15

where the rising edge of the step response is zoomed into. It is this overshoot that can

be negated with well designed reset control.
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Figure 3.14: Reference tracking performance of the converter (red) when used with
PIbase controller for reference input (orange). The overshoot with PIbase controller can
be observed here.
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Figure 3.15: Zoom in near a rising edge of the step response in Figure 3.14 highlighting
the overshoot resulting from PIbase controller.
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Figure 3.16: Reference tracking performance of converter set up (red) when used with
PI + CI reset controller. The flatter response from reset control is observed.
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Figure 3.17: Zoom in at rising edge of the step response from Figure 3.16 emphasizing
the flat trajectory achieved with reset control and the reset instances (blue).
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The Figure 3.16 shows reference tracking of the converter when using the PI + CI

controller under a reference value alternating between 10A and 20A. In comparison to

Figure 3.14 the tracking performance under PI+CI is devoid of overshoots as shown in

Figure 3.16 when subjected to step change in reference value. The absence in overshoot

is clearly observed in Figure 3.17 where the response in Figure 3.16 is zoomed at a rising

edge. The peak value at the transient period for the PI + CI controller based system

shows an almost 10 % reduction in overshoot in comparison to that of the PI controller in

Figure 3.15. This is in close accordance with the simulation results presented in Figure

3.11 where a 12% reduction in peak overshoot was observed. The slight discrepancy

in the values between simulation and experimental results arise from the unmodelled

dynamics of filters in data acquisition side, A/D converters and switching dynamics

which where not considered in the simulation models. The Figure 3.17 also shows the

reset signals (violet) which resets the CI at the lower portion of figure. In comparison

to PIbase the absence of output oscillation and faster settling time is evident from the

results in Figure 3.15, Figure 3.17 for PI + CI controller.

It is observed that the plot of converter response in Figure 3.14 and Figure 3.16 when

using both PI and PI +CI controller appears noisy. This is contributed mainly by the

measurement noise of high bandwidth Hall sensors used in the current measurement.

The effect of measurement noise on the reset action is observable in Figure 3.17 through

the reset signals. The noise corrupted signal used in FPGA causes the CI part of the

reset controller to be reset multiple times during steady state condition as evident by the

large number of reset signals in Figure 3.17. Nevertheless, it should be noted that the

reset signals are well posed (well-defined and are distinct). It should also be noted that

the effect of noise inherent to the hall sensor has negligible impact on the stability of the

system as evident by the response of PI+CI controller based system in Figure 3.16. This

highlights the robustness of the proposed technique under measurement noise. This is

also in accordance with the conclusions drawn based on the DF analysis in Section 3.4.2.

3.6 Concluding remarks

The study conducted in this chapter highlights the effectiveness of utilisation of PI+CI

controller in converter control stage. The design procedure for the PI+CI control can

be utilised in the classical DC/DC converter configurations including the buck, boost or

buck-boost systems when subjected to step input. This makes PI+CI controllers suited
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for utilisation in DC/DC converters interfacing the FC or battery based systems to grids

which are predominantly provided with step references (demonstrated in subsequent

chapters) in their current loops. The suitability of PI+CI controllers in the scenario

when the reference to the current loop deviates from the step input need to be studied

and assessed in the future work. Apart from this, developing design criteria for PI+CI

controller under this condition should also be investigated.

The advantage of the PI+CI controllers lies in their simplicity in design and im-

plementation. The designing phase is very similar to the classical PI controller with

additional decision needed to be made on determining the reset ratio, ρr. Nevertheless,

this can be easily carried out using the formulations highlighted in this chapter. Despite

their non-linear hybrid nature, simple frequency domain techniques can be utilised in

verifying their stability and intuition towards system robustness can be build through

describing function analysis. Finally, from a practical perspective implementing these

controllers are not computationally expensive. Realising them in FPGA involves adding

an additional integrator that reset at the zero crossing of the error signal in parallel

to the classical PI controller. The simulation and experimental results highlights the

viability, robustness of the controller in converter applications.

In terms of objectives pertaining to converter control stage defined in Chapter 1

the PI+CI controller provides an improvement in dynamic performance of converters,

operating in grid feeding mode, by eliminating the overshoot in the power that is being

injected into the grid. This elimination of the overshoot also aids in improving the

quality of power being injected as well. Finally to conclude, the major publications

based on the work carried out in this chapter is given below:

C1 Nair, Unnikrishnan Raveendran, Ramon Costa-Castelló, and Alfonso Baños. ”Re-

set control of boost converters.” In 2018 Annual American Control Conference

(ACC), pp. 553-558. IEEE, 2018.

J1 Nair, Unnikrishnan Raveendran, Ramon Costa-Castelló, and Alfonso Baños. ”Re-

set Control for DCDC Converters: An Experimental Application.” IEEE Access

7 (2019): 128487-128497.



Chapter 4

Primary+secondary control

This chapter presents the work done in this thesis as part of the real-time control of

the microgrid system with interconnected hybrid ESS. The control level considered in

this chapter is the primary+secondary control from the power management stage. One

of the main objective of this chapter will be developing improved voltage regulation and

stable control for microgrid under disturbances. Another objective is the development

of the real-time power distribution strategy among the hybrid ESS considering operating

efficient and ESS degradation. The design methodology of the proposed controls will be

discussed and performance will be verified through simulations.

The next level in the power management stage is the primary+secondary control. In

the hierarchical control scheme, this is placed above the converter control level presented

in the previous chapter and generates set points for the converter systems. As this level

is part of the power management stage the control actions are fast and sampling times

are small. Prior to developing the primary+secondary control for microgrids with high

RES integration and hybrid ESS, an overview of the control strategy employed in the

conventional grids is discussed first.

The control system in the conventional power grids is characterised by 3 levels of

response. In the event of a sudden load change in the grid, the inertial response is

instigated first. In this, the kinetic energy stored in the rotating masses of the generat-

ing systems will be used to counter the load variation. The generators in conventional

systems are slow acting devices and this kinetic energy acts as a buffer between the

65



66 Chapter 4 : Primary+secondary control

instance of load variation and the generator response. As the kinetic energy is used to

counter the load variation, due to the synchronous nature of the sources, the system

parameters like voltage or frequency will deviate from the nominal value. The magni-

tude of the deviation is inversely proportional to moment of inertia associated with the

system. Due to the presence of large rotating masses these systems tend to have high

inertia associated with them, leading to smaller variations in system parameters and a

higher resilience in the grid.

Following inertial response the primary response kicks in which conventional genera-

tors ramp up their power output to ensure the power balance in the grid and arrest the

deviation of system parameters from nominal value. The primary response tends to be

slower. In weak grids, with lesser inertia, the delay in the onset of primary response can

cause the grid parameters to deviate significantly from the nominal values to activate

the protection relays leading to collapse of the power network.

The primary response only ensures the power balance in the grid but does not bring

the system parameters like voltage or frequency back to nominal value. This is because,

as said above, due to the synchronous nature of the grid the parameter values are

closely related to the kinetic energy of the rotating generating sources. As a portion of

this has been utilised in the inertial response they need to be replenished to bring the

system parameters back to nominal values. This is achieved by the secondary response in

conventional grid. The secondary response is usually directed by the local area operator,

who varies the power output of the generating sources so that the system parameters

are brought back to nominal value and thus replenishing the used inertial energy. This

restoration of the inertial energy is essential so as to ensure the stability and resilience

of the grid under load variations in the future.

As discussed in the Chapter 1, modern grid with high RES generation suffer from low

system inertia which can be detrimental to the network stability. The ESS can be used

to increase the inertia, grid resilience and address the power imbalances arising from the

mismatch of RES generation and load demand. In this context, ESS provide dispatch-

able energy reserves. However, these dispatchable reserves formed by the ESS need to be

controlled in real-time to emulate the inertial, primary and secondary responses occur-

ring in conventional grids. Therein lies the objective of the primary+secondary control,

developed in this chapter. It will ensure the stability of the weak microgrids though

the real-time power management of hybrid ESS and emulation of inertial, primary and

secondary responses of the conventional grids.
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Therefore, to sum up, the primary+secondary control developed will ensure:

• Stability and voltage regulation in a weak DC microgrid under power imbalances

caused by mismatch between non-dispatchable RES generation and load demand.

• Real time power management, splitting among the hybrid ESS such that the in-

ertial, primary and secondary responses of the conventional grid is emulated.

The power management or splitting functionality of the primary+secondary control will

be developed to address a very generic hybrid ESS architecture comprising of high power

density (SC) and multiple high energy density ESS (battery and regenerative FC) as

discussed in Chapter 2. The power splitting will also address the scenario where the total

capacity of a single ESS (battery or SC or regenerative FC) is realised using multiple

smaller capacity ESS of same type. The design criteria for different stages will also

be outlined in this chapter. The developed primary+secondary control will be easily

scalable to address any hybrid ESS combination.

The functionalities pertaining to power quality improvement like the harmonics per-

formance, associated resonant behaviour or electromagnetic interference (EMI) /elec-

tromagnetic compatibility (EMC) considerations are not accounted here. These aspects

will be dealt mostly through the hardware design of converters and their filters which

are beyond the scope of this work.

It should be noted that the set points for the ESS generated by the pri-

mary+secondary stage will be augmented with the output from tertiary stage, discussed

later. The set points from the tertiary stage are updated at a slower rate in comparison

to the primary+secondary stage as discussed before. In this scenario the control action

from primary+secondary controller modifies these tertiary level set points between the

intervals that they are being updated (from tertiary level), such that the stability of the

microgrid is maintained.

In the rest of the chapter the primary+secondary control will be developed in

two stages. The first stage deals will robust control of microgrid to ensure stability

and voltage regulation in the system. The second stage addresses the power manage-

ment/splitting among the hybrid ESS.
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Figure 4.1: Dual loop scheme for voltage regulation control.

4.1 Microgrid stability and voltage regulation with pri-

mary+secondary control

Microgrids integrated with high share of RES generation are prone to frequency power

imbalances due to the mismatch between generation and load demand. This coupled

with the weak nature of the grid will lead to frequent, significant, deviation in grid volt-

age (DC grid) from the nominal value. The control action from the primary+secondary

control cater to these imbalances, to maintain the stability of grid and regulate the grid

voltage around a nominal value. In turn, this ensures that the real-time operation of

the grid is reliable. The power imbalances occurring in the grid can be considered akin

to an external disturbance acting on a system. In this context, the stability and voltage

regulating functionality of the primary+secondary control can be considered similar to

a disturbance rejection control scheme. The objective will be to develop a robust dis-

turbance rejection scheme with improved dynamic behaviour during voltage regulation.

Improving the dynamic behaviour during voltage regulation can also improve the power

quality in the grid.

The widely used control architecture for ensuring stability and voltage regulation in

microgrids, irrespective of centralised or decentralised schemes, is the dual loop archi-

tecture shown in Figure 4.1. This scheme employs an outer loop for voltage and inner

loop for current control [64,125–127]. The inner loop typically represents the converter

control stage, discussed in the previous chapter, and performs reference tracking. In the

centralised schemes, as considered here, the inner loop represented by Gi(s), in Figure

4.1, represents the equivalent dynamics of the parallel connected converter control stages

of the different ESS in the hybrid scheme. An analysis of this inner loop dynamics of

the primary+secondary stage will be be presented later on in this chapter. In Figure

4.1 the Cv(s) represents the voltage loop controller whereas the Gg(s) represents the

dynamics of the microgrid.
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Figure 4.2: Dual loop scheme augmented with disturbance feed-forward for improved
transient behaviour.

The voltage loop, in the double loop architecture, is always tuned to be slower

than that of the current loop in order to ensure a stable grid behaviour. In the case

of weak grids, primary+secondary control should ensure a fast response from the hy-

brid ESS system to the disturbance, so as to maintain the system stability. Therefore,

faster dynamics are expected from the voltage regulation control. Tuning the outer loop

controller to ensure faster response has its limitations in terms of system stability. An-

other method for improving the dynamics of dual loop control is the feed forwarding of

the measured disturbances [128,129] using a feed-forward control scheme of Figure 4.2.

However, this requires a complete knowledge of the disturbances through measurements

that has to be communicated to the centralised control unit. This leads to an increased

utilisation of sensors and high bandwidth communications which can drive up the cost

of the control system and in some cases tend to be impractical.

Observer based control systems can help overcome this issue. These observers can

provide an estimation of the disturbances using a system model and without relying on

high bandwidth communication or extensive metering. This can be achieved using a class

of observers derived from the Luenberger observer, called the Disturbance observer [130].

Disturbance observers (DO) utilise an approximate disturbance model, proposed based

on prior knowledge of the system behaviour, to provide an estimation of the disturbance

acting on the system [131] [132]. These observers are also referred to as an extended state

observer (ESO) as it considers disturbance as an additional state of the system. The

application of observers in improving the voltage regulation performance of electrical

systems have been explored. In [133] an application of ESO is shown for input DC link

voltage regulation of a two level, three phase converter. In the above work, the DO is

utilised to provide an estimation of the load variations (considered as disturbance) at

the converter output. This estimation will then be used in the input DC link voltage
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Figure 4.3: The ADRC scheme for voltage regulation and disturbance rejection.

regulation. A similar approach is investigated in [134] where a non-linear observer is

used in the regulation of the DC bus voltage in a hybrid AC/DC system. The observer

in this work provides an estimation of the load demand at the DC side of the hybrid

AC/DC system. The load estimate is then used in the control of the AC/DC converter

interfacing the AC side to DC side so as to counteract the Dc side load demand. Finally,

the work in [135] proposes the use of an ESO in the DC bus voltage regulation of a

cascaded power converter system formed by an AC/DC and DC/DC converters.

The previous applications of ESO in electrical systems have focussed on utilising

them for the control in stand alone converter systems. In an interconnected system

like microgrid, with high RES generation and multiple energy sources, observers can

be used for estimating the disturbances (power imbalance) arising in the microgrid.

This estimation can then be used in improving the dynamics of the voltage regulation

just like the feed forward control but without using additional sensors to measure the

disturbances. In this work the same will be considered by using a linear ESO for the

disturbance estimation in the DC microgrid. The estimated disturbance will be used as

an additional input to the outer loop, of the dual loop scheme, to improve its transient

response and ensure robust grid stability. This proposed voltage regulation architecture

using the ESO will henceforth be referred to as the adaptive disturbance rejection control

(ADRC) scheme.

4.1.1 The ADRC scheme

The ADRC scheme used for the voltage regulation part of primary+secondary control is

shown in Figure 4.3. The ESO will provide an estimation of the disturbance (imbalance

power), ξ, in the system. The estimation from the ESO will be augmented with the

control action from the outer loop controller (Cv(s)) as shown in Figure 4.3. The Gg(s),
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in the above figure, is considered as

Gg(s) =
1

s · Cgrid
(4.1)

where Cgrid is the equivalent capacitance of the grid expressed as a lumped parameter.

Extended State observer (ESO)

The ESO achieves the disturbance estimation by monitoring the grid voltage (vgrid),

as shown in Figure 4.3, without the need for additional measurements. In order to

develop the ESO architecture the relationship between grid voltage and the disturbance

is defined. The dynamic equation defining the same is given by

Cgrid
dvgrid
dt

= ξ + igrid, (4.2)

where ξ (not known a priori) is defined as

ξ = iren − iload, (4.3)

where iren represents the current injected to the grid by renewable sources and iload

represents the current drawn by loads from the grid.

Equation (4.2) can be rewritten as

dvgrid
dt

= kξ + kigrid, (4.4)

where k =
1

Cgrid
and igrid is the total current supplied to the grid by all the ESS. As

discussed before, the ESO incorporates disturbance as an additional state of the system.

This requires that a disturbance model be chosen to be augmented with the grid voltage

model. The disturbance model considered in this work is given by

dmξ

dt
≈ 0, (4.5)

where m is chosen large enough to represent most of the disturbances arising in the

microgrid. Additionally, ξ is also assumed to be class Cm−1, i.e. the first m-1 derivative

of ξ exist and are continuous. The resulting augmented system model incorporating
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(4.4) and (4.5) is given by

ẋo = Aoxo + boigrid

vgrid = y = cyxo

(4.6)

where

xo =

[
x1, x2, ..., xno−1, xno

]T
, (4.7)

Ao =


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, bo =


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
, cy =

[
1 0 . . . 0 0

]
.

(4.8)

The xo ∈ Rno is the state of augmented system such that x1 = vgrid, x2 = ξ, xno =
dmξ
dtm = 0 and R is the set of real numbers. The augmented model of the system having

been defined the ESO is model is represented using the same architecture as that of the

Luenberger observer [136] given by

˙̂xo = Aox̂o + boigrid + lo(y − ŷ), (4.9)

where x̂o represents the estimated states of (4.7), x̂2 = ξ̂ the disturbance estimation, ŷ

is the estimated value of vgrid by ESO and lo is the observer gain.
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4.1.2 Control law

A generalised control law in Cv(s) for voltage regulation, with ξ̂, is given as

igridr =
1

k
[v̇nom + kpveb + kiv

∫
eb − ξ̂]. (4.10)

where, vnom is the nominal grid voltage, eb is the tracking error of the grid voltage

(vnom − vgrid), kpv, kiv are the gains of the voltage loop controller (Cv(s)) and igridr is

the reference value for inner current loop. If the inner loop in Figure 4.3 is designed

with faster dynamics than that of the outer loop, which is usually the case, then the

delay introduced by the current loop dynamics from igridr and igrid will be small and

insignificant w.r.t.o the outer loop. In this scenario the following assumption, igridr ≈
igrid can be justified. Under this assumption, substituting (4.10) in (4.4) results in

ėb + kpveb + kiv

∫
eb = ξ̂ − ξ. (4.11)

A properly tuned ESO will be capable of estimating the disturbance with negligible

error, resulting in the right hand side of (4.11) tending to zero. Therefore, (4.11) will

be dominated by the dynamics of the following characteristic polynomial

peb = s2 + kpvs+ kiv. (4.12)

A suitable selection of kpv and kiv will ensure that the voltage regulation loop be Hurwitz

with required dynamical characteristics. This guarantees that the tracking error eb will

lie in the vicinity of zero, disregarding the disturbance function ξ. It should be noted

that in the control law defined by (4.10) there is a feedback back part formed by kpv and

kiv which is incorporated in Cv and a feed forward path formed by v̇nom. In the case

of the voltage regulation of grid connected system, presented in this work, the nominal

grid voltage is constant causing the feed forward term being zero. This results in the

classical PI controller being implemented as Cv.

4.1.3 Static gain determination in the ESO

The ADRC part of the primary+secondary stage ensures improved grid voltage regula-

tion (dynamically). This is due to the feed forwarding of the disturbance estimate which
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Figure 4.4: Simplified schematic of a generic disturbance rejection control using ESO,
with ESO represented using its equivalent model.

is then augmented with the control action from the outer loop controller. Nevertheless,

the addition of another dynamic system in the form of ESO in the ADRC scheme can

affect the robustness of the voltage regulation control and in turn adversely affect the

stability of the microgrid. Therefore, the ESO should be defined cautiously such that

the overall robustness of the voltage regulation control is not significantly affected.

The degree of freedom available in defining the ESO, lies in the selection of an

appropriate value for the static gain lo. Considering the Luenberger architecture of

the ESO, a straightforward approach for determining lo the pole placement technique

[137]. In this method, the gains of the observer are determined such that the poles of

the observer system are at a position defined prior to by the designer. Typically, the

criteria for defining the location of observer poles is such that the observer dynamics are

faster than the control loop dynamics. Though the pole placement provides a simple,

straightforward method for the determining the static gain lo, it cannot analytically

guarantee that the robustness of the close-loop control is not adversely affected. This

drawback is not addressed in the previous works [133–135] which incorporated observers

for disturbance rejection in electrical systems.

In order to identify the impact of the ESO on the closed-loop system an understand-

ing of the equivalent behaviour of the ESO needs to be developed first. The Figure

4.4 represents a simplified schematic of a disturbance rejection control using ESO for

a generic plant, Pl(s). Unlike the ADRC scheme presented in Figure 4.3 inner loop

dynamics are not shown in the simplified representation of Figure 4.4. In Figure 4.4

the ESO is represented through its equivalent model [135, 138] highlighted within the
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dotted square region. The v represents the control action from a generic outer loop

compensator C(s), r is the reference input, n is the measurement noise and y is the

output of the generic plant. The Pln(s) is the nominal model of the plant which is

used in the observer design. The nominal model will be a lower order approximation

capturing the dominant plant dynamics as is the case with any control problem. The

Q(s) represents a proper transfer function and is defined based on the static gain value,

lo, of the observer. Based on the equivalent representation of the ESO, the disturbance

estimate can be written, assuming n = 0, as

ξ̂ = −Q(s)u+Q(s)P−1ln (s)y (4.13)

where u is as shown in Figure 4.4. Considering the Luenberger structure of the ESO

given by (4.9) and the equivalent representation of Figure 4.4, the ESO model can

expressed in state space form as

˙̂xo = (Ao − locy)x̂o +

[
bo lo

]u
y


ξ̂ = cox̂o

(4.14)

where Ao,bo, cy are the matrices of ESO consisting of the augmented plant and distur-

bance model. co is the ESO output matrix which is used to provide disturbance estimate

as the output from ESO. Comparing (4.14) and (4.13) Q(s) is given as

Q =

 Ao − locy −bo

co 0

.

The above shows the relationship between Q(s) and lo. In order to understand the

nature of the dynamic behaviour of Q(s) consider the output y of P (s) defined as

y = Gyr(s)r +Gyξ(s)ξ +Gyn(s)n (4.15)

where Gyr(s), Gyξ(s), Gyn(s) are the transfer functions from inputs r, u, n to output y

for the schematic shown in Figure 4.4. As Pln(s) defines the dominant dynamics of the
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plant, the assumption that Pl(s) ≈ Pln(s) can be used and these transfer functions can

be given as

Gyr(s) =
Pl(s)C(s)

1 + Pl(s)C(s)

Gyξ(s) =
Pl(s)(1−Q(s))

1 + Pl(s)C(s)

Gyn(s) =
Pl(s)C(s) +Q(s)

1 + Pl(s)C(s)

(4.16)

In the above the Gyξ is the load sensitivity transfer function and Gyn is the sensitivity

transfer functions [124] of the plant Pl(s). If Q(s) ≈ 1 , it will result in Gyξ = 0 making

the disturbance input having no effect on the output y. On the other hand if Q(s) ≈ 0,

it will result in Gyn(s) = Gyr(s). This makes the impact of measurement noise on

plant output similar to that of the conventional double loop control architecture, thus

eliminating any effect of the ESO on the sensitivity of the closed-loop system to noise.

Since the load disturbance tends to be in the lower frequency and measurement noise

occupies the high frequency spectrum, the above conditions will be satisfied if Q(s) is a

low-pass filter. This will result in unity gain at low frequency and gain roll off at high

frequencies, depending on the order of Q(s), thus satisfying both the above conditions.

Another important characteristic of Q(s) is that, it always has an order higher than

that of the nominal plant model, Pln(s).

The above transfer functions also highlight the need for considering the closed-loop

system behaviour into account while determining the gain lo. As expected the ESO

affects the disturbance rejection performance of the closed-loop control as shown in

(4.16). Apart from this, if the gain lo is not chosen properly it can affect the sensi-

tivity of the closed-loop system to measurement noise. Designing the ESO accounting

for the closed-loop behaviour will also ensure that the closed-loop system has certain

behavioural characteristics. This allows for easiness in establishing properties of the

closed-loop system pertaining to robustness and stability. Considering the above as-

pects, the gain lo of the ESO in the ADRC scheme will be determined accounting for

the closed-loop system behaviour in this work.
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Figure 4.5: The equivalent representation of Figure 4.3 under the approximation of
(4.17).

ESO gain determination considering closed-loop system behaviour

In the ADRC scheme represented using Figure 4.3 the inner loop dynamics represented

by Gi(s) will be significantly faster than the outer voltage regulation loop dynamics.

This will be further evident through the analysis on the inner loop behaviour presented

later on in this chapter. In this scenario, from the perspective of the outer loop the

delay introduced by Gi(s) will be very small and as such

igridr ≈ igrid = u (4.17)

presents a valid approximation. Based on this approximation, the ADRC scheme of

Figure 4.3 can be represented as Figure 4.5. This approximate representation is similar

to the simplified disturbance rejection scheme with ESO given by Figure 4.4.

Considering the above, the ESO model defined in (4.9) can be written in state space

notation as

˙̂xo = (Ao − locy)x̂o +

[
bo lo

]igridr
y


ξ̂ = cox̂o

(4.18)

where co =

[
0 1 . . . 0 0

]
and y = vgrid. In order to determine the gain lo of

the ESO the closed-loop disturbance rejection transfer function, Gyξ(s), is used. The
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Gyξ(s), defined in (4.16), for the approximated closed-loop system of Figure 4.5 is given

by

Gyξ(s) =
P (s)(1−Q(s))

1 + P (s)C(s)
=
Gg(s)(1−Q(s))

1 +Gg(s)Cv(s)
. (4.19)

In order to ensure closed-loop stability under external disturbances the following

condition has to be ensured by Gyξ(s) [139]

|Wd(s)Gyξ(s)| < 1 ∀s = jω (4.20)

where Wd(s) is a weighting function chosen such that the dynamic performance of the

closed-loop system has certain characteristics. Substituting (4.19) in (4.20) and rewriting

as ∣∣∣∣Wd(s)
Gg(s)

1 +Gg(s)Cv(s)
· (1−Q(s))

∣∣∣∣ < 1 ∀s = jω (4.21)

facilitates treating (4.21) as a constraint in (1-Q(s)). Based on this, using a weighting

function Wξ(s) such that∣∣∣∣Wd(s)
Gg(s)

1 +Gg(s)Cv(s)

∣∣∣∣ < |Wξ(s)| ∀s = jω (4.22)

allows (4.21) to be represented in a simplified form given by

|Wξ(s) · (1−Q(s))| < 1 ∀s = jω. (4.23)

This simplified condition ensures two aspects. Firstly, it bounds the frequency re-

sponse of the closed-loop disturbance rejection transfer function, thereby ensuring sys-

tem stability under external disturbances. Secondly, based on Figure 4.4, the Q(s) is

the transfer function from ξ to ξ̂. Therefore, 1 − Q(s) will represent the dynamics of

the disturbance estimation error (ξ − ξ̂). Therefore, by choosing a proper Wξ(s), the

error dynamics of the ESO disturbance estimation can be controlled and in turn the

dynamics of the disturbance rejection performance. Based on the low-pass nature of

Q(s), the 1−Q(s) will exhibit a high-pass characteristic and Wξ can used to establish a

lower bound on the cut-off frequency of 1−Q(s). Representing 1−Q(s) as the transfer

function Gξ̂ξ(s), the condition in (4.23) can be equivalently represented using the H∞
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Figure 4.6: Equivalent representation of Figure 4.5 as a feedback interconnection of an
extended plant and static gain.

norm [140] as a bound given by

‖Wξ(s)Gξ̂ξ(s)‖∞ < 1. (4.24)

A detailed discussion on the transfer function norms will be provided in Appendix A.

The gain determination in the ESO can now be defined as a H∞ bound problem

given by

Find Q(s) such that

‖Wξ(s)Gξ̂ξ(s)‖∞ < 1
(4.25)

Solving the above problem involves finding a Q(s) with low-pass characteristics and

higher order than the nominal plant model, in the rational transfer function space.

