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ABSTRACT
It has been recently conjectured that bridge functions remain nearly invariant along phase diagram lines of constant excess entropy for the
broad class of R-simple liquids. To test this hypothesis, the bridge functions of Yukawa systems are computed outside the correlation void
with the Ornstein–Zernike inversion method employing structural input from ultra-accurate molecular dynamics simulations and inside
the correlation void with the cavity distribution method employing structural input from ultra-long specially designed molecular dynamics
simulations featuring a tagged particle pair. Yukawa bridge functions are revealed to be isomorph invariant to a very high degree. The observed
invariance is not exact, however, since isomorphic deviations exceed the overall uncertainties.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0036226., s

I. INTRODUCTION

One of the fundamental problems in the statistical mechanics
of liquids concerns the accurate computation of static pair corre-
lations with the knowledge of the pair interaction potential alone
and without resorting to computer simulations. The integral equa-
tion theory of liquids features two formally exact equations for this
problem that contain three unknown functions; an additional equa-
tion for the so-called bridge function is missing.1–4 The unknown
bridge function incorporates all the elements that make a many
body problem of infinite degrees of freedom unsolvable. Therefore,
it is not surprising that its diagrammatic expansion is very slowly
converging and its high-order terms quickly become overly com-
plicated to calculate.5 As a consequence, numerous approximation
schemes have been developed for the bridge function, whose effec-
tiveness varies depending on the potential and can only be reli-
ably evaluated a posteriori through a comparison with “exact”
simulation results.1,6,7 It is fortuitous, though, that static correla-
tions in liquids exhibit relatively weak dependence on the bridge
function.1

Contrary to the radial distribution function, the bridge func-
tion possesses neither a microscopic representation (in terms of

δ-functions and instantaneous particle positions) nor a conditional
probability interpretation. Thus, the bridge function cannot be
directly extracted from computer simulations. Nevertheless, it can
be computed with input from computer simulations. In particular,
the extraction of radial distribution functions leads to the closure of
the system of integral equation theory and allows one to solve for
the unknown bridge function. There are two caveats with such an
indirect extraction method. First, the weak dependence of static cor-
relations on the bridge function implies a strong sensitivity of the
bridge function to the radial distribution function; in other words,
what is an asset in the direct problem becomes an obstacle in the
inverse problem, which necessitates long simulations with a large
particle number. Second, irrespective of the achieved size of the sta-
tistical sample, the inversion method is doomed to fail at very short
distances where the probability of encountering another particle is
ultra-low (for finite thermodynamically stable potentials) or is even
zero (for unbounded potentials). Cavity simulations featuring a spe-
cial tagged particle pair and utilizing umbrella sampling techniques
have been conceived for the computation of the bridge function at
such distances.8

Despite the inherent numerical difficulties of the computa-
tional procedure, “exact” bridge functions have been computed with
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structural input from Monte Carlo (MC) or molecular dynamics
(MD) simulations for different established model potentials such
as hard-sphere systems8–11 and their binary mixtures,9,11 Lennard-
Jones systems,12–15 inverse power law (IPL) systems,16,17 and one-
component plasma liquids.18–20 In addition, “exact” bridge functions
have been obtained for more realistic liquids including isotropic
hard spheroid fluids,21 liquid metal model inter-ionic potentials,22

model 2–2 electrolytes,23 molten salts,24 Lennard-Jones dipolar
fluids,25 and even the extended simple point charge (SPC/E) site–site
model of water.26

Despite the undeniable progress during half a century of inves-
tigations, few exact or approximate properties of bridge functions
have so far been discovered. Recently, a novel integral equation the-
ory approach has been formulated that is based on the conjecture
that bridge functions remain invariant along phase diagram lines
of constant excess entropy for a broad class of liquids known as
R-simple.27 It has been coined as isomorph-based empirically modi-
fied hypernetted-chain (IEMHNC) and has been applied to Yukawa
and bi-Yukawa liquids resulting in a remarkable agreement with
simulations.27–29

The primary objective of the present investigation is to test the
validity of the underlying ansatz of bridge function invariance for
Yukawa one-component plasmas (YOCPs).30 The intermediate and
long range Yukawa bridge functions will be computed along dif-
ferent isentropic lines with input from ultra-accurate standard MD
simulations, and the short range Yukawa bridge functions will be
computed with input from ultra-long specially designed MD sim-
ulations featuring a tagged particle pair. It should be emphasized
that Yukawa systems have been selected as a representative system,
but the conclusions of this case study are anticipated to be valid
for all R-simple liquids. In the same spirit, the guidelines proposed
for the optimal design of the simulations, the algorithmic procedure
developed for the design of the tagged particle interaction poten-
tial, and the methodological approach suggested for the quantifica-
tion of bridge function uncertainties are of generic nature and, thus,
relevant to any dense liquid.

This paper is organized as follows. Section II features an intro-
duction to Yukawa one-component plasmas, isomorph theory, and
R-simple systems and discusses arguments in favor of the isomorph
invariance of bridge functions. In Sec. III, 16 Yukawa state points
are identified with isomorph tracing techniques and distributed
among four isomorphs. In Sec. IV, the physics ideas behind indirect
bridge function extraction techniques are discussed. In Sec. V, the
Ornstein–Zernike (OZ) inversion method is presented, simulation
parameters are specified, and bridge functions are computed outside
the correlation void. In Sec. VI, the cavity distribution method is pre-
sented, simulation parameters are specified, and bridge functions are
computed within the correlation void and extrapolated at the origin.
In Sec. VII, the results are summarized.

II. BACKGROUND
For the present article to be self-contained, following a brief

introduction to the standard nomenclature of the Yukawa one-
component plasmas, a concise primer focusing on the isomorph
theory of R-simple systems and the isomorph-based empirically

modified hypernetted-chain approach is given in the present sec-
tion. The reader is addressed to the references cited below for further
details.

A. Yukawa one-component plasmas
Yukawa one-component plasma (YOCP) systems are model

systems whose constituents are charged point particles that are
immersed in a neutralizing background and interact via the screened
Coulomb (Yukawa) pair potential u(r) = (Q2/r) exp(−r/λ), where
Q is the particle charge and λ is the screening length determined
by the polarizable background. It is convenient to specify the ther-
modynamic state points of the YOCP in terms of two independent
dimensionless variables, the coupling parameter Γ and the screening
parameter κ defined by32–35

Γ = βQ2

d
, κ = d

λ
.

Here, β = 1/(kBT), with kB being the Boltzmann constant and T
being the temperature, and d = (4πn/3)−1/3 stands for the Wigner–
Seitz radius, with n being the particle (number) density.

In the limit of a rigid background λ→∞ or κ→ 0, the Yukawa
potential collapses to the unscreened Coulomb potential and the
resulting model system is then known as the one-component plasma
(OCP). The YOCP enables the exploration of the full range of poten-
tial softness from the long range Coulomb interactions of the OCP
for κ = 0 to ultra-short range hard-sphere interactions for κ → ∞.
Due to its variable softness and its relevance to strongly coupled
laboratory systems such as complex plasmas and colloidal suspen-
sions,36,37 the YOCP is still being actively investigated in statistical
mechanics studies.

It is worth noting that the distances are typically normal-
ized by the Wigner–Seitz radius d = (4πn/3)−1/3 in the non-ideal
plasma literature, while the distances are typically normalized by
the mean-cubic inter-particle distance Δ = n−1/3 in the liquid state
and isomorph theory literature. Both normalizations will be used in
the present work, but mainly the plasma normalization to remain
consistent with the screening parameter definition.

B. Isomorph theory and R-simple systems
Isomorphic lines or simply isomorphs are phase diagram curves

of constant excess entropy, along which a large set of structural
and dynamic properties are approximately invariant when expressed
in properly reduced units.38–41 In case of Newtonian dynamics,
the length is normalized to the mean-cubic inter-particle distance
Δ = n−1/3, the energy is normalized to the thermal energy kBT,
and the time is normalized to the time required for a particle that
is free streaming with its thermal velocity to traverse an inter-
particle distance τ = n−1/3√m/(kBT).41 All systems have isentropic
curves in their thermodynamic phase diagram, but these are termed
isomorphs only for the so-called Roskilde-simple or R-simple
systems.

R-simple systems are rigorously defined as many body systems
that possess the property that the ordering of the total potential
energies of two configurations consistent with the same density is
maintained when these two configurations are uniformly scaled to
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a different density.42 Mathematically, U(Ra) < U(Rb)⇒U(μRa)
< U(μRb) for positive μ, where U(R) is the total potential energy,
R is the particle configuration that is given by the collective
N-particle position vector (r1, . . ., rN), and Ra, Rb denote two
equal density configurations.42 The hidden scale invariance prop-
erty is exact only for systems that are characterized by Euler-
homogeneous interactions (plus a constant), such as inverse power
law (IPL) systems. For other R-simple systems, hidden scale invari-
ance should be understood to be valid for most of the physically rel-
evant configurations reflecting the approximate nature of isomorph
theory.

R-simple systems are practically identified as systems possessing
strong correlations between their virial (W) and potential energy (U)
constant-volume thermal equilibrium fluctuations.43 The degree of
W −U correlations is quantified by the standard Pearson coefficient
given by

RWU =
⟨ΔWΔU⟩NVT√

⟨(ΔW)2⟩NVT⟨(ΔU)2⟩NVT
,

where ⟨⋯⟩NVT denotes canonical ensemble averaging and
ΔA = A − ⟨A⟩NVT denotes statistical fluctuations around the canoni-
cal mean. Strong W − U correlations are empirically delimited by
the practical condition RWU ≳ 0.9 that allows for straightforward
identification of R-simple systems with canonical (NVT) computer
simulations.

A recent computational investigation revealed that the YOCP
is an R-simple system that exhibits exceptionally strong W − U
correlations (RWU > 0.99) for an extended part of the fluid phase
covering the entire dense liquid region of the phase diagram.44 This
rationalizes a number of previous observations such as the fact
that the YOCP excess internal energies conform to the Rosenfeld–
Tarazona decomposition45,46 and the fact that the YOCP reduced
transport coefficients strongly abide to Rosenfeld’s excess entropy
scaling.47,48

C. The isomorph-based empirically modified
hypernetted-chain approximation

The isomorph-based empirically modified hypernetted-chain
(IEMHNC) approximation is an integral equation theory approach
that is based on the assumption of isomorph invariance of bridge
functions when expressed in reduced distance units.27 The invari-
ance ansatz closes the non-linear non-local equation system that
arises in integral equation theory provided that two external inputs
are also available: a closed-form expression for the dependence of
the isomorphic curves on the thermodynamic state points and a
closed-form bridge function expression that is valid along any phase
diagram line that possesses a unique intersection point with any iso-
morphic curve.27 With such input, the isentropic correspondence
maps the bridge function from the initial phase diagram line to the
entire phase diagram.