Searching for such a Q(s) in the infinite dimensional rational transfer function space is

a difficult problem to solve. However, Q(s) can be represented in terms of static gain

lo as shown (4.1.3). The utilisation of the same can be used to transform (4.25) into a

search for static gain lo given by

Find lo ∈ Rno such that

‖Wξ(s)Gξ̂ξ(s)‖∞ < 1
(4.26)

where no is the order of ESO as given in (4.7). The fixing of the disturbance model

facilitates limiting the dimension of lo and thus convert the (4.26) to a search in the

finite dimensional vector space. Extracting the gain, lo out of the closed-loop system,
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the ADRC scheme of Figure 4.5 can be equivalently represented by Figure 4.6 as a

feedback connection of a static gain with an extended plant Pe(s) (shown inside the

dotted region). This is further reduced to the abstract feedback interconnection form

(Fbl) [124], given in Figure 4.6. The optimisation problem in (4.26) can be equivalently

transformed into a synthesis problem of finding optimal static feedback gain lo for the

extended plant Pe(S) such that the H∞ norm of closed-loop system is less than 1. This

is analytically written as

‖Fbl(Pe(s), lo), lo‖∞ < 1. (4.27)

The system matrices of the ESO, Pe(s) for the representation shown in Figure 4.6 are

ESO =



Ao bo 0 I

co 0 0 0

cy 0 −I 0


, Pe(s) =



Ae Be1 Be1

Ce1 De11 De12

Ce2 De21 De22


(4.28)

where Ae ∈ Rne×ne with ne is the order of Pe(s). The De11 ∈ R1×1 and De22 ∈ R1×(no).

The gain synthesis problem that satisfies the condition (4.27), for the system rep-

resented in Figure 4.6, can now be represented as a linear matrix inequality (LMI)

problem, based on the theorem defined in [141]. If the following conditions

• Wξ is a stable transfer function

• The pair (Ao, Be2) is stabilisable

• The pair (Ao, Ce2) is observable

• De22 = 0

are satisfied, the Theorem 4.1 can be stated as below

Theorem 4.1. [141] There exists a stabilizing gain lo for the plant Pe(s), with minimal

realisation, such that ‖Fbl(Pe(s), lo), lo‖∞ < γ, if and only if there exists two symmetric
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matrices S and R such that

N
T
R 0

0 I





AeR + RAT
e RCT

e1 Be1

Ce1R −γI De11

BT
e1 DT

e11 −γI



NR 0

0 I

 ≺ 0 (4.29)

N
T
S 0

0 I





AT
e S + SAe SBe1 CT

e1

BT
e1S −γI DT

e11

CT
e1 De11 −γI



NS 0

0 I

 ≺ 0 (4.30)

R I

I S

 ≺ 0 (4.31)

Rank(RS − 1) = 0 (4.32)

where NR, NS are bases of the null space of

[
BT
e2 DT

e12

]
and

[
CT
e2 DT

e21

]
respectively.

The condition De22 = 0 is trivially satisfied based on (4.28). In the above LMI

problem, the conditions (4.29), (4.30), (4.31) are convex constraints on S and R. How-

ever, the constraint (4.32) is non-convex resulting in the above problem being difficult to

solve. The reason for the same being that the dimension of the static gain lo, given by

no, is less than the order ne of the extended plant. In the scenario where the dimension

of lo is less than the order of Pe(s), the LMI feasibility problem of Theorem 4.1 can be

replaced with the trace minimisation problem according to [142].

The equivalent trace (tr) minimisation problem is given by

min
R,S∈Rnl×nl

tr(RS)

Subject to : (4.29), (4.30), (4.31).

(4.33)

Though the above objective function is still not convex, the cone complementary lineari-

sation algorithm defined in [143] can now be used for solving this optimisation problem
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in an iterative manner. According to the algorithm the linearised representation of

(4.33) is given by

min
Rk+1,Sk+1

tr(Rk+1Sk + RkSk+1).

Subject to : (4.29), (4.30), (4.31)

(4.34)

The above presents a convex optimisation problem which can be easily solved. The

iterative process of solving the above optimisation problem to find the R,S matrices is

given as the following steps

1. Define the system matrices for Pe(s)

2. Solve LMI feasibility problem for the conditions (4.29), (4.30), (4.31) to find an

initial R0,S0

3. If no feasible R0,S0 exists. Exit the iterative process. Else set k=0

4. Solve the convex optimisation problem (4.34) for Rk+1,Sk+1.

5. Check if stopping criteria has reached. If the criteria is satisfied exit the iterative

process, else go to Step 4.

Solving the cone complementary linearisation algorithm described above will re-

sult in obtaining R and S that satisfies (4.34). The static gain, lo, that satisfies

‖Fbl(Pe(s), lo), lo‖∞ < γ can now be found by solving the following LMI

AT
e S + SAe SBe1 CT

e1

BT
e1S −γI DT

e11

CT
e1 De11 −γI


+



CT
e1

DT
e21

0


lo
T

[
BT
e2S 0 DT

e12

]
(4.35)

+



SBe2

0

De12


lo

[
Ce1 De21 0

]
≺ 0. (4.36)
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The design of static gain, lo, considering the H∞ norm of the closed-loop disturbance

rejection transfer function presents another advantage. Through the bounding of H∞

norm the design allows to bound the L2 norm of the system output y under a disturbance.

If the L2 norm of the disturbance signal ξ is ‖ξ‖2 then the L2 norm of output, ‖y‖2, can

be bounded as [140]

‖y‖2 ≤ ‖Gyξ‖∞‖ξ‖2 (4.37)

where ‖Gyξ‖∞ is the H∞ norm of the disturbance rejection transfer function. The L2

norm of a signal gives an indication about the energy associated with the same [140]

(see Appendix). Therefore by bounding the L2 norm of the output response under

the disturbance, the energy associated with the output is bounded and in turn the

system stability. A detailed discussion on the L− norms for signals and their physical

implications can be found in Appendix A.

This concludes the part of the primary+secondary control that ensure the stability

and improved voltage regulation in weak microgrids during frequent power imbalances

that occur in the system. The ADRC scheme, proposed for the same, ensures the stabil-

ity of microgrid and faster dynamics in the voltage regulation through feed forwarding of

the disturbance estimate. The design methodology using LMI, for the gain determina-

tion in the ESO of the ADRC scheme, accounting for closed-loop behaviour guarantees

that the faster voltage regulation dynamics are achieved without compromising on the

robustness of the control system.

4.2 Power management among hybrid ESS with pri-

mary+secondary control

The control action from the outer loop, igridr, is the reference value for sum total of

current (power) to be injected or absorbed from the grid to ensure the system stability.

This power catered to the microgrid should be distributed, in real-time, by the pri-

mary+secondary control among the different ESS in the hybrid scheme. As discussed

before, in the event of a power imbalance, another objective of the primary+secondary

control is to emulate the inertial, primary and secondary responses of the conventional

grid. The power splitting strategy in the primary+secondary control tries to emulate

the above responses so that a reliable operation of the weak microgrid is achieved.
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Figure 4.7: Splitting of the outer loop control action (igridr) among high power and
energy density ESS using a low-pass filter to emulate inertial and primary responses.

4.2.1 Power splitting between high power and energy density ESS

In the event of a power imbalance, the inertial response is the first and the fastest acting

reaction to the imbalance. As discussed before, in the hybrid ESS system of high power

and energy density ESS the former is capable of such fast reactions. Therefore, the

inherently fast acting SC (high power density ESS) should be tasked with emulating

the inertial response and improving the grid resiliency. The high energy density ESS

(Batteries, FC) with their large storage capacity can ensure power balance in the long

run. These ESS tend to be slow acting and as such have slower reaction times. As a

result, the high energy density ESS can be used to emulate the primary response.

This kind of a response from the high power and energy density ESS can be achieved

using a frequency based splitting of the control action from the outer loop using a filter.

The high frequency portion of the control action (igridr) will be directed to the high power

density ESS and the low frequency portion will be directed to the high energy density

ESS using a low-pass filter F (s) as shown in Figure 4.7. The previous literatures on

power splitting schemes in a hybrid ESS framework also used a similar approach. These

works used either a filter [70,144–147] or wavelet transformations [148–150] to split the

power among the different ESS in a hybrid architecture.

The filter based power splitting approach have been considered in this work over

the wavelet transformation mainly from the perspective of easiness in practical imple-

mentation. Based on the power splitting presented in Figure 4.7, the reference value of
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current (power) to be catered by the high energy (i
′
hess) and power density ESS (i

′
scr)

is given by

i
′
scr(s) = igridr(s)(F (s)− 1) (4.38)

i
′
hess(s) = igridr(s) · F (s). (4.39)

In the case where multiple different ESS constitute the total capacity formed by the high

energy density ESS, like battery and regenerative FC as considered here, the i
′
hess is in-

dicative of the total power that has to be contributed by all the ESS together. The design

consideration of the low-pass filter, F (s), will be presented later on this section after

introducing other aspects of the real-time power management in the primary+secondary

level.

Power management among high energy density ESS

As shown above, i
′
hess is the total current to be provided by the high energy density ESS.

In many practical cases a single storage device like battery will be sufficient to meet the

energy storage capacity demanded of the high energy density ESS. In such scenarios the

i
′
hess will be catered entirely by the battery system. However, in some applications (like

islanded operation) the amount of energy to be stored in high energy density ESS is

very large. In this scenario, the total energy to be stored needs to be distributed among

the battery and another high energy density ESS, like the FC-electrolyser system. This

is done considering economic factors involved in the integration of storage systems and

operation efficiency of the same, as discussed in Chapter2. Typically the usage of both

battery and FC-electrolyser system is done when the PHS or CAES is not considered as a

viable solution for high energy density ESS. In these situations, the primary+secondary

control should also make the power management decision between the different high

energy density ESS.

As discussed in Chapter1, the battery has higher round cycle efficiency compared to

the FC-electrolyser system. Therefore, from the standpoint of operational efficiency of

the microgrid the utilisation of battery is more preferential. Nevertheless, care should

also taken to ensure that the battery is not highly charged or deep discharged, as this can

degrade the battery [83]. In the case of FC-electrolyser system, apart from low opera-

tional efficiency, care should also be taken to ensure that these systems are not subjected

to sudden changes in the power demanded from them. This can lead to degradation in
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FC systems from fuel starvation [88]. Therefore, the real-time management of power

among the high energy density ESS should be carried out, by the primary+secondary

control, considering the operational efficiency of the microgrid and degradation mecha-

nism of the different ESS.

In this scenario, a straightforward approach will be to utilise the battery as long

as the battery is within the safe SOC limits. The FC-electrolyser system will then

be utilised only when the battery is fully charged or discharged. In this way both

operational efficiency and battery degradation is accounted. A similar approach was

proposed in [146] where an adaptive filter with varying cut-off frequency, depending

on battery SOC (SOCb), was used to facilitate the power split between battery and

FC system. However, ensuring the system stability when utilising a filter with varying

cut-off frequency (depending on the SOCb) can be tedious.

In this work, to avoid this, a threshold based approach utilising SOCb is considered.

As long as the SOC of battery is within the allowed limits, the i
′
hess will be catered by

battery and thereafter by the FC system. This can be achieved with a classical threshold

function as shown in Figure 4.8. However, such a splitting can result in an abrupt switch

of the outer loop control action from battery to the FC side. This is not advisable as

the sudden switch to FC side will result in a abrupt change in the setpoint to the FC

system. As discussed before the FC is not capable of delivering a sudden change in its

output power and should not be forced to do the same. Therefore to overcome this, the

threshold based approach is modified to ensure a gradual transition from the battery to

FC side using the SOCb as defining criteria for the transition.

This can be achieved with a sigmoid function instead of the classical threshold func-

tion. The sigmoid is any S shaped function, typically defined using the logistic function

S(x) =
1

1 + e−as(x−cs)
(4.40)

where as, cs are constants that define the steepness, offset of the sigmoid function re-

spectively. Unlike the threshold function, the advantage of the sigmoid function is that

it is differentiable at every point, thus ensuring a smooth transition between the ESS.
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Figure 4.8: Comparison of power splitting strategy between high power density ESS
using hard threshold and sigmoid function. The smoother behaviour of the sigmoid
compared to hard threshold is evident.

In the primary+secondary control, to facilitate the splitting of i
′
hess between the

battery and FC system a double sigmoid function of the form

S(SOCb) =

(
1

1 + e−as(SOCb−cs1)
+

1

1 + eas(SOCb−cs2)

)
· 100(%) (4.41)

will be used. The output of the double sigmoid function is shown in Figure 4.8 and

represents the percentage of i
′
hess catered by the battery system. The remaining portion

will be catered by the FC system. This splitting of i
′
hess using the sigmoid function, to

generate the set points for the inner loops of battery and FC system is schematically

represented using Figure 4.9. According to Figure 4.8, it can be seen that as SOCb

is getting too low or high, the sigmoid progressively reduces the power catered by the

battery and shifts it to the FC. Therefore, even before the limits of SOCb are reached

the battery power is shifted to the FC providing further protection to the battery. The

rate at which the FC takes over the power demand is adjusted by choosing a proper

value for as in (4.41). The cs1, cs2 in (4.41) determine the values of SOCb at which

the power delivery start to switch from battery to FC system. Typically the lower and

upper limits of SOCb are 0.1 and 0.9 respectively. As a result, the selection of cs1, cs2

as 0.2 and 0.8 should ensure adequate protection to the battery against deep discharge

and over charging. Based on the power splitting schematic shown in Figure 4.9 the set
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Figure 4.9: Schematic of power splitting among the high energy density ESS (battery
and FC-electrolyser system).

points for the battery (ibatr) and FC current (ifcr) inner loops are given by

ibatr = ihess · S(SOCb) (4.42)

ifcr = ihess · (S(SOCb)− 1). (4.43)

In practical implementation, the double sigmoid function can be realised in a mi-

crocontroller or FPGA either using its piece wise linear approximations [151] or using

MATLAB which can generate a HDL compatible look-up table of the sigmoid function

that can be programmed into an FPGA.

4.2.2 Charge restoration in SC

The inertial response from the SC will result in an increase or decrease of the energy

stored in these systems. This change in stored energy can affect the ability of the SC

to effectively handle the future power imbalances that can arise in the microgrid, thus

affecting the grid resiliency. Therefore, corrective measures should be incorporated in

the primary+secondary control to ensure that the energy change occurring in the SC

after an inertial response is addressed. It is always beneficial to maintain the energy

levels in the SC around a nominal value such that the SC is always capable of effectively

addressing future power imbalance scenarios arising in the grid. A good practice will be

to ensure that the SC is always in a half charged state. This ensures that there is always

half the capacity of SC for absorbing surplus power from grid or meet the demands of

the grid. Ensuring that the SC is always half charged, throughout the operation, can

be ensured through an additional control stage implemented in the primary+secondary

level. This process of bringing the stored energy in SC back to a nominal value after
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Figure 4.10: Charge restoration control for SC in the primary+secondary level.

every inertial response is similar to emulating secondary response in conventional grid,

where the inertial energy of rotating masses are restored.. This charge restoration in SC

is very important, as it always ensures that the weak microgrid has sufficient resiliency

to handle future power imbalances.

Unlike the conventional grid, utilisation of the inertial energy from the SC will not

be reflected in any of the grid parameter like voltage or frequency. This is because,

these ESS are interfaced to grid in a decoupled manner through the power converters.

Therefore, unlike conventional grids, monitoring system parameters like voltage or fre-

quency will not give an indication of the amount of inertial energy that needs to be

replenished. In this scenario a different approach is used for the energy restoration in

SC. The supercapacitors have an almost linear relationship between the SOC and output

voltage [152]. This enables the usage of measured output voltage of SC for the charge

restoration purpose. This is highlighted in Figure 4.10 where the SC output voltage is

compared with the a reference value, pertaining to the half SOC level in SC, to generate

a control action. The control action, ires, will be added to i
′
hess and will be catered

either by the battery or FC depending on the criteria defined in the previous section. It

should be noted that the exact value of the voltage that ensures the half-charged state

of SC will not be easily obtainable. Nevertheless, a judicious choice can be made by

studying the SOC vs voltage curve of the SC. This ensures that the SC is always near

the half charged region. Based on the SC charge restoration control the total reference

current for the high energy density ESS (ihess)is given by

ihess = ires + i
′
hess. (4.44)

It should be noted that in the discussion for power splitting among battery and FC

system i
′
hess was considered as the reference value for the total current to be catered by
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Figure 4.11: Schematic of the power splitting strategy among the SC, battery and FC
electrolyser system along with the charge restoration in SC.

the high energy density ESS. However, i
′
hess does not account for SC voltage restoration

control. Accounting for the same, ihess will be reference for total current catered by the

high energy density ESS and will be used in (4.42).

The discussion above have introduced, in stages, the methodology utilised in the

primary+secondary control to ensure the real-time power management among the dif-

ferent ESS in the hybrid scheme and emulation of different responses. The generation

of set-points for the inner loops of the different ESS have also been identified. A unified

primary+secondary control schematic incorporating the ADRC scheme and the power

management strategies presented through Figure 4.7 , Figure 4.9 and Figure 4.10 is pro-

vided in Figure 4.11. The CI1, CI2, CI3 are the controllers for the converter control loop

for SC, battery and FC systems. There are some aspects in Figure 4.11 which has not

been discussed before. The inner loops are no longer represented using the equivalent

dynamics given by Gi(s). Instead, an elaborated representation of the individual inner

converter control loops of the different ESS are provided. It can be noticed that the

current loop of the FC-electrolyser system is provided with a rate limiter. This is done

to further ensure that the FC system is protected from sudden setpoint changes and

thus reduce the rate of degradation. The current mismatch between the ifcr and ifc

(actual current injected to grid from FC system) due to the effect of ramp limiter will

be catered by the SC as shown in Figure 4.11, to ensure power balance in the grid.

4.2.3 Design consideration for the power splitting filter

As discussed in Section 4.2.1 the low-pass filter (F (s)) provides a power split between the

high power and energy density ESS. In order to introduce the design consideration for

F (s) consider the real-time power management part of the primary+secondary control



4.2 : Power management among hybrid ESS with primary+secondary control 91

Figure 4.12: Equivalent representation of the inner current loop of the pri-
mary+secondary control scheme with the filter (F (s)).

shown in Figure 4.12. This shows the portion from igridr to igrid of Figure 4.11 with

the inner converter control loops of the different ESS represented by their closed-loop

transfer functions. TheG1(s), G2(s) andG3(s) are the transfer functions of the converter

control loops of the SC, battery and FC-electrolyser system respectively. The SC charge

restoration control is omitted in the above as it does not contribute dynamically to

inner loop from igridr to igrid. It should also be noted that the double sigmoid function,

S(SOCb), is a static function in SOCb and does not introduce any dynamic behaviour

on its own. Based on the Figure 4.12 the equivalent dynamics of the inner loop from

igridr to igrid, represented by Gi(s), is given as

Gi(s) =
igrid(s)

igridr(s)
= G1(s)− F (s)(G3(s)−G1(s) + S(SOCb)(G2(s)−G3(s))). (4.45)

It can be noticed that the value of the second term in the above equation varies

depending on the values of S(SOCb) which in-turn is dependent on SOCb. This

scenario where the equivalent inner loop dynamics varies depending on SOCb is not

ideal. The varying inner loop dynamics can affect the performance of the overall pri-

mary+secondary control and makes the analysis of the system stability, robustness prob-

lematic. Therefore, a desirable property of the inner loop dynamics, Gi(s), is that it is

invariant. The design consideration for F (s) aims to achieve the same. Based on (4.45)

if

F (s)→ 0,∀s = jω (4.46)
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it will result in Gi(s) ≈ G1(s), resulting in inner loop dynamics being dominated by the

SC current control loop dynamics. This can result in the inner loop achieving significant

invariance in terms of dynamic behaviour. However, satisfying the above condition for

F (s), in the entire frequency spectrum, is not possible. Nevertheless, by setting the

cut-off frequency of the low-pass filter, F (s), as a very low value, it can be ensured that

for a major portion of the frequency spectrum the above condition will be satisfied. This

ensures that the contribution of the second term in (4.45) becomes negligible throughout

the frequency spectrum resulting in Gi(s) ≈ G1(s), ∀s = jω.

If the F (s) is chosen as a first order filter

F (s) =
1

τfs+ 1
, (4.47)

by choosing τf >> 1, the condition in (4.46) can be easily satisfied. This means that

the cut-off frequency of F (s) << 1 rad/s and that the filter has unity gain only below

this frequency. This typically corresponds to very low frequency region of the frequency

spectrum. In this region the closed-loop transfer functions, G1(s), G2(s), G3(s), will

have a gain of almost 1 resulting in the second term of (4.45) being almost zero. At

values greater than 1 rad/s the gain of F (s) is low and as a result the second term of

(4.45) tends to zero. Therefore, throughout the frequency spectrum it can be guaranteed

that the contribution from the second term in (4.45) is negligible, thus ensuring inner

loop dynamics (Gi(s)) are invariant and dominated by the SC current loop dynamics

(G1(s)). It should noted that the filter F (s) need not necessarily be first order. Higher

order filters will also achieve similar results by choosing their cut-off frequency as shown

above.

Since the dynamics from igridr to igrid is now dominated by the G1(s), the Figure

4.11 can be equivalently represented as Figure 4.13. The dominance of the inner loop

dynamics by the SC current loop dynamics has another advantage. The SC is the fastest

acting ESS and typically the converter control loop, of the same, is designed to be the

fastest among all the ESS. As a result, since Gi(s) ≈ G1(s), from the perspective of the

outer loop the inner loop appears to be very fast. This further justifies the assumption

(4.17), used in the gain determination of the ESO. It should also be noted that the

invariance can ensured only as long as the SC has sufficient to meet the demands arising

in the grid. This further stresses the importance of the SC charge restoration control.
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ADRC scheme

ESO

�
^

Gg(s)G1(s)-- +Cv(s) 

Figure 4.13: Equivalent representation primary+secondary control scheme of Figure
4.11 under model invariance and dominance of inner loop dynamics by SC current loop.

This concludes the part of the primary+secondary control where the real-time power

management among the different ESS are handled and the inertial, primary and sec-

ondary responses of the conventional grid are emulated.

4.3 Power splitting among ESS of same type

In many practical scenarios pertaining to grid connected ESS the capacity demanded

from a single storage device, for example battery, may not be realised by one battery of

large capacity but through several batteries of smaller capacities n a distributed manner.

This is done mainly for economical as well as operational reasons. In this scenario, the

primary+secondary control should make the decision on how the total power demanded

from the battery storage be handled by the smaller capacity batteries. The same should

be considered for SC and FC-electrolyser system. The power management strategy

discussed in this section is to address this generic scenario that can arise in the grid.

The objective will be to decide how ibatr, iscr and ifcr (Figure 4.11) be divided among the

smaller capacity batteries or SC or FC electrolyser systems, if they exist in a microgrid.

The discussions in the previous sections have already addressed the issues of stability

and voltage regulation along with emulating inertial, primary and secondary responses

using the ESS in weak grids, utilising the primary+secondary control level. The control

architecture for the same was shown in Figure 4.11. As a result, the power splitting

among ESS of same type, discussed here, do not have to account for these functionalities.

As aspects of stability or emulating the responses occurring in conventional grid

are not considered, the power splitting will focus on trying to minimise scenarios that
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can degrade an ESS. First the power splitting among the distributed battery storage is

discussed. In this case, the objective should be to ensure that all the individual batteries

get equally utilised. This ensures that one particular battery do not get over-charged

or deep-discharged frequently, over the others, thus speeding up its ageing process.

This scenario can be avoided by using the SOC of the individual batteries as an input

feature, for deciding the power splitting criteria among the batteries. A straightforward

approach, in the event of distributed battery storage, will be to ensure that an individual

battery with higher SOC should cater to a higher percentage of total power demanded

from the entire battery storage. This ensures that a battery with lower SOC is not over

utilised and goes into deep discharge. It also ensures that a battery with higher charge

is not kept in a charged state thus minimising dwell times at high SOC levels and in-

turn calender ageing effects. Similarly, in the event where surplus power from the grid

needs to taken in, the battery with the lower SOC should absorb a higher percentage of

the total surplus power. This ensures that the battery with higher SOC levels are not

pushed into an overcharged state.

This approach of utilising the measured SOC, of the individual battery, as a feature

to decide the power splitting has been considered in previous works as well [71, 153–

156]. These works focussed on the decentralised droop control for power splitting and

the SOC of the individual batteries where used to determine the droop control gains.

The aspects of droop control will not be discussed in detail in this thesis as they are

beyond the current scope. Interested readers in droop control techniques are directed to

[64]. Nevertheless, the above works presented an interesting solution for power splitting

among ESS of same type which can adopted to the centralised control scheme considered

here.

Specifically the idea presented in [154] will be adapted to the centralised pri-

mary+secondary control scheme, for battery systems. In this approach, the power

catered by each battery in the distributed storage should be proportional to SOCn dur-

ing discharge and 1
SOCn while charging. Considering the same, ibatr (the total current

reference for the cumulative battery storage) will be split in the ratio Fbat defined as

Fbat(SOCz) =



(SOCz)
b∑l

a=1(SOCa)
b
, for discharging

(DODz)
b∑l

a=1(DODa)b
, for charging.

(4.48)
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Figure 4.14: Complete primary+secondary control stage schematic. The power splitting
among ESS of same type is also highlighted here.

where z = 1, 2, 3...l is the number of batteries in the distributed storage and DOD is

the depth of discharge given by 1 − SOC. Depending on the whether the battery is

charging on discharging one of the above conditions will be activated and the ibatr will

be split accordingly, which will then serve as the reference input for the converter control

loops of the individual battery systems. the schematic in Figure 4.14 shows the same.

In a scenario, where at the start of microgrid operation, the individual batteries are at

different SOC levels the power splitting using (4.48) will also ensure charge equalisation

in batteries after sustained operation, provided the batteries are of same capacity. The

time taken to achieve the charge equalisation is determined by the value chosen for

the exponential, b, in (4.48). Higher the value of b, faster the batteries acquire charge

equalisation.

Another important aspect that needs to be analysed, is the equivalent dynamics from

ibatr to ibat in Figure 4.14. Typically all the converter control loops of the individual

battery systems are designed to have similar dynamics. If the closed-loop dynamics of

each individual loop of battery is chosen as G2(s) the equivalent dynamics from ibatr to

ibat during discharging state is given by

ibat(s)

ibatr(s)
= Fbat(SOC1) ·G2(s) + Fbat(SOC2) ·G2(s)....Fbat(SOCl) ·G2(s)

=

(
(SOC1)

b∑l
a=1(SOCa)

b
+

(SOC2)
b∑l

a=1(SOCa)
b
......

(SOCl)
b∑l

a=1(SOCa)
b

)
·G2(s)

= G2(s).

(4.49)

The above holds during charging state of battery as well. This ensures that irrespective

of the number of batteries in distributed storage, the dynamical behaviour from ibatr to

ibat will be invariant when using the power splitting strategy as in (4.48).
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In the case of SC, the similar approach as that of the battery using the SOC of the

SC can be used for the power splitting. The objective is same as that in the case of

battery, to ensure equal utilisation of the different SC. The iscr will be split in the ratio

Fsc as

Fsc(SOCz) =



(SOCz)
b∑l

a=1(SOCa)
b
, for discharging

(DODz)
b∑l

a=1(DODa)b
, for charging.

(4.50)

In the case of ESS like FC-electrolyser systems, the energy is stored externally in

the form of a fuel like hydrogen. In these kind of ESS the storage costs are very low, in

comparison to battery, as discussed in Chapter 2. Therefore, when a larger capacity is

needed in the case of FC systems they can be easily achieved by increasing the capacity

of hydrogen storage tanks unlike batteries where the a larger capacity battery has to be

installed. As a result, the larger capacity requirement in an FC-electrolyser system can

be easily handled with a single large storage. Nevertheless, scenarios can arise where a

single large storage is fed using multiple FC-electrolyser system. In this case, splitting of

ifcr among the different FC-electrolyser system converter control loops should be done.

The ifcr can be split in the ratio Ffc as

Ffc(Pz) =
Pz∑l
i=1 Pi

(4.51)

where Pz is the rated power capacity of each FC-electrolyser system and z = 1, 2, 3...l

is the number of FC systems considered. It should be noted that in the case of FC-

electrolyser system, the rated power capacity of individual FC system is used for power

splitting, unlike the case of battery or SC. This is because the FC works mostly like a

generator using hydrogen as fuel. In the case of distributed generator units, convention-

ally the total power is distributed based on the power rating of the individual generators.

This ensures that units having higher power rating provides a larger power output. The

similar approach has been used for the FC-electrolyser system here. The (4.51) does not

involve any term which needs to be measured at every sampling instant and as a result

the value of the same remains constant through out the operation. Similar to (4.49),

the dynamics from ifcr to ifc, of Figure 4.14, can be proved to be invariant.

Finally, based on the above discussions the dynamics from ibatr to ibat,iscr to isc and

ifcr to ifc of Figure 4.14 is always invariant. As a result, the power splitting strategy
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discussed in this section will not in any way influence the analysis carried out in the

previous sections pertaining to the ADRC scheme or Filter design criteria. It should be

noted that, in the event multiple smaller capacity batteries are considered, the SOCb

used as the input of the double sigmoid function will be average SOC of all the smaller

capacity battery system.

This concludes the discussion on the functionalities incorporated in the pri-

mary+secondary control scheme, considered in this work. In the subsequent section,

the results of the performance of the primary+secondary control level will be discussed.

4.4 Results and analysis of primary+secondary control

In order to assess the performance of the primary+secondary control, a microgrid with

hybrid storage system comprising of SC, battery and FC electrolyser system will be

used. The total capacity required of the battery will be realised using two lower capac-

ity battery systems. Similarly the total power rating demanded from the FC-electrolyser

system will be realised using two lower power rated units. This specific test system was

chosen so that all the functionalities incorporated in the primary+secondary control

can be assessed. The assessment will carried out using simulation results of the pri-

mary+secondary control acting on the microgrid developed with MATLAB Simulink.

The power semiconductor switches used in the interfacing converters, for the different

ESS, were realised using the IGBT models available in the Simscape library of Simulink.

Considering the DC nature of the microgrid the ESS are interfaced to the grid

through bi-directional DC/DC converters. The Figure 4.15 shows the schematic of the

converter systems, used in this study, for interfacing the different ESS to the DC micro-

grid. The converters used for battery and SC systems are of the same topology, with the

exception of the values of the passive components used. The FC-electrolyser system’s

converter have an additional input filter as shown in Figure 4.15b to enable a smooth

input current profile. The authors do not claim that the converter topologies shown here

are the most efficient for the respective ESS. Nevertheless, it provides a good starting

point for demonstrating the improvements and performance of the primary+secondary

control strategy proposed in this chapter.

The control parameters of the inner converter control loops are designed using the

passive component values of the converters used in the experimental setup of Figure2.4.
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Figure 4.15: Converter topologies used in the interfacing of the ESS to the DC grid (a)
Battery and SC converter (b) FC electrolyser system converter.

The FC converter of the the experimental setup is a unidirectional boost converter.

In the simulations, as the FC-electrolyser system is considered the boost converter is

replaced with the bidirectional scheme of Figure 4.15 but the values of the passive

components (inductors and capacitors) are the same as that of the experimental setup.

The inner converter control loops where designed accounting for the physical capa-

bility of the ESS respective converter is interfacing. The SC converter loop was designed

to be fastest. As the SC has to emulate inertial response which is inherently fast it was

logical to design the SC converter control loop to be fastest. The inner loop of the FC

electrolyser system was designed to be slowest. This is considering the physical limita-

tion of the FC system which is prone to fuel starvation at its electrodes when subjected

to sudden changes in power demand. Finally, the inner loop of the battery system was

designed to have response speed in between the SC and FC system. Among the con-

trollers used for converter control loop, the SC and FC-electrolyser inner loops used the

classical PI control. As discussed in Section 4.2.1, the high frequency component of the

control action from the outer voltage loop forms the reference for the SC inner loop.

This results in a reference signal that will not be a step input. Based on the discussion

in Chapter 3, the proposed PI+CI controller design was best suited for step references.

Considering the same, the PI controller was used for the SC current loop. In the case

of FC-electrolyser system, the presence of the rate limiter in the control loop, as shown

in Figure 4.14, results in the reference signal having a ramping behaviour and hence PI

controller was considered for the FC current loop. The inner loop of the battery used

PI+CI controllers.

The values of the control parameters used in the primary+secondary stag, calculated

based on the design criteria discussed in the previous section, is shown in Table.4.1. The
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Parameter / Component Values

Grid capacitance, Cgrid 2.72 mF

Supercapacitor csc, ESRsc 165 F , 6.3 mΩ

SC converter - lsc, rsc 34.3 µH, 0.043 Ω

Battery converter - lbat, rbat 192 µH, 0.04 Ω

FC converter - l1fc, r1fc, L1fc, r1fc, c1fc 140 µH, 0.01 Ω, 192 µH, 0.04 Ω, 2200 µF

SC current loop PI- kpsc, kisc 0.134,96.231

Battery current loop PI - kpbat, kibat 0.0138,17.222

FC current loop PI - kpfc, kifc 0.0142, 16.321

Filter, τf (First order) 2.5

Outer loop PI - kpv, kiv 2, 20

Disturbance model order- m 2

γ 1

ESO gain- lo

[
8218.131 3453.284 22.240

]T

Table 4.1: Parameter values used in the primary+secondary control stage

FC current loop was designed to be the slowest with a settling time of 0.037s and peak

overshoot of 26% (without considering the rate limiter). The battery current loop was

designed to have a settling time of 0.2s and a peak overshoot of 19%. The SC current

loop was designed to be the fastest with a settling time of 0.0033s. It should be noted

in the case where multiple ESS of same type are used the inner loops of the ESS of

the same type are designed to be identical. The inner loops of the of the two battery

systems and two FC systems, considered in the microgrid, was designed identically.

4.4.1 Verification of model invariance in inner loop

As discussed before, the filter design aimed at establishing model invariance in the

inner loop. Based on the design criteria outlined in Section 4.2.3 the value of τf , in

the case of a first order filter, should be chosen greater than 1 to ensure this model
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Figure 4.16: Model invariance of the inner loop demonstrated through comparison of
bode plots of inner loop transfer function with transfer function of SC current loop (a)
τf = 0.1 (b) τf = 2.5.

invariance. In accordance with the same, the simulation models were developed using a

filter with τf = 2.5 as shown in Table 4.1. The model invariance of the inner loop can

be verified through Figure 4.16. The figure shows the bode plots of the equivalent inner

loop transfer function (Gi(s)) for various values of S(SOCb) (double sigmoid function).

According to (4.45) the dynamics represented by Gi(s) should vary for different values

of S(SOCb). However, it can be seen from Figure 4.16b that the Gi(s) remain invariant

when using an F (s) with τf = 2.5, for the power splitting. This verifies the invariance

property of the inner loop achieved by the filter design criteria outlined in Section 4.2.3.

It can also be seen in Figure 4.16b that the equivalent inner loop dynamics (Gi(s)), for

different values of S(SOCb), is equivalent to the dynamics of the converter control loop

the SC system, given by G1(s). This is also in agreement with the discussion outlined

in Section 4.2.3.

The Figure 4.16a shows the same analysis but for filter with τf = 0.1. In this case,

the τf < 1 and as a result the cut-off frequency tends to be greater than one leading

to inability in establishing the invariance of inner loop dynamic behaviour as shown in

Figure 4.16a. It can be seen that the inner loop dynamics are no longer equivalent to

G1(s).

The value of τf was chosen to be 2.5 as it was possible to establish invariance and

equivalence of Gi(s) to G1(s) with this value. A value higher than 2.5 will also ensure the

same, but resulting in an increased utilisation of SC. This in turn will require increased
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Figure 4.17: Invariance in dynamic behaviour of Gi(s) for varying values of S(SOCb)
when using a second order F (s). Higher order filter demonstrates similar behaviour as
that of first order F (s).

control action from the SC charge restoration control. The increased utilisation and

subsequent depletion of SC charge can also affect the model invariance achieved by the

inner loop, as discussed before. Therefore as a trade-off τf was chosen to be 2.5.

Finally, the invariance and equivalence of inner loop dynamics to that the SC con-

verter loop can also be achieved with higher order filters. This is shown in Figure 4.17,

which demonstrates the invariance of Gi(s) to varying values of S(SOCb) when using

a second order filter in F (s). The second order filter was chosen to have a natural

frequency, ωn, of 0.4 (equivalent to that of first order filter chosen above) and damping

ratio of 1. Comparison of Figure 4.17 and Figure 4.16b does not reveal significant dif-

ference in the dynamical behaviour of Gi(s), resulting in a similar performance with a

higher order filter. The same is the case with even higher order filters. Since there is no

significant improvement in the invariant dynamic behaviour of Gi(s) with higher order

filter, the rest of the discussion in this chapter will carried out using a first order F (s).
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4.4.2 Analysis of voltage regulation and ESO performance in ADRC

The first step in developing the ADRC scheme is determining the parameters , kpv, kiv,

of the outer loop controller Cv(s). These parameters are first determined without con-

sidering the ESO. As discussed before, the controller Cv(s) is designed to ensure that

the outer loop has slower dynamics than that of the slowest inner loop dynamics (FC

loop). The objective of the outer loop is to ensure voltage regulation through distur-

bance rejection. Therefore, the parameters of Cv(s) are determined using the closed-loop

disturbance rejection transfer function, without considering the ESO. As the inner loop

dynamics, Gi(s), is equivalent to SC converter control loop dynamics, the equivalent

representation of primary+secondary scheme shown in Figure 4.13 will be used to de-

termine the closed-loop transfer functions. The transfer function from disturbance to

output y, without the ESO, is then given by

G
′
yξ(s) =

Gg(s)

1 +Gg(s)Cv(s)G1(s)
(4.52)

This case without the ESO represents the classical double loop control scheme shown

in Figure 4.1. The parameter values of kpv, kiv given in table 4.1 is obtained using the

above transfer function. They were chosen such that the outer loop has a settling time

of 0.38 s, almost ten times slower than the FC current loop.

The next step in the development of ADRC scheme is determining the ESO gain, lo,

using the LMI based design methodology outlined in Section 4.1.3. As discussed before

the lo is determined considering the closed-loop disturbance rejection performance. Ac-

cording to (4.26), a degree of freedom available in the gain determination process is the

ability to pre-define the weighting function,Wξ(s). Through proper selection of Wξ(s) ,

according to (4.23), the error dynamics of ESO disturbance estimation (ξ − ξ̂) can be

controlled. This error dynamics represented by 1−Q(s) have high-pass characteristics

and hence acoording to (4.23) the Wξ(s) is chosen as a low-pass filter. The cut-off

frequency of Wξ(s) will in turn define the dynamics of the ESO.

Another criteria in any observer design is to ensure that the observer dynamics is

faster than the control loop dynamics. In the primary+secondary stage the ESO dynam-

ics should, therefore, be faster than the outer loop dynamics. As the cut-off frequency

of Wξ(s), ωξ, is increased the knee point of 1−Q(s) is decreased according (4.23). Due
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Figure 4.18: Bode plots of Wξ(s), 1−Q(s) and Q(s) of the ESO for the value of lo given
in Table 4.1.

to the high-pass nature of 1−Q(s) this leads to faster dynamics of the disturbance esti-

mation error. As a result, an increase in ωξ will result in faster disturbance estimation

by ESO and improved disturbance rejection performance by ADRC scheme.

The other parameters that need to be defined before solving the LMI problem was

the bounding H∞norm value γ (defined in Theorem 4.1) and the order of the disturbance

signal (m) to be used in the ESO model. The value of gamma was chosen as 1 based

on the condition defined in (4.20). the order of the disturbance was chosen as 2. The

second order model is considered as most of the disturbances occurring in the grids can be

sudden (step) or gradual variation (ramp) in the generation or load profile. Considering

all these aspects the lo value, given in Table 4.1, was obtained for a Wξ(s) =
1750

s+ 1750
by solving the LMI problem. The above Wξ(s) was chosen, as beyond the ωξ = 1750

the LMI feasibility problem used in the determination of lo was not feasible for a γ < 1.

The Figure 4.18 shows the bode plots of Wξ(s), 1 −Q(s) and Q(s) of the ESO for the

value of lo given in Table 4.1. The bode plots clearly show the high-pass of 1 − Q(s)

and the low-pass nature of Q(s). The Q(s) has a cut-off frequency around 100 rad/s

and a gain roll-off beyond this value. As a result, this satisfies the condition required
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from Q(s) as highlighted using (4.16). The low cut-off frequency from Q(s) also ensures

that the disturbance estimation is less sensitive to measurement noise.

Prior to presenting voltage regulation and power splitting performance achieved

with primary+secondary control, an assessment of the improvement in disturbance re-

jection performance with the ADRC scheme is carried out first. In order to effectively

highlight this, the step response of the closed-loop disturbance rejection transfer func-

tion of the primary+secondary scheme is compared with and without the ESO. The

transfer function without ESO, for the closed-loop system, G
′
yξ(s) was already given in

(4.52).The closed-loop transfer function with ESO, considering model invariance, for the

primary+secondary scheme represented in Figure 4.13 is given as

G
′′
yξ(s) =

Gg(s)(1−Q(s))

1 +Gg(s)Cv(s)G1(s) +Q(s)(G1(s)− 1)
. (4.53)

It should be noted for assessing the improvement with the ADRC scheme the approx-

imate closed-loop transfer function, Gyξ(s), used in LMI based gain determination of

ESO was not used. The Gyξ(s) was used only to facilitate a simpler formulation of the

LMI problem for determining the lo. The Figure 4.19 compares the step responses of the

closed-loop disturbance to output transfer function of the primary +secondary control

with and without ESO. The response shown here is for a step input of value -1. It can

be clearly observed that the disturbance estimate with the ESO and subsequent feed-

forward of the same, has resulted in a significant reduction in settling time of the step

response with the ADRC scheme. The settling time was reduced from 0.388s to 0.153s

using the ADRC scheme. This represents an almost 50% faster disturbance rejection

performance. It should also be noted that the faster disturbance rejection achieved with

the ADRC scheme is without an increase in the overshoot (undershoot in this case). It

can be observed that the undershoot in the case of the ADRC scheme is actually lower

than the case without ESO. This is further implied through the comparison of the H∞

norms calculated for ADRC and conventional nested loop schemes. The value of H∞

norm for ADRC scheme was 0.475 while that for the conventional nested loop scheme

was 0.504. This further highlights the improvement with the ADRC scheme.

The Figure 4.20 shows the comparison of bode plots of the closed-loop transfer func-

tion, from disturbance to output, with and without ESO. This comparison provides an

understanding of the robustness of the ADRC control scheme. It can be seen from Fig-

ure 4.20 that the bode plot of closed-loop system has a more low frequency bandpass
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Figure 4.19: Step response comparison of the disturbance rejection performance by
primary+secondary control with and without ESO (ADRC scheme).

characteristic with the classical dual loop control scheme (without ESO). In compari-

son, the ADRC scheme has a lesser bandpass characteristic. This explains the slower

dynamics of the disturbance rejection performance in the dual loop control scheme, as

it allows lower frequencies to affect its response. In terms of system robustness, the dual

loop control scheme has infinite gain and phase margins whereas the ADRC scheme has

a gain margin of 94 while the phase margin is infinity. Therefore, it can be concluded

that the ADRC scheme can ensure na improved transient performance over the classical

dual loop control without compromising on the control system robustness.

Voltage regulation performance

The voltage regulation performance in the microgrid using the ADRC scheme is dis-

cussed next. As discussed before the simulation models were developed using Simulink.

The results discussed in the upcoming sections will be for a microgrid with one SC, two

batteries and two FC-electrolyser system so as to asses all the power splitting strategies.

The interfacing DC-DC converters were also incorporated in the Simulink models and
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Figure 4.20: Comparison of Bode plots of the disturbance rejection performance by
primary+secondary control with and without ESO (ADRC scheme).

were switched at 20 kHz. The Figure 4.21 shows the voltage regulation performance in

the microgrid with the ADRC scheme. The results were generated when the microgrid

was subjected to an imbalance power in the form of the step waveform shown Figure

4.21b. In Figure 4.21 this imbalance power is represented through the equivalent cur-

rent profile. The Figure 4.21b shows the disturbance estimation (imbalance power) by

the ESO in the ADRC scheme. It can be seen that the disturbance estimated by the

ESO is higher than the imbalance power in the grid. This is because, in the actual

microgrid there are losses in the interfacing DC/DC converters and the equivalent stray

resistances in the passive components. Therefore, the power supplied to the grid by the

ESS is higher than the actual imbalance power. The ESO is still capable of estimating

this additional power demand arising from the losses despite the same not being con-

sidered in the ESO design. The Figure 4.21c shows the control action from the outer

control loop, igridr which is the sum of the output from Cv(s) and ESO.

In terms of voltage regulation performance, the improvement achieved with ADRC

can be clearly observed through comparison between Figure 4.21 and Figure 4.22. The

Figure 4.22 shows the performance with the conventional dual loop scheme without
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Figure 4.21: Voltage regulation performance in the microgrid with the ADRC scheme
(a)Grid voltage profile (b) Disturabnce estimation from ESO and actual imbalance cur-
rent to the grid (c) Control action igridr.

ESO. The longer time taken by the controller to bring the voltage back to the nominal

value of 80 V, in the case of conventional dual loop architecture, highlights the capability

of the ADRC scheme. The estimation from the ESO in the ADRC scheme allows the

controller to bring the voltage back to nominal value faster as shown in Figure 4.21a.

The ADRC scheme is capable of restoring the voltage back to nominal value in 0.12

seconds whereas the conventional control takes 0.32 seconds. This is very similar to the

values seen when analysing the disturbance to output transfer function in the previous

section. There is a slight difference in the settling times obtained from the Simulink

models and the transfer function analysis carried out in the previous section. This

is because the Simulink models where developed to mimic real world system as close

as possible. As a result, the model incorporated data acquisition filters which will be

used in real world applications when measuring the system parameters. These were not

considered in the transfer function analysis represented in the previous section. The

filters were modelled based on the actual filters used in the experimental setup of Figure

2.4. Due to the unmodelled effect of the same there exists slight difference between

the simulation results of microgrid and the transfer function analysis. Nevertheless, the

improvement with ADRC scheme can be clearly comprehended.



108 Chapter 4 : Primary+secondary control

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(a)

60

65

70

75

80

85

90
V

ol
ta

ge
 (

V
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(b)

Time (seconds)

0

5

10

15

20

25

30

C
on

tr
ol

 a
ct

io
n 

(I
gr

id
r)

Figure 4.22: Voltage regulation performance in the microgrid with conventional dual
loop control scheme (a)Grid voltage profile (b) Control action igridr.

4.4.3 Power splitting among hybrid ESS and ESS of same type

The Figure 4.23 shows the real-time power splitting among the different ESS achieved

by the primary+secondary control, during power imbalances in the grid. The results

are obtained from the simulation of the same microgrid architecture described in the

previous section. In order to demonstrate the power splitting among the hybrid ESS

(SC, battery and FC) and also among the ESS of same type the initial condition for the

battery SOC was taken as 0.5 and 0.6 for battery one and two respectively. The ESS

were sized such that in the time frame shown in Figure 4.23, there can be significant

change in the energy stored in the ESS to facilitate switching from one ESS to another

(from battery to FC) in order to cater the power imbalance in the system. This enables

to assess the different power transitions. The two FC systems where chosen to have

different power ratings in the simulation so as to highlight the power splitting among

the two FC systems as well.

As shown in Figure 4.23, when there is a change in the power imbalance in the grid

the first response is from the SC, as expected. This arises from the power splitting
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Figure 4.23: Power splitting among the ESS and voltage by the primary+secondary
stage under power imbalance in the microgrid.

carried out by the filter between the high power density and high energy density ESS.

The control action from the outer loop, igridr, will be split by the filter into high and

low frequency components. The inner loop of the SC system will be provided with the

high frequency part which initiates the initial response from the SC system to power

imbalances. As discussed before, this initial response demonstrates the emulation of the

inertial response by the SC system. This response from the SC arrests the bus voltage

deviation and brings it back to the nominal value quickly as shown in Figure 4.23. Thus,

this result highlights the ability of the SC system in ensuring a degree of inertia in the

weak microgrid towards power imbalance.

The filter action results in high energy density ESS catering the low frequency compo-

nent of the outer loop control action. As mentioned before, to ensure a higher operating

efficiency of the grid the battery is made to cater imbalance power when there is suf-

ficient charge in them. In this case, at the start of simulation Battery 1 and 2 have

0.5 and 0.6 SOC respectively resulting in the power being catered by batteries. As the

two batteries have different SOC, based on the discussion in Section 4.3, the battery

with the higher SOC will provide a higher power output. This is clearly observable in
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Figure 4.24: The battery system behaviour for the scenario in Figure 4.23 (a)battery
current profiles (b) battery SOC profiles.

Figure 4.23 where battery 2, which has a higher initial SOC has higher power (current)

output initially. The rate at which the battery power output ramps up depends on filter,

F (s). This ramping up in power from the higher energy density ESS is analogous to the

primary response in the conventional system.

After continued operation of the batteries, the SOC levels start coming down. This

will result in a shifting of power being catered to the microgrid from batteries to the

FC systems as shown in Figure 4.23. As discussed before, this is essential to avoid

deep discharge of battery and the subsequent degradation that arises from it. The FC

systems start catering to the power imbalance at around 10s as shown in Figure 4.23.

The shifting of the power output from the battery to FC will be carried out based

on the methodology discussed in Section 4.2.1, using the double sigmoid function. In

the case considered here, since there are two battery systems the average SOC of the

batteries will be used as input to the double sigmoid function to determine the power

being catered by the FC system. The FC starts catering to the power demand even

before the battery SOC reaches the lower permissible limits. This can be observed in

Figure 4.24b, where the average SOC of the two batteries is still 0.4, at 10s, when the
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FC starts catering to the power demand. This ensures the gradual transition from the

battery to FC system using the double sigmoid function, as discussed before. It can be

observed in Figure 4.24 that the power output from the battery progressively decreases

as the SOC reduces and after 50s when the SOC has almost reached the lower limit

the power output from the batteries are close to zero. This highlights the ability of the

primary+secondary scheme in preventing deep discharge in batteries and facilitating

a smooth transition from battery to FC system while meeting the power imbalance

in grid. In the fig.4.23 at around 80s the imbalance current becomes negative. This

indicates a surplus power in the microgrid which has to be taken in by the ESS. As can

be seen from fig.4.23, and Figure 4.24, as the batteries are almost fully discharged the

primary+secondary stage forces the battery to take in the surplus power and not the FC

to ensure higher operational efficiency. Therefore the primary+secondary stage makes

the power splitting decision considering the operational efficiency and degradation of

the ESS.

Another important aspect that can be observed in Figure 4.24 is the charge equal-

isation achieved in the batteries by primary+secondary stage. As the battery with the

higher SOC provides more power output, over the course of time this will lead to charge

equalisation if the batteries are of the same capacity. This is shown in fig.4.24b where

the initial difference in SOC between battery 1 and 2 gradually reduces over time and

almost becomes zero resulting in charge equalisation. This is in accordance with the

power splitting equation (4.48) used in the primary+secondary stage for the ESS of

same type. In the simulation considered here the value of b in (4.48) was chosen to be

3 so as to ensure a faster equalisation of charge. This charge equalisation ensures that

one battery is not over utilised or goes into deep discharge. This also ensures that irre-

spective of the initial SOC of batteries, after prolonged operation, they achieve charge

equalisation and contribute equally to the power demand as long as the batteries are of

same capacity. Nevertheless, in the scenario were the batteries are of different capacities

the charge equalisation will not be achieved. In this case, the primary+secondary stage

will still ensure that batteries with higher SOC cater a larger share of the power demand.

The Figure 4.25 shows the power splitting among the two FC systems considered

in the simulation. This figure is a reproduction of the FC current profile from Figure

4.23, provided for better assessment of the waveforms. As discussed in Section 4.3, the

primary +secondary stage distributes the power demand among the FCs proportional

to the power rating of the individual FC electrolyser systems. In order to observe the
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Figure 4.25: Power splitting among the FCs achieved by the primary+secondary stage
for the scenario shown in Figure 4.23.

power splitting behaviour in the simulations the FC system 2 was chosen to have higher

rating than the FC system 1. As a result it can be observed that the FC system 2 caters

to more demand than the FC system 1.

Finally, Figure 4.26 shows the SC charge restoration by the primary+secondary

stage. The charge restoration is essential to ensure that the SC is always capable of

responding to future power imbalances arising in the grid , thus ensuring stability as well

as higher inertia of the grid. Apart from this the model invariance of the inner current

loop can only be established if the SC has sufficient energy available at all instances to

meet the demands from the grid. Therefore, this SC charge restoration functionality

of primary+secondary stage is of great importance. As discussed in Section 4.2.2 the

charge restoration is ensured through SC voltage regulation. This is shown in Figure

4.26a where SC voltage is regulated at a nominal value of 35V. This value is chosen based

on the SC system used in the test setup shown in Figure 2.4. The 35V corresponds to

the voltage value when the SC is at half capacity. This ensures that half the capacity

of the SC is always available to supply or absorb the power imbalance in the grid.

The Figure 4.26b shows the current profile of the SC system reproduced from Figure
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Figure 4.26: SC charge restoration achieved by the primary+secondary stage for the
scenario shown in Figure 4.23(a) SC voltage profile (b) SC current profile (c) Imbalance
power and the control action (igridr) from the ADRC scheme.

4.23. The impact of the SC voltage regularization can also be observed in the control

action (igridr), from the outer loop, shown in Figure 4.26c. The large overshoot in the

control action after every change in power imbalance set point is the effect of SC voltage

regulation carried out by the primary+secondary scheme. As discussed before, this SC

charge restoration emulates the secondary response in the conventional grid.

4.5 Concluding remarks

A unified centralised power management framework that ensure stability and voltage

regulation in a weak microgrid with renewable generation and hybrid ESS system was

developed. The control framework, called the primary+secondary scheme, ensures

• Improved voltage regulation and stability in weak microgrid under power imbal-

ances

• Real time power management among the hybrid ESS emulating inertial, primary
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and secondary responses arising in conventional grids

• Real time power management among the hybrid ESS considering operating effi-

ciency of microgrid and degradation mechanisms of different ESS.

In order to ensure improved voltage regulation performance and in-turn disturbance

rejection in microgrid, the primary+secondary control proposed in this work utilised

an ESO augmented with the conventional dual loop control architecture. This scheme,

referred to as ADRC, was capable of robust estimation of the imbalance power (dis-

turbance) arising in the grid without the need for additional sensors and feed forwards

it for improved disturbance rejection performance. This work also presented an LMI

based method for the gain determination of the ESO, considering the closed-loop system

performance. The improvement in the voltage regulation performance was also verified

through simulations in this chapter.

The primary+secondary control framework also presented a power splitting strategy

among the hybrid ESS considering the ESS characteristic, degradation and the opera-

tional efficiency of microgrid. The power splitting between the high power and energy

density ESS was achieved using a filter. This resulted in the SC providing the initial

response to power imbalance variations in grid, similar to the inertial response in con-

ventional grids. The same was verified through the simulation results. After the SC

response the battery or FC system ramp up in power to maintain long term power

balance in grid like primary response. The primary+secondary control also proposed a

power splitting criteria between battery and FC. The proposed methodology used the

output of a double sigmoid function to determine the power split ratio between battery

and FC system. This power splitting ensured that deep discharge of battery was pre-

vented and ensured a smooth power transition from battery to FC system. The power

splitting strategy also ensured that the operational efficiency of the system is high by

ensuring that the FC system is put to use only when the battery cannot be utilised.