The IEMHNC approach has been successfully applied to dense
Yukawa and bi-Yukawa liquids27–29 taking advantage of an estab-
lished parameterization of the OCP bridge function through the
reduced distance and coupling parameter.19 Comprehensive bench-
marking with computer simulations has revealed that the IEMHNC

approach possesses a remarkable accuracy with predictions of
structural properties within 2% inside the first coordination cell
and predictions of thermodynamic properties within 0.5% in the
entire dense liquid regime.27,28 In addition, a systematic compar-
ison with different advanced integral equation theory approaches
has demonstrated that the performance of the IEMHNC approach
is comparable to that of the variational modified hypernetted-chain
(VMHNC)49 approach but with 10–80 times less computational cost
depending on the state point.29

D. Theoretical arguments in favor of the isomorph
invariance of bridge functions

The excellent performance of the IEMHNC approach for
YOCP systems27 and for biYOCP systems28 clearly suggests that
the underlying conjecture of the isomorph invariance of bridge
functions must hold to a high degree. This is also indicated by
the fact that the IEMHNC approach preserves its OCP level of
accuracy regardless of the value of the YOCP or biYOCP screen-
ing parameter. Moreover, the VMHNC bridge function has been
revealed to be implicitly isomorph invariant for the YOCP, since
the effective packing fraction acquired by minimizing the respec-
tive free energy functional has been demonstrated to remain
nearly constant along any isomorphic curve within the dense liq-
uid regime.29 Finally, the output of the classic hypernetted-chain
(HNC) approach, which completely neglects all the bridge dia-
grams, leads to approximately invariant static correlations for the
YOCP,27 which implies that the addition of an isomorph invariant
bridge function would be beneficial for this isomorph invariance to
persist.

Further arguments in support of the bridge function iso-
morph invariance are connected to the notion of bridge function
quasi-universality50 that forms the backbone of the powerful mod-
ified hypernetted-chain (MHNC) and reference hypernetted-chain
(RHNC) approaches. This quasi-universality notion can be sum-
marized in the statement that, in their short range, the bridge
functions constitute the same universal family of curves irrespec-
tive of the interaction potential, and it was based on the fact that
bridge functions can be expressed as densely connected diagrams
containing total correlation function bonds.50 Considering the
isomorph invariance of the total correlation functions, the same
reasoning can be extended to the notion of isomorph invariance.
The isomorph theory has already rationalized a number of well-
established quasi-universalities of simple liquids, since the excess
entropy always turned out to be the controlling parameter.41 In
addition, the isomorph invariance of bridge functions is consis-
tent with the zero-separation bridge function freezing criterion of
Rosenfeld, which states that the value of the bridge function at
the origin r = 0, when calculated along the liquid–solid phase
transition line, is nearly constant and even independent of the
pair potential.51 This criterion is known to be satisfied for the
YOCP.52

Finally, let us discuss an apparent incompatibility of the bridge
function isomorph invariance with the locality condition also known
as the unique functionality condition, which assumes that the exact
functional relation between the bridge function and the indirect
correlation function approximately reduces to a unique function.53

This condition is implicitly invoked in most fundamental bridge
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function closures of integral equation theory.53 However, given
the isomorph variance of the indirect correlation function (to be
revealed in Sec. V), it also implies that the bridge function cannot
be isomorph invariant. Conversely, the approximate bridge func-
tion properties of isomorph invariance and unique functionality are
incompatible. This does not constitute a contradiction, since it has
been revealed (with the use of Duh–Haymet plots) that the above
formulation of the locality condition does not hold over the whole
range.23 In fact, the optimized locality conditions that are invoked
in more modern approaches feature a re-normalized indirect corre-
lation function, typically stemming from a partition of the interac-
tion potential.54–57 Such formulations are not incompatible with the
isomorph invariance ansatz.

III. ISOMORPH TRACING AND STATE POINTS
OF INTEREST

Different methods are available for the tracing of the isomorph
curves of R-simple systems with or even without the use of com-
puter simulations. In the present investigation, we shall employ the
direct isomorph check, the small step method, and the analytical
method. The physical basis and the numerical implementation of
these methods are briefly described below.

The direct isomorph check is based on an approximate rela-
tion valid for any state point that is a fundamental characteristic of
R-simple systems and reads as42

U(R) = U[n, Sex(R̃)],

where U(R) is the instantaneous potential energy that depends
on the configuration R consistent with any state point (n, T),
Sex(R̃) is the instantaneous excess entropy function that depends
on the reduced configuration R̃ = n1/3R, and U(n, Sex) is the
thermodynamic (ensemble averaged) potential energy. Let us sup-
pose an (n1, T1) reference state together with its isomorphic (n2,
T2) state of re-scaled density n2 = (1/μ3)n1 but unknown temper-
ature T2. Let us also consider the configurations R1, R2 of these state
points that are identical in reduced units, n1/3

1 R1 = n1/3
2 R2. Applica-

tion of the above relation for both the state points, first-order Taylor
expansion with respect to Sex(R̃) around the thermodynamic excess
entropy Sex, utilization of the identity (∂U/∂Sex)n = T, and use of
the identical reduced entropies and reduced configurations, leads to
the approximate expression42

U(R1) −U1

U(R2) −U2
≃ T1

T2
.

The above expression constitutes the basis of the direct isomorph
check that in practice works as follows.58,59 The potential energy
U(R1) is extracted from an (n1, T1) simulation, the configuration
is rescaled to R2 = μR1, and the potential energy U(R2) is extracted.
Repetition of this procedure for numerous R1 configurations leads
to a scatter plot between U(R1) and U(R2) that is well approximated
by a straight line and whose linear regression slope T1/T2 allows for
the determination of the unknown T2.

In the present application of the direct isomorph check, the
algorithm is formulated in terms of (Γ, κ) and a fixed screening
parameter jump Δκ/κ = 3.1% is considered, which translates to a
|Δn|/n = 9.8% density variation between successive isomorphic state
points. In the NVT MD simulations that are necessary for the slope
extraction, reduced units are employed by setting the temperature
and density equal to unity and controlling the length and energy
parameters of the potential. The interaction potential is truncated
at rcut = 10Δ with the shifted-force cutoff method, the time step is
Δt/τ = 2.5 × 10−3, the equilibration time is 220Δt, the statistics dura-
tion is 220Δt, the saving period is 210Δt, and the number of particles
is 8192 (20Δ for the simulation box length).

The small step method combines the thermodynamic definition
of the so-called density-scaling exponent with an exact alternative
expression that originates from thermodynamic fluctuation theory.
The density-scaling exponent γ(n, T) is defined in log–log density–
temperature phase diagrams as the local slope of the isentropic line
traversing the state point (n, T). Thus, we have38,60

γ(n, T) = (∂ ln T
∂ ln n

)
Sex

,

with Sex denoting the excess entropy. The density-scaling exponent
is also acquired by the linear regression slope of the scatter plot
between the virial and potential energy canonical fluctuations, since
we also have38,60

γ(n, T) = ⟨ΔUΔW⟩NVT

⟨(ΔU)2⟩NVT
.

The fluctuation theory expression allows for the evaluation of
γ(n, T) at any state point from canonical simulations, whereas the
thermodynamic definition constitutes an explicit non-linear first-
order differential equation with respect to the state points that can
be solved with any numerical scheme in order to trace the respec-
tive isomorph. This procedure has been coined as the small step
method because its typical applications utilize first-order numeri-
cal schemes for the solution of the differential equation that neces-
sitate small steps in the density.61,62 However, implementation of
higher-order schemes, such as the classical fourth-order Runge–
Kutta method (RK4), allows for larger density increments and leads
to equally accurate isomorph tracing but with far less computational
cost.

In the present application of the small step method, the RK4
algorithm is formulated in terms of (ln n, ln T) and a fixed logarith-
mic density step is considered, which translates to a |Δn|/n = 8.8%
density variation between successive isomorphic state points. In the
NVT MD simulations that are necessary for γ extraction, natural
units (n, T) are employed, the Yukawa pair potential is truncated
at rcut = 10d with the shifted-force cutoff method, the time step is
Δt/τ = 2.5 × 10−3, the equilibration time is 217Δt, the statistics dura-
tion is 217Δt, the saving period is 27Δt, and the number of particles
is 8192 (32d for the simulation box length).

The analytical method exploits a number of exact properties of
inverse power law potentials in order to define an approximate dis-
tance dependent IPL-like exponent for arbitrary pair potentials.63
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Complemented with a realistic estimate for the effective nearest-
neighbor distance, such a definition leads to an approximate rela-
tion for the density-scaling exponent and a closed-form expression
for any family of isomorphic curves.44,63 The application of the
analytical method to YOCP systems results in44

ΓISO(κ)e−Λακ[1 + Λακ +
1
2
(Λακ)2] = const.,

where Λ denotes a weakly state-point dependent parameter with a
value close to unity and α =Δ/d = (4π/3)1/3 denotes the ratio between
the mean-cubic inter-particle distance and the Wigner–Seitz radius.
The simple choice Λ = 1 has proven to be very accurate for the
YOCP,44

ΓISO(κ)e−ακ[1 + ακ +
1
2
(ακ)2] = const. (1)

The above expression is identical to the well-known semi-empirical
description of the YOCP melting line64,65

Γm(κ)e−ακ[1 + ακ +
1
2
(ακ)2] = ΓOCP

m , (2)

which accurately follows the near-exact data obtained by MD
simulations.66,67 In the above, ΓOCP

m = 171.8 is the OCP coupling
parameter at melting.66 It is evident that all isomorph lines are

nearly parallel to the melting line, an observation that is true for any
R-simple system to the first order.38,68

In the present work, the analytical method will only be invoked
in order to specify the OCP members, ΓOCP

ISO , of YOCP isomorphs.
The mapping should be very accurate, since Eqs. (1) and (2) are
nearly exact for κ ≲ 1.5. In addition, the equivalence of Eqs. (1)
and (2) results in Γ/Γm = const. ≤ 1 along any distinct isomorph.
For brevity, in what follows, the constant approximate values of
ΓOCP

ISO or Γ/Γm will be utilized in order to uniquely identify the
isomorphs.

YOCP bridge functions will be determined for 16 state points
that are equally spread among four different isomorphic curves. The
normalized screening parameters κ of interest are κ = (1.0, 1.5, 2.0,
2.5), since, for κ ≲ 1, the YOCP behavior becomes nearly OCP-like,
while, for κ ≳ 3, the YOCP behavior becomes nearly hard-sphere-
like. Such values are typically realized in complex plasma micro-
gravity experiments.36,69 The OCP coupling parameters of interest
are ΓOCP

ISO = (160, 120, 80, 40) and span the whole dense YOCP
liquid regime, since they correspond to Γ/Γm = (0.93, 0.70, 0.47,
0.23), respectively. The κ = 1 members of these four isomorphs are
then calculated with the analytical method, Eq. (1), which leads to
Γκ=1

ISO = (205.061, 153.796, 102.531, 51.265) that are the starting state
points of the direct isomorph check and the small step method. The
isomorphic coupling parameters are determined exactly using the
remaining screening parameters (κ = 1.5, 2.0, 2.5) by a targeted jump
from the closest κ point that emerges from the algorithms depending
on their assumed density variations.

The YOCP state points of interest are listed in Table I. In all
cases, the relative deviations between the results of the direct iso-
morph check and the small step method are always less than 0.53%.