Finally the primary +secondary scheme also proposed a power splitting criteria

among ESS of same type. The proposed methodology split the power among batteries

based on their SOC and among the FC based on their power rating. The SOC based

power splitting prevented over utilisation of one battery over another and further pre-

vented deep discharge in battery systems. The design criteria for the different stages

of the primary+secondary scheme including the filter, PI controllers and ESO were

outlined. The filter design aimed at ensuring model invariance in the equivalent inner



4.5 : Concluding remarks 115

loop dynamic behaviour and discussed the design considerations for the same. Finally

the performance of the entire primary+secondary stage was verified through simulation

models developed in Matlab- Simulink.

Based on this the novel contributions of this chapter can be summarised as

• Application of ESO for voltage regulation in microgrid and the LMI based method-

ology applied for gain determination in ESO

• Power management strategy among high energy density ESS like battery and FC

using the double sigmoid function

• Design consideration of the power splitting filter, F (s), ensuring invariance in

dynamical behaviour of inner loop irrespective of the ESS catering tp the power

demand in the grid.

In terms of future line of research the experimental verification of the control strategy

should be carried out. Apart from this, the research can be extended to developing

decentralised control strategy for microgrid with hybrid ESS system. Finally to conclude

publications, based on the work carried out in this chapter is given below:
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Chapter 5

Forecasting unit for generation and

load profiles

This chapter introduces the forecasting unit used in the energy management stage, to

aid the decision making of the tertiary controller. The chapter provides an overview of

the forecasting techniques that have already been utilised in electrical systems. Based

on the conclusions drawn from the survey, a forecasting unit utilising neural network is

identified for this work. The formulation of the neural network system for forecasting the

generation, load demand and the training process will be discussed. Finally, the chapter

presents the results of generation and load forecast from the forecasting unit developed.

The upcoming chapters in this part of the thesis discusses the work done in the

development of the energy management stage for the hybrid ESS and the microgrid.

The energy management in the microgrid will be carried out by the tertiary control

stage. As discussed in Chapter 2 a centralised control system will be considered. The

objective of the centralised tertiary level will be to provide an optimal management

of the energy among the hybrid ESS, the dispatchable generator (if present) such that

there is maximum consumption of energy from RES while also ensuring that they are

grid friendly. Apart from this, the energy management stage aims to ensure that the

operation of the microgrid is efficient and the rate of degradation of the ESS is minimised.

The decision making, for energy management, in the tertiary control stage can be

resolved using heuristic or non-heuristic strategies. In the former, tertiary control uses

rule based algorithms [76, 77, 157–159], fuzzy inference schemes [78, 160–163], genetic

119
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algorithm [164–166] or simulated annealing algorithms [167] for its decision making.

Among the above mentioned methods the genetic algorithm and simulated annealing

can be considered as more of a metaheuristic method. In the non-heuristic methods

[168–173] the controller relies on solving various optimisation problems to achieve the

optimal decision making in microgrids. The tertiary control schemes relying on heuristic

methods for its decision making do not require explicit modelling of the system and are

computationally less intensive due to use of simple deterministic rules for its scheduling

purposes. The non-heuristic methods, on the other hand, require extensive system

modelling, typically uses the forecast of generation/load profiles in its decision making

and are computationally more expensive in comparison to heuristics schemes.

However, in terms of system performance non-heuristic methods ensure more optimal

operation in comparison to heuristic methods. This is due to their reliance on formal

optimisation based techniques in its decision making which guarantees that the decisions

made are optimal. In the heuristic methods, as the decision are made depending on some

predefined deterministic rules the same cannot be guaranteed. In heuristic schemes, the

results always tend to be sub-optimal with the closeness to optimality being heavily

reliant on the nature of the rules that are defined. In order to ensure that the appropriate

rules are defined, an in-depth prior understanding of the system behaviour is required.

Apart from this, the expected optimal system behaviour needs to be explicitly stated

through the rules which can be difficult in complex system like electric networks. The

same is not the case with the non-heuristic methods, where the expected optimal system

behaviour can be defined implicitly through the optimisation problem without need for

a deep understanding of the system behaviour.

In tertiary control using non-heuristic methods, the decision making is further aided

by the use of forecast of generation/load profiles. The utilisation of the forecast values

allow the tertiary control stage to make better energy management decisions accounting

for future events, especially in systems having high RES penetration. The use of forecast

is not just limited to non-heuristic methods and can also be used in heuristic schemes.

However incorporating them in the decision making process can be very tedious, as the

rules pertaining to the forecast values have to be defined explicitly accounting for the

optimal microgrid operation. In order to enable better decision making, forecast for a

longer time period is essential. In this context, the rule formulation accounting for all

these forecast values, in the heuristic scheme can become very complex. The advantage

with the non-heuristic optimisation based schemes are that they facilitate an easier
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incorporation of forecast values through the optimisation problem. Apart from this, as

discussed before, the optimal system behaviour incorporating the forecast information

can be implicitly defined using the optimisation problem.

Considering these advantages regarding ensuring optimal system behaviour, defining

implicitly the required behaviour and easiness in incorporating forecast information in

the decision making process, the non-heuristic methods will be considered for decision

making at tertiary level. Though the computational complexity is higher the increased

availability of cheap computation power, aided by efficient algorithms in solving optimi-

sation problems make these methods more tenable in current scenario.

As discussed above, forecast of the generation and load profile play a significant role

in improving the decision making in the tertiary control stage. Nevertheless, it should

also be recognized that an inaccurate forecast (high error between predicted and actual

value) can deteriorate the system performance considerably than in the case where fore-

cast was not used. For example consider a day where the expected PV generation is

high, but due to unexpected weather events the power output is low. If the forecasting

system cannot predict this scenario, the tertiary control stage makes decisions account-

ing for a high PV generation scenario which can lead to poor performance economically

and electrically. Therefore, it is imperative to identify an efficient, accurate forecasting

unit which can work alongside the tertiary control stage and improve its decision mak-

ing capabilities. In this context, the chapter discusses the work done in this thesis in

identifying an appropriate forecasting unit for the tertiary control. A detailed discussion

pertaining to the tertiary control stage will be provided in the next chapter.

5.1 Overview of forecasting units for electrical networks

Forecasting units employed in electrical networks can be classified based on the type of

model used for forecasting, the forecasting horizon and the number of steps into future

they forecast at any instant [174–176].

5.1.1 Forecasting unit classification based on usage model

One way of classifying forecasting units is based on the nature of the model that has

been used in making the forecast. These can be primarily classified into linear and
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non-linear model based forecasting units. The difference between the linear, non-linear

models is in the nature of the analytical equations used to define these models and

theoretical approach undertaken to reach the optimal model parameters. Irrespective

of the nature of the model, the underlying principle in the forecasting of time series

(generation and load profile) at any instance is the utilisation of previous values of

the series for predicting the future values. This process is called regression [174]. An

overview of the linear and non-linear models used for forecasting time series is provided

next.

Linear model based forecasting unit

The linear models are some of the oldest used models in time series forecasting. The

earliest models used in time series predictions, were based on the moving average (MA)

[177] and exponential smoothing (ES) [178] techniques. However, the most popular and

widely used linear model in time series forecasting have been the Box and Jenkins model

(ARIMA- Auto regressive integrated moving average) [179] and ARMA- auto regressive

moving average model [180]. The ARIMA is a more generalised representation of the

ARMA model. The ARIMA differs from MA or ES in the sense that ARIMA aims

to describe the autocorrelations in the data while the MA or ES try to define the

trend/seasonality of data. An ARIMA model is defined using three parameters (p, d, q)

where p is the number of regressive terms considered in the model. In other words it

defines the number of previous values in the time series considered for forecasting the

next value. The p also defines the order of the considered model. The term d defines

the degree of differencing that has to be applied to the time series. The differencing is

done so as to make the time series stationary and thus eliminate any underlying trends

in the data (increasing or decreasing). The stationarity needs to be ensured to facilitate

better forecast from ARIMA models. Finally, the term q defines the degree of lagged

forecast error used in the model. Therefore, ARIMA takes into account not only the

previous values of the time series in its forecasting but also the error in the forecast of

the previous values. Considering the same, a discrete-time series, like the generation or

load profile, represented as a time-indexed set of values (v1, v2, v3....vk−1), where k is

the time index can be modelled using ARIMA as [179]

V̂k = µ+ φ1 · Vk−1 + φ2 · Vk−2 + ...+ φp · Vk−p − θ1 · ek−1 − θ2 · ek−2...− θq · ek−q
(5.1)
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where µ is constant drift term, et−1 = V̂k−1 − Vk−1 and

Vk−1 =



vk−1 ∈ d = 0

vk−1 − vk−2 ∈ d = 1

(vk−1 − vk−2)− (vk−2 − vk−3) ∈ d = 2

.

(vk−1 − vk−2)− (vk−2 − vk−3)...(vk−l − vk−l−1) ∈ d = l.

(5.2)

The Akaike’s Information Criterion (AIC) [181] has been considered as an useful method-

ology in determination of parameter values (p, d, q) of ARIMA models. Recently various

modifications of AIC has been proposed which enable better selection of parameter

values under different scenarios [182–184]. In the above when d=0 an ARIMA model

becomes equivalent to that of an ARMA model. The MA and ES can also be repre-

sented as special case of the ARIMA model [176]. In electrical systems, conventionally,

ARIMA and ARMA models has been widely used for load forecasting [185–192].

Non-linear model based forecasting units

The non-linear model based forecasting units, for time series, have achieved widespread

research interest and application of lately. Since the 1980s the number of works in this

domain has increased significantly. These non-linear model based forecasting units rely

mostly on pre-sampled system data driven machine learning based techniques for pre-

dicting time series behaviour. Machine learning based non-linear models generally use

large amount of sampled data from the actual system to identify the optimal model that

defines the system behaviour. This process of identifying the model that best defines the

system behaviour from the sampled data is called training. Multiple models like Support

vector regressor (SVR) [193], artificial or deep neural networks (ANN,DNN) [194, 195],

recurrent neural network (RNN) like Long short term memories (LSTM) [196], Ridge

regressor (RR) [197], Lasso regressor (LR) [198], and regression trees utilising gradient

boosting [199] or extreme gradient boosting [200] have been proposed for time series

forecast. These machine learning based models for time series forecasting can be cate-

gorised as supervised or deep-learning models. In supervised learning, the identifying of

optimal model that defines the input-output mapping (time series forecasting) is aided

using pre-sampled input-output data pairs, referred to as training data. These models
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only capture the behavioural aspects that is explicitly presented through the input out-

put pairs. Therefore, to ensure that the model represents all the behavioural patterns of

a time series (seasonal, daily patterns, trends) explicit information regarding the same

(month, day, time of day etc) should be provided as one of the feature in the input data.

Deep learning models still use input-output pairs for model identification in time series

forecast. However, they are capable of recognising the behavioural patterns like daily,

seasonal cycles, trends etc, on their own without having to provide explicit information,

indicating the same, as a feature in the model input. Among the above mentioned mod-

els, RNNs like LSTM, SVR are capable of deep learning. The deep learning models are

also characterised by the need for high computational power during the training phase,

in comparison to the supervised models, due to more complex formulations used in their

representation [201]. In electrical systems the above mentioned non-linear models are

now being increasingly employed in the prediction of load demand- (electrical [202–204],

thermal [205] , PV power generation [206–208], Wind power generation [209, 210] and

electrical prices for energy arbitrage [211–213].

Precedent in selecting forecasting models

The linear models, as evident from the above discussion, had been conventionally em-

ployed for demand forecast in power system. In traditional power systems, where the

generation capacity is dominated by load following, dispatchable power sources based

on fossil fuels, there was no requirement for predicting generated power. Apart from

this, forecasting in conventional systems mostly focussed on aggregated load demands

which tend to exhibit lesser variance in data. In the present scenario this is not the case

with increased penetration of RES. This calls for the need to have prediction of gen-

erated power to facilitate improved decision making in energy management systems as

discussed before. However predicting RES generation presents difficult challenges. They

exhibit strong seasonal and yearly behavioural pattern which are not handled well by

linear models like ARIMA, resulting in poor forecast. Though a modification of ARIMA

called the seasonal ARIMA (SARIMA) have been proposed to handle the seasonal be-

haviour in time series and provide improved prediction [214], their performance in the

RES generation forecast was not highly optimal [215]. Another issue that arises with mi-

crogrids, is the need for predicting highly localised load demand which typically exhibits

high variance in time series data. Linear models had been found to be inadequate for

predicting these type of time series [216]. Considering all the above mentioned scenarios
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the non-linear models will be more suited over the classical linear models, in forecasting

units, for present day power networks with high RES penetration and incorporation of

microgrids. This is justified by the improvement in performance of non-linear models

based on neural networks, regression trees over linear models like ARIMA, SARIMA,

demonstrated for RES generation [207, 217, 218] and localised load forecast [219, 220].

Though the computational power needed for the non-linear systems, especially in the

deep learning scenarios, can be higher than linear models the availability of cheaper

computational power nowadays alleviate this issue to some extent.

5.1.2 Forecasting units classification based on prediction horizon

Based on prediction horizon considered the forecasting units can be classified as [174]

• Very short-term forecasting units: These units provide forecast for a period ranging

from few minutes to hours ahead. These type for forecasting are most suited for

real time control purposes (reference tracking, disturbance rejection).

• Short-term forecasting units: The units provide forecast in the range from hours

to few days ahead. These type of forecasts are best suited for control systems

making decisions on optimal energy management and unit commitment in grids.

The tertiary control scheme, considered in here, will work with these type of units.

• Mid and long term forecasting units: These type of forecasting units provide pre-

diction in range from weeks to years. The results from these units are best utilised

for planning the assets that need to be maintained by the electrical utilities to

ensure reliable system operation.

5.1.3 Forecasting units classification based on number of forecast steps

The final classification of the forecasting unit is based on the points (steps) forecast in a

prediction horizon by the forecasting unit. This can either be a single point (aggregated)

or multiple points (distributed) in a horizon. The criteria that determines whether to

use a single or multiple step forecasting unit depends on the application for which the

predictions from the forecasting unit is used for [174].
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5.2 Forecasting unit for the tertiary control stage

In this thesis the tertiary control stage will be developed for the microgrid with localised

load and RES generation with PV system. As a result, based on the discussion in Section

5.1.1, non-linear models will be considered in the forecasting unit. The predictions from

the forecasting unit will be for the short term and for multiple time steps in a prediction

horizon.

The focus of this Ph.D work is primarily on developing optimal control strategies for

ESS. The forecasting unit represents an enabler for this optimal decision making. As

such in this thesis, developing novel non-linear architectures for forecasting will not be

the objective. Based on the literature survey RNN based on LSTM have been found to

provide better forecast for PV systems [207,217,218] and localised loads [219,220] among

the non-linear models. Feed-forward neural network based ANN have demonstrated

almost similar performance compared to the LSTM in forecasting application [205,221]

but with lesser computational demand in training phase. Considering that the objective

of this work is on developing control systems for ESS in microgrids and its demonstration,

a detailed performance analysis of different forecasting models will be not be carried out

and a feed-forward ANN will be used in this work considering lower computational

demand.

5.2.1 Time series data for the forecasting unit

The time series data for generation and load profiles will be based on the measurements

at a test case microgrid in Lindenberg, Germany [7]. The PV profile will be generated

from the irradiation data measurements at Lindenberg. The localised load data repre-

sents a 4-person household with annual consumption of 4.5 MWh. One year data will

be used in this work for the forecast purposes and for developing the tertiary control

stage. The data was measured with a 5 min sampling interval resulting in 288 data

points per day and 105120 sampled data points for the whole year. The tertiary energy

management stage will be developed considering a 24 hour forecast accounting for the

daily periodicity of the load and generation profile. This requires that the forecasting

unit provides 288 forecast points in a 24 hour window based on which tertiary control

makes the decisions. The time series data used for PV power and load forecasting is

shown in Figure 5.1a and Figure 5.1b.
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Figure 5.1: One year’s measured data (a) generation and (b) load profile from a test
case microgrid in Lindenberg, Germany [7] used in developing forecasting unit.

5.3 Feed-forward artificial neural network forecast model

Neural networks (NN) are a class of machine learning architectures inspired from the

biological neurons. NN are constituted by multiple layers and each layer has multiple

nodes, analogous to a neuron in a biological system. In the simplest form NN consists

of an input, an output and a hidden (intermediary to input and output) layer. However

in prediction of complex proposes the basic representation may not be sufficient. In

this scenario, multiple additional layers should be used. The same approach is also

considered in this work. The additional layers allows for modelling complex behaviours.

The ANN, considered here, shown in Figure 5.2a has two hidden layers with N1 and N2

nodes respectively and represents a feed forward system. The equivalent representation

of each node is given by Figure 5.2b. This represents a fully connected node that receives

input from all the nodes in the previous layer through a weighting factor (wk) along with

a biasing factor b as shown in Figure 5.2b. The sum of all this will be provided to an

activation function which decides the output from each node [222, 223]. ANNs used

in time series forecasting usually employ rectified linear unit (ReLU) as an activation

function due to their improved performance [224] A ReLU can be defined as follows

f(l) =

l, for l ≥ 0

0, for l < 0
(5.3)
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Figure 5.2: (a) ANN structure used in forecasting unit, (b) Equivalent representation of
individual nodes.

5.3.1 Training of the ANN

An overview of the training process of ANN is only provided here and for a detailed

exposition of the same, interested readers can refer to [222]. The training of ANN is the

process of determining the optimal weights and biasing factor values for each individual

node of the network. Once these values are obtained, the trained ANN can be used

for forecasting purpose. The training is carried out using already sampled data of the

process that needs to be represented by the ANN.

Prior to training, the objective will be to identify the input to the ANN (l1, l2, l3..lm).

In the input vector, each element is called a feature and they are selected such that each

one of them have significant contribution towards enabling an accurate forecast. In time

series forecast, at any instant, a simple method will be to select a certain number of

previous values as features, for forecasting at the current time. The process of input
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feature selection will be discussed in detail in the upcoming sections.

Is

number of 

batches, Bn 

>1

Figure 5.3: Flowchart of ANN training

Once the input features are identified

the entire sampled data needs to be split

into a training and testing set. These are

sets of input-output pairs. The input will

be the features that will be required for

forecast at any instant. The correspond-

ing output, in the pair, will be the ex-

pected output from the ANN. In this way

the ANN is informed that, given an in-

put vector the corresponding output pair

is the forecast to be provided ( super-

vised learning). The training/testing set

split will be usually done in a 70:30 ra-

tio. The training set will be used for train-

ing the ANN using its input-output pairs.

The testing set will be used to determine

the forecasting performance of the ANN.

The input from the input-output pair of

the test set will be used to generate the

forecast. This will be compared with the

corresponding output of the input-output

pair in the test set to determine the accu-

racy of forecast.

The training of the ANN is an iter-

ative process. Once the training set has

been identified, the first step will be to

choose some initial weights and bias value

for all the nodes in the ANN. Guidelines

for initial weight, bias selection is detailed

in [222]. Once the weights have been assigned, the first step will be to pass the entire

training set through the ANN to generate outputs. The passing of the entire training set

can be done in batches or in one single step, depending on the size of training set data

and computation power available. At this juncture a new term needs to be introduced
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called the epoch. One pass of the entire training set is defined as one epoch. If the the

training set is not divided into batches one epoch is equal to one batch otherwise one

epoch is when all the batches have been passed through the NN.

After passing all the inputs, from input-output pair of a batch, the output obtained

using the initial values of weights and biases will be compared with actual output from

the input-output pair. The accuracy of the forecast, with the present choice of weights,

will be quantified using a pre-defined loss function. In time series forecast the most

widely used loss function is the mean squared error [225]. The training process will

aim at minimising this loss function through updating of the weights and bias. At

the end of passing a batch of training data the loss function value and its gradient

will be calculated. The gradient calculation will be done with respect to each weights

by chain rule starting from outer layer and moving inwards. These gradient values

will then be used for updating the respective weights. This process of calculating the

gradient is called back propagation algorithm. For detailed analytical analysis on how

this back propagation will minimise the loss function and enable optimal weight selection

interested reader can refer to the seminal work on the same [226]. Once the weights are

updated the same process will be repeated after the next batch. The process of weight

updating will continue till a certain number of predefined epochs have reached or when

a stopping criteria (SC) is met. The identification of the SC will be discussed in the

next section. The entire training process is represented with the flow chart in Figure 5.3

5.3.2 Mitigating over-fitting by ANN

As discussed in the previous section, one of the criteria for stopping the ANN training is

when a certain number of pre defined epochs have been reached in the training process.

However there is no analytical rule on deciding the optimal number of epochs to be

considered in the training stage. An issue with the lack of a well drawn out method

for deciding the number of epochs is that it can lead to over-fitting or under-fitting of

data by the ANN. Over-fitting occurs when the number of epochs is more than what is

needed. This causes the training process of the ANN to accurately map the input-output

behaviour in the training set. However this high accuracy in the training set will lead to

poor performance in the testing set (unseen data). This is not acceptable as the primary

objective of ANN is to give good forecast on the unseen data and the over-fitting on

the training set hinder the ANN performance. Under-fitting occurs when the number



5.3 : Feed-forward artificial neural network forecast model 131

Validation data 

Training data 

Optimal stopping

point

Number of epochs

L
o
s
s
 f
u
n
c
ti
o
n

Figure 5.4: Over-fitting elimination with validation dataset. The point where the Loss
function value starts increasing for the validation dataset indicates optimal stopping
point [8].

of epochs are too low and the weights have not been defined correctly leading to poor

forecast.

Under-fitting can be easily avoided by giving a high number of epochs. However,

to avoid over-fitting additional stopping criteria (SC) need to be defined that allows

early stopping of training process and prevents over-fitting. A widely used and easily

implementable method is the use of a validation data set for early stopping of the ANN

training [8]. The validation dataset is composed of a small fraction of the original

sampled data of the process. Instead of employing 70:30 split of the original data a

70:15:15 split can be used to generate the training, validation and testing data. The

validation data set will be used in the training process to avoid the over-fitting. At the

end of every epoch, after the weights have been updated, the validation dataset will be

used to ascertain the performance of the ANN using the loss function. This allows for an

unbiased ascertaining of ANN performance as the validation dataset is an unseen data

for the ANN. If the loss function value on the validation dataset is worse than that of

the previous epoch it means that on the unseen data the ANN performance is worsening

thus indicating over-fitting. This point where the loss function performance degrades on

the validation set while improving of training set provides an indication of the optimal



132 Chapter 5 : Forecasting unit for generation and load profiles

stopping point of the training process. The same is shown through Figure 5.4 [8].

In practical case, the early stopping should not be employed at the first instance

when the loss function value deteriorates in the validation set. Instead some more epochs

should be executed to ensure that the performance deterioration in validation dataset

is sustained. The utilisation of validation data and imposing the early stopping can

be easily implemented using the Keras neural network library written in Python [227].

Apart from early stopping other methods that can be employed to minimise over-fitting

using L1, L2 regularisation [228] in loss function, using dropout layers [229]. All these

aspects can be implemented in the Keras package in Python.

5.4 Results and discussion

The ANN architecture used in the forecasting unit is as shown in Figure 5.2. All the

nodes in the ANN are fully connected. As mentioned before the objective of the fore-

casting unit is to predict the PV generation and load profile for the tertiary control

stage. The forecast of the same will be carried out using two different neural net-

works having the same layer structure but different number of nodes in each layer. The

neural network architecture will be realised in Python using the Keras package. The

ADAM optimiser [230] will be used in the training of the NN. Validation dataset based

early stopping will be implemented for the NN to avoid over-fitting, using the Keras

framework. Prior to presenting results, the process of input feature identification (input

vector) for the PV and load forecasting NN is outlined.

5.4.1 Input feature selection for the PV forecasting ANN

An analysis of the one year PV profile, based on the data given in [7] will be carried out

to identify which information should be given as input to the ANN. The auto correlation

plot shown in Figure 5.5 is used for the same. This allows to identify dependency of

any value in a time series with that of the previous values. Here the plot shows the

dependency with last one week value. Based on Figure 5.5 it can be concluded that the

generation data at any instant is highly correlated with the value from the same instant

of the previous day. Therefore, for predicting the next 24 hours generation the last 24

hour values should be sufficient. Nevertheless, for better performance last three days
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Figure 5.5: Auto correlation plot for PV generation data.

value was used as input for prediction. This resulted in a NN with input layer size of 864

(288 · 3). The hidden layer size N1 and N2 was chosen as 300 through multiple trials. It

should be noted that no information regarding the month or season is given as an input

feature. This is because only one year’s data was available. The 70:15:15 split for the

training, validation and testing data results in the NN not seeing the profile from some

of the months in a year during training phase. Therefore it was decided not to use the

information of the month as an input for NN.

5.4.2 Input feature selection for the load forecasting ANN

The methodology applied for the PV generation forecast is also followed in the load

forecast. The data analysis is done with the auto correlation plot shown in Figure 5.6.

Unlike the PV data the load value at any instant has a lower correlation with that of

the value from same instant the previous day. However, it can be observed that load

value has higher correlation with the value from the same instant of previous week.

Therefore, there is a daily and weekly cyclic behaviour for load demand. Hence for the

load forecast last one week value is used as the input. This resulted in an input layer

size of 2016 (288 · 7). The hidden layer size N1 and N2 was 300 again achieved through

multiple trials with trade off between accuracy and computational requirement.
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Figure 5.6: Auto correlation plot for the load data.

Hyper-parameter Value

Input layer size 288 · 3 = 864

Output layer size 288

Hidden layer size, N1, N2 300

Activation unit ReLu

Loss function mean squared error

Optimiser ADAM

Maximum epoch 150

Batch size 2000

Table 5.1: Parameter values used in the ANN formulation and training

5.4.3 Results of PV forecast

The values of hyper-parameters used to define ANN structure for PV forecast and pa-

rameters of the training algorithm is summarised in Table.5.1. At any sampling instant

the ANN used in PV forecast will provide the predicted generation of PV system for
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Figure 5.7: Result of a 24 hour forecast of PV generation using ANN on (a) training and
(b) testing data. The results shown for the training set is for the 4 June 2004 while that
of testing set is month of 12 October 2004. The result shows the predictions occurring
at early morning in a day.

the next 24 hours. The training of ANN was carried out in an Intel i7 2 core, 2.5

GHz machine with 8 GB RAM and NVIDIA quadro 500M GPU. In this case, due to

availability of only one years data the training, validation and testing set splitting was

not done in the ratio of 70:15:15. Instead, a 70:30 split for training, testing dataset

was done and in the training process the testing data was used for validation purpose.

The total training time for the ANN was around 10 min and the training process was

terminated by the early stopping criteria at 55 epochs. The performance of the trained

ANN, defined by the root mean squared error (RMSE), for training, testing set was 0.46

and 0.44 respectively . The effect of the early stopping is clearly observed here with the

ANN having very similar performances in both training and unseen test dataset.

The Figure 5.7a and Figure 5.7b shows the forecasting performance of the ANN

on the training and testing dataset. These results were generated by providing the

data from training and testing set as input to the ANN after the training process was

complete. The training set forecast result shown in Figure 5.7a represents prediction for

a day in the month of May while the testing set result is that for the month of October.

The main observation from both the results are that when there are sudden variations

in PV generation (weather induced), as shown Figure 5.7a and Figure 5.7b, the ANN

produces a more averaged forecast of the same. The lack of weather data in making the

forecast, contributes to the same. In scenarios were there are no such high variation in

PV profile, as shown in Figure 5.8 ,the ANN is able to predict the PV generation with
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Figure 5.8: Result of PV generation forecast of ANN for a day that do not exhibit high
variance in PV generation. The improvement in forecasting performance for the same
can be observed. The forecast shown here is for the day, 14 September 2004.

higher accuracy. The results shown in Figure 5.8 is also for the testing dataset from a

day in month of September.

5.4.4 Results of load forecast

The hyper-parameters vales used in defining the ANN for load forecast and parameters

for the training algorithm is summarised in Table.5.2. Similar to the PV forecast a

training, testing data split of 70:30 was used with the testing data also utilised for

validation. The total training time for the ANN was around 20 min and the training

process was terminated due to early stopping criteria at 35 epochs. The performance of

the trained ANN, defined by the root mean squared error (RMSE), for training, testing

set was 0.43 and 0.48 respectively. As is the case with PV forecast the performance in

training and testing set was very similar, thus ascertaining the absence of over-fitting.

The forecasting results with the load data is provided in Figure 5.9 for the training

and testing dataset respectively. The results for training data is from the month of May

whereas that of testing data is from month of October. The load forecast is done for

a highly localised load and the consequence of the same is that the load data exhibits
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Hyper-parameter Value

Input layer size 288 · 7 = 2016

Output layer size 288

Hidden layer size, N1, N2 300

Activation unit ReLu

Loss function mean squared error

Optimiser ADAM

Maximum epoch 150

Batch size 2000

Table 5.2: Parameter values used in the formulation and training of ANN employed in
load forecasting.
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Figure 5.9: Result of load generation forecast using ANN on (a) training and (b) testing
data.

sudden peaks with high variance, as shown above. These high peaks shown in Figure

5.9cannot be accurately predicted by the ANN.
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Figure 5.10: Average absolute error for every point in the prediction window represented
for (a) PV generation forecast (b) load demand forecast. The values obtained from
analysis of one year forecasting using the ANN.

5.4.5 Quantifying accuracy of PV and load forecast by ANN

As explained before, the ANN provides a moving window forecast where at every 5

minute interval the forecast for the next 24 hours is provided. The loss function values

for training and testing data give an indication of point to point accuracy of the forecast

in this moving window scenario. The accuracy (error) can be further visualised through

Figure 5.10. This shows the mean absolute error for every point in the 24 hour prediction

window, based on the results of one year’s forecasting. In every prediction window the

error at every point was calculated. The mean absolute error of the first point is the

average of all the errors at the first point in all the prediction windows for the year.

Similarly this was calculated for the 2nd, 3rd...., 288th point. These are the values plotted

in Figure 5.10. In the case of PV forecast, it can be seen that the mean absolute error is

lower at the beginning of the prediction window and increases later in the window. This

is in accordance with the correlation plot of Figure 5.5. The high correlation of the PV

data with the previous values results in lower error in the beginning of the prediction

window. In the case of load forecast it can be seen that there is a slight increase in the

absolute error along the prediction window. However, this is not as significant as in the

case of PV forecast. This, almost uniform error, can be justified by the low correlation

of the load data with the previous values as shown in Figure 5.6. The load data, unlike

the PV data, is not highly correlated with the previous values. This arises precisely due

to the highly localized nature of the load considered here, as discussed before.
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Another perspective for analysing the forecast accuracy can be based on the mean

aggregate absolute error in a prediction window. This can be a relevant measure as it

provides a less conservative analysis of the ANN accuracy. Along the prediction horizon,

the forecast error at every point in the window can vary between positive and negative

values. Aggregation of the error and then taking absolute value can help cancel out

these point to point variations This can reveal the total error in terms of difference

in total energy between predicted and forecast value. For example, in the case of PV

forecast, the aggregation of errors will provide an indication of total generated energy

difference between real and forecast value, in a prediction window. The same is the case

with load forecast. As a result this mean aggregate absolute error is also analysed here.

Analysing the actual PV generation data, it was observed that the mean aggregated

energy of PV system in a moving 24 hour prediction window was 13.56 kWh. Based

on the forecast data the mean absolute aggregate error in the same moving prediction

window was 3.28 kWh. This accounted to 23% the average energy value for a prediction

window. Similarly for the load, the mean aggregate energy demand of the load in a

moving prediction window was 10.81 kWh, whereas the mean aggregate absolute error

for the same was 1.015 kWh. This represented an error, that was 9.3% the average

energy value. In comparison to load data the aggregated error in PV prediction is

higher. This is mainly due to the limited amount of data available for the ANN training

(only 1 year data was used) and the lack of weather data as additional input feature.

Analysing the two different methodologies discussed above, it can be seen that the

method of using mean aggregate absolute error provides a less conservative error es-

timate. This can be verified by taking the sum of the mean absolute error for every

point in the 24 hour prediction window, given by Figure 5.10. In the case of PV system,

given by Figure 5.10a, this equates to 6.99 kWh whereas for the load , given by Figure

5.10b, it is 5.43kWh. These values are higher than the mean aggregate absolute error

in a prediction window, calculated for the PV and load forecast data as outlined in

the previous paragraph. The lower values are the result of error cancellation through

aggregation in the prediction window which will ultimately provide a less conservative

accuracy estimation. The error analysis of the forecast using the two methods outlined

above describes how different perspectives for assessing the accuracy of a forecast can

be developed from the same data.

The tertiary control stage used in the energy management of the microgrid should

account for the above discussed errors in forecast and the accuracy of the ANN based
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forecasting unit in its decision making. The criteria for selecting the error representation

used in the decision making of tertiary control stage, from amongst the two methods

outlined above, will be discussed in the next chapter.

5.5 Concluding remarks

This chapter has introduced the role of forecasting unit as a tool towards improved

decision making in the tertiary control stage for energy management. Based on the

literature survey on the forecasting units employed in electrical networks, the non-linear

model based short term multiple step forecasting unit was considered in this work. The

proposed unit was required to provide a 24 hour ahead forecast of PV generation and load

demand at every sampling instant. The sampling frequency of 5 minutes in accordance

with the available data was used and the forecasting unit was required to provide the

forecast for every 5 minute interval in the prediction window. The ANN architecture

was identified to be used in the forecasting unit. The training process of the ANN and

mitigation of over-fitting of data by the ANN using early stopping was outlined. Based

on the available data the input feature selection process for ANN was discussed for the

PV and load data. The prediction results from the forecasting units were presented.

Based on the results, forecasting of the load profile which is not significantly affected by

the seasonal behaviour, exhibited better performance over the PV profile forecast. Two

major reasons can be attributed to the same. The first being the lack of sufficient data

(one year data only used) which prevented the training of NN on a full years data that

would have enabled the network to study the yearly behavioural pattern. The second

reason was the lack of weather information to be used as input to aid the forecast

process. This would have enabled the NN to better predict the weather influenced

variations in PV generation. However with increased data logging of generation and

load data in electrical systems around the world, large amount of data will be available

for the same. This will enable better training of NN or other machine learning based

systems to provide more accurate forecast. The work in this chapter highlights the

suitability of machine learning based ANN for generation and load forecast.

Another issue observed, was the inability of the forecasting unit in predicting the

sudden peaks in the localised loads, evident in the example considered here. This will

always be an issue when trying to forecast localised loads, in comparison to aggregated

loads that have smoother profiles. Nevertheless, despite the availably of limited data, the
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lack of weather information and need to predict localised loads, the performance of ANN

based forecast unit was acceptable as evident from the forecast error analysis. It cannot

be considered as the best forecasting behaviour but it provides a basis for analysing the

performance of forecast based tertiary control stage under prediction uncertainties. The

fact that the performance of forecast unit was not the best possible allows for a more

worst case scenario analysis of the tertiary control stage performance.
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Chapter 6

Tertiary control

This chapter discusses the work done in this thesis pertaining to the tertiary control

for energy management in microgrids. The tertiary control forms the highest level in

the centralised control architecture of microgrids and provides set points to the power

management stage. This chapter tries to identify the control methodology capable of

most efficient and optimal energy management of ESS in microgrids. The chapter tries

to assess the issues in current power grids due to increased integration of renewable

energy sources and how an efficient management scheme can be used to address the

same. In this context, energy management of microgrids both in grid connected and

islanded mode are discussed.

As outlined in the previous chapter, the objective of the tertiary control is the

optimal energy management such that the grid operation is optimised with respect to

some criteria. The discussion in the last chapter also provided a categorization of the

tertiary control stage based on the decision making process employed for the energy

management namely, heuristic and non-heuristic methods. A comparison of the two

strategies in terms of their merits and demerits were discussed as well. It was concluded

that the non-heuristic methods, even though computationally demanding, ensure more

optimal grid operation through energy management. The characteristics of the non-

heuristic methods that enable this were the

• Use of optimisation problems in decision making, that guarantee optimal energy

management.

143
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• Easiness in defining the required system behaviour implicitly through an opti-

misation problem and lesser reliance on prior in depth understanding of system

behaviour.

• Easiness in incorporating forecast information in the decision making process which

facilitates better energy management in microgrids.

Considering the same, the tertiary control stage developed in this work will focus on

the utilisation of non-heuristic, optimisation based methods in its decision making for

energy management in microgrid.

Nevertheless, an overview of the existing literatures, pertaining to energy manage-

ment of ESS in microgrids is provided in Table 6.1. The works are classified based on the

decision making method employed at the tertiary stage and number of ESS considered in

the microgrids. It should be noticed that the literature survey identified works using up

to three different ESS in a hybrid storage system. There were very limited relevant liter-

ature utilising more than 3 different types of ESS. This also inline with the discussion in

Chapter 2, where it was outlined that most of the energy storage demand, arising in the

grids, can be realised using not more than three different types of storage elements. In

the heuristic methods, the different strategies that have been employed were rule based

techniques, fuzzy inferencing, genetic algorithms (GA) or simulated annealing (SA). On

the other hand, tertiary control using non-heuristic methods are categorised based on

whether the control strategies were implemented offline or online.

The offline methods are employed when the system under consideration is large or

distributed [168] or when complex non-linear optimisation problems have to be solved

[169,170,231,232]. In either case, the computation times for decision making by tertiary

control can be very high which makes an online implementation infeasible. In [75, 233,

234] offline scheduling was used in a system having PV generation with battery storage

to define the battery charging and discharging using dynamic programming. In offline

scheduling the set points for a certain time period is generated offline aided by a forecast

of system behaviour and then applied to the system. In real time operation the actual

system behaviour can deviate from the forecast. In this scenario the offline energy

management will have to rely on lower level controllers to provide corrective action to

compensate for the deviations in forecast. This can lead to the actual system behaviour

being further away from the optimal.
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Heuristic Non heuristic

Number of
ESS

Rules Fuzzy GA &SA Online Offline

1 [158, 159,
235,236]

[160–163] [164, 165,
167]

[172] [237–
239]

[168] [169]
[75,231,233,
234]

2 [76,77,157,
240]

[78,241] [166] [242] [243]
[173,244]

[170] [232]

3 [74,171]

Table 6.1: Classification of literatures focussed on developing centralised tertiary control
level for energy management.

Online methods, on the other hand, makes the decision for every sampling instance

considering the current system state and updated forecast for that instant. This is in

contrast to offline methods where the decisions are made for a period. This mode of

decision making considering the current nature of the system reduces the reliance on low-

level controller for compensation and provides more optimal results. In smaller systems

like microgrids, where the number of decision variables are lesser, the computation time

for decision making is smaller. This facilitates the use of online non heuristic methods

at the tertiary level for energy management in these systems. This low computational

demand in microgrids has prompted the use of online non heuristic methods at the

tertiary control level, developed in this work for energy management.

A widely used methodology in online scheduling, based on existing literature, is the

Model predictive control (MPC) strategy. The MPC is an optimisation based decision

making strategy which allows an easy implementation online. The MPC has been in-

creasingly applied in electrical systems to achieve optimal energy scheduling, off lately.

In [172], MPC was used in battery management for smoothing the output from a wind

power plant. In [239], MPC was used for managing a regenerative FC in a microgrid

with PV and wind power to increase the operational efficiency of FC system. In [173],

the MPC was used to improve economic benefit from energy arbitrage and operating

costs in a microgrid with battery storage. The works in [74,171,238,243] also uses MPC

for energy arbitrage. In [74, 171], a microgrid with tri-hybrid storage was considered,

while in [238] thermal storage was considered and in [243] FC, battery based storage
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system was considered. In [242] MPC was applied to a FC-SC based hybrid drive sys-

tem with the objective of minimising the deviations in SOC of SC and set points of FC.

In [237], MPC was applied to an isolated power grid with battery storage, for reducing

operating costs of the grid. Finally, the work in [244] uses MPC to improve demand

response capabilities in a microgrid in order to improve the utilisation of generated PV

power. More recently, the application of MPC has been extended to large scale systems

(distribution networks) using distributed optimisation techniques [245,246].

Though MPC has shown to be capable of energy management in electrical systems,

their application in electric networks has mostly focussed on improving the operational

efficiency of grids or achieving a more economic operation through reduction of operat-

ing costs or energy arbitrage. However, the application of MPC cannot be just limited

to improving the above mentioned criteria in electric grid operation. It can be extended

beyond the above mentioned objectives so that the full capability of MPC can be ex-

ploited. The MPC allows easy integration of forecast information in its decision making.

This additional information can used in better management of ESS so that their degra-

dation can be minimised. The works in [74, 171] address this issue with regards to FC

by limiting sudden changes in setpoint so that fuel starvation can be avoided. However,

there is no assessment that quantifies by how much ESS degradation or scenarios that

stress the ESS has been limited. This demands analysis of long term system behaviour.

MPC can be also be used to manage the degradation in the battery using the forecast

information. The battery profile can be suitably altered with MPC, so that the stressing

scenarios like highly charged states or repeated cycling can be reduced. Quantifying the

improvement in battery degradation with MPC again requires an analysis of long term

system behaviour.

Another application that the energy management with MPC can be used for, is

to address the interaction between renewable sources and main grid. As discussed in

Chapter 1, grid congestion is one of the negative outcomes from the increased penetration

of renewable generation in power grids. The MPC, with the aid of load and generation

forecast, can be utilised to optimally manage the energy injection from the renewable

sources into the main grid so that the congestion issues can be overcome. The MPC

achieves the same though the optimal scheduling of the different ESS. These represent

issues of practical relevance which has not been addressed in previous works.

Finally, in most of the previous works, the focus has been on energy management

in microgrid under grid connected scenario, with the exception of few works like [237].
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Energy management in islanded microgrids present an interesting and relevant applica-

tion for MPC based tertiary control system, considering the increasing probability of

such operations as discussed in Chapter 1. The management of islanded microgrids is

challenging due to the lack of an infinite energy reservoir, in the form of main grid,

to handle imbalance power that cannot be catered by the ESS or load. This requires

power curtailment capability and dispatchable generators to ensure reliable operation.

Islanded microgrids also require hybrid ESS of high energy and power density to sus-

tain the islanded operation. In this context MPC can be utilised in islanded microgrids

beyond the domain of economic optimisation. The availability of forecast information

can be used for reducing degradation in ESS by altering their charge discharge cycle.

The forecast information can also be used for increasing the utilisation of energy from

renewable sources by reducing their power curtailment while ensuring uninterrupted

operation.

In light of this discussion the work carried out in the tertiary control stage of this

work will focus on the use of MPC based energy management for mitigating issues of grid

congestion and ESS degradation, increasing renewable energy utilisation while ensuring

higher operational efficiency in microgrids. Studies will be carried out to quantify the

improvements achieved with MPC and to analyse the computational demand resulting

from MPC. Unlike the previous chapters were generic control framework was developed,

this chapter focusses on specific issues arising in the grids and the application of MPC

to overcome them. Two specific problems, one pertaining to grid connected system with

ESS and another regarding an islanded grid with hybrid ESS will be presented through

the upcoming sections in this chapter.

6.1 Model predictive control framework for energy man-

agement

The MPC belongs to the optimal control framework. One of the earliest controllers

studied in the optimal control framework is the Linear quadratic regulator (LQR), which

aimed at determining the optimal control action for a system defined by an unconstrained

linear time invariant plant [137]. However, in practical problems the system cannot

be considered to be unconstrained as there are usually limits on the control action

that can be exerted or on the values the system states can take. The MPC was first
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Figure 6.1: Schematic representation of the MPC scheduling process.

introduced in the process industry to address the optimal control problem in systems

with constraints [247]. The capability of the MPC to provide optimal control while

effectively handling system constraints, non-linearities and model uncertainties has since

led to increased application of them in the process industry [248].

Economic MPC is another sub-division of the MPC control framework [249]. In

economic MPC instead of optimising the control action on the plant, the economic cost

associated with a process is optimised. The economic MPC, neither focusses on ensuring

system stability nor reference tracking as an objective. This is because the economic

MPC is usually implemented in the upper level of a hierarchical control scheme with

the lower control levels ensuring the stability of the system. In the energy management

problem of electric grids it is the economic MPC framework that has found increased

application. In the electric grids the economic cost of the process mostly implies the

operating cost of the grid, energy arbitrage to name a few. In this work whenever the

term MPC is used it always refers to economic MPC.

The set points in MPC are generated by solving a constrained optimisation problem.

At any sampling instant, i, the controller is provided with the sampled value of the

system states and the value of exogenous input to the system at that instant. The
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MPC makes the decision on the setpoint such that the future behaviour of the system

is optimised based on the cost function in the optimisation problem. In order to achieve

this the future behaviour of the system needs to be identified. The MPC uses the system

model and the forecast of the exogenous inputs acting on the system for the same. In

the electric grids since the exogenous inputs are formed by the renewable generation

and load demand the forecasting unit discussed in the previous chapter provides the

prediction of the same. At any sampling instant, the forecasting unit provides a forecast

to the MPC regarding the generation and load demand for a finite period into the future

comprising of N discrete points (i+1, i+2, ..., i+N). The period for which the forecast

is provided is the prediction horizon.

Once the inputs to the MPC, which are the sampled states, generation/load demand

at sampling instance and their forecast for the prediction window, are available the

required optimal behaviour of the system for the prediction horizon will be implicitly

defined through the optimisation problem. The output from the optimisation problem

will be the manipulated inputs of the system. In the case of the microgrid this will be

setpoints of the dispatchable sources like ESS or generators. At any sampling instant

the MPC generates a sequence of N + 1 setpoints given by u0|i, u1|i, u2|i...uN |i where

uk|i = u(k+ i) ∀k = 0, 1, ..., N . Among the set points the first one, u0|k, will be applied

to the system. This process will be repeated at every sampling instance using the current

system state, current generation/load demand and updated forecast for that instance.

This utilisation of current system values and forecast provide a sense of feedback to the

controller. As the forecast is updated at every sampling instant, the prediction horizon

is receded by one sampling time period. Due to this nature of the prediction horizon the

MPC is also called the receding horizon MPC framework [250,251]. The entire process

of MPC scheduling in electric grids, discussed above, is represented by Figure 6.1.

6.2 MPC for grid connected microgrids with PV genera-

tion and battery storage

The first application of the MPC at the tertiary level, considered in this work, is for the

mitigation of grid congestion arising in grids due to increased penetration of renewable

sources. As discussed in Chapter 1 the renewable energy sources integrated to the power

grids has not been grid friendly. Multiple issues pertaining to grid congestion, voltage
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Figure 6.2: Typical BESS, SOC and grid feed-in profile with maximising self-
consumption strategy for high PV generation scenario. Early full charging of BESS
and ensuing peak PV power feed-in is shown. Profiles are based on data from [7].

regulation and grid stability have been reported due to the load-decoupled, intermittent

nature of power generation from renewable sources [12,13,15].

As discussed before ESS can be used to overcome these issues. Battery based energy

storages are being increasingly adopted in systems with PV generation [236, 252, 253].

However, integration of ESS alone will not solve the issues arising from the addition of

renewable sources. An effective energy scheduling strategy for the battery systems is

also essential to ensure that PV generation is grid friendly when employed together with

battery energy storage system (BESS). In many European countries the extend of PV

integration in the grid has resulted in achievement of grid parity where, for a consumer

it is cheaper to utilise their own PV generation than buying from the grid [75,254,255].

This has resulted in the widely used maximising self-consumption control (MSC) in PV-

BESS system [236] to maximize PV power usage by consumer. In the MSC strategy,

PV power is stored in BESS as soon as surplus power is available until full charge. This

is shown in Figure 6.2 where typical BESS profile under MSC scheme is shown. Though

economically beneficial, MSC may lead to grid congestion. The reason being, charging
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BESS as soon as surplus power is available forces BESS to reach the fully charged state

early in the day, as shown in Figure 3.3. As a result when peak PV generation occurs

later in the day BESS capacity cannot be used to cater this peak power which will then

be injected into the grid. Such power injection from many PV systems can lead to grid

congestion and voltage rise at the point of common coupling, if there is no sufficient

load demand in the grid [256].

Another major drawback with the MSC strategy is related to BESS degradation. The

major ageing mechanisms in BESS are the calender and cycling ageing. The calender

ageing arises from the BESS being kept at high SOC for long duration, whereas cycling

ageing arises from repeated deep charging/discharging cycles of BESS [83, 235]. In PV

BESS system eliminating charge/discharge cycles are inevitable without compromising

on self consumption. However, triggering factors for calender ageing can be reduced. In

MSC strategy, the early full charging of BESS results in longer dwell times at high SOC

levels, as shown in Figure 6.2, thus accelerating calender ageing. These longer dwell

times at high SOC can be eliminated with improved energy management. Therefore,

grid congestion and battery degradation are the two major concerns when employing

the MSC strategy.

Energy scheduling of PV-BESS system aided by forecast of generation and load

profiles can alleviate these drawbacks. The knowledge of future generation and load de-

mand can be used to modify the BESS charging behaviour, such that the storage system

capacity can be made available during peak generation. This can reduce the grid con-

gestion by reducing the feed in power to grid. The modification of BESS charging profile

can also be utilised to minimise the scenarios that can stress the BESS thus reducing

the degradation. These approach of energy scheduling with forecast information has

been considered in [75,233,257] where the decision on BESS scheduling was done offline,

based on forecast value of generation and load. However, as discussed before the use of

offline methods leads to increased reliance on the lower level controllers to compensate

for the deviations in system behaviour (generation or load). In this case, online methods

like MPC can provide a more optimal performance at the energy management level to

avoid the issues of grid congestion and BESS degradation.

This application of MPC for grid congestion mitigation, minimising BESS degra-

dation while maximising self-consumption of PV power through optimal energy man-

agement is studied in this work for grid connected PV systems. In order to effectively

quantify and demonstrate the improvement with MPC, the scheduling performance for
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Figure 6.3: Schematic of the test case microgrid [7].

one year will be assessed. As the MPC makes the decision considering the future value

of generation and load using their forecast, the performance of the energy management

system is reliant on the accuracy of the forecast. In the scenario where the forecast

is poor, the performance of MPC based system can be significantly poorer than the

conventional MSC scheme. Therefore, in this thesis an analysis will also be carried out

regarding the performance deterioration of the MPC based energy management scheme

under prediction error. Finally, a corrective methodology will be proposed in the MPC

scheme to account for the prediction error and the one year performance of the system

in this scenario will also be analysed in comparison to the conventional MSC scheme.

6.2.1 System description

The system considered in this energy scheduling problem is shown in Figure 6.3. It

represents a DC coupled configuration where both the PV and BESS are connected to

the same DC bus via interfacing DC/DC converters. The PV converter is unidirectional

and works in boost mode with power flow to the grid. The BESS converter is capable

of bi-directional operation allowing for compensating the imbalance power in the DC

bus. The BESS converter will work in buck-boost mode. The main grid is interfaced

to the system through a DC/AC converter and filter. The objective of the MPC, in

this problem, will be to generate optimal setpoints for the battery and grid converter

systems such that the above mentioned objectives can be achieved. The setpoints for
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Parameter Value

Rated power of PV array 6 kW

PV converter rated power, pcr 6

BESS capacity, cb 9.375 kWh

BESS converter rated power, pcbr 3kW

Load inverter rated power, pilr 3kW

Grid interfacing inverter rated power, pigr 6kW

Nominal DC link voltage 450 V

Nominal AC bus voltage (AC) 230 V

Table 6.2: Parameter values for PV BESS system.

the PV converter will not be generated by the MPC. Rather, it is assumed that the PV

system is always generating the maximum power possible at any irradiation level. This

is conventionally ensured through the maximum power point tracking (MPPT) [258]

strategy, typically employed at the converter control level of the PV system. A detailed

discussion of the MPPT methods will not be provided in this thesis as it is beyond

the scope of this work. The set points generated by the MPC will be augmented with

the control action generated by the lower level power management control. The PV

power profile is emulated using the irradiation and ambient temperature data measured

at Lindenberg, Germany [7]. The PV power will be calculated from this measured

data and will be used as set points for the PV converter. The load data emulates a

4-person household with an annual consumption of 4.5 MWh. The sampling frequency

of generation and load data were 5 minutes. The parameter values of the systems used

in the PV BESS configuration is given in Table 6.2.

Battery storage for the PV BESS system

The proper sizing of the BESS system also plays an important role in the improvement

of self consumption and degradation. As the objective of this work is on proposing

an efficient energy management strategy, the problem of optimal sizing of BESS is not

considered in detail here. Nevertheless a short discussion is provided on the the rationale
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behind the criteria for determination of the BESS capacity, considered here, based on

the methodology presented in [75]. If the total energy annually generated by PV system

(Epv) is higher than the energy demanded by load (Eload) then total BESS capacity, cb,

is determined based on load demand

cb = 0.5 · Eload (6.1)

whereas if annual PV power generated (Epv) is less than load demand then

cb = 0.5 · Epv. (6.2)

This sizing criteria ensures that there is a trade-off between operational efficiency and

preventing excessive battery degradation according to [75]. The value of the cb shown

in Table 6.2 is obtained based on the data from Lindenberg.

The BESS model utilised here is based on the Coulomb counting approach [259]

which demonstrates the evolution of BESS SOC, SOCb, based on BESS power set

points pb. Considering SOCb as a system state x, the BESS model is defined as

x(k + 1) =

x(k)− Ts·η
cb
· pb(k) if pb ≤ 0

x(k)− Ts
η·cb · pb(k) if pb > 0

(6.3)

where η is power converter efficiency and Ts is the sampling time. The above model is a

hybrid representation of BESS wherein the system behaviour differs based on the nature

of pb. As shown in Table 1.3 the BESS has a very high round cycle efficiency (> 90%).

Commercial converters used in PV system also have very high efficiency. For example

SMA solar, one of the leading providers of the commercial PV converter systems have

the DC-DC converters of efficiency > 98%. In this scenario, due to the high efficiency of

BESS energy system (BESS+ converter) the hybrid model shown in (6.3) can be relaxed

using the assumption η ≈ 1. The resulting model for the BESS can now be written as

x(k + 1) = x(k)− Ts
cb
· pb(k) (6.4)

It should also be noted that when the sampling time Ts is small, the above model also

gives a fairly accurate representation of BESS behaviour.
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Grid

As the objective of the MPC is to ensure the optimal energy management and not con-

trolling the dynamic behaviour of the grid, a static model of the grid is only considered

at this stage. This is sually represented using the power balance condition given by

pb(k) + pg(k) + ppv(k) + pl(k) = 0 (6.5)

where ppv, pl are PV and load power respectively. The other relevant parameters of the

PV BESS system and converter ratings are given in Table 6.2 based on the system at

Lindenberg, Germany.

6.2.2 Formulation of MPC based tertiary control for PV-BESS system

As already mentioned the decision making in MPC is carried out by solving an opti-

misation problem. The formulation of the multi-objective optimisation problem used

in MPC for optimal energy scheduling in PV-BESS system is discussed next. In order

to account for the prediction errors some corrective measures will be proposed for the

MPC in this thesis. These corrective measures will also be included in the optimisation

problem formulation discussed in this section. First the optimisation problem will be

formulated without considering correction for the prediction error.