TABLE I. κ = (1.0, 1.5, 2.0, 2.5) members of the ΓOCP
ISO = (160, 120, 80, 40) or Γ/Γm = (0.93, 0.70, 0.47, 0.23) isomorphs. The

coupling parameters resulting from the analytical method (Γana), direct isomorph check (Γdic), and small step method (Γssm)
are reported. The absolute relative deviations between Γana and Γdic are denoted eana/dic, whereas those between Γssm and
Γdic are denoted essm/dic. The correlation coefficient between virial and potential energy fluctuations RW U is reported together
with the density-scaling exponent γ.

κ Γana Γdic Γssm eana/dic (%) essm/dic (%) RWU γ

1.0 205.061 205.061 205.061 0.00 0.00 0.990 0.522
1.5 283.178 286.437 286.289 1.14 0.05 0.990 0.712
2.0 426.757 435.572 435.268 2.02 0.07 0.994 0.939
2.5 684.511 708.517 707.487 3.39 0.14 0.996 1.192
1.0 153.796 153.796 153.796 0.00 0.00 0.991 0.523
1.5 212.383 215.930 215.542 1.64 0.18 0.992 0.715
2.0 320.068 328.816 328.710 2.66 0.03 0.994 0.938
2.5 513.384 534.722 534.034 3.99 0.13 0.995 1.189
1.0 102.531 102.531 102.531 0.00 0.00 0.988 0.529
1.5 141.589 144.330 144.325 1.90 0.00 0.991 0.720
2.0 213.378 219.972 220.496 3.00 0.24 0.992 0.940
2.5 342.256 357.136 358.051 4.17 0.26 0.995 1.178
1.0 51.265 51.265 51.265 0.00 0.00 0.988 0.534
1.5 70.794 72.537 72.748 2.40 0.29 0.988 0.730
2.0 106.689 110.707 111.094 3.63 0.35 0.990 0.934
2.5 171.128 178.269 179.217 4.01 0.53 0.993 1.166
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Since the two MD implementations are characterized by the same
number of particles (213) and statistically useful configurations (210),
this should be a consequence of the very high virial–potential energy
fluctuations RWU ≥ 0.988. These near-unity correlations imply that
the starting equation of the direct isomorph check is exact, similar
to the starting equation of the small step method. The YOCP state
points that stem from the direct isomorph check were selected for
bridge function computation. On the other hand, the absolute rela-
tive deviations between the results of the analytical method and the
direct isomorph check can reach 4.17%. A consistent overestima-
tion is observed for the analytical method above κ ≃ 1.5, as better
illustrated in Fig. 1. This is rather expected because the analytical
expression for the melting line, see Eq. (2), also overshoots the MD
results above κ ≃ 1.5. Notice that the density-scaling exponent γ, con-
stant for inverse power law systems, varies from 0.5 (κ = 1.0) to 1.2
(κ = 2.5) within each isomorph.

Finally, it is worth pointing out that the above isomorph trac-
ing methods manage to identify the isentropic points of R-simple
systems without ever calculating the excess entropy. Accurate theo-
retical determination of the excess entropy can be formidable due
to the need for either thermodynamic integration or high-order
correlation inclusion (see the Nettleton–Green expansion).70 The
same applies to the computational determination owing to the inef-
ficiency of Widom test particle insertion methods at high densi-
ties.48 For completeness, an estimate of the reduced excess entropy
of each isomorph line has been attempted based on the equation
of state suggested by Hamaguchi et al.66,67 This led to (ΓOCP

ISO ,−sex)
= {(40, 2.02), (80, 2.87), (120, 3.49), (160, 3.99)}.

FIG. 1. Four targeted isomorphs ΓOCP
ISO = (160, 120, 80, 40) together with the

approximate melting line ΓOCP
ISO = 171.8 for dense YOCP liquids in the log Γ − κ

phase diagram. The four isomorphic curves as obtained from the direct isomorph
check (discrete symbols) are compared to those obtained from the approxi-
mate analytical expression (solid lines). The four numerical isomorphs begin to
overshoot the respective analytical isomorphs roughly above κ ≃ 1.5, see also
Table I.

IV. INTEGRAL EQUATION THEORY AND BRIDGE
FUNCTION EXTRACTION METHODS

In the case of a one-component pair-interacting isotropic
system, the integral equation theory of liquids consists of the
Ornstein–Zernike (OZ) equation1–7

h(r) = c(r) + n∫ c(r′)h(∣r − r′∣)d3r′ (3)

and the formally exact non-linear closure condition1–7

g(r) = exp[−βu(r) + h(r) − c(r) + B(r)], (4)

with g(r) being the radial distribution function, h(r) = g(r) − 1 being
the total correlation function, c(r) being the direct correlation func-
tion, and B(r) being the bridge function. Auxiliary static two-particle
correlation functions of relevance are the indirect correlation func-
tion γ(r) = h(r) − c(r), the potential of mean force βw(r) = − ln[g(r)],
the screening potential βH(r) = βu(r) − βw(r), and the cavity dis-
tribution function y(r) = g(r) exp[βu(r)]. A formally exact expres-
sion for the bridge function is required to close the above system of
equations.

The radial distribution function has an intuitive physical
interpretation being equal to the probability density of finding a
particle at a distance from a reference particle relative to the prob-
ability density for an ideal gas.4 The cavity distribution function
also has a physical interpretation being equal to the radial distribu-
tion function for a pair of tagged particles whose mutual interac-
tion is suppressed that are dissolved at infinite dilution in a system
where all other interactions remain the same.1,3 The latter function
remains continuous even if the interaction potential is discontinu-
ous or diverges and acquires large but finite values near the origin
r = 0.4 Finally, the potential of mean force has a physical interpre-
tation, since the opposite of its gradient is equal to the force exerted
on one member of a particle pair that is held at fixed positions, after
averaging over all possible positions of the remaining particles.1

In contrast to the radial distribution function and the cavity
distribution function, the bridge function possesses neither a micro-
scopic representation (i.e., it cannot be expressed as the ensem-
ble average of a function that depends on the instantaneous par-
ticle positions) nor a physical interpretation (e.g., in terms of a
probability density). Within the framework of diagrammatic anal-
ysis, bridge functions are graphically represented by highly con-
nected diagrams, which contain neither nodal points nor articula-
tion points, and their root points do not form articulation pairs.
This implies that their evaluation is very cumbersome.5 In fact, the
bridge function is formally defined through the f-bond expansion
B(r) = ∑∞i=2 di(r; T)ni, where the coefficients di(r; T) are given by
a number of multi-dimensional integrals whose kernels are prod-
ucts that involve Mayer functions f (r) = exp[−βu(r)] − 1, or through
the h-bond expansion B(r) = ∑∞i=2 bi(r; n, T)ni, where the coeffi-
cients bi(r; n, T) are given by a number of multi-dimensional inte-
grals whose kernels are products that involve total correlation func-
tions h(r).2,71 As the order of the coefficients increases, the number
of their integral constituents rises dramatically and the complexity
of each kernel increases rapidly.72,73 More importantly, both bond
expansions are known to converge very slowly already at moderate
densities.5,71–73
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As a consequence, the direct extraction of bridge functions
from computer simulations is not possible and the computation of
bridge functions through their formal definition is a formidable task
even with modern computational means. Nevertheless, bridge func-
tions can be calculated with input from computer simulations by
exploiting the fact that radial distribution functions, as well as cavity
distribution functions, can be extracted from computer simulations
and by taking advantage of the exact expressions of integral equation
theory.

In the Ornstein–Zernike inversion method, the radial distribu-
tion function is extracted from MD or MC simulations. By inspect-
ing Eqs. (3) and (4), it becomes evident that the bridge function
acts as an additional many-body component of the pair interac-
tion potential.50 Hence, the computational technique utilized for the
deduction of intermediate bridge functions from simulation struc-
tural data is identical to the computational method employed for
the deduction of interaction potentials from experimental structural
data.74,75 We refer to it as the OZ inversion method, since the afore-
mentioned determination of the pair interaction potential is known
as the inverse problem.76 With knowledge of the radial distribution
function, the direct correlation function is computed from the OZ
equation and the bridge function is then computed from the closure
condition,

B(r) = ln [g(r)] − g(r) + βu(r) + c(r) + 1. (5)

The extraction of radial distribution functions with the histogram
method fails at short distances that lie within the so-called corre-
lation void, where particle pair encounters are ultra-rare especially
for dense systems and, thus, the collected statistics are poor even
in the course of very long simulations. The correlation void can be
loosely defined as argr{g(r)≪ 1} or argr{g(r) ≃ 0}, and its exact range
depends on the thermodynamic state point of interest, see Fig. 2(a)
for an illustration. For the YOCP simulations reported herein, the
correlation void roughly corresponds to r ≲ 1.4d. From the structure
of the OZ equation, it is straightforward to deduce that the direct
correlation function is insensitive to the exact small values of the
radial distribution function inside the correlation void. Therefore,
the direct correlation function can be accurately computed along
the whole range with the OZ inversion method. On the other hand,
owing to the presence of the ln[g(r)] term in the closure condition,
it is evident that the bridge function is very sensitive to the exact
small value of the radial distribution function inside the correlation
void. Therefore, the bridge function can only be reliably computed in
the intermediate and long ranges, i.e., outside the correlation void,
with the OZ inversion method. In the implementation of the OZ
inversion method, the main challenge turns out to be the acquisition
of large statistical samples, since the bridge function in the inter-
mediate and long ranges has a very strong sensitivity to the radial
distribution function.

In the cavity distribution method, the cavity distribution func-
tion is directly extracted from MD or MC simulations. With knowl-
edge of the direct correlation function from the OZ inversion
method, the bridge function is then computed from the closure
condition that, within the correlation void g(r) ≃ 0, reads

B(r) ≃ ln [y(r)] + c(r) + 1. (6)

FIG. 2. Characteristics of the radial distribution function (a) and the cavity distri-
bution function (b) for dense simple liquids. MD results for the YOCP state point
Γ = 708.517, κ = 2.5 (ΓOCP

ISO = 160). The correlation void, argr {g(r) ≃ 0}, is accom-
panied by a rapid drop in the pair particle statistics (see the inset) and a rapid
increase in the cavity statistics. However, the cavity statistics are strongly non-
uniform at short distances, as confirmed by the 12 orders of magnitude difference
between the cavity distribution function values at the edge of the correlation void,
r ≲ 1.4d, and at the origin, r = 0.

As illustrated in Fig. 2(b), the cavity distribution function acquires
very high values within the correlation void, which suggests that
large global sample statistics can be obtained. However, the values
of the cavity distribution function increase by many orders of mag-
nitude from the edge of the correlation void up to the origin
r = 0, which implies that uniform sample statistics are rather impos-
sible to acquire owing to the fact that the very localized sub-interval
close to r = 0 will always be over-sampled. Thus, a type of umbrella
sampling technique needs to be followed that inserts a known bias,
which homogenizes the statistics within the entire correlation void.
This turns out to be the main challenge in the implementation of
the cavity distribution method. Finally, we emphasize that the cav-
ity distribution method needs to be complemented with the OZ
inversion method for the computation of the bridge function due
to the presence of the direct correlation function in the closure
equation.

V. INDIRECT BRIDGE FUNCTION EXTRACTION
WITH THE ORNSTEIN–ZERNIKE INVERSION
METHOD

Here, the OZ inversion method will be described, the parame-
ters of the production runs or test simulations will be provided, and
the numerical results will be analyzed.
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A. The computational method
In all integral equation theory approaches, Eqs. (3) and (4) are

solved for [g(r), c(r)] with known u(r) and an assumption for B(r),
which suggests that the equations are coupled. In pair interaction
reconstruction, Eqs. (3) and (4) are solved for [c(r), u(r)] with known
g(r) and an assumption for B(r), which suggests that multiple viable
solutions can emerge. In bridge function reconstruction, Eqs. (3)
and (4) are solved for [c(r), B(r)] with known [g(r), u(r)], which
suggests that the equations are decoupled and a unique solution
exists.

The computation of bridge functions with the OZ inversion
method and input from standard NVT MD simulations proceeds
in the following manner. (1) The radial distribution function is
extracted from MD simulations using the histogram method with
bins of constant width Δr/d. (2) The Fourier transform of the
total correlation function is calculated. Invoking the spherical sym-
metry, H(k) = (4π/k) ∫∞0 [rh(r) sin (kr)]dr emerges leading to
H(ki) = (4πΔr/ki)∑W

j=1 rjh(rj) sin [(π/W)(j − 1
2)i] for the discrete

sine transform of a space resolution equal to the bin width (to
avoid interpolations). In the above, W is the histogram bin num-
ber, Δk = π/(NΔr), ki = iΔk, rj = jΔr −Δr/2, r = {ri}, and k = {ki}.
Fast Fourier Transform (FFT) algorithms are employed in order
to reduce the computational cost. (3) The Fourier transform of
the direct correlation function is computed. By Fourier transform-
ing the OZ equation and solving for C(k), we obtain C(k) = H(k)/
[1 + nH(k)]. (4) The direct correlation function is calculated from
the inverse Fourier transform. Invoking the spherical symmetry,
we obtain the expression c(r) = [1/(2π2r)] ∫∞0 [kC(k) sin (kr)dk]
that ultimately leads to the discrete inverse sine transform
c(ri) = [Δk/(2π2ri)]{∑W−1

j=1 kjC(kj) sin [(π/W)j(i − 1
2)] + RW,i}

with RW ,i = [(−1)i−1/2] kW C(kW ) for the residue. FFT algo-
rithms are again employed. (5) The bridge function is computed
from Eq. (5).

We re-iterate that, inside the correlation void, particle encoun-
ters are extremely rare, but their probability remains finite. As a
result, the histogram method could, for instance, lead to either
g(r) = 10−8 or g(r) = 10−12 due to the poor statistical sampling.
This uncertainty does not affect the direct correlation function, but it
strongly impacts the bridge function courtesy of the logarithm of the
radial distribution function that is present in the OZ closure equa-
tion, leading to a significant −8 or −12 contribution for this example.
In conclusion, the unavoidable insufficient statistics within the cor-
relation void suggest that the OZ inversion method is only effective
for the computation of the bridge function at intermediate and long
ranges. For a given interaction potential, the validity limit mainly
depends on the state point of interest, the overall statistics (num-
ber of particles and number of uncorrelated configurations), and the
desired accuracy.

B. The numerical implementation
The production runs for the extraction of the radial distribution

functions, as well as the tracing of the isomorphic curves, were car-
ried out on graphics cards with the RUMD open-source software.77

A small number of test runs were performed with the LAMMPS
package.78

In the production runs that are dedicated to the g(r) extraction,
the NVT MD simulations utilize the shifted-force cutoff method

with the Yukawa pair potential truncated at rcut = 10d, and the
time step employed for the propagation of equations of motion is
Δt/τ = 2.5 × 10−3. The MD equilibration time is τeq/Δt = 220, the
statistics duration is τstat/Δt = 223, and the configuration saving
period is Tsave/Δt = 27 leading to M = 216(= 65 536) for the num-
ber of statistically independent configurations. The particle number
is N = 54 872 leading to L = 60d for the cubic simulation box length,
and the bin width size of the histogram method is Δr/d = 0.002d. We
shall refer to these production runs as ultra-accurate standard MD
simulations.

The configuration saving period was selected so that uncorre-
lated radial distribution functions are always extracted. The combi-
nation of statistics duration and number of particles was selected so
that sufficient pair correlation sample sizes are collected even up to
r = 1.25d. The size of the histogram bin width was selected so that the
grid errors are much smaller than the statistical errors. A large num-
ber of test runs were carried out in order to choose a near-optimal
cutoff method, truncation radius, and MD time step. The test runs
were carried out at the YOCP state point ΓOCP

ISO = 160, κ = 1.0 for
which the bridge function exhibits the highest sensitivity to uncer-
tainties in the radial distribution function. Finally, some test runs
were performed with the RUMD and the LAMMPS software for the
same YOCP state points and for identical simulation settings as a
validation check.

C. The numerical results
The sequential output of the OZ inversion method, i.e.,

g(r)→ c(r)→ B(r), is illustrated in Fig. 3 for the 4 isomorphic curves
and 16 YOCP state points of interest. We point out that the com-
prehensive analysis of uncertainty propagation in the OZ inversion
method, which led to the determination of the bridge function error
bar levels, is detailed in Sec. II of the supplementary material.

The radial distribution functions g(r/d) along each isomorph
are illustrated in the left panel within the interval r/d ≤ 6, see
Figs. 3(a), 3(d), 3(g), and 3(j). In addition, the potentials of mean
force −ln[g(r)] are plotted within the range 1.25 ≤ r/d ≤ 2 in the
respective insets. As demonstrated from earlier investigations of
the YOCP,44 the radial distribution function is a strongly invari-
ant quantity along any isomorphic line except from a very narrow
interval centered around the first maximum. The invariance holds
to a very good approximation outside the correlation void, but it
is rapidly distorted at short distances. The local variance becomes
especially apparent when inspecting the potentials of mean force for
r/d ≲ 1.5. To be more concrete, the g(r) deviations between iso-
morphic state points reach two orders of magnitude at r = 1.25d
for ΓOCP

ISO = 160 and this trend is expected to get further aug-
mented at shorter distances. This behavior does not contradict the
basic property of R-simple systems, which states that they possess
approximate invariant structural properties in reduced r/d units,
because it manifests itself at short distances where the radial dis-
tribution function can be approximated with zero and its exact
infinitesimal values are inconsequential. In other words, this behav-
ior concerns ultra-rare structural configurations that are physi-
cally insignificant. It is worth pointing out that the observed g(r)
variance within the correlation void can be deduced by inspect-
ing the asymptotic limit of Widom’s theorem, which reads as
g(r→ 0)∝ exp[−βu(r)].79
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FIG. 3. Static correlation functions as computed with the OZ inversion method with input from ultra-accurate standard MD simulations. Results for the 16 YOCP state points
of interest. (a), (d), (g), (j) Radial distribution function and potential of mean force for the four members of the ΓOCP

ISO = 160, 120, 80, 40 isomorphs, respectively. (b), (e), (h),
(k) Direct correlation function for the four members of the ΓOCP

ISO = 160, 120, 80, 40 isomorphs, respectively. (c), (f), (i), (l) Bridge function including error bars for the four
members of the ΓOCP

ISO = 160, 120, 80, 40 isomorphs, respectively. The isomorphic deviations and the error bars are small and can be better discerned in the zoomed-in
insets. The same applies to the quasi-periodic sign switching of the bridge functions.

The direct correlation functions c(r/d) along each isomorph are
illustrated in the middle panel for the interval r/d ≤ 5, see Figs. 3(b),
3(e), 3(h), and 3(k). It is evident that the direct correlation function
is a strongly variant quantity everywhere. This could be expected
from the reduced excess inverse isothermal compressibility relation
μ̄T = −n ∫ c(r)d3r and the fact that μ̄T is variant as a thermody-
namic quantity that involves second order volume derivatives,59 as
well as from the exact asymptotic limit c(r → ∞) = −βu(r).1–4 It is
worth noting that direct correlation functions reach their asymp-
totic limit much faster than other static correlation functions. This
takes place prior to r/d = 2, close to the foot of the c(r) curve
where the slope exhibits a rapid change. This observation justifies the

satisfactory performance of the soft mean spherical approximation
for the YOCP.80,81

The bridge functions B(r/d), together with error bars, along
each isomorph are illustrated in the right panel for the interval
1.5 ≤ r/d ≤ 5, see Figs. 3(c), 3(f), 3(i), and 3(l). The insets feature
a magnification of the oscillatory pattern and the small uncertainty
levels of the bridge functions. It is evident that the bridge func-
tion is a strongly invariant quantity along any isomorphic line in
the whole range across which it can be accurately computed with
the OZ inversion method. In contrast to radial distribution func-
tions for which there are strong variant features within the corre-
lation void and for which longer range weak variant features are
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concentrated in the first maximum vicinity, the bridge function vari-
ant features appear to be uniformly spread in the whole computa-
tion range. In the long range, the observed invariance is justified by
the analytic asymptotic behavior of the bridge function. Substitut-
ing for c(r) ≃ −βu(r) and g(r) = h(r) + 1 in the closure equation,
we have B(r) = ln[h(r) + 1] − h(r). Taylor expanding the loga-
rithm with respect to h(r) ≃ 0 and retaining up to the second order
term, we end up with B(r) = −[h2(r)]/2. In the intermediate range,
the observed invariance is in accordance with the h-bond expan-
sion that formally defines the bridge function through the infinite
series B(r) = ∑∞i=2 bi[h(r)]ni, where the unknown weighting func-
tions are given by multiple integrals that solely involve the total
correlation function.2,71 Since the integration space for the weight-
ing function of the ni term is R3i, the introduction of reduced
units r/d or r/Δ means that all the powers of the density vanish for
each term, thus leading to B(r/d) = ∑∞i=2 bi[h(r/d)], which sug-
gests that a h(r/d) isomorph invariance implies a B(r/d) isomorph
invariance.