Cost function for optimisation problem

The energy scheduling objective is to minimise grid congestion, BESS degradation while

maximising the self consumption. The cost function chosen to ensure the same is

J =

i+N∑
k=i

(Jg(k) + Jb(k)). (6.6)

The first term, Jg in the above cost function is given by

Jg(k) = λ1 · pg(k)2 (6.7)

where λ1 is a weighting factor. As it can be seen, Jg penalises power exchange with the

grid, the effect of which is twofold. Firstly, by penalising grid power the controller tries

to reduce the peak power value that is being injected to the grid. This aims to reduce
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grid congestion. Secondly, this forces the PV power generated to be utilised, as much as

possible, by the consumer thus promoting self-consumption. The second term in (6.6),

Jb is chosen as

Jb(k) = λ2 · SOCb(k)2 + λ3 ·∆SOCb(k)2 (6.8)

where λ2, λ3 are weighting factors. This term minimises the rate of degradation of

BESS. As discussed in Section 2.1.2, the BESS degradation arise from the calender and

cycling ageing. Penalising SOCb limits longer dwell time of BESS at high SOC levels,

thus limiting the calender ageing. The other factor affecting the calender ageing was

the temperature of operation. However, controlling the same with tertiary control is not

practical. The ∆SOCb = SOCb(k + 1) − SOCb(k) and penalising this minimises the

excessive charge/discharge cycles which affect the cycling ageing in BESS. The exact

analytical equation that represents BESS degradation [235] is highly non-linear. An

explicit utilisation of the same will result in a complex non-linear optimisation problem

that can be difficult to solve [260]. Therefore, the quadratic formulation in (6.8) has

been maintained. The resulting quadratic problem, though non-linear, has very efficient

algorithms for solving them and guarantees a global optimum [261].

Constraints for optimisation problem

The constraints in the optimisation problem ensure that the energy management system

accounts for the behaviour of the storage system, power grids while also ensuring that

the operating limits of the BESS and power converters are not violated. In order to

account for the ESS and grid behaviour in the energy management stage, the models for

the same defined in (6.3),(6.5) are introduced as constraints in the optimisation problem.

Physical operating constraints: The physical operating constraints given by

xlo ≤ x(k) ≤ xup (6.9)

ensure that the BESS is not over-charged or deep-discharged, which can affect the BESS

degradation [83]. The xlo, xup are the permissible lower and upper limits of SOCb. The

above represents a hard constraint on the system state which can, in some cases, lead

to a infeasible solution in the optimisation problem. Therefore, to ensure that the on-

line implementation of MPC is reliable the above hard constraints are replaced with
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soft constraints [262]. The soft constraints allow for constraint violation but at a high

penalty to the cost function. This ensures that under most of the conditions the SOC

operating limits are not violated. The soft constraint implementation of (6.9) is

xlo − εb(k) ≤ x(k) ≤ xup + εb(k) (6.10)

where εb is the violation of the SOC bounds. In order to ensure that these violations

are very limited an additional term is added to the cost function (6.6) given by

Jvio(k) = λ4 · ε2b(k) (6.11)

where λ4 is weighting the εb. Choosing a high value for λ4 will ensure that εb value is

kept minimal (minimising over-charging or deep-discharge) during the energy scheduling

while also ensuring the feasibility of optimisation problem.

Electrical operating constraints: The electrical operating constraints ensure that

DC/DC converters are operated within their rated values. This is given by

−pcbr ≤ pb(k) ≤ pcbr (6.12)

−pigr ≤ pg(k) ≤ pigr (6.13)

where pcbr, pigr are as shown in Table 6.2.

Combining (6.7),(6.8), (6.11) the resulting cost function J =
i+N∑
k=i

(Jg(k) + Jb(k) +

Jvio(k)). and the resulting optimisation problem in MPC is summarised as

min
pb,pg

[J(pb, pg, x)] (6.14)

subject to the constraints

x(k + 1) = x(k)− Ts
cb
· pb(k)

pb(k) + pg(k) + ppv(k) + pl(k) = 0

xlo − εb(k) ≤ x(k) ≤ xup + εb(k)

− pcbr ≤ pb(k) ≤ pcbr

− pigr ≤ pg(k) ≤ pigr.

(6.15)
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MPC formulation with corrective measure for prediction errors

The above optimisation problem formulation does not account for the prediction error.

As shown in Chapter 5 the forecast is never perfect and it is always bound to have some

error. A more effective training of the ANN using a larger data set might reduce the

error but not mitigate it. Therefore, modifying the optimisation problem in MPC to

account for the prediction errors makes practical sense.

Many works have tried to address the problem of uncertainty in forecast. This has

resulted in many methods being proposed like the chance constrained MPC formula-

tion [263], scenario based MPC [264] to name a few. Though these methods provide

a solution to the decision making problem, under prediction uncertainty, they can be

very conservative. Apart from that they require complex analytical formulations (chance

constrained) and computational power (scenario based approach). Apart from this, con-

servative decision making can severely undermine the economic benefit of the consumer.

Therefore, in this work a simple constraint tightening approach [265] will be consid-

ered in the MPC to account for prediction error. In the constraint tightening approach

the constraints on the manipulated inputs and system states are tightened based on

prediction error. An excessive tightening of the constraint can still lead to conservative

decision making and avoiding this aspect will be focussed in this work. First, the im-

plementation of constraint tightening in the optimisation problem of MPC is discussed.

Consider that the forecast used in the MPC is not accurate and can vary within a

certain bound di|k defined as

dk|i =

0, for k = 0

[+∆θk,−∆θk]. for k = 1, 2..N
(6.16)

At the sampling instant i since the PV generation and load demand is known, d0|i = 0.

Defining ppv(k|i) + pl(k|i) as pdef(k|i), the predicted imbalance power in the system, (6.5)

can be rewritten under prediction uncertainty for the horizon N as

pb(k|i) + pg(k|i) + u
′

(k|i) + pdef(k|i) + d(k|i) = 0. (6.17)

Where u
′

(k|i) is the control action to counteract the uncertainty in forecast defined by

the bound, d(k|i). The MPC bases its decision on the pdef(k|i) which is the deterministic
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part of the imbalance forecast given by the forecasting unit to MPC. Therefore (6.17)

is split into deterministic part which is used in MPC given by

pb(k|i) + pg(k|i) + pdef(k|i) = 0 (6.18)

and uncertain part given by

u
′

(k|i) = −d(k|i). (6.19)

The uncertain part of the control action will be handled in real time by the low level

power management stage.

The constraints on the manipulated inputs and the system state will be now be

tightened using the uncertain part (6.19) of control action. The electrical operation

constraints of (6.12) will be modified as

−pcbr + u
′

(k|i) ≤ pb(k|i) ≤ pcbr − u
′

(k|i)

⇒ −p′cbr ≤ pb(k|i) ≤ p
′
cbr

(6.20)

where p
′
cbr = pcbr − u

′

(k|i). It should be noted that the constraints on BESS converter

is only modified in this case. The constraints on the grid interfacing converter remains

unchanged. This ensures that the BESS capacity is always available to cater the energy

associated with forecast error and aid self consumption.

In order to tighten the constraints on the system state, the BESS model in (6.4) is

represented as

xk+1|i = xk|i −
Ts
cb
· (pb(k|i) + u

′

(k|i)) (6.21)

under the assumption that d(k|i) is always catered by BESS until fully

charged/discharged. The above equation can be rewritten in terms of sampled value

of SOCb (x0|i) at instant k as

xk+1|i = x0|i −
Ts
cb
·
N∑
k=0

(pb(k|i) + u
′

(k|i)). (6.22)
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The deterministic part in the above equation is

xk+1|i = x0|i −
Ts
cb
·
N∑
k=0

(pb(k|i)). (6.23)

and
N−1∑
k=0

u(k|i) = dxk|i forms the non deterministic part. Based on this, constraint

tightening of (6.10) is done as follows

xlo − εb(k) + dxk|i ≤ xk|i ≤ xup + εb(k)− dxk|i. (6.24)

The optimisation problem used in MPC incorporating the tightened constraints for

prediction error will be given as

min
pb,pg

[J(pb, pg, x)] (6.25)

subject to constraints

x(k + 1) = x(k)− Ts
cb
· pb(k)

pb(k) + pg(k) + ppv(k) + pl(k) = 0

xlo − εb(k) + dxk|i ≤ xk|i ≤ xup + εb(k)− dxk|i
− p′cbr ≤ pb(k|i) ≤ p

′
cbr

− pigr ≤ pg(k) ≤ pigr.

(6.26)

The tightening of constraints having been implemented, the next step is to determine

how to choose dk|i so that the MPC does not make very conservative decisions. In order

to decide this, consider the decision making process in MPC. At any sampling instant

there are two critical informations that the MPC need. The first is the total imbalance

energy to be handled in a prediction horizon. The knowledge of this allows the MPC to

decide how much BESS capacity is to be made available so that maximum PV power

generated can be utilised through stored energy in BESS. This enables improved self

consumption. The second information is the period at which peak imbalance, typically

caused by peak PV generation, occurs. The knowledge of this allows the MPC to decide

when to charge the BESS so that peak power injection to grid can be eliminated and

BESS degradation can be minimised.
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Figure 6.4: Representation of error propagation along prediction horizon

The ANN based forecasting unit, discussed in Chapter 5, had shown that it is capable

of giving a good indication as to when the peak PV generation occurs in a day. Therefore,

this critical information is available to the MPC. In terms of total imbalance energy

that needs to be managed in prediction horizon, the accuracy of the ANN forecast,

analysed in Section 5.4.5, should be considered. In this analysis of ANN accuracy, two

perspectives were discussed to assess the error in forecast. As mentioned above, one of

the critical information that the MPC requires to make its decision is the total amount

of imbalance energy in a prediction horizon. Since the aggregate energy in a horizon is

required, the mean absolute aggregate error of the ANN can be used as an indication of

forecast accuracy. Therefore, the same will be considered is defining dk|i. The utilisation

of the mean absolute aggregate error also provides a less conservative estimate of ANN

accuracy as highlighted in Section 5.4.5. This is essential in the case of the highly

localised PV BESS system which exhibit high variability in load behaviour which can

be difficult to predict.

As shown in Section 5.4.5 the forecast error is lower at the beginning of the prediction

window and increase along the same. Therefore, the dk|i should also exhibit similar

behaviour. Since the mean aggregate absolute error, ea, for the prediction window is

used, this needs to be distributed such that the dk|i exhibits this increasing behaviour

as shown in Figure 6.4. Though not an exact representation of the error behaviour

shown in Section 5.4.5, the Figure 6.4 still provides a good approximation of the error

behaviour of the ANN forecast.
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6.2.3 Results of MPC based energy management in PV BESS system

The optimisation problems in MPC were solved using Gurobi (version 8) [266] with

YALMIP as the parser in the MATLAB environment. All the algorithms were run in

an Intel i7 2 core machine having, 2.5 GHz processor and 8 GB RAM.

In order to assess the performance of the MPC at the tertiary control level four cases

of energy management in the PV BESS system are identified for a comparative study.

These cases are:

• Case 1: Energy management in a PV BESS system using the MSC scheme

• Case 2: Energy management in a PV BESS system using the MPC scheme but

with perfect forecast. The MPC will use the optimisation problem defined in

(6.14),(6.15). In order emulate the perfect forecast the actual generation and load

value will be given as the forecast value in every prediction window. Henceforth,

this case will be referred to as Ideal MPC

• Case 3: Energy management in a PV BESS system using the MPC scheme but

without taking into account the forecast error. In this case, the forecast will be

provided by the ANN based forecasting unit of Chapter 5. However no corrective

measure will considered in the MPC decision making. As a result MPC will use

the optimisation problem defined in (6.14),(6.15). The analysis of this energy

management case will give an indication of the degree of performance deterioration

in MPC if forecast error is not considered in decision making. Henceforth this case

will be referred to as MPC without correction.

• Case 4: Energy management in a PV BESS system using the MPC scheme but

accounting for forecast error. In this case forecast will be provided by the ANN

based forecasting unit of Chapter 5. As the correction for forecast error is consid-

ered the optimisation problem of (6.25), (6.26) will be used in MPC. Henceforth

this case will be referred to as MPC with correction.

Performance indices

Prior to presenting the results some performance indices considered in this thesis to

quantify the performance of the energy management system is introduced. The self
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Figure 6.5: Flow chart for capacity fade, Cf , mapping from SOCb with overview of
calender and cycling ageing calculation.

consumption is quantified using the annual self-consumption ratio (ASCR) defined as

the following

ASCR =
pvcons
pvgen

· 100(%) (6.27)

where pvcons is the amount of annual PV energy generated that has been utilised by the

consumer through the load demand and BESS storage, while pvgen is the total annual

PV energy generated. In order to ensure maximum economic benefit for the consumer,

this value should be as high as possible

The BESS end-of-life is defined when the capacity has faded to 80% of the nominal

rated value (Cb). Under this scenario, the effect of energy scheduling on BESS degrada-

tion is quantified by assessing the capacity loss in the battery after one year’s scheduling.

The degradation model of Li-ion battery provided in [235] will be used. The BESS SOC

profile from the different scheduling methods will be used to calculate annual capacity

fade (Cf ) of BESS due to its utilisation. The entire process in the calculation of Cf

from BESS SOC profile (SOCb) is represented using the flow chart shown in Figure 6.5.

The Ta is ambient temperature, also available in the Lindenberg data.

Finally, the electrical performance associated with grid congestion will be assessed

through the peak power injected into the grid using the index, annual average peak

power reduction (APPR). This index is defined as

APPR =
1

D

D∑
n=1

(
ppvp(n) − pgp(n)

ppvp(n)

)
· 100(%) (6.28)

where D is the total of days in a year, ppvp(n) is the peak PV power injected to grid for



164 Chapter 6 : Tertiary control

Parameter value

Sampling time (Ts) 5 min

N 288

xlo 0.1

xup 0.9

λ1, λ2, λ3 500,400,3

λ4 1000

ρ 100

D 365

Table 6.3: Parameter values used in MPC.

the nth day without BESS integration, and pgp(n) the peak grid power on the nth day

with BESS integration under a scheduling strategy (MSC or MPC). This index gives the

percentage reduction in peak power injection to grid achieved with a scheduling method

in comparison to the case where the BESS integration was not available.

Analysis of annual energy scheduling results in PV BESS system

The values of the parameters used in the optimisation problem of MPC is given in Table

6.3. The prediction horizon value, N, was chosen to be 24 hours considering the daily

periodicity of the PV and load profiles. The scheduling of the PV BESS system was

carried out for one year for the four cases mentioned above. The results for the same is

shown in Figure 6.6 for the 4 different cases mentioned above.

In order to better conceive the improvement in energy scheduling achieved with MPC

consider Figure 6.7, which shows the BESS profile for a typical day with the different

energy management cases. The major difference between all the MPC schemes and MSC

is that the MPC with its knowledge of future generation and load profile shifts the BESS

charging to the period of peak generation as shown in Figure 6.7. This allows MPC to

minimise the cost function of (6.6) and achieve the desired performance criteria. This

shifting to peak generation period in all MPC schemes ensured that the BESS capacity

is available to meet the peak PV generation. This allows for significant reduction in the
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(a) MSC (b) Ideal MPC

(c) MPC without correction (d) MPC with correction

Figure 6.6: One year energy scheduling in PV BESS system under the 4 cases of energy
management considered.

peak PV power being injected into the grid with the MPC schemes thus promoting grid

congestion mitigation. Another effect of this shifting is that in all the MPC schemes the

BESS gets fully charged later in the day. This reduces the dwell time of BESS at high

SOC levels unlike MSC scheme where dwell times are higher due to early BESS charging.

Among the MPC schemes, as can be seen in Figure 6.7, the ideal MPC with the perfect

forecast shifts the BESS charging exactly to the period of actual peak PV generation.

As shown in Figure 6.7, the PV generation forecast from ANN for the particular day is

lower than actual forecast. This resulted in both the MPC with and without correction

to charge the BESS slightly earlier than the ideal MPC case but still close to peak of

the PV generation.

The reduction in the peak power feed-in to grid due to the shifting of BESS charging

with MPC schemes can be observed in Figure 6.8. The figure shows the daily power

feed-in to the grid with the 4 energy management schemes for the whole year. The

peak PV power feed-in to grid with the MSC scheme due to early BESS charging can

be clearly observed here. It should also be noted that the power feed-in to grid with the

MSC scheme is concentrated over a shorter time period in day (peak generation). In

comparison, the ideal MPC scheme has completely eliminated the peaks and exhibits a
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Figure 6.7: Typical daily battery power profiles achieved with the four cases of the
energy management strategies mentioned. This shows a case where forecast is less than
the actual generation.

smooth, uniform power injection, distributed over a larger time window. However, the

performance of the MPC with and without correction does not completely eliminate the

peak power injection. The performance of the two schemes is still better than the MSC

scheme. Nevertheless, as shown in Figure 6.7 the error in forecast results in a slightly

earlier charging of the BESS in comparison to the ideal MPC. This results in some peak

PV power being injected into the grid.

The amount of peak power feed-in to grid in the MPC scheme with and without

corrections can be more clearly understood using the Figure 6.9. The figure shows a

bar plot highlighting the dwell times at various power levels of pg during the annual

scheduling with the 4 cases. It can be seen that with ideal MPC the power injection

to the grid is always less than 3 kW which is half the rated power of the PV array

(Table 6.2). In the case of MPC scheme with and without correction there is power

injection to the grid above 3kW. However, in comparison to the MSC scheme the dwell

times at power levels > 3kW is significantly lower for MPC schemes with and without

correction. It should also be noted that the MSC scheme has significant peak power
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Figure 6.8: Annual daily grid feed-in power with (a) MSC, (b) Ideal MPC, (c) MPC
with correction (d) MPC without correction

drawn in from grid ((-6)- (-4) kW) in comparison to all the MPC schemes due to lack of

forecast information. This highlights the improvement in the grid feed-in performance

in a PV BESS system achieved with MPC due to the knowledge of future generation

and load demand.

Finally, the improvement in the grid feed-in performance with the MPC schemes

is quantified using the APPR given in Table 6.4. Comparing to a system having PV

generation without BESS the ideal MPC has reduced the peak power injection by 80%

whereas MSC was able to reduce only 49.72%. The MPC scheme with and without

correction has an APPR of 74.28 and 72.96 respectively. Despite having higher power

injection to the grid than the ideal MPC scheme the APPR of MPC schemes with

and without correction was almost 1.5 times than MSC. This highlights the role of an

effective control strategy for grid congestion mitigation in a PV BESS system. It should

be noted that the MPC scheme with correction exhibited a a slightly improved grid

feed-in performance over the scheme without correction according to the APPR values.

In terms of BESS degradation, the annual capacity fade, Cf , arising from the 4

energy management cases is given in Table 6.4. As expected with the shifting of the
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Figure 6.9: Bar-plot comparing the dwell times at different power levels of the pg in all
the 4 energy management schemes.

Method ASCR (%) : Annual Cf (%): APPR (%):

MSC 54.60 3.94 49.72

Ideal MPC 54.32 3.71 80.38

MPC with correction 52.71 3.73 74.28

MPC without correction 52.73 3.65 72.96

Table 6.4: Comparison of performance indices values for different scheduling schemes

BESS charging to peak generation period and subsequent elimination of high SOC dwell

times has resulted in a lesser capacity fade with the MPC schemes. The Cf with ideal

MPC is 3.71 which is almost a 6% reduction in Cf from the MSC (3.94). The MPC

scheme with correction has a very similar Cf to the ideal MPC scheme while the MPC

without correction exhibited a lower annual capacity fade. The reduction in BESS dwell

time at high SOC levels that has led to lower Cf values with MPC scheme can be

better visualised through the Figure 6.10. The figure shows the dwell times at various

SOC levels by the BESS for the four energy management cases. The increased dwell
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Figure 6.10: Bar plot comparing dwell times at various SOC levels by BESS with the 4
energy management cases.

time at high SOC level(0.9) with MSC scheme is clearly observed here in comparison

to MPC schemes. This further justifies the lesser annual capacity fades achieved with

MPC schemes.

It should be noted that in the process of eliminating the high SOC dwell times

the MPC scheme tend to undergo higher BESS cycling. This can increase the cycling

ageing with MPC scheme. Nevertheless, the impact of the reduction of dwell times at

higher SOC levels with MPC schemes is still higher and as a result leads to lower overall

capacity fade with MPC scheme. The higher cycling of BESS with the MPC schemes

can be observed in Figure 6.11. The plots for Figure 6.11 was generated using the BESS

SOC profile obtained from the different energy management cases. These profiles where

then used in the rainflow counting algorithm [267] to generate the information on BESS

cycling. The x-axis of Figure 6.11 indicate half of the cycle magnitude whereas the y-axis

indicates the mean SOC value of a cycle. For example, if BESS undergoes a cycling from

10-90% of SOC the x-axis value will be 45 and y-axis will be 45 as well. The tall bars

in the plots shown in Figure 6.11, indicates the number full cycles (0.1-0.9) undergone

by the BESS. In the case of MPC this ids higher than that of the MSC scheme.
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Figure 6.11: BESS cycling undergone with different energy management schemes.

Finally, the economic performance is assessed through the self-consumption given

by the annual ASCR in Table 6.4. It can be seen that for the MPC schemes, the

ASCR is lower than that of the MSC based energy management. The ASCR value for

idealMPC at 54.32% is 99.5% of MSC scheme’s ASCR. This slight drop arises due to the

multi-objective optimisation considered in MPC. The ASCR and Cf exhibits comple-

mentary behaviour resulting in deterioration of one performance with the improvement

in another. This can better demonstrated through Figure 6.12 showing the variation of

ASCR and Cf , in ideal MPC, with different weighting set (λ1, λ2, λ3, λ4) values. The

values of the weighting coefficients where chosen such that ASCR exhibits a variation

from low to higher values as shown in Figure 6.12. It can be seen that when the ASCR

is high, Cf tends to be higher indicating an increase in degradation of BESS and vice

versa. The ASCR and Cf values for the weighting set, λ1, λ2, λ3, λ4, given in Table 6.3

is highlighted in Figure 6.12 as the red point. It represents an optimal trade-off between

ASCR and Cf as seen from results. This also explains the rationale behind the selection

of the λ1, λ2, λ3, λ4 values shown in Table 6.3 for the optimisation problem in MPC.

The self consumption in the case of MPC with and without correction, however, is

further lesser than ideal MPC. The SCR values of 52.71% and 52.73% for MPC scheme
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Figure 6.12: Variation of annual self-consumption rate with Cf for different weighting
sets of (λ1, λ2, λ3, λ4) in ideal MPC. The highlighted point (red) corresponds to the value
shown in Table 6.3.

with and without correction is almost 96.5% of that of the MSC scheme. This is a

drawback of the forecast based scheduling strategies wherein, the error in forecast affects

the system’s economic performance. The error in forecast leads to the MPC scheme

sending more energy to grid than being used at the consumer premises. Nevertheless,

it should be noted that the reduction in SCR due to forecast error is not significantly

high and is only 3.5%. This was achieved even when the PV forecast was done without

using any weather data, which contributes to the higher forecast error as shown in

Section5.4.5. The availability of weather data will only improve the prediction accuracy

and as such will bring the SCR value closer to the ideal MPC scheme. It should also

be noted that despite a 3.5 % reduction in SCR value, the MPC schemes with and

without correction exhibited a significantly better performance in grid feed-in reduction

and BESS degradation compared to MSC scheme.

The average computational time by the MPC schemes at any sampling instant was

0.17s. This was significantly lower than the sampling time of 5 minutes thus highlighting

their suitability for online implementation.

Comments on MPC scheme with and without correction

In the analysis presented in the previous section the performance of the MPC scheme

with and without correction resulted in very similar behaviour. This is due to the con-

scious efforts to ensure that the decision making was not conservative when corrections
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are introduced for the forecast error. Nevertheless, some impact of the correction to pre-

diction error was observable. Consider the SCR performance of the two schemes. The

SCR for MPC with and without correction was 52.71 and 52.73 respectively. Despite

the lower value of SCR the Cf for MPC scheme with correction was very similar to the

ideal MPC at 3.73. As the energy handled by the BESS (due to lower SCR) is lesser the

Cf was expected to be lower. This anomaly occurred because MPC, in order to account

for prediction errors always tend to store more energy in BESS than necessary when

corrective measures were employed. This can also be seen in Figure 6.10 where the dwell

time at different SOC levels was higher for MPC scheme with correction in comparison

to MPC scheme without correction. This was responsible for the higher capacity fade in

MPC scheme with correction.

This highlights the impact of introducing corrective measures for forecast errors. In

this work since the mean aggregate absolute error for the prediction window was used

to define the di|k a less conservative decision making was achieved while accounting for

forecast error. This was highlighted by the similar performance of MPC scheme with

and without correction. However, if a more conservative decision making was made by

considering a larger bound on prediction errors the performance of MPC in terms of

SCR or Cf can further deteriorate which can lead to difficulty in justifying use of MPC

in PV BESS system.

6.2.4 Concluding remarks on MPC scheduling in PV BESS system

The MPC based energy scheduling developed for the PV BESS system presented an

improved performance in multiple objectives like grid feed-in and capacity fade minimi-

sation of BESS. This was achieved as MPC, due to additional information available from

forecast, caused shifting of BESS charging to peak generation period thus reducing the

dwell times at charged levels and power injection to grid. However, this was achieved at

the cost of economic performance in terms of self consumption in PV BESS system. The

MPC schemes were not able to achieve the same SCR as that of the MSC scheme. Nev-

ertheless, even with error in forecast the maximum drop in self consumption was only

3.5% in one year while there was significant improvement in APPR and Cf . This was

expected as the MPC is a method that utilises forecast in its decision making and the

error in forecast will affect its performance. The most important aspect to be ensured

is that the deterioration in performance is not high enough that the utilisation of MPC
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cannot be justified. In this context, the work carried in this thesis is able to justify the

use of MPC in PV BESS system due to the improvement in multiple objective that it

provides.

It should also be considered that the performance of the MPC achieved here is by

using PV forecast made without using any weather data. The availability of weather

data can significantly improve the ability of forecasting unit to provide better predictions

of PV generation. As the uncertainty in forecast affected the ability of self consumption

the most, this economic performance of MPC can be improved with better prediction

of PV generation.

6.3 MPC for energy scheduling in islanded grids with hy-

brid ESS

This section discusses the application of MPC for energy management in a microgrid

during the scenario of islanded operation. Islanded microgrids require both high energy

and power density ESS to sustain the islanded operation. As a result, in this case, the

hybrid ESS system described in Chapter 2 comprising of very high energy density ESS

in FC-electrolyser system, batteries and high power density ESS in SC is considered.

As discussed in Section 2.1 the use of two higher energy density ESS in FC and BESS

system is essential in islanded operation. The FC system, despite the poor efficiency

has very low storage costs due to energy being stored in an external fuel [37]. The BESS

on other hand has high storage cost as the energy is stored internally. In order to store

all the imbalance power arising in islanded operation using a BESS alone will require a

battery with high storage capacity. This will drive up the cost of storage systems. In

order to avoid this, as a trade-off between operational efficiency and cost of storage, both

the FC and BESS is used in the islanded microgrid [1,37]. This utilisation of tri-hybrid

storage system helps to outline the the energy management strategy when using ESS

of different types. The islanded operation presents a relevant scenario in future electric

networks as discussed in Chapter 1 and as a result the energy management in islanded

operation presents practical significance.

The main challenge in islanded operation is the lack of an infinite reservoir in the

form of main grid which can absorb the power imbalance that arises with greater re-

silience. In islanded operation the microgrids tend to operate with low inertia and the
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power imbalance that occurs should be avoided with RES power curtailment or using

dispatchable generation . Therefore, the MPC at the energy management level should be

capable of making the decision regarding the amount of power to be curtailed and energy

to be used from dispatchable generator. The MPC can facilitate a better management

of hybrid ESS so as to ensure that this curtailment of RES generation is minimised and

in-turn the the dependency on dispatchable sources. The information of future genera-

tion and load demand enables the MPC to achieve the same which will be highlighted

in the upcoming sections. Apart from increasing the utilisation of RES generation MPC

can be used, as highlighted in the PV BESS system, to minimise the degradation in

the ESS. Finally, the last aspect which the MPC will try to address through the energy

management in islanded microgrid will be to ensuring a high operational efficiency of

the system.

In order to highlight the improvement that can be achieved with MPC based energy

management, a comparative analysis with an energy management system using fuzzy

inference for decision making will be carried out. This analysis also tries to highlight the

advantage of online MPC based scheduling over heuristic schemes. Therefore, the main

objective of this section can be summarised as follows: Develop an energy management

scheme with MPC for an islanded microgrid with tri-hybrid ESS that ensure

• Uninterrupted autonomous operation of islanded microgrid

• Maximisation of RES generation utilisation, minimisation of ESS degradation and

maximisation of microgrid operational efficiency

• Decision making for power curtailment and dispatchable generator utilisation

• Improved operation over a heuristic fuzzy inference based energy management

scheme.

The energy management of hybrid ESS developed here can be easily extended to

the grid connected scenario of the microgrid as well. As discussed before the MPC only

ensures the energy management and the stability will be maintained by the fast acting,

real time primary+secondary stage. In islanded operation considering the weaker inertia

of system this is very essential. As such an analysis of MPC with correction to forecast

error will not be carried out as in the previous section. Instead a discussion on ideal

MPC performance and MPC scheme without correction will only be presented.
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Figure 6.13: Schematic of the generic microgrid of Figure 2.1 in islanded mode.

6.3.1 System description

The system under consideration for energy management will be the generic microgrid

scheme presented in Figure 2.1 but for the islanded microgrid operation. This requires

that dispatchable generators be also considered to ensure the stable operation of the

system. Considering the same, the generic microgrid scheme is reproduced in Figure

6.13 to represent the grid composition in the islanded scenario. The schematic rep-

resents an aggregated system. The setpoints from MPC will be augmented with the

set points generated at the primary+secondary stage. The decision making by MPC

for the aggregated representation is also suited in the case where the ESS capacity is

distributed, like multiple batteries or FC. The primary+secondary stage has the power

splitting strategy implemented for ESS of same type and aggregated set point from

the MPC level will be split at the primary+secondary stage. This reduces the number

of decision variable for the MPC optimisation problem thus reducing the computation

burden. The PV generation and load demand of the microgrid will be emulated using

the same data from Lindenberg, Germany.

Dispatchable generators

The dispatchable generating sources were considered in the islanded microgrid to provide

power balance at times when both the RES and ESS cannot cater the load demand. This

facilitates energy security in the islanded grid. In order to ensure the same, load following
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reserves capable of fast responses and very little start up time like, diesel or gas engine

power plants were considered as generating units [268]. The very little starting time of

these generators ensure that they can be brought into operation quickly with minimum

delay and also have no restrictions in being turned off quickly. These type of generating

sources can also deliver to sudden changes in set points and do not have limitations in

terms of ramp rate of power output. As such, in the optimisation problem of MPC,

extensive models of these sources are not included. They are considered as a decision

variable with limits on power output. The power imbalances created by the small delay

in deployment will be compensated by the SC unit under the control action generated

by the primary+secondary stage.

ESS for islanded microgrid

The ESS in the hybrid system are modelled in a similar way as that of the PV BESS

case. The state evolution in the ESS is given by

xα(k + 1) =

xα(k)− Ts·ηα
Cα
· pα(k) if pα ≤ 0

xα(k)− Ts
ηα·Cα · pα(k) if pα > 0

(6.29)

∀x = {SOC,LOH},∀α = {bat, SC, FC}, Ts is the sampling time, pα(i) is the power set

point and cα is the capacity of respective ESS. In the hybrid ESS the FC electrolyser

system has poor round cycle efficiency (< 60%) and as such the linear approximation

employed for the storage system model, in the PV BESS case, cannot be employed.

In this case it has also been decided to retain the hybrid model for the BESS and SC

system despite them having high round cycle efficiency. Retaining the hybrid model

will require that the optimisation problem in the MPC to be formulated as a mixed

integer quadratic programming (MIQP) problem. Mixed integer problems tend to be

computationally more demanding than the QP problem. Therefore, retaining the hybrid

formulation for all ESS enable a more worse case scenario analysis of MPC in terms of

computational complexity and provide a more accurate representation of ESS behaviour.

PV system

As is the case with the PV BESS system, the PV array in this case is also considered to

be operating at the maximum power output for the irradiation level, using the MPPT
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algorithm. However, in islanded mode the ability to curtail the PV power generation

in case the ESS and load cannot cater it should be ensured, for energy security. This

curtailment can be implemented using the modified MPPT strategy with constant power

generation (CPG) [269] capability. In this method, the PV array generates maximum

power (ppvm) in normal condition. However, if the PV power generated cannot be met

by the load or ESS the array output is curtailed to a constant power value based on grid

conditions. The PV array output (ppv) in the MPPT with CPG scheme is given by

ppv =

ppvm No curtailement

ppvm − pcurr Under power curtailemt
(6.30)

where pcurr is the PV power to be curtailed. The value for pcurr will be decided by the

tertiary level. A detailed discussion on the MPPT or MPPT with CPG are not provided

in this work as they represent a domain, already, widely researched and beyond the scope

of this work. Interested readers are directed to [269] and references therein.

Grid

The grid is modelled as a static system using the power balance equation given by

psc(k) + pb(k) + pfc(k) + ppvm(k) + pgen(k)− pl(k)− pcurr(k) = 0 (6.31)

where pb, psc, pfc are the power set points for the BESS, SC and FC systems while pl, pgen

are load demand and power from the dispatchable generation unit respectively.

6.3.2 Optimisation problem in MPC for islanded microgrid system

Cost function

The MPC for energy management in islanded microgrid is tasked with maximising

operating efficiency, renewable energy utilisation and minimising ESS degradation. In

this context the multi objective cost function considered in MPC is chosen as

J =
i+N∑
k=i

[Jb(k) + Jfc(k) + Jsc(k) + Jbal(k)] (6.32)
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where Jb, Jfc, Jsc are the cost terms pertaining to BESS, FC-electrolyser system, SC

while Jbal pertains to cost of using dispatchable generation and imposing power curtail-

ment in the microgrid.

The battery cost term Jb is chosen as

Jb(k) = λsoc · SOCb(k)2 + λdbat ·∆SOCb(k)2 (6.33)

where λsoc, λdbat are weighting factors for each term in Jb. The cost function for the

BESS is the same as that for the PV BESS system with the objective of minimising

battery degradation. It should also be noted that Jb does not explicitly penalise the

battery power, pb. As there is no explicit penalisation, the surplus power from PV system

will be readily stored in the BESS for later use. This facilitates increased utilisation of

PV power. The lack of penalisation also ensure that the BESS is used first whenever

imbalance power is available, just like in the primary+secondary stage to ensure higher

operational efficiency of microgrid. This establishes a correlation in the decision making

between the power and energy management stages.

The fuel cell cost term Jfc is given by

Jfc(k) = λfc ·
pfc(k)

pmaxfc

2

+ λrate · (pfc(k + 1)− pfc(k))2 (6.34)

where λfc, λrate are the weighting factors and pmaxfc is the maximum power that can be

delivered by FC system. The FC-electrolyser system is characterised by poor round

cycle efficiency and in order to maintain high operational efficiency of microgrid, the

FC system should be utilised only if the BESS cannot cater the imbalance power. This

is achieved by penalising the FC power as shown in (6.34). This ensures that the FC

utilisation happens only after the battery is either fully charged or discharged thereby

increasing the operating efficiency. The second term in (6.34) penalises the set point

change in FC system. This helps in limiting the degradation in FC system due to

fuel starvation induced by sudden set point change. The availability of forecast again

provides the MPC with the knowledge of future generation and load which allows it to

modify the FC profile such that these sudden changes in set points can be minimised.

In the case of SC, the objective of the energy management stage is to ensure that

sufficient reserves is maintained in the SC at all instances. This allows the SC to meet

the sudden imbalances arising in the grid and maintain system stability by emulating
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inertial response. To this extent the Jsc penalises the deviation of SOCsc from a nominal

value (SOCnom) . The Jsc is chosen as

Jsc(k) = λsc(SOCsc(k)− SOCnom)2 (6.35)

where λsc is the weighting factor. The SOCnom is chosen as 0.5 so that there is always

half the SC capacity available to cater the imbalance. This mode of energy management

in SC is similar to the charge restoration function in the primary+secondary stage.

This further enforces that the SC has sufficient reserves at all instances, necessary for

ensuring the model invariance and equivalence of inner loop dynamics to SC current

loop dynamics.

As discussed in Section 6.3.1, the energy scheduling stage determines the optimal

value of pcurr. The higher curtailment of PV power leads to reduced operation of the

PV array in the MPPT mode, thus reducing the PV power utilisation. Therefore, the

objective of the MPC will be to minimise the pcurr as much as possible for increasing

PV power utilisation. The same is applied to pgen. The higher value of pgen, the more

the load demand is catered by the dispatchable generator unit and lesser the utilisation

of PV power. Nevertheless, these two variable are also essential to ensure the reliable

grid operation according to (6.31). Minimising the value of pcurr, pgen can be achieved

using the cost function

Jbal(k) = λgen ·
pgen(k)

pmaxgen

2

+ λcurr ·
pcurr(k)

pmaxpv

2

(6.36)

where λcurr, λgen are the weighting factors, pmaxgen is the maximum power rating of the

generator and pmaxpv is the maximum power rating of the PV array. In order to ensure

maximum utilisation of renewable generation the weighting factors λcurr, λgen are chosen

to be greater than that of BESS and FC cost function.

The use of forecast in the decision making of MPC allows better utilisation of PV

power with minimal curtailment and reliance on dispatchable generation. The forecast

information enables the MPC to manipulate the ESS profile such that their capacity

will be available as much as possible to cater the PV power.
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Constraints

Physical constraints: The physical limits of ESS are imposed by soft constraints

xloα − εα ≤ xα(k) ≤ xupα + εα|α={bat,sc,FC} (6.37)

to ensure feasibility of optimisation problem, similar to PV BESS system. The xloα , xupα

are the upper, lower bounds of ESS storage capacity and εα ∈ R3 is the slack variable.

In order to minimise constraint violation an additional term is added to (6.32) given by

Jslack = ρT · εα (6.38)

where ρ ∈ R3 represents the penalising factor for the slack variables.

Electrical constraints: Constraints on the power handling capability of interfacing

power converters and dispatchable generator are introduced through

pminα ≤ pα(k) ≤ pmaxα |α={bat,sc,fc}
0 ≤ pgen(k) ≤ pmaxgen

(6.39)

where pminα , pmaxα are the minimum, maximum power ratings of interfacing converters

respectively. These are maintained as hard constraints as violation of the same can

result in irreversible damage to power electronic and generator systems.

MLD constraints: The hybrid ESS model of (6.29) cannot be directly utilised in

the optimisation problem. They need to be transformed into a mixed logical dynamic

(MLD) model, that provides a linear equality representation of (6.29). The guidelines

in [270] is used in this transformation to MLD. In (6.29) the value of pα defines the ESS

behaviour. A boolean variable δα is now introduced to define the nature of pα such that

when [δα(k) = 1]↔ [pα(k) ≥ 0]. This MLD representation of this condition is given by

− pminα · δα(k) ≤ pα(k)− pminα

− pmaxα · δα(k) ≤ −pα(k).
(6.40)

This introduction of boolean variable allows (6.29) to be represented as

xα(k + 1) = xα(k) +
Ts
cα
· δα(ik) · pα(k) · (ηα −

1

ηα
)− Ts · ηα

cα
· pα(k). (6.41)
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The multiplicative term above is eliminated using an auxiliary variable zα(k) = δα(k) ·
pα(k) to maintain a linear formulation of (6.41). This is enforced using

zα(k) ≤ pmaxα · δα(k)

zα(k) ≥ pminα · δα(k)

zα(k) ≤ pα(k) + pmaxα · (1− δα(k))

zα(k) ≥ pα(k) + pminα · (1− δα(k))

(6.42)

resulting in (6.29) represented as

xα(k + 1) = xα(k) +
Ts
cα
· zα(k) · (ηα −

1

ηα
)− Ts · η

cα
· pα(k) (6.43)

The use of MLD constraints in an optimisation problem with quadratic cost results in

a Mixed integer quadratic programming (MIQP) problem. Solvers like Gurobi [266] has

algorithms like branch and bound (BB) methods [271] to solve problems. Representing

the manipulated inputs (
[
pα, pgen, pcurr, εα

]
) to the microgrid as u, the cost function

as J(u, xα) =
i+N∑
k=i

[Jb(k) + Jfc(k) + Jsc(k) + Jbal(k) + Jslack] the optimisation problem

considered in MPC is summarised as

min
u

[
J(u, xα)

]
(6.44)

subject to

xα(k + 1) = xα(k) +
Ts
cα
· δα(ik) · pα(k) · (ηα −

1

ηα
)− Ts · ηα

cα
· pα(k)

psc(k) + pb(k) + pfc(k) + ppv(k) + pg(k)− pl(k)− pcurr(k) = 0

xloα − εα ≤ xα(k) ≤ xupα + εα|α={bat,sc,FC}
0 ≤ pg(k) ≤ pmaxg

− pminα · δα(k) ≤ pα(k)− pminα |α={bat,sc,fc}
− pmaxα · δα(k) ≤ −pα(k) |α={bat,sc,fc}
zα(k) ≤ pmaxα · δα(k) |α={bat,sc,fc}
zα(k) ≥ pminα · δα(k) |α={bat,sc,fc}
zα(k) ≤ pα(k) + pmaxα · (1− δα(k)) |α={bat,sc,fc}
zα(k) ≥ pα(k) + pminα · (1− δα(k)) |α={bat,sc,fc}.

(6.45)
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Fuzzy scheduling: 4 inputs, 3 outputs, 34 rules
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Figure 6.14: Fuzzy inference scheme for the energy management in islanded microgrid
system.

6.3.3 The Fuzzy inference based energy management scheme for is-

landed microgrids

In order to highlight the improvement in energy management performance of the MPC,

it will be compared with the energy scheduling performance achieved with Fuzzy in-

ference based scheduler. Fuzzy inference is a method of mapping input variables to

output decision variables using a defined procedure that is heuristic in nature. In fuzzy

inferencing the space of each input is divided into fuzzy sets [272]. Each fuzzy set will

be associated with a membership function which can take a value between 0 to 1 and

defines the degree of membership of an input variable to each set. In the first step of

the inferencing process fuzzification of the inputs are carried out. This is the process of

identifying the degree of membership of each input, based on its value, to a fuzzy set

using the membership function. The next step involves fuzzy implication where fuzzy

rules are used to map the fuzzified inputs to an output. Simple if-then rules which are

defined based on the designers prior knowledge of the system are considered for the
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Figure 6.15: Fuzzy sets for the input variables and their membership functions.

same. The if part of the rule is the antecedent which are combined through AND/ OR

logical operators for the different inputs. The consequent is the then part of the rule

which defines to which fuzzy set of the output variable the antecedent is mapped. The

implication process also defines the degree of membership of the output variable to an

output fuzzy set. The final step is aggregation and defuzzification. At any instant for a

given input value, multiple rules can be active resulting in multiple outputs with varying

degree of membership to output fuzzy sets. In the aggregation process they are aggre-

gated and using defuzzification methods like centroid or bisector or middle of maximum

they are converted to a crisp output value. For a detailed exposition on fuzzy systems

and inferencing process interested readers are directed to [273, 274]. Through proper

selection of fuzzy sets and membership functions fuzzy inferencing have been proved to

provide a reasonable approximation of an optimal input-output mapping in the decision

making problem [275] and hence considered in this work to represent heuristic decision

making process. It should be noted that despite the capability of fuzzy inference system

to ensure an approximation of the optimal input-output mapping, a prior understanding

of system behaviour and resulting rule formulation from the designer is necessary for the

same. Defining such optimal rules can be difficult in systems like electrical networks.
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The input-output mapping in the Fuzzy inference based energy scheduler for the

islanded microgrid is shown in Figure 6.14. The inputs are the ESS states and imbalance

power, pdef = ppvm − pl, in the grid. The outputs are set points for psc, pfc and pgen.

Mamdani fuzzy inference [276] is employed here with 34 rules for input-output mapping.

The fuzzy sets for the input, output variables and the associated membership func-

tions are shown in Figure 6.15. The range of fuzzy sets and the membership function

shapes were decided using an iterative procedure to obtain the best results. The un-

derlying objective in defining the rules for fuzzy based energy scheduling was to ensure

maximum operational efficiency and utilisation of renewable source. In this contex,t

the rules were defined such that any imbalance power in the grid will be catered by the

BESS first. The FC electrolyser system will cater to the imbalance only after the BESS

is fully charged or discharged. In this way the energy management follows the same

strategy as in the primary+secondary stage. The SC rules where formulated such that

any deviation from its nominal SOC value (0.5) will result in charging or discharging just

like in MPC. The Figure 6.16 shows resulting outputs and their dependency on relevant

inputs as a surface plot. In comparison to MPC it is difficult to address the degrada-

tion issues with fuzzy inference. This requires incorporating future generation and load

values to calculate the evolution of SOCb and ∆SOCb. Even if this can be achieved,

incorporating them as inputs and defining explicit rules so that battery degradation is

minimised based on ∆SOCb or SOCb is complex. The need for explicitly stating the

rules is the major drawback with heuristic schemes in comparison to MPC where it is

only necessary to implicitly define the desired system behaviour.

In the fuzzy system it can be noticed that pb is not considered as one of the output

variables. This has been left as a free variable and the value was decided outside the

fuzzy system to ensure the power balance in the grid. It is difficult to incorporate

the power balance constraint inside the fuzzy system. The decision process for pb is

explained with Figure 6.17. The decisions on pcurr and modification of pgen, to ensure

power balance, is also made outside the fuzzy system as shown in Figure 6.17.

6.3.4 Sizing of hybrid ESS

Prior to presenting the results, a short discussion to explain the rationale behind sizing

ESS in islanded microgrid is provided . As discussed in Chapter 1, the islanded op-

eration in current grid is mostly enforced during exigencies, like faults. Unless in the
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(a) (b)

(c)

Figure 6.16: The different output surfaces from fuzzy inference scheme showing the
correlation between (a) psc with LOHfc and SOCsc, (b) pg with LOHfc and SOCb and
(c) pfc with SOCb and pdef , based on the rules defined.

scenario where due to physical constraints the microgrid is operated in islanded mode,

the operational time in intentional islanded mode will not be long. The islanded opera-

tion can typically extend from days to week [60]. Considering this, the energy scheduling

in the islanded mode will be carried out for one week in this work, unlike the year long

scheduling carried out in PV BESS system. The ESS will also be sized accordingly.

The sizing of the BESS will done using the same criteria as that presented in PV

BESS case to ensure a trade-off between battery degradation and economic cost of BESS
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Figure 6.17: Flow chart of decision making process with fuzzy inference based energy
management for the islanded microgrid.

storage. The regenerative FC’s hydrogen storage capacity was chosen such that it can

cater to at least one week operation. This ensures energy sufficiency for a week under

islanded operation. The SC capacity was chosen such that it can take in the peak power

of the PV array for the sampling period considered. It should be noted that this selection

of ESS capacity is not claimed as the optimal. It just provides a starting point to test

the energy management scheme. The optimal sizing of the ESS, as discussed before, is

an entire research problem on its own, which demands a comprehensive economic and

lifetime analysis of storage systems. This analysis is beyond the scope of this work.

6.3.5 Results for energy management in islanded microgrid

The capacity of hybrid ESS, dispatchable generating unit, the parameters and the pe-

nalisation weights values used in the MPC are listed in Table 6.5. The optimisation

problems in MPC were solved using Gurobi (version 8) [266] with YALMIP as the

parser in the MATLAB environment. The fuzzy inference scheme was realised using the

Fuzzy Logic Designer tool box from Matlab. All the algorithms were run in a machine

having Intel i7 2 core, 2.5 GHz processor and 8 GB RAM. The capacity of the ESS was

chosen based on the data from Lindenberg.
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Parameter Value

PV array rated output 6kWh

csc 0.5 kWh

cb 9.375 kwh

cfc 32 kWh

Prediction horizon length, N 24 hours

Sampling time (Ts) 5 min

pminb , pmaxbat 3 kW

pminsc , pmaxsc 32 kW

pmaxfc , pminfc 3kW

pmaxgen 5kW

SOC lb, SOC
l
sc, LOH

l
fc 0.1

SOCub , SOC
u
sc, LOH

u
fc 0.9

SOCnom 0.5

λSOC , λdbat 1, 10

λfc, λrate 10,10

λgen, λcurr 25,25

λsc 10

ρ 100

Table 6.5: Islanded Microgrid and MPC parameter values used in the energy scheduling

The weighting factors in the optimisation problem of the MPC was chosen through

multiple trials, such that the utilisation of ppv is maximised. In this context, it was

always ensured that λgen, λcurr was kept higher that the penalising weights of ESS.

Another important criteria in the weight selection was to keep λsoc of the BESS low. A

high value for the same will result in battery SOC being kept at a low value during the

operation which will inadvertently lead to underutilisation of the BESS and increased

utilisation of FC system.
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Figure 6.18: One week energy management performance in the islanded microgrid with
(a) Ideal MPC (b) Fuzzy inference scheme (c) MPC without correction.

The simulation of MPC and fuzzy based energy management in the islanded mi-

crogrid was carried for one week. The results presented here is for the second week of

April. Three energy management cases where simulated and the results will be com-

pared. These cases include the ideal MPC and MPC without correction similar to that

considered in the PV BESS case. The third one will be the energy management case

with fuzzy inference scheme. The Figure 6.18 shows the one week’s energy manage-

ment performance in the microgrid using the three energy managment cases. The MPC

schemes with its knowledge of forecast information is always capable of better decision

making.
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Figure 6.19: Comparison of BESS power and SOC profile with ideal MPC, MPC without
correction and fuzzy based energy management in a day.

In order to comprehend the same consider Figure 6.19. The figure shows the BESS

power and SOC profiles for a day using three energy management cases. The particular

day shown in the figure corresponds to the first day of the week shown in Figure 6.18.

The major difference between the MPC schemes and fuzzy based scheduler is in temporal

behaviour of the battery charging profile. As discussed before the fuzzy scheduler rules

are defined to improve operational efficiency. As there is no information regarding the

predicted generation or load, this results in BESS being charged earlier in the day

whenever surplus power is available, as shown in Figure 6.19. The charging of the

FC electrolyser system will happen only after the BESS is fully charged, as shown in

Figure 6.18. This limits the use of FC system and improves operational efficiency. The

charging of the BESS, whenever there is surplus power in the grid leads to BESS being

fully charged earlier in the day as shown in Figure 6.19. This leads to larger dwell times

of BESS at high SOC levels with fuzzy scheme. This increased dwell time at high SOC

is detrimental to battery as it leads to calender ageing, as discussed before.
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In comparison, the MPC schemes have BESS charging shifted to the period of peak

PV generation as shown in Figure 6.19. The availability of forecast and the multi-

objective optimisation problem used in MPC forces this shift in BESS charging. The

charging of BESS during peak period of PV generation results in the BESS being fully

charged later in the day. This reduces the dwell time at high SOC levels in the BESS

which can reduce calender ageing. Another important aspect is that since the forecast is

available, the MPC knows in advance the load demand for the day and the battery will be

charged considering the same. This ensures that later in the day when the battery caters

the load demand (under no PV generation), the stored charge is completely utilised and

the BESS will have no residual charge, as shown Figure 6.19. The same is not the case

with fuzzy scheduler which will always have some residual charge in BESS at the end of

the day. This further increases the time BESS spent in a charged state which can affect

calender ageing.

Among the MPC schemes, the ideal MPC with perfect forecast ensures that BESS

is charged exactly during peak generation period and the amount of energy stored in

BESS is equivalent to that demanded by the load later in the day. In contrast, the MPC

without correction has to make decisions based on forecast with prediction errors. This

results in BESS being charged slightly earlier than the ideal MPC scheme as shown in

Figure 6.19. The more significant impact resulting from the prediction error is that the

BESS will tend to store more energy than what will be demanded by the load later

in the day. This arises from the load forecast being higher than actual values. As a

result, it can seen from Figure 6.19 that the SOC of BESS, in the MPC scheme without

correction, lies between the ideal MPC and fuzzy scheme. However, it should also be

noticed the time spent by the BESS in the highly charged state is lower in the MPC

scheme without correction compared to fuzzy scheduler.

The impact of MPC and Fuzzy based energy scheduling, on the BESS, can be better

conceived through Figure 6.20. The figure shows the percentage dwell time at various

SOC levels by the BESS under the different energy management cases. As expected, the

dwell time at high SOC levels (> 0.7) is greater for the fuzzy scheme compared to MPC

schemes. Among the MPC schemes, the MPC without correction has longer dwell time

at high SOC (0.9) compared to the ideal MPC. As discussed above, the earlier charging

and higher energy storage in BESS due to prediction errors is responsible for the same.

Nevertheless, even with forecast error the MPC without correction performs better than

Fuzzy scheduling in terms of BESS management.
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Figure 6.20: Comparison of the dwell times at different SOC levels in the battery for
MPC and Fuzzy based scheme.

Scheduling method Curtailment(kWh) Generation (kWh)

Ideal MPC 9.27 1.70

MPC without correction 10.58 3.37

Fuzzy scheduler 19.51 8.28

Table 6.6: Curtailed and generated energy with different scheduling methods.

In the case of FC electrolyser system, MPC scheduling schemes (both ideal and

MPC without) ensures a very smooth set point (pfc) variation unlike the Fuzzy scheme

as shown in Figure 6.18 The degradation in the FC system is mainly caused by fuel

starvation at the electrode membranes caused by sudden changes in the FC set points,

as discussed before. Preventing these sudden set point changes can be easily handled

with MPC schemes through the cost function formulation as in (6.34). Incorporating

the same in the Fuzzy scheduler makes the decision making process complicated as the

control system designer will have to state explicitly what the optimal set point change

should be in the FC. As a result, incorporating this constraint on the FC set point
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change is difficult in fuzzy scheduling. However the issue of sudden set point variation

can be effectively addressed in the low-level controllers using rate limiting techniques

which can protect the FC by providing a gradual set point variation.

In terms of energy curtailment and utilisation of dispatchable generation, the perfor-

mance of both MPC schemes and fuzzy based scheduler is given in Table.6.6. The MPC

schemes are capable of sustaining the islanded operation with lesser PV power curtail-

ment and dependence on the dispatchable generation, compared to the fuzzy scheme.

The ability to reduce PV power curtailment is a direct consequence of the shifting of

BESS charging to peak generation period in MPC. As shown in Table.6.3, there is an

upper limit on the power that can be handled by the ESS, imposed by the power rating

of interfacing converters. The shifting of BESS charging by MPC ensure that during

peak PV generation both the capacities of BESS and FC is available to handle the gen-

erated power. As a result the power limits of the individual ESS are not reached and

there is less need for PV power curtailment. In the fuzzy scheduling, due to BESS being

fully charged early in the day the FC capacity is only available during peak generation.

Based on the PV array rating shown in Table 6.5 this peak PV power exceeds the power

rating of FC converters. Therefore, to ensure power balance the PV power has to be

curtailed in fuzzy scheduling. This justifies the higher PV power curtailment values

for fuzzy scheme given in Table 6.6. As the power curtailment is more, so does the

dependency on dispatchable generator in fuzzy scheme.