It is evident that uncertainties cannot account for the small
deviations observed between the bridge functions of the different
members of the same isomorph. Therefore, the observed isomorph
invariance of bridge functions in the long and intermediate ranges
r ≥ 1.5d is only approximate. Notice that the relative invariance
holds to nearly the same degree regardless of the YOCP isomorph.
Note also that the approximate bridge function invariance extends
up to the edges of the correlation void, where the approximate radial
distribution function invariance begins to break down. Finally, it is
worth pointing out that, for all the 16 YOCP state points investi-
gated, the bridge function becomes slightly positive close to r ≃ 2d
well within the recorded uncertainties. In rough accordance with
the asymptotic behavior of B(r) = −(1/2)h2(r) and with the ∼1.5d
periodicity of the total correlation function, additional shallower
positive maxima appear with a periodicity slightly less than ∼0.8d.
The emergence of the sign switching and positive maximum within
the first coordination cell seems to be a standard characteristic of
bridge functions of dense simple fluids that has also been observed
for hard-sphere systems,10 Lennard-Jones liquids,12,13 IPL-12 sys-
tems,16 and OCP liquids.19 It is a salient feature of bridge functions
that cannot be captured by the VMHNC approximation49 that uti-
lizes the non-positive analytical Percus–Yevick hard-sphere bridge
function. This deficiency has been suggested as responsible for the
minor structural inaccuracies of the VMHNC approach that are
mainly observed in the vicinity of the first peak of the YOCP radial
distribution function.29

VI. INDIRECT BRIDGE FUNCTION EXTRACTION
WITH THE CAVITY DISTRIBUTION METHOD
A. The computational method

In the cavity simulations, two tagged particles are interacting
with a specially designed pair potential that allows them to explore
all the nearly forbidden distances within the correlation void. The
potential of mean force that is exerted on the tagged particles still
originates from the remaining N − 2 particles. The tagged pair
potential adds an externally controlled bias that allows for the sam-
pling of the ultra-rare pair configurations within the correlation

void. The known statistical bias can then be removed, so that the sta-
tistical weights that correspond to the actual static correlations are
ultimately extracted. The cavity simulation method was originally
developed by Torrie and Patey8 for hard-sphere potentials and non-
interacting tagged particles and later generalized by Llano-Restrepo
and Chapman12 to arbitrary interaction potentials and arbitrary
tagged pair potentials.

The targeted system is a one-component liquid that consists
of N particles that interact with the pair potential u(r). The simu-
lated system is a binary liquid mixture that consists of N − 2 type
A particles that interact with the potential u(r) and two type B
particles (tagged as 1,2) that interact with the potential u(r) with
type A particles, but with the potential ψ(r) with each other. This
system’s correlation functions are denoted with the script “sim.”
The total potential energies of these systems are connected via
Usim(R) = U(R) + ψ(r1, r2) − u(r1, r2). In the canonical ensemble,
the reduced two-particle density in the targeted system and reduced
two-particle density of the tagged particles in the simulated system
read as

n2(r1, r2) = N(N − 1)∫ exp [−βU(R)]d3r3. . .d3rN

∫ exp [−βU(R)]d3r1. . .d3rN
,

nsim
2 (r1, r2) = 2 ∫ exp [−βUsim(R)]d3r3. . .d3rN

∫Vc
exp [−βUsim(R)]d3r1. . .d3rN

.

The constraint volume Vc in the configuration integral of the simu-
lated system originates from the fact that the tagged particles are not
allowed to explore the whole configuration space in order to enhance
the statistics. The numerical pre-factors stem from particle indistin-
guishability and from integrand symmetry with respect to particle
label interchange. Combining the above, we acquire

nsim
2 (r1, r2)
n2(r1, r2)

= e−βψ(r1 ,r2)

e−βu(r1 ,r2)

2 ∫ e−βU(R)d3rN

N(N − 1) ∫Vc
e−βUsim(R)d3rN ,

where we introduced the notation d3r1 . . . d3rN = d3rN for brevity.
We point out that the second factor is independent of the tagged
particle positions r1, r2. In case the constraint volume Vc is smaller
than the primary simulation cell volume, this factor cannot be eval-
uated in the course of the simulation.12 In what follows, it will be
denoted 1/C. By introducing the radial distribution functions of both
systems g(r1, r2) = n2(r1, r2)/n2, exploiting the isotropy of the inter-
action potentials, and introducing the cavity distribution function of
the targeted system y(r12) = g(r12) exp[βu(r12)] with r12 = |r1 − r2|,
we finally obtain

y(r) = C exp [βψ(r)]g12
sim(r) (7)

after setting r = r12 and g12
sim(r) = gsim(r12) in order to emphasize that

the pair correlations of tagged particles should be sampled. Owing to
the continuity of the cavity distribution function, the unknown con-
stant C should be determined by matching with known y(r) values
either outside the correlation void (obtained by OZ inversion) or at
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the origin (obtained by Widom’s expansion79). The former option
is generally preferable being accompanied by smaller statistical
errors.

Overall, in cavity simulations, the radial distribution function
of the two tagged particles g12

sim(r) is extracted with the histogram
method, which leads to the determination of the short range
distance dependence of the cavity distribution function y(r) of the
targeted system, see Eq. (7). The unknown proportionality con-
stant C is then quantified by a matching procedure with available
intermediate range y(r) results at the upper edge of the correla-
tion void, which leads to the determination of the short range cav-
ity distribution function y(r) of the real system, see Eq. (7) again.
Finally, the short range bridge function B(r) can be determined
from Eq. (6) with knowledge of the short range ln[y(r)] and the
full range c(r), the latter reliably obtained from the OZ inversion
method. The main difficulties in the cavity simulation method are
connected with the specification of the tagged pair potential ψ(r). In
fact, as we shall describe in what follows, multiple preliminary cav-
ity simulations will be required in order to make an informed guess
for ψ(r) that is accurate enough for reliable bridge functions to be
computed.

The tagged pair potential ψ(r) should ensure that the entire cor-
relation void is sampled as uniformly as possible by the tagged par-
ticle pair. Otherwise, large statistical errors will emerge in the poorly
sampled annular rings. It is evident that the tagged pair potential
ψ(r) should strongly depend on the thermodynamic state point. The
acquisition of uniform statistics along the correlation void is a com-
plicated task, since it requires an accurate guess of the potential of
mean force − ln[g(r)] that, in turn, requires an accurate guess of the
short range bridge function B(r) that is our unknown. It is far more
practical to separate the correlation void into a number of successive
overlapping windows (In = [bn, cn] with cn > bn+1) by imposing hard
constraints in the tagged particle motion. In fact, the potentials of
mean force can be guessed more accurately with an iterative compu-
tational scheme at shorter intervals wherein the relative variations
in g(r) are far less dramatic, while the overlap is required in order
to determine the unknown proportionality constant C of Eq. (7)
by means of sequential matching.21,26 On the other hand, the hard
constraints can also be viewed as flexible bond lengths and be imple-
mented through the tagged pair potential itself.13 Overall, the tagged
pair potential ψ(r) is decomposed into a windowing component χ(r)
that confines the tagged particles within given finite intervals and
a biasing component ϕ(r) that uniformly samples each windowing
interval, i.e.,

ψn(r) = χn(r) + ϕn(r), (8)

where n is the number of successive overlapping windows.
It is preferable that the windowing component of the tagged

pair potential does not affect the correlation sampling within each
window, implying that dχ(rn)/dr ≃ 0, ∀rn ∈ In. It is also essential
that the windowing component is steep enough at the vicinity of
each window’s edges, so that the tagged particles cannot traverse the
restriction zone even in the course of long simulations. An infinite
potential well appears to be the most straightforward mathematical
implementation. Due to the involvement of infinities, the practi-
cal implementation is quite involved, since it becomes necessary to

treat impulsive elastic collisions. As a result, the smooth finite poten-
tial well that is generated by the sum of two error functions was
preferred. In normalized units βχ(x) with x = r/d,

βχn(x) = a1{erf[a2(a3n − x)] + erf[a2(a4n − x)]}, (9)

where the state variable dependent coefficient a1(n, T) controls
the well depth, the constant coefficient a2 controls the well steep-
ness, and the window dependent coefficients (a3n, a4n) control the
well extent and position. The coefficients (a2, a3n, a4n) should be
selected such that χ(x) ≃ constant within each window, while the
coefficients (a1, a2) should be selected such that tagged particles
do not escape the windowing interval. It is worth noting that very
steep realizations might turn out to be problematic and counter-
intuitively lead to loss of tagged particle confinement due to the
insufficient MD time steps. After a consideration of the above rough
guidelines, the exact coefficients should be determined by trial and
error.

In each window, the biasing component of the tagged pair
potential, which should counteract the absent pair repulsion and
the potential of mean force, is initially determined through a series
of short cavity simulations with the following iterative procedure,
which is based on Eq. (7) and the multiplicative identity of expo-
nentials: (a) The tagged particles are assumed to be non-interacting,
a cavity simulation is performed, g12

sim(x) is extracted, and its loga-
rithm is interpolated with a Gaussian function G1(x). (b) The bias-
ing component is assumed to be given by βϕ(x) = G1(x), another
cavity simulation is performed, g12

sim(x) is extracted, and its loga-
rithm is interpolated with a Gaussian function G2(x). (c) The biasing
component is then assumed to be given by βϕ(x) = G1(x) + G2(x),
and the procedure is repeated resulting in an additional Gaussian
function. (d) The iterative procedure is terminated, when the tar-
geted interval is judged to be sufficiently sampled. In this manner,
the biasing component is approximated by a series of Gaussian
functions, i.e.,

βϕn(x) =
k

∑
i=1

d1,i,n exp [−d2,i,n(x − d3,i,n)2], (10)

where k is the number of iterations and the coefficients (d1,i ,n, d2,i ,n,
d3,i ,n) are determined by least square fits. The iteration scheme
proved to be robust and leads to analytical approximations for the
biasing potential. Its major disadvantage is concerned with the fact
that βϕn(x) is not necessarily monotonic, which can lead to tagged
particle trapping in the course of very long simulations. Such trap-
ping would cause non-uniform sampling and induce spurious corre-
lations between samples collected at different time steps, generating
uncertainties that would be hard to quantify. The following remedy
proved to be successful: (a) Long MD cavity simulations are per-
formed at each interval using Eqs. (8)–(10), the sub-interval cavity
distribution functions are matched, and the cavity distribution func-
tion y(r) is extracted along the entire domain. (b) From Widom’s
cavity distribution function expansion,79 it is expected that the short
range cavity logarithm can be well approximated by an even poly-
nomial, ln [y(r)] = ∑l

i=0 y2ir2i. Least square fitting confirmed that
this expansion is very accurate and led to the determination of the
coefficients y2i. Note that ln[y(r)] is now monotonic. (c) Given that

J. Chem. Phys. 154, 034501 (2021); doi: 10.1063/5.0036226 154, 034501-11

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

ln[g(r)] = ln[y(r)] − βu(r), it is evident that the improved biasing
component becomes βϕ(r) = ln[y(r)] or equivalently

βϕ(x) =
l

∑
i=0

y2ix2i, (11)

where l is the minimum number of polynomial terms that ensures
an excellent fit to the short range ln[y(r)] data. This expression
for the biasing component of the tagged pair potential is valid
in the entire short range of interest. However, this does not sug-
gest that the windowing technique should be abandoned in the
final ultra-long cavity simulations, since a broader windowing is
still essential to confine the tagged particles within the correlation
void.

B. The numerical implementation
The NVT MD simulations for the cavity distribution function

extraction in the short range were carried out on graphics cards
with the RUMD open-source software.77 The shifted-force cutoff
method is used with rcut/d = 8, Δt/τ = 2.5 × 10−3, τeq/Δt = 219,
Tsave/Δt = 27, N = 1000 (998 type A particles and 2 type B parti-
cles), L/d ≃ 16, and Δr/d = 0.002. The statistics duration and, thus,
the statistically independent configuration number varied strongly,
depending on the simulation type. Four overlapping windows are
used for the tagged pair, namely (in r/d units), I1 = [0.0, 0.4],
I2 = [0.2, 0.6], I3 = [0.4, 1.0], and I4 = [0.8, 1.4], while we have
I5 = [1.25,∞) for the results that are available from the OZ inversion
method.