Comparing the performance of ideal MPC and MPC without correction, the forecast

error has resulted in higher curtailment of PV power in MPC without correction com-

pared to ideal MPC. Nevertheless, the increase in PV power curtailment in MPC scheme

without correction is only 14.13% of that of ideal MPC compared to the fuzzy scheme

where the increase is almost 110.46%. The small increase in PV power curtailment in

the MPC scheme without correction is also due to the fact that in the week pertaining

to the results Figure 6.18, the forecast of PV and load demand had only small errors.

Finally, in terms of operational efficiency both the MPC schemes and the fuzzy

scheduling demonstrated similar performance. The FC electrolyser system was used

only when the BESS could not cater the imbalance power in all the schemes.
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Figure 6.21: Bar plot showing average computation times for MIQP and QP optimisation
problems in MPC, at any sampling instant, for various control horizon lengths. The
worst case time in the MIQP for different horizon lengths is also presented.

6.3.6 Impact of prediction horizon on MPC performance

The performance of MPC based scheduling is influenced by the choice of the prediction

horizon, which affects the computational resources required and the performance of the

microgrid. Irrespective of the prediction horizon used the increased need for computa-

tional resources with MPC is a major drawback over fuzzy scheme. The impact of the

increased computational complexity with MPC is analysed here.

Computational complexity analysis

As longer prediction horizons are considered the number of decision variables in the

optimisation problem of MPC increases. This results in an increase in computational

time for solving the optimisation problem. Besides, the nature of the optimisation

problem also affect the computational complexity. In this work the optimisation problem

is of MIQP type, as MLD formulations were used for incorporating the hybrid ESS

models. However, it has been well established that MIQPs are NP-complete [277].
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They are usually solved with algorithms like Branch and Bound techniques [271]. The

computational complexity of these algorithms in the worst case scenario is a function

of the entire search space [278]. In this problem, expressing the models of the three

ESS using MLD formulation resulted in three binary variables. The computational

complexity in this case is therefore, O(23·N ). However, solvers like Gurobi employs

significantly efficient implementation of Branch and Bound algorithm which reduces the

computation time complexity significantly. Despite this, as the length of the prediction

horizon increases the algorithm tend to show a rapid increase in computation time.

This is highlighted in Figure 6.21, where the average computation time for the MPC,

at any sampling instant, is compared for a MIQP and QP problem for varying lengths

of prediction horizon. The QP problem was realised without considering the hybrid

model of the ESS. Though the QP problem cannot capture the hybrid behaviour of

ESS this comparison allows to highlight the exponential increase in computational time

encountered with MIQP. The QP problems are solved in polynomial time [261].

The significant increase in computational times for MPC (having MIQP) with longer

prediction horizon highlights some scalability issues. In a small system, as considered

here, this does not pose a major problem as the average computation time and the

worst case times for solving MIQP in all the cases (horizon length) is still less than

sampling interval of 5 min. However, in larger systems where more ESS are needed

to be represented with hybrid models, the computation time with MIQP in MPC can

reach very high values. This can lead to computation times exceeding the inter-sampling

interval, at least in some worst case scenarios. This can make the implementation of

online scheduling with MPC utilising hybrid models in their optimisation impractical.

In comparison the heuristic fuzzy inference based system had an average computation

time of 1ms.

Analysis of microgrid performance with prediction horizon

The 24 hour prediction horizon was considered in the MPC due to the daily periodicity of

generation and load profiles. This ensures that at any instant the MPC makes it decision

considering entire load demand and generation for the day. However, if scalability is

an issue ,as discussed in the previous section, it will be beneficial to analyse the system

performance when MPC is utilising shorter prediction horizons.
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Figure 6.22: Comparison of dwell times at various SOC levels of BESS for different
length of prediction horizon with MPC.

The Figure 6.22 and Figure 6.23 shows the performance of the MPC for shorter

lengths of prediction horizon (3,6,12 hours) in comparison to 24 hour length discussed

before. The performance is assessed based on the BESS behaviour, PV power curtail-

ment and utilisation of the dispatchable generator unit for the same one week period

discussed before. As the prediction horizon is shortened the MPC will have to make the

scheduling decisions without having the full information of the generation profile. This

can lead to early battery charging and increased dwell times at high SOC levels as in

Fuzzy scheduling. This is ascertained through Figure 6.22 where the BESS dwell times

at various SOC levels are compared when using MPC with different prediction horizons.

In the case of 3 hour prediction horizon, the the dwell time of the BESS at high SOC

levels (> 0.8) is comparable to the fuzzy scheme as shown in Figure 6.9.

In the case of 6 and 12 hour prediction horizon the MPC has more information

regarding the generation profile. This shifts the BESS charging more towards the peak

generation period leading to lower dwell times at high SOC levels as shown in Figure

6.22. It should be noted that, with the 24 hour prediction horizon the battery is kept

at a highly charged state (0.9) for more time than in the case of 6 and 12 hours. This
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Figure 6.23: Comparison of PV power curtailment and energy utilisation from dispatch-
able generating units for different lengths of prediction horizon with MPC.

is because with the shorter prediction horizon when the charging decisions are made

in the day, the load information in the night maybe not be completely available to the

MPC scheduler. As a result the charging is not done taking the entire load demand into

account. In some cases this can lead to BESS not storing sufficient charge for meeting

entire load demand. In the 24 hour prediction window this is not the case. The entire

load demand information is available and the BESS will store higher charge to cater

them leading to increased dwell times at higher SOC levels. This is also clear from

Figure 6.23, where the 6 and 12 hour prediction window cases has to rely more on the

dispatchable generating unit to cater the load demand in comparison to the 24 hour

case.

In terms of PV power curtailment and utilisation of dispatchable generator, the

performance with shorter prediction horizon was similar to that of the 24 hour case. In

all the cases (3, 6, 12 hours) the PV curtailment with MPC was lesser than that of the

fuzzy scheduler system.

This concludes that with shorter prediction horizon in MPC (6, 12 hours), the mi-

crogrid performance does not undergo significant deterioration, At the same time the
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number of decision variables in the optimisation problem for shorter horizon are lesser

thus reducing computational complexity. Apart from this, in comparison to the fuzzy

scheme the MPC performance with shorter horizons are still better.

It should also be noted the problem with feasibility of online implementation in larger

system can be addressed using an aggregated representation of the system in the energy

management stage. For example, by representing ESS of same type as one aggregated

ESS . In this process, the number of decision variable at the energy management level

can be reduced thus reducing the computational demand. The aggregated control action

for the ESS can then be send to the primary+secondary stage, where the individual set

point can be generated using the power splitting strategy incorporated. In this way the

computational burden can be removed from the tertiary control stage.

6.3.7 Concluding remarks on MPC scheduling in islanded microgrid

The MPC based energy management system was developed for autonomous operation

of islanded microgrid with PV array, dispatchable generator and tri-hybrid ESS . The

MPC based tertiary control system exhibited an improved performance over a fuzzy

based heuristic scheme as it made decisions based on forecast of generation and load.

The improvements with MPC can be summarised as

• Significant reduction in dwell time at high SOC levels of battery (> 0.7), with

MPC, by shifting battery charging to peak generation period.

• Smoother set-point variation in regenerative FC with MPC over fuzzy system.

• Almost 50% and 70% reduction in PV power curtailment and dispatchable gener-

ator use respectively with MPC. This highlights increased utilisation of PV power.

In terms of computational requirement, MPC was more demanding in comparison

to the fuzzy scheme. Nevertheless for the islanded microgrid considered in this work,

the worst case computational time encountered with the 24 hour prediction window

was significantly lower than the 5 minute sampling interval used. This confirms the

suitability of MPC for online energy scheduling in the islanded microgrid considered

here.
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Finally, comparing the two schemes MPC without correction performed slightly be-

low par to the ideal MPC. This was expected due to the forecast error from the predic-

tion. Nevertheless, the drop in performance in different objectives were not significant.

Compared with the fuzzy based heuristic schemes, even with forecast error, the perfor-

mance of MPC was better.

6.4 Concluding remarks on tertiary control stage

The tertiary control or energy management stage for a microgrid with RES generation

and ESS was discussed in this chapter. Online strategies using non-heuristic decision

making, accounting for forecast information of generation and load demand was identi-

fied as the better choice for the tertiary control. These methods mostly rely on solving an

optimisation problem for generating the control action. Generating set points by solv-

ing optimisation problems guarantee optimality of solution, easiness in incorporating

forecast information and easiness in defining the desired optimal behaviour of microgrid

implicitly. The MPC was therefore identified to be used at tertiary control stage.

The chapter tried to address different scenarios of energy management namely: grid

connected scenario, islanded grids, hybrid storage, single storage and Mixed integer pro-

gramming in optimisation problems. The objective was to develop a comprehensive

analysis of MPC in energy management stage of electric grids. In the grid connected

scenario, the energy management problem of the PV BESS system was addressed us-

ing MPC based tertiary control. The objective was to maximise self consumption of

PV power while also mitigating grid congestion and minimising BESS degradation. In

this way, the MPC could overcome the drawbacks of the conventional maximising self

consumption control used in PV BESS system. The discussion in this chapter tried to

quantify the improvement with MPC by analysing one year operation. The MPC, even

with forecast error in the predicted data, was able to achieve improved performance in

grid congestion mitigation and BESS degradation over MSC scheme while encountering

a slight loss of self consumption. The study also highlighted the importance of avoiding

conservative decision making with MPC when addressing prediction errors, as it can sig-

nificantly undermine the economic performance of microgrid. Finally, a major take away

from the analysis of PV BESS system was highlighting the role of an efficient control

strategy in mitigating the issues arising from RES generation integration in power grids.

The study effectively demonstrated that integrating ESS alone will not solve the issues
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from RES generation integration but they should also be backed up with an efficient

control strategy as well.

In the case of islanded scenario, the MPC was employed in the energy management

of an islanded microgrid with tri-hybrid ESS and PV generation. This problem ad-

dressed the issue of sustaining islanded operation through RES power curtailment and

utilisation of dispatchable generation. Another objective of the energy management

system was defining how to manage the energy among the hybrid ESS to ensure max-

imum operational efficiency and minimum ESS degradation. In this problem, also, the

MPC based scheme, even with forecast error, performed better than a heuristic energy

management system based on fuzzy inference. The improvement were in terms of min-

imising PV power curtailment, reducing the dwell time of BESS at high SOC levels while

maintaining good operational efficiency. In this case an analysis on the computational

demand with MPC, especially when using MIQP problem in optimisation was assessed.

Compared to fuzzy based energy scheduling, MPC with MIQP problem for optimisation

exhibited significant increase in computational demand. In larger systems this can lead

to infeasibility for online implementation when using longer prediction horizon like 24

hours. Nevertheless, an analysis with different lengths of prediction horizon highlighted

that comparable performance can be achieved with shorter horizons as well. Another

method to avoid the computation burden, can be using the aggregated system represen-

tation at energy management stage and using the power splitting strategy at the power

management level to generate the control action for individual systems in the microgrid.

Assessing the behaviour of MPC based energy management system it was obvious

that MPC can ensure better all round energy management performance in grids com-

pared to heuristic methods. Even with uncertainty in forecast information used in MPC,

the performance was found to be better than heuristic schemes, considering all round

system behaviour. This could be ensured as long as the forecasting unit can predict

with reasonable accuracy the total imbalance power in a prediction horizon and the

time period at which peak generation occurs. Though the MPC is computationally

demanding, the same is not a major issue nowadays due to availability of cheap com-

putation power. Considering all these aspects, this work concludes that MPC based

tertiary control presents an effective solution for energy management in electric grids.

Finally, the work here addressed only centralised energy management strategy. Con-

sidering the small size of the microgrid system this represents an effective solution. How-

ever, to address the generic problem of energy management in large scale transmission
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and distribution networks these centralised schemes may not be suitable. In this sce-

nario, distributed energy management strategies should be explored in the future work.

Apart from this, it should be observed that the constraint tightening approach for ad-

dressing the forecast uncertainty may not be the most optimal, despite their easiness

in implementation. Future works, can focus on developing more efficient strategies to

address prediction error while also eliminating conservative decision making. In order to

conclude the publications (under based on the work carried out in this chapter is given

below:

J1 Nair, Unnikrishnan Raveendran, and Ramon Costa-Castelló, ”A model predictive

control based energy management scheme for hybrid storage system in islanded

microgrids,” in IEEE Access, doi: 10.1109/ACCESS.2020.2996434.

C1 Nair, Unnikrishnan Raveendran, and Ramon Costa-Castelló. ”An analysis of en-

ergy storage system interaction in a multi objective model predictive control based

energy management in DC microgrid.” In 2019 24th IEEE International Confer-

ence on Emerging Technologies and Factory Automation (ETFA), pp. 739-746.

IEEE, 2019.
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Chapter 7

Concluding Remarks

This chapter provides a summary of the work carried out in the Ph.D study- ”Control

and management of energy storage systems in microgrids” along with the main results

and outcomes. The main contributions of this work are discussed and perspectives for

future research are highlighted.

7.1 Summary

In this Ph.D thesis, the main research focus has been on developing an efficient control

strategy for the ESS in microgrids that ensures grid stability, real time power manage-

ment among ESS and energy management. A hierarchical control scheme was identified

for the same. Several issues at the different levels of control architecture were identi-

fied and solutions were proposed to address the same. The thesis work also aimed at

highlighting the concern that integrating ESS in future grids, alone will not solve the

issues arising from renewable energy integration in future grids. The ESS integration

should be backed up with an efficient and optimal control strategy to exploit the full

capabilities that ESS can offer. In the following, a brief summary of the work done in

this thesis to ensure the same is provided.

In Chapter 1 the issues pertaining to increased integration of renewable generation

and the evolution of modern grids, due to the same, was discussed. The intermittent,

non-dispatchable nature of power generation from renewable sources have resulted in

multiple issues pertaining to grid congestion and stability in power networks. The

chapter discussed how in future grids, energy storage systems can play a pivotal role in

203
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avoiding and overcoming these issues. A comprehensive study on the functionalities that

ESS can provide in future grids, the classification of ESS based on physical capabilities

and operational efficiencies was carried out. This study helped to establish the need for

hybrid ESS in future grids to solve the various issues. However, as discussed in Chapter

1 the issues in modern electrical systems, due to the renewable generation integration,

will not be solved just by integrating ESS. The ESS should be controlled and managed

efficiently/optimally so that the problems in modern grids are effectively dealt with.

This calls for developing an effective control system for the hybrid ESS in modern

grids, which is the focus of this thesis work. A hierarchical control architecture with

a lower level power management stage and higher level energy management stage was

identified for the same. The power management stage was responsible for maintaining

the stability of the grid and the real time optimal power distribution among the ESS

in a hybrid system framework. The energy management stage manages the energy

of the ESS in an optimal manner such that the problems arising from the renewable

generation integration is effectively dealt with and the operation of the grid is optimised.

The distributed nature of the renewable generation have given rise to the concept of

microgrids which is becoming increasingly prominent in future electrical networks. As

such, in this thesis work control and management of the ESS in a DC microgrid is the

focus. The Chapter 2 introduces the microgrid and the hybrid ESS system considered

in this work. A detailed discussion on the different ESS (supercapacitor, battery and

FC electrolyser system) considered for the hybrid ESS framework, in this thesis, was

provided in this chapter.

The second part of the thesis in Chapter 3, 4 pertains to the power management

stage. The power management stage comprises of two levels, converter control and pri-

mary+secondary control. The Chapter 3 deals with the control of the power converter

systems interfacing the ESS to power grids and presents the contributions of this PhD

work towards the converter control level. The chapter focussed on the aspect of improv-

ing the dynamic performance of the converter controller during reference tracking. In

this context, the chapter introduced the reset PI+CI controller for the converter system.

The proposed reset controller replaces the conventional PI control, used for reference

tracking. The chapter highlighted the ability of the PI+CI controller in achieving a flat

response to step changes in reference input thus improving the dynamic performance

over the PI controller. The design criteria, stability and robustness analysis of the pro-

posed controller was presented in this chapter. The improvement achieved with the

PI+CI controller was verified through simulation and experimental validations.
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The Chapter 4 discussed the real time control of the microgrid having multiple ESS.

The work presented in this chapter focussed on developing a unified, centralised con-

trol framework, called the primary+secondary stage, that ensures grid stability, voltage

regulation and power splitting among the ESS in real time. The primary+secondary

stage emulated the inertial, primary and secondary responses of the conventional grid

through the control of ESS in microgrids. The chapter proposed an adaptive disturbance

rejection control scheme for improved voltage regulation and grid stability under power

variations (generation or load) in the microgrid. The scheme proposed the augmenta-

tion of an extended state observer to the conventional nested loop control structure to

improve the dynamics of voltage regulation control. The ESO achieved this by providing

the feed forward of the estimated disturbance in the grid. The chapter also outlined

an LMI based design procedure for the observer gains, which ensured a bound on the

H∞ norm of closed loop system transfer function. Another contribution in the chapter

is the proposal of a power splitting strategy among the hybrid ESS using a filter based

approach. This ensured that the first response to disturbance is from the fast acting ESS

like SC, while the ESS with slower response capability like battery or FC electrolyser

system ramps up in power. The power splitting strategy also addressed the criteria for

power splitting among multiple high energy density ESS, like battery and FC, based

on the SOC of battery. This ensured higher operational efficiency of grid by limiting

utilisation of FC system which had poor efficiency. The design criteria of the filter which

ensures model invariance of inner loop and its equivalence to SC current loop transfer

function was proposed. Finally, the chapter also presented the power splitting criteria

among the ESS of same type. The proposed control architecture and the designs were

verified though simulation models developed using Matlab-Simulink.

The final part of the thesis comprising of Chapter 5 ,6 discussed the energy man-

agement stage of the control architecture. Developing the tertiary control level for the

energy management was the main focus in this part. In order ensure an optimal perfor-

mance of the microgrid, through the energy management of ESS, non heuristic methods

were identified to be used in the tertiary control for set point generation. The non-

heuristic methods enabled an easier integration of forecast information, which allowed

better decision making. The Chapter 5 discussed the work done in this Ph.D work

pertaining to forecasting the renewable generation and load demand, to be used in the

tertiary control level. The different techniques in forecasting time series were identified

and analysed. Based on the study conducted, a feed forward deep neural network was

identified to be used in the forecasting unit for the tertiary control level. The chapter
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discussed the input feature selection and training process of the neural network used in

the forecast of generation and load demand. The discussion in the chapter also addressed

the quantification of the forecast accuracy along with the results from the forecasting

unit developed.

Finally the Chapter6 presented the tertiary control level used for the centralised

energy management in the microgrid. The online MPC based control was used in this

stage to make decisions on energy management of the microgrid aided by the informa-

tion from the forecasting unit. The chapter discussed how efficient energy management

of battery storage with MPC can be used to mitigate the grid congestion arising from

peak power feed-in from PV system while maintaining maximum self consumption of

the generated PV power. The ability of the MPC based energy scheduling in limiting

scenarios that can stress the ESS , thus reducing their degradation during operation

was also demonstrated. The chapter also presented the work done in developing an

MPC based energy management system for islanded grids with tri-hybrid ESS. This

application of MPC in islanded grids demonstrated MPC’s ability to achieve increased

utilisation of PV power by limiting the power curtailment while maximising the opera-

tional efficiency and minimising the stressing scenarios of the ESS. The analysis carried

out in the chapter demonstrated that even with deterioration in MPC performance,

arising from prediction errors, the overall performance of the microgrid was better than

with the heuristics decision making methods employed in tertiary control. Finally, the

study on computational demand by MPC ascertained the suitability of the same for

online implementation.

7.2 Main contributions of this work

Based on the work presented in the previous chapters the main contribution of this thesis

can be summed up as “The development of a unified , hierarchical control system com-

prising of power and energy management stages for governing the ESS in microgrid with

renewable energy integration. The Ph.D work contributed by proposing a scalable and

flexible power management stage which ensures improved voltage regulation and power

distribution among ESS accounting for operational efficiency and ESS degradation. In

the energy management stage, the work proposed the application of an optimal energy

management system using MPC, to efficiently manage the ESS such that the full ca-

pability of ESS is exploited in mitigating the issues arising from renewable generation
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integration.”. The specific technical contributions at each control level can be summed

up as:

• Converter control stage: Proposal of PI+CI reset controller to replace the

conventional PI controller in the reference tracking current control loop of DC-DC

converters for improved dynamic performance . The work in this thesis defined

a design criteria of PI +CI controller and frequency domain based techniques

to analyse stability and robustness of control systems. The performance of the

proposed controllers where verified experimentally.

• Primary+secondary control Proposal of a unified, scalable, centralised power

management scheme for microgrid with hybrid ESS that ensures stability of mi-

crogrid and power splitting among ESS. In this power management scheme the

specific contributions are

– Proposal of ADRC scheme using ESO for improved voltage regulation perfor-

mance in microgrids. The work also contributed by identifying an LMI based

procedure for optimal gain determination in ESO, considering the closed loop

system behaviour. The proposed design ensure that the H∞ norm of the

closed loop transfer function is bounded thus preserving the system stability

while integrating the ESO.

– Proposal of power splitting strategy among the high energy density ESS like

the battery and FC-electrolyser system that ensures a high operational effi-

ciency of microgrid. The proposed strategy utilises a double sigmoid function,

using the SOC of the battery as input, to decide the power splitting among

the ESS. The proposed method ensures a smooth power transition from the

battery to FC system while also ensuring that the battery is not deep dis-

charged which can lead to degradation.

– Defining the criteria for deciding the cut-off frequency of filter in the power

splitting stage, to ensure model invariance of the inner loop. This ensures

that irrespective of the ESS compensating the imbalance in the grid the dy-

namics of inner loop can be defined by a time invariant model. This facilitates

easiness in system stability/robustness analysis and design of outer loop con-

troller parameters

The performance of the proposed, unified primary+secondary control scheme was

verified through simulations.
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• Tertiary control stage: Proposal of MPC based tertiary controller for energy

management of ESS coupled with RES in microgrid, to ensure that renewable

generation is more reliable and grid friendly. In order to achieve the same, the

proposed tertiary control strategies (using MPC) focussed on mitigating grid con-

gestion arising from renewable generation integration, minimising ESS degradation

by modifying their charge/discharge cycle and maximising the self consumption

of generated renewable energy. The performance of the tertiary control , with

the above objectives, was assessed for grid connected and islanded grid operation

mode.

7.3 Future research perspectives

Although this Ph.D work had tried to mitigate some of the issues arising from renewable

energy integration in microgrids through the development of an optimal control strategy

for the ESS, there is still scope for more research in this domain of ESS control so that

the large scale incorporation of renewable sources expected in future grids is feasible.

In this context the some of the perspective for future research can be summed up as

follows.

• The research focus in this thesis had been on developing centralised control schemes

for ESS in microgrid. The large scale integration of renewable sources expected in

future grids will lead to large scale distributed integration of ESS. This will also

lead to more microgrids incorporated into main grid. In this scenario, the control

system should be extended above the tertiary control to include the grid control

unit discussed in Chapter 1. Considering the distributed nature of nature of RES

and ESS integration, centralised control schemes may not be practically feasible

due to the large communication requirements and for the ensuring the reliability

of grid operation. In this scenario distributed control schemes can be considered as

an interesting domain of research. Multi agent based control where each microgrid

can form an agent can be looked upon. Approaches like distributed MPC, game

theory can be used for the energy management among the multiple agents.

• In the event of distributed RES and ESS integration the centralised pri-

mary+secondary scheme, discussed in this thesis, should be extended to a decen-

tralised scheme. In this context research focus can be on droop based decentralised
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schemes [117] with the objective of improving their dynamic performance through

the incorporation of ESO in the decentralised architecture. The research focus

should also be on integrating power splitting strategies among multiple different

high energy density ESS when they are integrated in a distributed manner.

• Another important perspective of research is from the domain of MPC. As demon-

strated in this work the decision making with MPC when accounting for forecast

error can lead to conservative decisions. This can make the justification of use

MPC in grid connected applications difficult especially when the conservative de-

cisions affect economic aspects of grid operations. In this context future research

should focus on developing more efficient decision making strategies in MPC while

accounting for forecast uncertainties.

• Finally, a very interesting domain for future research is the application of machine

learning techniques in the energy management of microgrids. Recently, there has

been an increased focus on the use of reinforcement learning approaches for energy

management of stand alone BESS systems in microgrids. Reinforcement learning

techniques like Q iterative learning are being employed for the same. These tech-

niques can be expanded to the address the problem of energy management in

microgrids with hybrid storage. Investigations should be done comparing the re-

inforcement learning techniques with the MPC strategies to quantify how their

performances compare with each other.



210 Chapter 7 : Concluding Remarks



Part V

Appendices

211





Appendix A

Norms for signals and systems

An important requirement in control system design and analysis is the ability to define

the size of a signal (input or output) or that of LTI systems is a quantitative manner.

This is facilitated by the norms of signals and systems which allows for quantifying the

size of the same. The norm for signal is referred to as L norm and that of an LTI

system is called H norm. For a signal z(t), the norm defined by ‖z‖ have the following

properties

• ‖z‖ ≥ 0

• ‖z‖ = 0⇔ z(t) = 0 ∀t

• ‖az‖ = ‖a‖‖z‖

• ‖y + z‖ = ‖y‖+ ‖z‖

Three major norms typical defined for the signals, namely the L1,L2,L∞ norms.

The L1 norm is defined as the integral of absolute value of a signal given by

‖z‖1 =

∫ ∞
−∞
|z(t)|dt (A.1)

The L2 norm is defined as

‖z‖2 =

(∫ ∞
−∞

z(t)2dt

)1

2 (A.2)

The L2 norm of a signal is indicative of the energy associated with a signal.
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‖z‖2 ‖z‖∞

‖y‖2 ‖G‖∞ ∞

‖y‖∞ ‖G‖2 ‖G‖1

Table A.1: Relation between L norm of input-output signals based on H norm of their
transfer function.

Finally, the L∞ norm is given by

‖z‖∞ = sup
t
|z(t)| (A.3)

The norms are usually associated with vector spaces. In this context L1 , L2,L∞ spaces

represents a set of signals having finite L1 L2, L∞ norms values respectively.

The norms typically defined for the systems are the H2 and H∞ norms. For a system

with transfer function G(s) the H2 norm is given by

‖G‖2 =
1

2π

(∫ ∞
−∞

G(jω)2dω

)1

2 (A.4)

and the H∞ norm is given by

‖G‖∞ = sup
ω
|G(jω)|. (A.5)

The H∞ norm is observed as the peak value occurring the bode plot of G(s).

Consider an LTI system G(s) with input signal z(t). The knowledge of the L and

H norms of the input and system can be used to develop an understanding of the size

of output signal y(t) using the relation [140] in TableA.1. This highlights how the

output signals are bounded if L and H norms of the input and system is known. For

example, consider that ‖z‖2 is norm for an input signal, like a disturbance to plant,

and ‖G‖∞ represents the infinity norm of the disturbance to output transfer function.

Then it can be said that ‖y‖2, the plant response to the disturbance input, is bounded

by ‖G‖∞ according to TableA.1 . This is relevant, since exogenous inputs to plant,

like disturbance, are typically not known a priori. In this case if the ‖G‖∞ norm of

the disturbance rejection transfer function is known then an understanding of the plant

response under an unknown disturbance can be developed.
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[80] R. Kötz and M. Carlen, “Principles and applications of electrochemical capacitors,” Elec-

trochimica acta, vol. 45, no. 15-16, pp. 2483–2498, 2000.

[81] A. Pandolfo and A. Hollenkamp, “Carbon properties and their role in supercapacitors,”

Journal of power sources, vol. 157, no. 1, pp. 11–27, 2006.



BIBLIOGRAPHY 221

[82] J. Goodenough, H. Abruna, and M. Buchanan, “Basic research needs for electrical energy

storage. report of the basic energy sciences workshop on electrical energy storage, april

2-4, 2007,” tech. rep., DOESC (USDOE Office of Science (SC)), 2007.
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