It is important to justify the relatively low simulated parti-
cle number (N = 1000). In the cavity simulations, the radial dis-
tribution function g12

sim(r) of the two tagged particles is extracted.
Consequently, a single correlation event is recorded per statistically
independent configuration rather than the N(N − 1)/2 correlation
events per configuration that are recorded during the extraction of
the radial distribution function g(r) of the targeted system. Since the
statistical sample cannot be increased by simulating a larger number
of particles, N should be kept as low as possible in order to reduce
the computational cost. Nevertheless, in case of very low particle
numbers, finite size effects inevitably begin to affect the short range
static correlations. The conservative N = 1000 choice ensures that
such errors are negligible. A thorough study of the N-dependence
of the cavity distribution functions is reported in Sec. III of the
supplementary material.

In the short cavity simulations, dedicated to the determination
of the unknown coefficients of the windowing component and of
the Gaussian representation of the biasing component, Eqs. (9) and
(10), we have τstat/Δt = 219 and M1 = 212 for the statistically indepen-
dent configuration number. For an arbitrary interval In = [bn, cn],
the windowing coefficients were found to be a1(Γ, κ) = (25–360)
depending on the state point, a2 = 20 regardless of the state or
confinement interval, a3n = bn − 0.1, and a4n = cn + 0.1. Up to
three iterations sufficed to obtain a Gaussian series representation
of the biasing component that allows for the relatively uniform sam-
pling of any windowing interval. Figure 4 demonstrates how tagged
pair statistics become more uniform as the iterative procedure
progresses.

FIG. 4. Relative standard errors σ[g12
sim(r)]/g12

sim(r) in the extraction of the radial
distribution function of the two tagged particles g12

sim(r) from short cavity simu-
lations for different biasing components of the tagged pair potential. Results for
the YOCP state point ΓOCP

ISO = 160, κ = 1.0 in the windowing intervals (a)
I3 = [0.4, 1.0] and (b) I4 = [0.8, 1.4]. In both cases, as the iterative procedure
progresses and the biasing component βϕn(x) is refined by the addition of succes-
sive Gaussian functions, σ[g12

sim(r)]/g12
sim(r) gradually becomes more uniform

in the respective windowing interval. Given the small M1 = 212 sample size, the
σ[g12

sim(r)]/g12
sim(r) ∼ 0.3 level is too high for reliable computation of short

range bridge functions but will be greatly reduced in the long and ultra-long cavity
simulations.

In the long cavity simulations, dedicated to the determination
of the unknown coefficients of the Widom polynomial representa-
tion of the biasing component, Eq. (11), we have τstat/Δt = 227 and
M2 = 220. The matching procedure, which was followed in the over-
lapping extent of consecutive windows starting from I5⋂I4 and pro-
ceeding up to I2⋂I1, led to very accurate proportionality constants
Ci that are documented in Table II. Note that due to the extremely
large cavity values that emerge in the correlation void, it is prefer-
able to work with natural logarithms. This transforms Eq. (7) into
ln [y(r)/ysim(r)] = ln C with ysim(r) = g12

sim(r) exp [βψ(r)]. Least
square fitting for the cavity logarithm ln[y(r)] revealed that the first
three terms of the Widom expansion suffice for a very accurate rep-
resentation in the short range. In particular, the absolute relative
errors were always less than 0.53%. The polynomial coefficients y0,
y2, y4 are reported in Table III. As illustrated in Fig. 5, the Widom
expansion is valid within the entire correlation void and will be
ultimately utilized in the final cavity simulations.

In the ultra-long cavity simulations, dedicated to the accurate
determination of the cavity distribution function in the short range,
we have τstat/Δt = 232 and M3 = 225. The windowing component of
the tagged pair potential now confines the type B particles within
the correlation void I = [0.0, 1.4]. The windowing coefficients were
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TABLE II. Results of the long cavity simulation matching procedure for all the 16 YOCP state points of interest. Matching in the overlapping interval I5⋂I4 = [1.25, 1.4] leads
to the constant ln C4, matching in the overlapping interval I4⋂I3 = [0.8, 1.0] leads to the constant ln C3, matching in the overlapping interval I3⋂I2 = [0.4, 0.6] leads to the
constant ln C2, and matching in the overlapping interval I2⋂I1 = [0.2, 0.4] leads to the constant ln C1. In each matching stage, the a priori knowledge of the logarithm of the cavity
distribution function in the outer interval allows for its determination in the inner interval, starting from the intermediate and the long range region I5 where ln[y(r)] is known from
the Ornstein–Zernike inversion method. In particular, the proportionality constant is determined by least square fitting ln [yIn(r)/ysim(r)] = ln Cn−1 ∀r ∈ In⋂ In−1, which
allows for the determination of yIn−1(r) from ln [yIn−1(r)/ysim(r)] = ln Cn−1 ∀r ∈ In−1. The extremely low mean absolute relative deviations eln Cn (< 0.04%) confirm the
theoretical expectation that the ratio ln [y(r)/ysim(r)] is well-approximated by a constant.

ΓOCP
ISO κ Γ ln C4 eln C4 (%) ln C3 eln C3 (%) ln C2 eln C2 (%) ln C1 eln C1 (%)

160 1.0 205.061 235.730 0.012 244.758 0.042 261.285 0.010 261.440 0.006
160 1.5 286.437 302.777 0.012 316.536 0.008 325.572 0.006 325.385 0.006
160 2.0 435.572 441.541 0.003 455.055 0.005 463.919 0.005 463.091 0.005
160 2.5 708.517 715.668 0.002 728.484 0.005 729.232 0.003 728.703 0.002
120 1.0 153.796 170.868 0.009 183.632 0.012 192.335 0.012 191.752 0.010
120 1.5 215.930 227.321 0.008 233.451 0.009 241.817 0.010 240.948 0.008
120 2.0 328.816 302.777 0.012 316.536 0.008 325.572 0.006 325.385 0.006
120 2.5 534.722 535.023 0.002 539.746 0.003 546.893 0.005 545.983 0.004
80 1.0 102.531 111.524 0.012 115.741 0.018 122.975 0.019 121.844 0.017
80 1.5 144.330 146.383 0.009 149.329 0.015 156.405 0.016 155.272 0.012
80 2.0 219.972 224.016 0.007 227.331 0.009 226.880 0.009 225.569 0.010
80 2.5 357.136 357.990 0.004 361.208 0.006 360.429 0.007 359.221 0.005
40 1.0 51.265 53.215 0.013 54.812 0.023 53.619 0.029 52.113 0.022
40 1.5 72.537 71.235 0.009 72.242 0.019 70.953 0.019 69.361 0.016
40 2.0 110.707 106.862 0.006 108.041 0.011 106.654 0.029 105.105 0.039
40 2.5 178.269 173.589 0.003 174.002 0.009 172.470 0.008 170.818 0.006

TABLE III. First–seventh columns: Results for the short range Widom representation of the logarithm of cavity distribution
function, i.e., ln [y(x)] = y0 + y2x2 + y4x4 + O[x6], for all the 16 YOCP state points of interest. The low mean absolute
relative deviations ϵlny < 0.53% between the MD extracted ln[y(x)] and the truncated Widom series reveal that the first three
terms suffice. Note the monotonic dependence of the y0, y2, y4 coefficients on the normalized coupling parameter Γ/Γm and
screening parameter κ. Eighth-ninth columns: Results of the ultra-long cavity simulation matching procedure for all the 16
YOCP state points. Matching in the overlapping interval I5⋂I = [1.25, 1.4], where I = I4⋃I3⋃I2⋃I1 = [0.0, 1.4], leads to the
constant ln C. The extremely low mean absolute relative deviations ϵln C (<0.005%) again confirm the theoretical expectation
that the ratio ln [y(r)/ysim(r)] is well-approximated by a constant.

ΓOCP
ISO κ Γ y0 y2 y4 ϵlny (%) ln C ϵln C (%)

160 1.0 205.061 76.78 −29.49 4.06 0.12 199.864 0.002
160 1.5 286.437 59.00 −25.76 3.89 0.20 281.238 0.001
160 2.0 435.572 47.68 −22.84 3.71 0.29 430.361 0.001
160 2.5 708.517 40.18 −20.79 3.64 0.44 703.303 0.001
120 1.0 153.796 57.95 −22.20 3.05 0.12 148.600 0.002
120 1.5 215.930 44.88 −19.46 2.89 0.18 210.729 0.001
120 2.0 328.816 36.54 −17.44 2.83 0.30 323.611 0.001
120 2.5 534.722 31.01 −16.01 2.81 0.45 529.507 0.001
80 1.0 102.531 38.97 −14.83 2.01 0.12 97.349 0.003
80 1.5 144.330 30.51 −13.24 1.99 0.21 139.137 0.002
80 2.0 219.972 25.07 −11.94 1.94 0.32 214.771 0.001
80 2.5 357.136 21.46 −11.02 1.92 0.43 351.926 0.003
40 1.0 51.265 19.84 −7.51 1.01 0.13 46.100 0.005
40 1.5 72.537 15.82 −6.82 1.01 0.20 67.364 0.003
40 2.0 110.707 13.37 −6.52 1.11 0.53 105.519 0.002
40 2.5 178.269 11.52 −5.88 1.01 0.42 173.073 0.001
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FIG. 5. Logarithm of the YOCP cavity distribution function within the correlation void as computed with static correlation input from the long cavity MD simulations. Results
along the (a) ΓOCP

ISO = 160 isomorph (κ = 1.0, 1.5, 2.0, 2.5), (b) ΓOCP
ISO = 120 isomorph (κ = 1.0, 1.5, 2.0, 2.5), (c) ΓOCP

ISO = 80 isomorph (κ = 1.0, 1.5, 2.0, 2.5),
and (d) ΓOCP

ISO = 40 isomorph (κ = 1.0, 1.5, 2.0, 2.5). The ln[y(r /d)] curves as obtained from the MD simulations (discrete symbols) and the Widom expansion with
the least square fitted coefficients reported in Table III (solid lines). It is evident that the first three terms of the Widom expansion provide a very accurate representa-
tion of ln[y(r /d)] within the correlation void. The MD results, which are extracted every 0.002d with the histogram method, have been down-sampled for the purposes of
illustration.

found to be A1(Γ, κ) = (25–360) depending on the state point,
A2 = 20, A3 = −0.1, and A4 = 1.5. The matching procedure, which
was followed in the overlapping extent of I5⋂I, led to very accu-
rate proportionality constants C that are documented in the last two
columns of Table III. Figure 6 reveals how the Widom series repre-
sentation of the biasing potential leads to nearly uniform tagged pair
statistics and confirms that the chosen statistical sample size suffices
for the accurate computation of the bridge function in nearly the full
extent of the correlation void.

Our version of the cavity simulation method was successfully
benchmarked against published results for dense simple liquids. In
particular, the short range bridge functions were compared with tab-
ulated MC and MD simulation data for Lennard-Jones fluids12,13 and
tabulated MC simulation data for inverse power law systems.16 Our
MD results always nearly overlapped with the literature results with
the exception of minor deviations that lied well within the estimated
uncertainties. Such validation exercise was not possible for Yukawa
systems, since only MC generated short range screening potentials
and not bridge functions are available.31

C. The numerical results
The short range bridge functions B(r/d) and potentials of mean

force −ln[g(r/d)] as computed from the application of the cavity
distribution method with input from the ultra-long cavity MD sim-
ulations are shown in Fig. 7 for the 4 isomorphic lines and 16 YOCP

state points of interest. The bridge functions, together with error
bars, are also shown in Fig. 8 along different sub-intervals of the
correlation void. Note that the comprehensive analysis of uncer-
tainty propagation in the cavity distribution method, which led to
the determination of the bridge function error bar levels, is detailed
in Sec. III of the supplementary material.

It is evident that the reduced-unit bridge function is strongly
invariant within the correlation void along any YOCP isomorphic
curve. The observed degree of bridge function isomorph invari-
ance is high enough that zoom-ins on different sub-intervals are
necessary to discern the small B(r/d) deviations between the differ-
ent members of the same isomorph. Regardless of the YOCP iso-
morph, it is apparent from Fig. 8 that the κ = 1.5, 2.0, 2.5 members
have nearly overlapping bridge functions, while the κ = 1.0 mem-
ber has a slightly displaced bridge function. By inspecting the bridge
functions of the κ = 1.5, 2.0, 2.5 members for each isomorph, it is
deduced that error levels are comparable to the isomorphic devia-
tions observed. However, by inspecting the bridge function of the
κ = 1.0 member with respect to those of the κ = 1.5, 2.0, 2.5 mem-
bers, it is evident that the uncertainties are too minuscule to account
even for the small deviations observed. Overall, it is concluded that
similar to the intermediate and the long range, the observed iso-
morph invariance of the Yukawa bridge functions in the short range
is only of approximate nature. In terms of absolute numbers, the
degree of isomorph invariance is roughly similar outside and inside
the correlation void. In terms of relative numbers, the degree of
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FIG. 6. Results for the YOCP state points (a) ΓOCP
ISO = 160, κ = 1.0 and (b)

ΓOCP
ISO = 40, κ = 2.5. Main figure: Relative standard errors σ[g12

sim(r)]/g12
sim(r) in

the extraction of the radial distribution function of the tagged particle pair g12
sim(r)

from ultra-long cavity MD simulations (N = 1000, M3 = 225) within the short range
r ≤ 1.4d. Inset plot: Relative standard errors σ[g(r)]/g(r) in the extraction
of the radial distribution function g(r) of the targeted system from standard
NVT MD simulations (N = 54 872, M = 216) in the intermediate range 1.25
≤ r /d ≤ 5.00. The error level σ[g12

sim(r)]/g12
sim(r) ∼ 0.01 that emerges

from the ultra-long cavity simulations is small enough to guarantee a reli-
able computation of the bridge function in the short range and is compa-
rable to the error level of σ[g(r)]/g(r) in the overlapping interval of 1.25
≤ r /d < 1.4. As the distance decreases, the error level slowly increases up to
r ∼ 0.2d, then it begins to steeply increase, and finally becomes too high for r
< 0.05d. This suggests that large bridge function uncertainties are localized close
to the origin r = 0. The achieved tagged pair statistics are nearly uniform in the
interval 0.2 ≤ r /d ≤ 1.4.

isomorph invariance is much higher in the short range, as a result of
the much higher bridge function magnitude within the correlation
void.

The bridge function invariance suggests that the isomorph vari-
ant short range features of the positive cavity distribution func-
tion ln[y(r/d)] (see Fig. 5) and of the negative direct correlation
function c(r/d) (see Fig. 3) cancel each other out to a large extent,
when these static correlations are added for the computation of
the bridge function, see Eq. (6). It is important to note that the
invariance level is nearly independent of the distance within the
entire correlation void, since the relative B(r) deviations between
isomorphic state points vary within 2%–7% for 0 < r/d ≤ 1.4 (using
the κ = 1.0 member as the reference state). It is also worth point-
ing out that, for a given reduced distance, our methodology leads
to uncertainties in the bridge function that are nearly indepen-
dent of the state point, which implies that the relative errors in the
bridge function are largest along the ΓOCP

ISO = 40 isomorph where the
bridge function magnitude is smallest. This expectation is confirmed

in Figs. 8(a), 8(d), 8(g), and 8(j). Furthermore, the large bridge
function uncertainties that should arise near the origin, as antic-
ipated from the enhanced σ[g12

sim(r)]/g12
sim(r) error level recorded

close to r = 0 (see Fig. 6), manifest themselves in the loss of B(r)
smoothness and the emergence of spiky saw-toothed B(r) features
at r ≲ 0.05d.

On the other hand, the reduced-unit potential of mean force
is strongly variant within the correlation void along any YOCP iso-
morphic curve. Notice that the inset plots of Fig. 7 use logarithmic
vertical scales in order to accommodate the five orders of magni-
tude change in the ln[g(r)] values that takes place from the edge of
the correlation void up to the neighborhood of the origin, where
it ultimately diverges. The ln[g(r/d)] deviations between different
members of the same isomorph even exceed one order of magnitude
and monotonically increase toward the origin. The above demon-
strates that the g(r/d) deviations between different members of the
same isomorph are dramatic within the correlation void, in stark
contrast to the isomorph invariance of g(r/d) outside the correla-
tion void. This was expected from the g(r/d) deviations observed
between isomorphic state points at the edge of the correlation void,
1.25 ≤ r/d ≤ 1.4, which is reliably probed by the OZ inversion
method, see Sec. V.

Finally, for any YOCP state point and within the entire cor-
relation void, the bridge function can be well approximated with a
fourth degree polynomial, i.e., B(x) = ∑4

i=0 bixi. The mean abso-
lute relative errors of such fits are ∼0.5% regardless of the state
point. This observation is important in view of attempts to param-
eterize the dependence of the YOCP bridge function on the (Γ, κ)
state point or attempts to characterize the approximately isomor-
phic YOCP bridge function exclusively through the reduced excess
entropy sex. This task is beyond the scope of the present work, but
it will be actively pursued in the future. It is worth noting that such
polynomial fits were first employed for the bridge function of hard-
sphere systems.82 Note that, in contrast to the logarithm of the cav-
ity distribution function, the short range bridge function cannot be
accurately fitted with the Widom even polynomial expansion, which
leads to mean absolute relative errors that exceed ∼7%. In view of
Eq. (6), this should be attributed to the small-argument expansion
of the direct correlation function c(r). In fact, the analytical solu-
tion of the soft mean spherical approximation for the direct corre-
lation function within the correlation void contains odd polynomial
terms for the YOCP (∝ x, x3) and odd and even terms for the OCP
(∝ x2, x3, x5).80,81

D. The extrapolation at the origin
In the histogram method, the effective bin position lies at the

center of each bin. As a result, the cavity distribution method can
be utilized for the computation of the short range bridge function
values only at distances larger than Δr/2 (= 0.001d in our case),
which implies that the value of the bridge function at the origin
remains inaccessible. A rigorous small-argument expansion is not
available for the bridge function, which suggests that an extrapola-
tion based on the functional behavior of the bridge function at very
short distances might lead to erroneous values, especially given the
large bridge function uncertainties in the vicinity of r = 0. Neverthe-
less, the Widom even polynomial expansion for the cavity distribu-
tion function79 can be utilized for extrapolation purposes. According
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FIG. 7. YOCP bridge functions (main)
and potentials of mean force (inset)
within the correlation void r /d ≤ 1.4
as computed with the cavity distribution
method with input from ultra-long cav-
ity MD simulations. Results for the (a)
four members of the ΓOCP

ISO = 160 iso-
morph (κ = 1.0, 1.5, 2.0, 2.5), (b) four
members of the ΓOCP

ISO = 120 isomorph
(κ = 1.0, 1.5, 2.0, 2.5), (c) four members
of the ΓOCP

ISO = 80 isomorph (κ = 1.0,
1.5, 2.0, 2.5), and (d) four members of
the ΓOCP

ISO = 40 isomorph (κ = 1.0, 1.5,
2.0, 2.5).

to Eq. (6), this would require knowledge of the direct correlation
function at the origin. Despite the absence of a small-argument
expansion for the direct correlation function, its magnitude at the
origin r = 0 can be computed by taking advantage of the two exact
relations of the integral equation theory together with g(0) = 0 that is
valid for origin divergent pair interactions as those realized in YOCP
systems.

The theoretical foundation of the present bridge function
extrapolation method strongly resembles that of the so-called zero
separation theorems.51,83 We set r = 0 in the Ornstein–Zernike equa-
tion, see Eq. (3), and employ h(0) = −1. Solving for c(r = 0), we
acquire

c(0) = −1 − n∫ c(r)h(r)d3r,

where we set r′ = r for the dummy volume integration variable. After
substituting for h(r) = g(r) − 1 and splitting the integral, the sta-
tistical relation for the reduced inverse isothermal compressibility
μT = 1 − n∫c(r)d3r emerges. By adding and then subtracting the
asymptotic limit of the direct correlation function −βu(r) in the
respective factor of the integrand, the reduced excess internal energy
uex = (1/2)nβ∫g(r)u(r)d3r emerges. The remaining integral can be
simplified by utilizing spherical coordinates and normalized dis-
tance units x = r/d. The above leads to

c(0) = −μT + 2uex − 3∫
∞

0
x2g(x)[c(x) + βu(x)]dx.

We proceed with setting r = 0 in the non-linear closure equa-
tion, Eq. (4), and we employ h(0) = −1. The singularities of the

interaction potential and of the potential of mean force at the ori-
gin can be removed by combining the two diverging terms for the
finite valued logarithm of the cavity distribution function ln[y(0)] to
emerge, whose value at the origin is given by the zero-order term of
the Widom expansion y0. Thus, we have

B(0) = y0 + c(0) + 1.

Finally, we combine the above equations and we also set
δ = 3 ∫∞0 x2g(x)[c(x) + βu(x)]dx to end up with

B(0) = y0 − μT + 2uex − δ + 1. (12)

All four contributions to B(0) can be easily determined from avail-
able MD simulations: uex from the canonical mean of total poten-
tial energies, μT from the hypervirial route,84 δ by combining the
Ornstein–Zernike equation with simulation extracted radial distri-
bution functions, and y0 by least square fitting the output of cavity
simulations within the correlation void to the first three terms of
the Widom series. Note that tail corrections in the evaluation of
uex, μT due to the truncation of the Yukawa potential are negligi-
ble. Note also that the more accurate y0 values resulting from the
ultra-long cavity simulations should be preferred over the y0 values
that resulted from the long cavity simulations and are reported in
Table III.

The B(0) values that result from the above extrapolation
method are collected in Table IV. None of the contributing
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FIG. 8. YOCP bridge functions, including error bars, within different sub-intervals of the correlation void r /d ≤ 1.4 as computed with the cavity distribution method with input
from ultra-long cavity MD simulations. Results for the (a)–(c) four members of the ΓOCP

ISO = 160 isomorph (κ = 1.0, 1.5, 2.0, 2.5) in sub-intervals [0, 0.4d], [0.4d, 0.8d], and
[0.8d, 1.4d], (d)–(f) four members of the ΓOCP

ISO = 120 isomorph (κ = 1.0, 1.5, 2.0, 2.5) in sub-intervals [0, 0.4d], [0.4d, 0.8d], and [0.8d, 1.4d], (g)–(i) four members of the
ΓOCP

ISO = 80 isomorph (κ = 1.0, 1.5, 2.0, 2.5) in sub-intervals [0, 0.4d], [0.4d, 0.8d], and [0.8d, 1.4d], and (j)–(l) four members of the ΓOCP
ISO = 40 isomorph (κ = 1.0, 1.5,

2.0, 2.5) in sub-intervals [0, 0.4d], [0.4d, 0.8d], and [0.8d, 1.4d]. The isomorphic deviations and especially the error bars are very small and can be better discerned in the
zero-separation vicinity.

quantities (y0, μT, uex, δ) are isomorph invariant: y0 due to its deep
connection with the excess chemical potential,51,83 μT because its
thermodynamic definition involves volume derivatives,47 uex owing
to its straightforward connection with the interaction potential (see
also the Rosenfeld–Tarazona decomposition45), and δ due to the
presence of the direct correlation function in the integrand. The iso-
morph variance is confirmed in Table IV, where large differences
can be observed in the above quantities among isentropic YOCP
state points. Despite that the (y0, μT, uex, δ) contributing quanti-
ties are not isomorph invariant, the bridge function at the origin
is revealed to be isomorph invariant to a high degree, as expected

from the B(r) invariance in the statistically sampled range. In fact, a
simple quadratic extrapolation of the bridge function in the smooth
interval 0.05 < r/d < 0.4 would result in very similar but slightly less
accurate values of B(0). Finally, we note that specially designed sim-
ulations based on the insertion of test particles can be utilized in
order to extract ln[y(0)] = y0 exactly at the origin, thus avoiding the
need for any extrapolation.85 However, due to the very high num-
ber of statistically independent configurations sampled in the ultra-
long cavity simulations, the extrapolated B(0) values are accurate
enough so that an additional series of simulations are judged to be
redundant.
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TABLE IV. Extrapolated value of the bridge function at the origin, B(0), together with all four distinct contributions to its
magnitude according to Eq. (12), for the 16 YOCP state points of interest. The reduced excess internal energy uex, the
reduced inverse isothermal compressibility μT, and the integral residual term δ are either extracted directly or computed
with input from ultra-accurate standard MD simulations (N = 54 872, M = 216). The zero-order term of the Widom expansion
y0 is computed by least square fitting input from ultra-long cavity simulations (N = 1000, M3 = 225) within the short range
r /d ≤ 1.4. There are minor deviations≪1% between the y0 values that are extrapolated from the ultra-long cavity simulations
and those that are extrapolated from the long cavity simulations (see Table III) owing to the different statistically independent
configurations sampled (M3 = 225 vs M2 = 220). The contribution of the integral residual term δ to B(0) is the smallest
for all 16 state points, as expected by the fact that the direct correlation function approaches its asymptotic limit already
around r ≃ 2d and the fact that the correlation void g(r) ≃ 0 begins around r ≃ 1.4d, which imply that the integrand factor
g(x)[c(x) + βu(x)] is non-zero only within a fraction of the first coordination cell 1.4 ≲ r /d ≲ 2.

ΓOCP
ISO κ Γ B(0) y0 μT uex δ

160 1.0 205.061 −42.791 76.766 540.296 206.148 −7.444
160 1.5 286.437 −43.324 58.963 284.173 88.661 −3.565
160 2.0 435.572 −43.485 47.667 193.548 48.474 −4.449
160 2.5 708.517 −43.393 40.140 150.459 30.558 −4.812
120 1.0 153.796 −30.940 57.922 405.692 155.043 −5.745
120 1.5 215.930 −31.511 44.885 215.176 67.267 −3.246
120 2.0 328.816 −31.670 36.545 146.766 37.025 −3.501
120 2.5 534.722 −31.658 30.966 114.437 23.494 −3.824
80 1.0 102.531 −19.382 38.977 271.054 103.863 −3.969
80 1.5 144.330 −19.785 30.483 144.489 45.467 −2.287
80 2.0 219.972 −19.948 25.046 99.007 25.276 −2.462
80 2.5 357.136 −19.955 21.442 77.391 16.199 −2.598
40 1.0 51.265 −8.3897 19.842 136.347 52.530 −2.055
40 1.5 72.537 −8.6413 15.798 73.552 23.451 −1.211
40 2.0 110.707 −8.7334 13.279 50.936 13.320 −1.283
40 2.5 178.269 −8.7523 11.534 40.021 8.684 −1.366

VII. SUMMARY AND DISCUSSION

Bridge functions of dense Yukawa liquids were systematically
computed aiming to confirm or disprove the validity of the con-
jecture of reduced unit bridge function invariance along isomorphs,
i.e., phase diagram lines of constant excess entropy. 16 state points
were selected that belong to four isomorphs and cover the entire
dense liquid YOCP phase diagram up to the vicinity of the liquid–
solid (bcc/fcc) phase transition. The YOCP isomorphic curves were
traced out with the small step method as well as with the direct iso-
morph check. Intermediate and long range bridge functions were
made accessible after application of the Ornstein–Zernike inversion
method with radial distribution function input from ultra-accurate
standard canonical molecular dynamics simulations that employed
carefully selected parameters, while short range bridge functions
were made accessible after application of the cavity distribution
method with structural input from ultra-long specially designed
canonical molecular dynamics simulations featuring a tagged par-
ticle pair. Results confirmed that the YOCP bridge functions are
isomorph invariant to a very high degree, but their invariance was
concluded to be approximate, since the small deviations observed
between isentropic bridge functions always exceeded the quantified
uncertainty levels. The short range bridge function invariance con-
stitutes a surprising outcome, given that all other static two-particle
correlation functions are strongly variant within the correlation
void.

A detailed methodology was developed for the design of the
tagged pair interaction potential that leads to the acquisition of
approximately uniform pair statistics in the whole correlation void
based on an algorithmic approach. The externally controlled tagged
pair potential was decomposed into windowing and biasing com-
ponents. The windowing component constrained the tagged pair
within overlapping sub-intervals of the correlation void without
affecting their correlations within each confinement range and was
realized with the aid of two error functions. The biasing component
ensured statistical uniformity within each window and was deter-
mined by successive approximations with input from cavity simu-
lations of increasing duration, starting from a Gaussian series rep-
resentation of increasing complexity and culminating into a Widom
even series representation. Since poor statistics at an extremely short
distance are rather unavoidable with the cavity distribution method,
an extrapolation technique was developed in order to determine the
value of the bridge function at the origin. It was based on well-
known algebraic manipulations of the Ornstein–Zernike integral
equation and of the non-linear closure condition that were orig-
inally employed in the derivation of the so-called zero-separation
theorems. It capitalized on the high accuracy of the Widom
expansion for the cavity logarithm in order to provide a reliable
extrapolation.

The computed YOCP bridge functions within the non-
asymptotic range are illustrated in Fig. 9 for the 4 isomorphic curves
and 16 state points of interest. The very high degree of the still
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FIG. 9. “Exact” bridge functions of
dense YOCP liquids in the entire
non-trivial range of reduced distances.
(a)–(d) Results for the four members
(κ = 1.0, 1.5, 2.0, 2.5) of the ΓOCP

ISO
= 160, 120, 80, 40 isomorphs, respec-
tively. Short range bridge functions r /d
≤ 1.4 are computed by applying the cav-
ity distribution method with input from
ultra-long canonical MD cavity simula-
tions, while intermediate and long range
bridge functions r /d ≥ 1.25 are com-
puted by applying the Ornstein–Zernike
inversion method with input from ultra-
accurate canonical MD simulations. The
overlapping interval 1.25 ≤ r /d ≤ 1.4 is
utilized to re-normalize the short range
bridge functions, which are computed
within an arbitrary additive constant by
the cavity distribution method.

approximate bridge function isomorph invariance is apparent in the
entire range. Tabulated full range Yukawa bridge functions for these
16 state points, organized per isomorphic curve, are available in the
supplementary material. Specifically, raw bridge function data are
provided in the interval 0.01d < r ≤ 5d in steps of 0.01d, i.e., the data
have been down-sampled by five given the Δr = 0.002d bin width
employed in the histogram methods for the extraction of the cavity
distribution function (inside the correlation void) and the radial dis-
tribution function (outside the correlation void). Note that the start-
ing r = 0.01d distance is missing from the dataset for all state points,
since it was judged to be poorly sampled even by the ultra-long cavity
simulations.

The investigation has demonstrated that YOCP bridge func-
tions are isomorph invariant to a very high—yet still approximate—
degree in the entire non-trivial range. Therefore, the sole conjec-
ture of the isomorph-based empirically modified hypernetted-chain
(IEMHNC) approximation has been verified for Yukawa systems
rationalizing the remarkable agreement of the IEMHNC structural
and thermodynamics properties with the “exact” results of computer
simulations. It is expected with confidence that the approximate
isomorph invariance of bridge functions holds for any R-simple
system. However, the degree of isomorph invariance should vary
between systems depending on the strength of the virial potential–
energy correlations, which is exceptionally high for Yukawa sys-
tems. Hence, similar studies should be carried out for other R-
simple liquids, e.g., for Lennard-Jones86 or pure exponential repul-
sive systems.62,87 In addition, some types of isomorph invariance
concerning quantities that are linked to quasi-universal behav-
ior such as the excess entropy scaling of transport coefficients47,48

have been observed to apply also to few systems that do not have
strong enough virial potential–energy correlations88–90 to be clas-
sified as R-simple. Thus, it is also important to check whether an

approximate isentropic invariance of bridge functions holds for
systems that are not R-simple.

Despite that the bridge function constitutes one of the most
important and certainly the most enigmatic static two-particle cor-
relation functions, few of its exact or even approximate properties
have been so far discovered. The approximate isomorph invariance
for R-simple systems can now be added to this short list. Apart
from its general theoretical value and the fact that it is the building
block of the successful IEMHNC approach, the isomorph invari-
ance property has additional practical value: In general, closed-form
parameterizations of the bridge function have proven to be rather
elusive due to the difficulty of fitting a function of three indepen-
dent variables that is anyway formidable to calculate based on first
principles. To our knowledge, analytical bridge functions are cur-
rently available only for few inverse power law systems,16,19,82 since
these systems require a single independent variable for the complete
specification of each thermodynamic state. The approximate prop-
erty of isomorph invariance suggests that the bridge functions of
R-simple systems only depend on the reduced excess entropy and
the reduced distance, paving the way for future parameterization
studies.

SUPPLEMENTARY MATERIAL

See the supplementary material for a meticulous analysis of
uncertainty propagation during indirect bridge function extrac-
tion with the Ornstein–Zernike inversion method and the cav-
ity distribution method. Moreover, tabulations of the raw data
for the Yukawa bridge functions of the 16 state points of interest
(equally distributed among four isomorphic curves) in the entire
non-asymptotic range are also made available.
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